Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

$$S = \frac{PG}{4\pi R^2}$$

where: S = power density

P = power input to the antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

Maximum peak output power at the antenna terminal:	29.90 (dBm)
Maximum peak output power at the antenna terminal	977.24 (mW)
Antenna gain(typical):	<mark>6</mark> (dBi)
Maximum antenna gain:	<u>3.981071706</u> (numeric)
Prediction distance:	<u>23</u> (cm)
Prediction frequency:	<u> </u>
MPE limit for uncontrolled exposure at prediction frequency:	0.6 (mW/cm^2)
Power density at prediction frequency:	0.585241 mW/cm^2)

Therefore device complies with FCC and Industry Canada RF radiation exposure limits for gereral population as a mobile device at 23cm separation distance or higher