

SAR Compliance Test Report

Test report no.: FCC_RM-484_02 Date of report: 2009-10-19

Template version: 13.0 Number of pages: 40

Testing laboratory: TCC Nokia Salo Laboratory Client: Nokia Corporation

P.O.Box 86

Joensuunkatu 7H / Kiila 1B

Sinitaival 5

FIN-24101 SALO, FINLAND
Tel. +358 (0) 7180 08000
Fax. +358 (0) 7180 45220
Fax. +358 (0) 7180 45220
Fax. +358 (0) 7180 46880

Responsible test Virpi Tuominen Product contact Janne Sarna

engineer: person:

Measurements made by: Alina Tähkäpää

Tested device: RM-484

FCC ID: QURRM-484X IC: 661AC-RM484

Supplement reports: Salo_SAR_0914_13 for RM-484 / FCC ID: QURRM-484 / IC ID: 661AC-RM-484,

SAR_Photo_RM-484_03

Testing has been carried out in accordance with:

47CFR §2.1093

Radiofrequency Radiation Exposure Evaluation: Portable Devices

FCC OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01)

Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency

Electromagnetic Fields

RSS-102

Evaluation Procedure for Mobile and Portable Radio Transmitters with Respect to Health Canada's Safety Code 6 for Exposure of Humans to Radio Frequency Fields

IEEE 1528 - 2003

IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices:

Measurement Technique

Documentation: The documentation of the testing performed on the tested devices is archived for 15 years at

TCC Nokia.

Test results: The tested device complies with the requirements in respect of all parameters subject to the

test. The test results and statements relate only to the items tested. The test report shall not

be reproduced except in full, without written approval of the laboratory.

Date and signatures:

For the contents:

CONTENTS

1.	SUMMARY OF SAR TEST REPORT	
	1.1 Test Details	
	1.2 MAXIMUM RESULTS	
	1.2.1 Head Configuration	
	1.2.2 Body Worn Configuration	
	1.2.3 Maximum Drift	
	1.2.4 Measurement Uncertainty	
2.	DESCRIPTION OF THE DEVICE UNDER TEST	
	2.1 DESCRIPTION OF THE ANTENNA	5
3.	TEST CONDITIONS	6
	3.1 Temperature and Humidity	<i>f</i>
	3.2 TEST SIGNAL, FREQUENCIES AND OUTPUT POWER	
	3.3 TEST CASES AND TEST MINIMISATION	
4.	DESCRIPTION OF THE TEST EQUIPMENT	
	4.1 MEASUREMENT SYSTEM AND COMPONENTS	8
	4.1.1 Isotropic E-field Probe Type ES3DV3	
	4.2 PHANTOMS	
	4.3 TISSUE SIMULANTS	
	4.3.1 Tissue Simulant Recipes	
	4.3.2 System Checking	10
	4.3.3 Tissue Simulants used in the Measurements	
5.	DESCRIPTION OF THE TEST PROCEDURE	11
	5.1 DEVICE HOLDER	11
	5.2 Test Positions	
	5.2.1 Against Phantom Head	
	5.2.2 Body Worn Configuration	
	5.3 SCAN PROCEDURES	
	5.4 SAR AVERAGING METHODS	
6.	MEASUREMENT UNCERTAINTY	14
7.	RESULTS	15
A F	PPENDIX A: SYSTEM CHECKING SCANS	20
AF	PPENDIX B: MEASUREMENT SCANS	22
AF	PPENDIX C: RELEVANT PAGES FROM PROBE CALIBRATION REPORT(S)	39
ΑF	PPENDIX D: RELEVANT PAGES FROM DIPOLE VALIDATION KIT REPORT(S)	4(

1. SUMMARY OF SAR TEST REPORT

1.1 Test Details

Period of test	2009-10-08 to to 2009-10-09
SN, HW and SW numbers of	SN: 354203/03/565297/5, HW: 0950, SW: 11.043, DUT: 14257
tested device	
Batteries used in testing	BL-5K, DUT: 14255, 14256, 14258
Headsets used in testing	HS-83+AD-54, DUT: 14260+14259
Other accessories used in	-
testing	
State of sample	Prototype unit
Notes	-

1.2 Maximum Results

The maximum measured SAR values for Head configuration and Body Worn configuration are given in section 1.2.1 and 1.2.2 respectively. The device conforms to the requirements of the standard(s) when the maximum measured SAR value is less than or equal to the limit.

1.2.1 Head Configuration

Mode	Ch / f (MHz)	Conducted power	Position	Measured SAR value (1g avg)	Scaled* SAR value (1g avg)	SAR limit (1g avg)	Result
2-slot GPRS850**	128 / 824.2	30.0 dBm	Right, Cheek	0.737 W/kg	0.83 W/kg	1.6 W/kg	PASSED
2-slot GPRS1900**	512 / 1850.2	29.5 dBm	Right, Cheek	0.594 W/kg	0.67 W/kg	1.6 W/kg	PASSED
WCDMA1900**	9262 / 1852.4	23.0 dBm	Right, Cheek	0.582 W/kg	0.65 W/kg	1.6 W/kg	PASSED
WLAN2450	7 / 2442.0	18.0 dBm	Right, Tilt	0.185 W/kg	0.21 W/kg	1.6 W/kg	PASSED
2-slot GPRS850 + WLAN2450	-	-	Right, Cheek	0.856 W/kg	0.96 W/kg	1.6 W/kg	PASSED
2-slot GPRS1900 + WLAN2450	-	-	Right, Cheek	0.713 W/kg	0.80 W/kg	1.6 W/kg	PASSED
WCDMA1900 + WLAN2450	-	-	Right, Cheek	0.701 W/kg	0.79 W/kg	1.6 W/kg	PASSED

1.2.2 Body Worn Configuration

Mode	Ch / f (MHz)	Radiated power	Separation distance	Measured SAR value (1g avg)	Scaled* SAR value (1g avg)	SAR limit (1g avg)	Result
2-slot GPRS850**	128 / 824.2	30.0 dBm	1.5 cm	0.788 W/kg	0.88 W/kg	1.6 W/kg	PASSED
2-slot GPRS1900**	512 / 1850.2	29.5 dBm	1.5 cm	0.520 W/kg	0.58 W/kg	1.6 W/kg	PASSED
WCDMA1900**	9400 / 1880.0	23.0 dBm	1.5 cm	0.581 W/kg	0.65 W/kg	1.6 W/kg	PASSED
WLAN2450	7 / 2442.0	18.0 dBm	1.5 cm	0.065 W/kg	0.07 W/kg	1.6 W/kg	PASSED
2-slot GPRS850 + WLAN2450	-	-	1.5 cm	0.853 W/kg	0.96 W/kg	1.6 W/kg	PASSED
2-slot GPRS1900 + WLAN2450	-	-	1.5 cm	0.585 W/kg	0.66 W/kg	1.6 W/kg	PASSED
WCDMA1900 + WLAN2450	-	-	1.5 cm	0.646 W/kg	0.72 W/kg	1.6 W/kg	PASSED

^{*} SAR values are scaled up by 12% to cover measurement drift. As a consequence of this upwards correction of the SAR values, the contribution of measurement drift to the overall measurement uncertainty (Section 6) is reduced to zero.

1.2.3 Maximum Drift

Maximum drift covered by 12% scaling up of the SAR values	Maximum drift during measurements
0.5dB	0.40 dB

1.2.4 Measurement Uncertainty

Expanded Uncertainty (k=2) 95%	± 25.8%

^{**}SAR data taken from Salo_SAR_0914_13 for RM-484 / FCC ID: QURRM-484 / IC ID: 661AC-RM-484

2. DESCRIPTION OF THE DEVICE UNDER TEST

Device category	Portable
Exposure environment	General population / uncontrolled

Modes of Operation	Bands	Modulation Mode	Duty Cycle	Transmitter Frequency Range (MHz)
GSM	850 1900	GMSK	1/8	824 - 849 1850 - 1910
GPRS	850 1900	GMSK	1/8 to 3/8	824 - 849 1850 - 1910
EGPRS	850 1900	GMSK / 8PSK	1/8 to 3/8	824 - 849 1850 - 1910
WCDMA	1900 (Band II)		1	1852 - 1908
BT	2450	GFSK	1	2402 – 2480
WLAN	2450	11Mbps QPSK	1	2412 – 2462

Outside of USA and Canada, the transmitter of the device is capable of operating also in GSM/GPRS/EGPRS900, GSM/GPRS/EGPRS1800, WCDMA900 and WCDMA2100 bands which are not part of this filing.

2.1 Description of the Antenna

The device has internal antennas for both cellular and WLAN use. The cellular antenna is located at the bottom in the back section of the keypad slide. The WLAN antenna is located at the top in the back section of the keypad slide.

3. TEST CONDITIONS

3.1 Temperature and Humidity

Ambient temperature (°C):	20.7 to 22.2
Ambient humidity (RH %):	36 to 45

3.2 Test Signal, Frequencies and Output Power

The device was put into operation by using control software.

The device output power was set to maximum power level for all tests; a fully charged battery was used for every test sequence.

In all operating bands the measurements were performed on lowest, middle and highest channels.

The radiated output power of the device was measured by a separate test laboratory on the same unit(s) as used for SAR testing. The results are given in the EMC report supporting this application.

The transmission mode of the device in all WLAN tests was DSSS QPSK 11Mbps. This mode has the highest (or equal highest) time-averaged output power of all the WLAN modulation modes in Nokia devices.

Some of the SAR results given in this report are duplicated from the test report Salo_SAR_0914_13 for RM-484 / FCC ID: QURRM-484 / IC ID: 661AC-RM-484.

3.3 Test Cases and Test Minimisation

The tested device examined in this report may not incorporate all of the features described in the text that follows, but its SAR evaluation will have been subjected to the same considerations and test logic described below.

Whilst it's possible to identify the maximum SAR test cases from inspection of the conducted power levels given in the Results tables (Section 7), different modes in the same band and multi-slot transmit GSM/GPRS modes can create some difficulties. Therefore the sequence of the SAR tests made in evaluating this device has used test logic that is based on measured SAR values. Comparison of measured SAR values in this way, can also allow some test minimization (i.e. test elimination) to be made.

For example, when SAR testing multi-slot GSM/GPRS/EGPRS modes, it is an inefficient use of test resources to fully SAR test every test configuration in each of the different modes as these modes have a fixed power relationship between them that is the same, irrespective of the test configuration. In the case of multi-slot GSM/GPRS modes, a single comparative SAR test - using the same test channel and test configuration – is made in each of the n-slot modes; the mode with the highest measured SAR value is then subjected to full SAR testing in all test configurations. These comparative SAR tests (same frequency, same test configuration) are regarded as extremely accurate as they are relative tests in which the tested device changes neither its frequency nor its position between tests. For different modes that operate in the same band and use the same antenna e.g. GSM/GPRS850 and WCDMA850, full SAR testing is carried out in the GSM/GPRS850 mode but WCDMA850 testing is limited to 3 channel testing in the maximum SAR test configuration for GSM/GPRS850.

Multi-slot SAR testing against the Head is always performed whenever such a device offers Push to Talk over cellular with the internal earpiece active, Dual Transfer Mode (i.e. the ability to transmit voice and data simultaneously using the same transmitter) or has WLAN (which enables a Voice over IP call to take place whilst the device can simultaneously transmit data on a cellular band). Whenever a device has an intended multi-slot use against the head, it is also Head SAR tested in EGPRS mode. It should be noted that EGPRS transmit modes can have either GMSK or 8PSK modulation but, when tested, only 8PSK EGPRS will appear explicitly in the results tables, as GMSK EGPRS mode has identical time-averaged power to the reported GPRS mode.

Devices that have flips or slides are fully SAR tested in all device configurations consistent with their intended usage. For example, flip phones that can receive a call in closed mode are SAR tested against the head in both open and closed configurations. Similarly, slide phones are fully SAR tested in all slide configurations in which calls are intended to be made or received.

In the results tables in Section 7, the maximum SAR value for the 'basic' tests (i.e. left cheek, left tilt, right cheek and right tilt in Head SAR testing; with and without headset with the back &/or display side facing the flat phantom in Body SAR testing) is bolded for each band. In some cases, after full testing of the basic SAR test configurations has been completed, additional checking SAR tests are made. These checking tests are always based on the bolded result from the 'basic' testing. When the SAR value of a checking test exceeds the maximum value from the basic tests, it is also bolded and used as the basis for any further checking tests that might be needed.

Checking tests are largely voluntary and can cover optional batteries, different camera slide positions, optional covers, etc. In the case of optional batteries, if the construction of the optional battery is significantly different to the battery used in the full testing e.g. if the outer can is floating electrically rather than grounded, then the maximum SAR test configuration in each band is tested with the optional battery in 3 channels. For camera slides, if the slide material is metal, then checking tests in 3 channels are again run for the maximum SAR test configuration in each band. For plastic camera slides, SAR checking is only carried out in the

SAR Report FCC_RM-484_02 Applicant: Nokia Corporation

channel that provided the maximum SAR value for the original. Optional front and back covers are tested if their shape differs significantly from the original or if their metallic content varies by more than 15% from the original; in the former case, the testing depends on the extent of the physical differences, whereas in the latter case, 3 channel SAR testing is performed in every band in the max SAR test configuration.

4. DESCRIPTION OF THE TEST EQUIPMENT

4.1 Measurement System and Components

The measurements were performed using an automated near-field scanning system, DASY4, manufactured by Schmid & Partner Engineering AG (SPEAG) in Switzerland. The SAR extrapolation algorithm used in all measurements was the 'advanced extrapolation' algorithm.

The following table lists calibration dates of SPEAG components:

Test Equipment	Serial Number	Calibration interval	Calibration expiry
DAE 4	555	12 months	2009-11
E-field Probe ES3DV3	3165	12 months	2010-05
Dipole Validation Kit, D2450V2	729	24 months	2010-01
DASY4 software	Version 4.7	-	-

Additional test equipment used in testing:

Test Equipment	Model	Serial Number	Calibration interval	Calibration expiry
Signal Generator	SML03	101265	12 months	2010-09
Amplifier	ZHL-42 (SMA)	N072095-5	12 months	2010-09
Power Meter	NRVS	849305/028	12 months	2010-09
Power Sensor	NRV-Z32	839176/020	12 months	2010-09
Vector Network Analyzer	8753E	US38432928	12 months	2010-09
Dielectric Probe Kit	85070B	US33020420	-	-

4.1.1 Isotropic E-field Probe Type ES3DV3

Construction Symmetrical design with triangular core

Interleaved sensors

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, e.g., butyl

diglycol)

Calibration Calibration certificate in Appendix C

Frequency 10 MHz to 4 GHz (dosimetry); Linearity: ± 0.2 dB (30 MHz to 4 GHz)

Directivity ± 0.2 dB in HSL (rotation around probe axis)

± 0.3 dB in HSL (rotation normal to probe axis)

Dynamic Range 5 μ W/g to > 100 mW/g; Linearity: \pm 0.2 dB

Dimensions Overall length: 330 mm

Tip length: 20 mm Body diameter: 12 mm Tip diameter: 3.9 mm

Distance from probe tip to dipole centers: 2.0 mm

Application General dosimetry up to 4 GHz

Compliance tests of mobile phones

Fast automatic scanning in arbitrary phantoms

4.2 Phantoms

The phantom used for all tests i.e. for both system checks and device testing, was the twinheaded "SAM Phantom", manufactured by SPEAG. The phantom conforms to the requirements of IEEE 1528 - 2003.

System checking was performed using the flat section, whilst Head SAR tests used the left and right head profile sections. Body SAR testing also used the flat section between the head profiles.

The SPEAG device holder (see Section 5.1) was used to position the device in all tests whilst a tripod was used to position the validation dipoles against the flat section of phantom.

4.3 Tissue Simulants

Recommended values for the dielectric parameters of the tissue simulants are given in IEEE 1528 - 2003 and FCC Supplement C to 0ET Bulletin 65. All tests were carried out using simulants whose dielectric parameters were within \pm 5% of the recommended values. All tests were carried out within 24 hours of measuring the dielectric parameters.

The depth of the tissue simulant was 15.0 ± 0.5 cm measured from the ear reference point during system checking and device measurements.

4.3.1 Tissue Simulant Recipes

The following recipe(s) were used for Head and Body tissue simulant(s):

2450MHz band

Ingredient	Head (% by weight)	Body (% by weight)
Deionised Water	56.0	70.20
Tween 20	44.0	29.62
Salt	-	0.18

4.3.2 System Checking

The manufacturer calibrates the probes annually. Dielectric parameters of the tissue simulants were measured every day using the dielectric probe kit and the network analyser. A system check measurement was made following the determination of the dielectric parameters of the simulant, using the dipole validation kit. A power level of 250 mW was supplied to the dipole antenna, which was placed under the flat section of the twin SAM phantom. The system checking results (dielectric parameters and SAR values) are given in the table below.

System checking, head tissue simulant

		SAR [W/kg],	Dielectric Parameters		Temp
f [MHz]	Description	1 g	€r	σ [S/m]	[°C]
	Reference result	14.3	37.8	1.82	
	$\pm10\%$ window	12.9 - 15.7			
2450	2009-10-08	13.5	37.5	1.86	21.0
	2009-10-09	13.7	37.4	1.85	21.0

Plots of the system checking scans are given in Appendix A.

4.3.3 Tissue Simulants used in the Measurements

Head tissue simulant measurements

f		Dielectric F	Temp	
[MHz]	Description	Er	σ [S/m]	[°C]
	Recommended value	39.2	1.79	
	. F0/ ' d	27.2 41.2	1.70 1.00	
	\pm 5% window	37.3 – 41.2	1.70 – 1.88	
2442	2009-10-08	37.6	1.85	21.0
	2009-10-09	37.5	1.84	21.0

Body tissue simulant measurements

	Dody dibbat billiana in cabal ciliana						
f		Dielectric F	Temp				
[MHz]	Description	εr	σ [S/m]	[°C]			
	Recommended value	52.7	1.94				
	\pm 5% window	50.1 – 55.3	1.85 – 2.04				
2442	2009-10-09	50.8	2.02	21.0			

5. DESCRIPTION OF THE TEST PROCEDURE

5.1 Device Holder

The device was placed in the device holder (illustrated below) that is supplied by SPEAG as an integral part of the Dasy system.

Device holder supplied by SPEAG

A Nokia designed spacer (illustrated below) was used to position the device within the SPEAG holder. The spacer positions the device so that the holder has minimal effect on the test results but still holds the device securely. The spacer was removed before the tests.

5.2 Test Positions

5.2.1 Against Phantom Head

Measurements were made in "cheek" and "tilt" positions on both the left hand and right hand sides of the phantom.

The positions used in the measurements were according to IEEE 1528 - 2003 "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques".

5.2.2 Body Worn Configuration

The device was placed in the SPEAG holder using the Nokia spacer and placed below the flat section of the phantom. The distance between the device and the phantom was kept at the separation distance indicated in Section 1.2.2 using a separate flat spacer that was removed before the start of the measurements. The device was oriented with both sides facing the phantom to find the highest results.

5.3 Scan Procedures

First, area scans were used for determination of the field distribution. Next, a zoom scan, a minimum of 5x5x7 points covering a volume of at least 30x30x30mm, was performed around the highest E-field value to determine the averaged SAR value. Drift was determined by measuring the same point at the start of the area scan and again at the end of the zoom scan.

5.4 SAR Averaging Methods

The maximum SAR value was averaged over a cube of tissue using interpolation and extrapolation.

The interpolation, extrapolation and maximum search routines within Dasy4 are all based on the modified Quadratic Shepard's method (Robert J. Renka, "Multivariate Interpolation Of Large Sets Of Scattered Data", University of North Texas ACM Transactions on Mathematical Software, vol. 14, no. 2, June 1988, pp. 139-148).

The interpolation scheme combines a least-square fitted function method with a weighted average method. A trivariate 3-D / bivariate 2-D quadratic function is computed for each measurement point and fitted to neighbouring points by a least-square method. For the zoom scan, inverse distance weighting is incorporated to fit distant points more accurately. The interpolating function is finally calculated as a weighted average of the quadratics.

In the zoom scan, the interpolation function is used to extrapolate the Peak SAR from the deepest measurement points to the inner surface of the phantom.

6. MEASUREMENT UNCERTAINTY

Table 6.1 – Measurement uncertainty evaluation

Uncertainty Component	Section in IEEE 1528	Tol. (%)	Prob Dist	Div	Ci	C _i .U _i (%)	Vi
Measurement System							
Probe Calibration	E2.1	±5.9	N	1	1	±5.9	∞
Axial Isotropy	E2.2	±4.7	R	√3	(1-c _p)1/2	±1.9	∞
Hemispherical Isotropy	E2.2	±9.6	R	√3	(C _p)1/2	±3.9	∞
Boundary Effect	E2.3	±1.0	R	√3	1	±0.6	8
Linearity	E2.4	±4.7	R	√3	1	±2.7	8
System Detection Limits	E2.5	± 1.0	R	√3	1	±0.6	∞
Readout Electronics	E2.6	± 1.0	N	1	1	±1.0	∞
Response Time	E2.7	±0.8	R	√3	1	±0.5	8
Integration Time	E2.8	±2.6	R	√3	1	±1.5	∞
RF Ambient Conditions - Noise	E6.1	±3.0	R	√3	1	±1.7	∞
RF Ambient Conditions - Reflections	E6.1	±3.0	R	√3	1	±1.7	8
Probe Positioner Mechanical Tolerance	E6.2	±0.4	R	√3	1	±0.2	∞
Probe Positioning with respect to Phantom Shell	E6.3	±2.9	R	√3	1	±1.7	∞
Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation	E5	±3.9	R	√3	1	±2.3	∞
Test sample Related							
Test Sample Positioning	E4.2	±6.0	N	1	1	±6.0	11
Device Holder Uncertainty	E4.1	±5.0	N	1	1	±5.0	7
Output Power Variation - SAR drift measurement	6.6.3	±0.0	R	√3	1	±0.0	8
Phantom and Tissue Parameters							
Phantom Uncertainty (shape and thickness tolerances)	E3.1	±4.0	R	√3	1	±2.3	∞
Conductivity Target - tolerance	E3.2	±5.0	R	√3	0.64	±1.8	∞
Conductivity - measurement uncertainty	E3.3	±5.5	N	1	0.64	±3.5	5
Permittivity Target - tolerance	E3.2	±5.0	R	√3	0.6	±1.7	∞
Permittivity - measurement uncertainty	E3.3	±2.9	N	1	0.6	±1.7	5
Combined Standard Uncertainty			RSS			±12.9	116
Coverage Factor for 95%			k=2				
Expanded Uncertainty						±25.8	

7. RESULTS

The measured Head SAR values for the test device are tabulated below:

850MHz Head SAR results**

				SAR, av	eraged over 1g	(W/kg)
Mode	Options used	Test conf	Test configuration		Ch 190 836.6 MHz	Ch 251 848.8 MHz
GSM		Conduct	ed power	-	32.5 dBm	-
		Left	Cheek	-	0.371	-
	Phone slide closed		Tilt	-	•	-
	Camera slide closed	Right	Cheek	-	-	-
			Tilt	-	-	-
2-slot GPRS		Conduct	ed power	30.0 dBm	30.0 dBm	30.0 dBm
		Left	Cheek	-	0.381	-
	Phone slide closed		Tilt	-	0.396	-
	Camera slide closed	Right	Cheek	-	0.348	-
			Tilt	-	0.326	-
		Left	Cheek	-	0.705	-
	Phone slide open		Tilt	-	0.526	-
	Camera slide closed	Right	Cheek	0.737	0.711	0.711
			Tilt	-	0.505	-
		Left	Cheek	-	0.285	-
	Phone slide in MPS position		Tilt	-	0.202	-
	Camera slide closed	Right	Cheek	-	0.304	-
			Tilt	-	0.243	-
3-slot GPRS		Conduct	ed power	28.2 dBm	28.2 dBm	28.2 dBm
		Left	Cheek	-	0.375	-
	Phone slide closed		Tilt	-	-	-
	Camera slide closed	Right	Cheek	-	-	-
			Tilt	-	-	-
2-slot 8PSK EGPRS		Conduct	ed power	26.5 dBm	-	-
		Left	Cheek	-	-	-
	Phone slide open		Tilt	-	-	-
	Camera slide closed	Right	Cheek	0.192	-	-
			Tilt	-	-	-
2-slot GPRS	Phone slide open Camera slide open	Right Cheek		0.722	0.687	0.708

SAR Report FCC_RM-484_02 Applicant: Nokia Corporation Type: RM-484

1900MHz Head SAR results**

				SAR, av	eraged over 1g	(W/kg)
	Options used	Test configuration		Ch 512 1850.2 MHz	Ch 661 1880.0 MHz	Ch 810 1909.8 MHz
GSM		Conduct	ed power	-	29.5 dBm	-
		Left	Cheek	-	0.210	-
	Phone slide closed		Tilt	-	-	-
	Camera slide closed	Right	Cheek	-	-	-
			Tilt	-	-	-
2-slot GPRS		Conducto	ed power	29.5 dBm	29.5 dBm	29.5 dBm
		Left	Cheek	-	0.379	-
	Phone slide closed		Tilt	-	0.211	-
	Camera slide closed	Right	Cheek	-	0.335	-
			Tilt	-	0.200	-
		Left	Cheek	-	0.494	-
	Phone slide open		Tilt	-	0.388	-
	Camera slide closed	Right	Cheek	0.594	0.508	0.464
			Tilt	-	0.329	-
		Left	Cheek	-	0.179	-
	Phone slide in MPS position		Tilt	-	0.205	-
	Camera slide closed	Right	Cheek	-	0.192	-
			Tilt	-	0.149	-
3-slot GPRS		Conducto	ed power	-	27.7 dBm	-
		Left	Cheek	-	0.362	-
	Phone slide closed		Tilt	-	-	-
	Camera slide closed	Right	Cheek	-	-	-
			Tilt	-	-	-
2-slot 8PSK EGPRS		Conducto	ed power	25.5 dBm	-	-
		Left	Cheek	-	-	-
	Phone slide open		Tilt	-	-	-
	Camera slide closed	Right	Cheek	0.113	-	-
			Tilt	-	-	-

(1900MHz table continues)

(1900MHz table continues)

				SAR, av	SAR, averaged over 1g (W/kg)			
	Options used	Test conf	iguration	Ch 9262	Ch 9400	Ch 9538		
				1852.4 MHz	1880.0 MHz	1907.6 MHz		
WCDMA		Conducte	ed power	23.0 dBm	23.0 dBm	23.0 dBm		
		Left	Cheek	-	-	-		
	Phone slide open		Tilt	-	-	-		
	Camera slide closed	Right	Cheek	0.582	0.582	0.546		
			Tilt	-	-	-		
2-slot GPRS	Phone slide open Camera slide open	Right Cheek		0.587	0.506	0.449		

2450MHz Head SAR results

			TIZ TICUU SAINTES		eraged over 1g	(W/ka)
	0	T		·		
	Options used	lest conf	iguration	Ch 1	Ch 7	Ch 11
				2412.0 MHz	2442.0 MHz	2462.0 MHz
WLAN		Conducted power		18.0 dBm	18.0 dBm	18.0 dBm
		Left	Cheek	-	0.056	-
	Phone slide closed		Tilt	-	0.090	-
	Camera slide closed	Right	Cheek	-	0.078	-
			Tilt	-	0.110	-
		Left	Cheek	-	0.013	-
	Phone slide open		Tilt	-	0.019	-
	Camera slide closed	Right	Cheek	-	0.021	-
			Tilt	-	0.025	-
		Left	Cheek	-	0.077	-
	Phone slide in MPS position		Tilt	-	0.142	-
	Camera slide closed	Right	Cheek	-	0.119	-
			Tilt	0.175	0.185	0.148
WLAN	Phone slide in MPS position Camera slide open	Right Tilt		0.173	0.181	0.169

Type: RM-484

The measured Body SAR values for the test device are tabulated below:

850MHz Body SAR results**

			SAR, averaged over 1g (W/kg)			
Option used	Device orientation	Test configuration	Ch 128 824.2 MHz	Ch 190 836.6 MHz	Ch 251 848.8 MHz	
2-slot GPRS	Officiación	Conducted power	30.0 dBm	30.0 dBm	30.0 dBm	
	Display facing	Without headset	-	0.289	-	
Phone slide closed	phantom	Headset HS-44+AD-54	-	0.176	-	
Camera slide closed	Back facing	Without headset	0.788	0.782	0.762	
	phantom	Headset HS-44+AD-54	-	0.574	-	

1900MHz Body SAR results**

			SAR, av	eraged over 1g	(W/kg)
Option used	Device	Test configuration	Ch 512	Ch 661	Ch 810
	orientation		1850.2 MHz	1880.0 MHz	1909.8 MHz
2-slot GPRS		Conducted power	29.5 dBm	29.5 dBm	29.5 dBm
	Display facing	Without headset	-	0.123	-
Phone slide closed	phantom	Headset HS-44+AD-54	-	0.108	-
Camera slide closed	Back facing	Without headset	0.520	0.496	0.493
	phantom	Headset HS-44+AD-54	-	0.466	-
			SAR, av	eraged over 1g	(W/kg)
Option used	Device	Test configuration	SAR, av Ch 9262	veraged over 1g Ch 9400	(W/kg) Ch 9538
Option used	Device orientation	Test configuration			, , ,,
Option used WCDMA		Test configuration Conducted power	Ch 9262	Ch 9400	Ch 9538
•			Ch 9262 1852.4 MHz	Ch 9400 1880.0 MHz	Ch 9538 1907.6 MHz
•	orientation	Conducted power	Ch 9262 1852.4 MHz	Ch 9400 1880.0 MHz	Ch 9538 1907.6 MHz
WCDMA	orientation Display facing	Conducted power Without headset	Ch 9262 1852.4 MHz	Ch 9400 1880.0 MHz	Ch 9538 1907.6 MHz

2450MHz Body SAR results

			SAR, averaged over 1g (W/kg)			
Option used	Device orientation	Test configuration	Ch 1 2412.0 MHz	Ch 7 2442.0 MHz	Ch 11 2462.0 MHz	
WLAN		Conducted power	18.0 dBm	18.0 dBm	18.0 dBm	
	Display facing	Without headset	-	0.035	-	
Phone slide closed	phantom	Headset HS-83+AD-54	-	0.022	-	
Camera slide closed	Back facing	Without headset	0.062	0.065	0.061	
	phantom	Headset HS-83+AD-54	-	0.065	-	

Simultaneous transmissions: Combined SAR results

		Max. 1g SA	AR results		Combined 1g SAR values			
Test configuration	WLAN	2-slot GPRS850	2-slot GPRS1900	WCDMA 1900	WLAN + 2-slot GPRS850	WLAN + 2- slot GPRS1900	WLAN + WCDMA 1900	
Head: Left, Cheek	0.077	0.705	0.494	-	0.782	0.571	-	
Head: Left, Tilt	0.142	0.526	0.388	-	0.668	0.530	-	
Head: Right, Cheek	0.119	0.737	0.594	0.582	0.856	0.713	0.701	
Head: Right, Tilt	0.185	0.505	0.329	-	0.690	0.514	-	
Body: Without Headset	0.065	0.788	0.520	0.581	0.853	0.585	0.646	
Body: With Headset	0.065	0.574	0.466	-	0.639	0.531	-	

^{**} Salo_SAR_0914_13 for RM-484 / FCC ID: QURRM-484 / IC ID: 661AC-RM-484.

Combining the maximum SAR values of WLAN2450 and the cellular bands tends to overestimate the SAR value since their maxima do not necessarily occur in the same location.

Note: Simultaneous Transmission Procedures as described in KDB648474 are not required for this product. The Combined SAR data given in the tables above has been voluntarily calculated.

Plots of the Measurement scans are given in Appendix B.

APPENDIX A: SYSTEM CHECKING SCANS

Date/Time: 2009-10-08 08:27:57

Test Laboratory: TCC Nokia

Type: D2450V2; Serial: D2450V2 - SN:729

Communication System: CW2450 Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: HSL2450; Medium Notes: 21.2 C

Medium parameters used: f = 2450 MHz; $\sigma = 1.86 \text{ mho/m}$; $\varepsilon_r = 37.5$; $\rho = 1000 \text{ kg/m}^3$

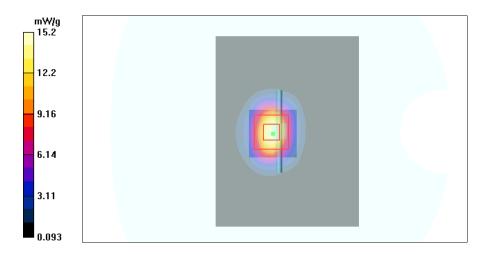
Phantom section: Flat Section

DASY4 Configuration:

- Probe: ES3DV3 SN3165
- ConvF(4.49, 4.49, 4.49); Calibrated: 2009-05-25
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn555; Calibrated: 2008-11-07
- Phantom: SAM 1; Type: Twin SAM 040 CA; Serial: TP-1449
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

d=15mm, Pin=250mW/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 15.9 mW/g


d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 84.3 V/m Peak SAR (extrapolated) = 28.2 W/kg

SAR(1 g) = 13.5 mW/g

SAR(10 g) = 6.25 mW/g Power Drift = 0.069 dB

Maximum value of SAR (measured) = 15.2 mW/g

Date/Time: 2009-10-09 08:39:00

Test Laboratory: TCC Nokia

Type: D2450V2; Serial: D2450V2 - SN:729

Communication System: CW2450 Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: HSL2450; Medium Notes: 21.2C

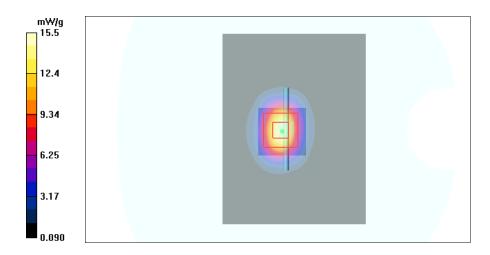
Medium parameters used: f = 2450 MHz; σ = 1.85 mho/m; ε_r = 37.4; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ES3DV3 SN3165
- ConvF(4.49, 4.49, 4.49); Calibrated: 2009-05-25
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn555; Calibrated: 2008-11-07
- Phantom: SAM 1; Type: Twin SAM 040 CA; Serial: TP-1449
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

d=15mm, Pin=250mW/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 16.2 mW/g

d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 89.3 V/m Peak SAR (extrapolated) = 28.9 W/kg

SAR(1 g) = 13.7 mW/g SAR(10 g) = 6.32 mW/g Power Drift = 0.039 dB

Maximum value of SAR (measured) = 15.5 mW/g

APPENDIX B: MEASUREMENT SCANS

Date/Time: 2009-10-08 09:28:46

Test Laboratory: TCC Nokia

Type: RM-484; Serial: 354203/03/565297/5

Communication System: WLAN2450 Frequency: 2442 MHz; Duty Cycle: 1:1 Medium: HSL2450; Medium Notes: 21.2 C

Medium parameters used: f = 2442 MHz; $\sigma = 1.85$ mho/m; $\varepsilon_r = 37.6$; $\rho = 1000$ kg/m³

Phantom section: Left Section

DASY4 Configuration:

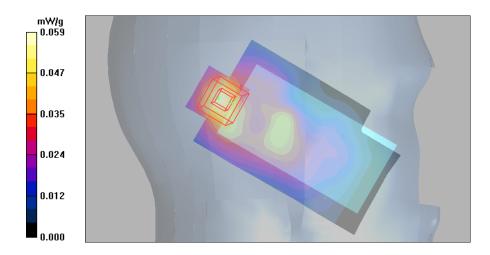
- Probe: ES3DV3 SN3165
- ConvF(4.49, 4.49, 4.49); Calibrated: 2009-05-25
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn555; Calibrated: 2008-11-07
- Phantom: SAM 1; Type: Twin SAM 040 CA; Serial: TP-1449

- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Cheek – Middle – Phone slide closed – Camera slide closed/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.057 mW/g

Cheek - Middle - Phone slide closed - Camera slide closed/Zoom Scan (5x5x7)/Cube 0: Measurement grid:


dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 3.03 V/m Peak SAR (extrapolated) = 0.116 W/kg

SAR(1 g) = 0.056 mW/gSAR(10 g) = 0.028 mW/g

Power Drift = 0.367 dB

Maximum value of SAR (measured) = 0.059 mW/g

Date/Time: 2009-10-08 09:55:34

Test Laboratory: TCC Nokia

Type: RM-484; Serial: 354203/03/565297/5

Communication System: WLAN2450 Frequency: 2442 MHz; Duty Cycle: 1:1 Medium: HSL2450; Medium Notes: 21.2 C

Medium parameters used: f = 2442 MHz; σ = 1.85 mho/m; ε_r = 37.6; ρ = 1000 kg/m³

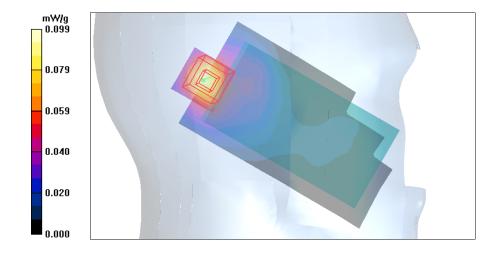
Phantom section: Left Section

DASY4 Configuration:

- Probe: ES3DV3 SN3165
- ConvF(4.49, 4.49, 4.49); Calibrated: 2009-05-25
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn555; Calibrated: 2008-11-07
- Phantom: SAM 1; Type: Twin SAM 040 CA; Serial: TP-1449
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Tilt - Middle - Phone slide closed - Camera slide closed /Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.099 mW/g


Tilt - Middle - Phone slide closed - Camera slide closed /Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 4.17 V/m Peak SAR (extrapolated) = 0.189 W/kg

SAR(1 g) = 0.090 mW/g SAR(10 g) = 0.043 mW/g Power Drift = -0.008 dB

Maximum value of SAR (measured) = 0.099 mW/g

Date/Time: 2009-10-08 10:14:44

Test Laboratory: TCC Nokia

Type: RM-484; Serial: 354203/03/565297/5

Communication System: WLAN2450 Frequency: 2442 MHz; Duty Cycle: 1:1 Medium: HSL2450; Medium Notes: 21.2 C

Medium parameters used: f = 2442 MHz; σ = 1.85 mho/m; ε_r = 37.6; ρ = 1000 kg/m³

Phantom section: Right Section

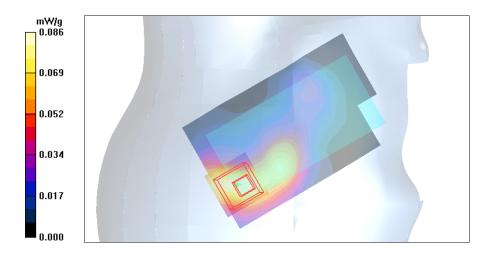
DASY4 Configuration:

- Probe: ES3DV3 SN3165
- ConvF(4.49, 4.49, 4.49); Calibrated: 2009-05-25
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn555; Calibrated: 2008-11-07
- Phantom: SAM 1; Type: Twin SAM 040 CA; Serial: TP-1449
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Cheek - Middle - Phone slide closed - Camera slide closed /Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.079 mW/g

Cheek - Middle - Phone slide closed - Camera slide closed /Zoom Scan (5x5x7)/Cube 0: Measurement grid:


dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 4.32 V/m Peak SAR (extrapolated) = 0.156 W/kg

SAR(1 g) = 0.078 mW/gSAR(10 g) = 0.041 mW/g

Power Drift = -0.003 dB

Maximum value of SAR (measured) = 0.086 mW/g

Date/Time: 2009-10-08 10:28:14

Test Laboratory: TCC Nokia

Type: RM-484; Serial: 354203/03/565297/5

Communication System: WLAN2450 Frequency: 2442 MHz; Duty Cycle: 1:1 Medium: HSL2450; Medium Notes: 21.2 C

Medium parameters used: f = 2442 MHz; $\sigma = 1.85$ mho/m; $\varepsilon_r = 37.6$; $\rho = 1000$ kg/m³

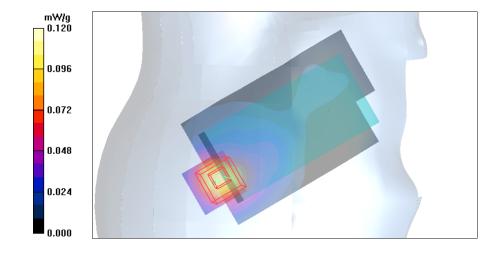
Phantom section: Right Section

DASY4 Configuration:

- Probe: ES3DV3 SN3165
- ConvF(4.49, 4.49, 4.49); Calibrated: 2009-05-25
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn555; Calibrated: 2008-11-07
- Phantom: SAM 1; Type: Twin SAM 040 CA; Serial: TP-1449
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Tilt - Middle - Phone slide closed - Camera slide closed /Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.108 mW/g


Tilt - Middle - Phone slide closed - Camera slide closed /Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 4.56 V/m Peak SAR (extrapolated) = 0.237 W/kg

SAR(1 g) = 0.110 mW/g SAR(10 g) = 0.052 mW/g Power Drift = 0.159 dB

Maximum value of SAR (measured) = 0.120 mW/g

Date/Time: 2009-10-08 11:50:34

Test Laboratory: TCC Nokia

Type: RM-484; Serial: 354203/03/565297/5

Communication System: WLAN2450 Frequency: 2442 MHz; Duty Cycle: 1:1 Medium: HSL2450; Medium Notes: 21.2 C

Medium parameters used: f = 2442 MHz; σ = 1.85 mho/m; ε_r = 37.6; ρ = 1000 kg/m³

Phantom section: Left Section

DASY4 Configuration:

- Probe: ES3DV3 SN3165
- ConvF(4.49, 4.49, 4.49); Calibrated: 2009-05-25
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn555; Calibrated: 2008-11-07
- Phantom: SAM 1; Type: Twin SAM 040 CA; Serial: TP-1449
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Cheek – Middle – Phone slide open – Camera slide closed /Area Scan (51x101x1): Measurement grid:

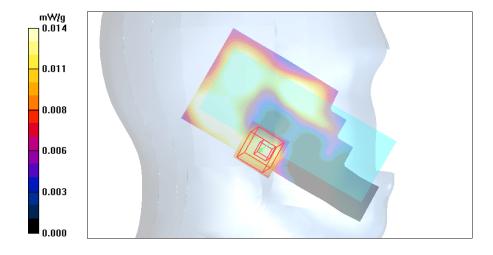
dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.022 mW/g

Cheek - Middle - Phone slide open - Camera slide closed /Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 2.45 V/m


Peak SAR (extrapolated) = 0.019 W/kg

SAR(1 g) = 0.013 mW/g

SAR(10 g) = 0.00691 mW/g

Power Drift = -0.231 dB

Maximum value of SAR (measured) = 0.014 mW/g

Date/Time: 2009-10-08 12:19:30

Test Laboratory: TCC Nokia

Type: RM-484; Serial: 354203/03/565297/5

Communication System: WLAN2450 Frequency: 2442 MHz; Duty Cycle: 1:1 Medium: HSL2450; Medium Notes: 21.2 C

Medium parameters used: f = 2442 MHz; σ = 1.85 mho/m; ε_r = 37.6; ρ = 1000 kg/m³

Phantom section: Left Section

DASY4 Configuration:

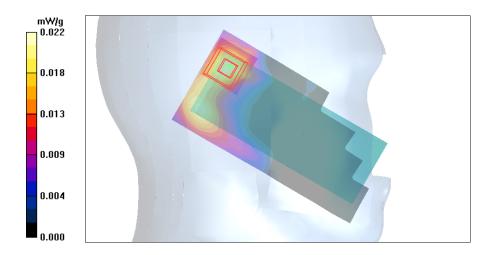
- Probe: ES3DV3 SN3165
- ConvF(4.49, 4.49, 4.49); Calibrated: 2009-05-25
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn555; Calibrated: 2008-11-07
- Phantom: SAM 1; Type: Twin SAM 040 CA; Serial: TP-1449
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Tilt - Middle - Phone slide open - Camera slide closed /Area Scan (51x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.020 mW/g

Tilt - Middle - Phone slide open - Camera slide closed /Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=7.5mm, dy=7.5mm, dz=5mm


Reference Value = 2.55 V/m

Peak SAR (extrapolated) = 0.033 W/kg SAR(1 g) = 0.019 mW/g

SAR(10 g) = 0.00989 mW/g

Power Drift = 0.399 dB

Maximum value of SAR (measured) = 0.022 mW/g

Date/Time: 2009-10-08 12:53:13

Test Laboratory: TCC Nokia

Type: RM-484; Serial: 354203/03/565297/5

Communication System: WLAN2450 Frequency: 2442 MHz; Duty Cycle: 1:1 Medium: HSL2450; Medium Notes: 21.2 C

Medium parameters used: f = 2442 MHz; $\sigma = 1.85$ mho/m; $\varepsilon_r = 37.6$; $\rho = 1000$ kg/m³

Phantom section: Right Section

DASY4 Configuration:

- Probe: ES3DV3 SN3165
- ConvF(4.49, 4.49, 4.49); Calibrated: 2009-05-25
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn555; Calibrated: 2008-11-07
- Phantom: SAM 1; Type: Twin SAM 040 CA; Serial: TP-1449
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Cheek - Middle - Phone slide open - Camera slide closed /Area Scan (51x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.034 mW/g

Cheek - Middle - Phone slide open - Camera slide closed /Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 2.44 V/m Peak SAR (extrapolated) = 0.033 W/kg

SAR(1 g) = 0.021 mW/g

SAR(10 g) = 0.011 mW/g

Power Drift = 0.076 dB

Warning: Maximum averaged SAR over 10 g is located on the boundary of the measurement cube. This cube might not incorporate the absolute averaged SAR. Please consider a refinement of the Area Scan measurement.

Maximum value of SAR (measured) = 0.024 mW/g

Date/Time: 2009-10-08 12:37:37

Test Laboratory: TCC Nokia

Type: RM-484; Serial: 354203/03/565297/5

Communication System: WLAN2450 Frequency: 2442 MHz; Duty Cycle: 1:1 Medium: HSL2450; Medium Notes: 21.2 C

Medium parameters used: f = 2442 MHz; σ = 1.85 mho/m; ε_r = 37.6; ρ = 1000 kg/m³

Phantom section: Right Section

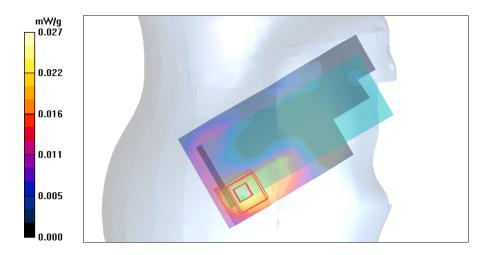
DASY4 Configuration:

- Probe: ES3DV3 SN3165
- ConvF(4.49, 4.49, 4.49); Calibrated: 2009-05-25
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn555; Calibrated: 2008-11-07
- Phantom: SAM 1; Type: Twin SAM 040 CA; Serial: TP-1449
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Tilt - Middle - Phone slide open - Camera slide closed /Area Scan (51x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.025 mW/g

Tilt - Middle - Phone slide open - Camera slide closed /Zoom Scan (5x5x7)/Cube 0: Measurement grid:


dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 2.11 V/m Peak SAR (extrapolated) = 0.054 W/kg

SAR(1 g) = 0.025 mW/gSAR(10 g) = 0.013 mW/g

Power Drift = 0.034 dB

Maximum value of SAR (measured) = 0.027 mW/g

Date/Time: 2009-10-08 13:58:15

Test Laboratory: TCC Nokia

Type: RM-484; Serial: 354203/03/565297/5

Communication System: WLAN2450 Frequency: 2442 MHz; Duty Cycle: 1:1 Medium: HSL2450; Medium Notes: 21.2 C

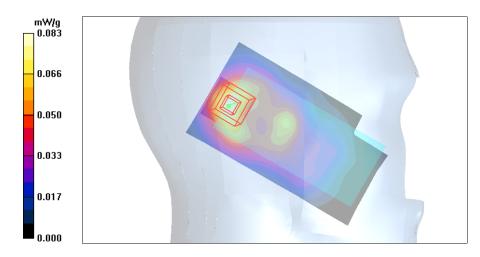
Medium parameters used: f = 2442 MHz; σ = 1.85 mho/m; ε_r = 37.6; ρ = 1000 kg/m³

Phantom section: Left Section

DASY4 Configuration:

- Probe: ES3DV3 SN3165
- ConvF(4.49, 4.49, 4.49); Calibrated: 2009-05-25
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn555; Calibrated: 2008-11-07
- Phantom: SAM 1; Type: Twin SAM 040 CA; Serial: TP-1449
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Cheek – Middle – Phone slide in MPS position – Camera slide closed/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.083 mW/g

Cheek - Middle - Phone slide in MPS position - Camera slide closed /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 4.03 V/m
Peak SAR (extrapolated) = 0.145 W/kg
SAR(1 g) = 0.077 mW/g

SAR(10 g) = 0.041 mW/g Power Drift = 0.224 dB

Maximum value of SAR (measured) = 0.083 mW/g

Date/Time: 2009-10-08 13:44:03

Test Laboratory: TCC Nokia

Type: RM-484; Serial: 354203/03/565297/5

Communication System: WLAN2450 Frequency: 2442 MHz; Duty Cycle: 1:1 Medium: HSL2450; Medium Notes: 21.2 C

Medium parameters used: f = 2442 MHz; σ = 1.85 mho/m; ε_r = 37.6; ρ = 1000 kg/m³

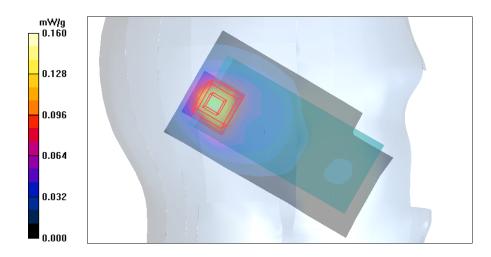
Phantom section: Left Section

DASY4 Configuration:

- Probe: ES3DV3 SN3165
- ConvF(4.49, 4.49, 4.49); Calibrated: 2009-05-25
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn555; Calibrated: 2008-11-07
- Phantom: SAM 1; Type: Twin SAM 040 CA; Serial: TP-1449
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Tilt - Middle – Phone slide in MPS position – Camera slide closed /Area Scan (51x91x1): Measurement grid: dx=15mm, dv=15mm

Maximum value of SAR (interpolated) = 0.153 mW/g


Tilt - Middle - Phone slide in MPS position - Camera slide closed /Zoom Scan (5x5x7)/Cube 0: Measurement

grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 5.39 V/m Peak SAR (extrapolated) = 0.301 W/kg

SAR(1 g) = 0.142 mW/g SAR(10 g) = 0.068 mW/g Power Drift = 0.181 dB

Maximum value of SAR (measured) = 0.160 mW/g

Date/Time: 2009-10-08 13:13:06

Test Laboratory: TCC Nokia

Type: RM-484; Serial: 354203/03/565297/5

Communication System: WLAN2450 Frequency: 2442 MHz; Duty Cycle: 1:1 Medium: HSL2450; Medium Notes: 21.2 C

Medium parameters used: f = 2442 MHz; $\sigma = 1.85$ mho/m; $\varepsilon_r = 37.6$; $\rho = 1000$ kg/m³

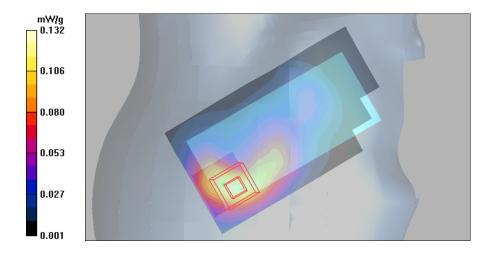
Phantom section: Right Section

DASY4 Configuration:

- Probe: ES3DV3 SN3165
- ConvF(4.49, 4.49, 4.49); Calibrated: 2009-05-25
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn555; Calibrated: 2008-11-07
- Phantom: SAM 1; Type: Twin SAM 040 CA; Serial: TP-1449
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Cheek - Middle – Phone slide in MPS position – Camera slide closed /Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.121 mW/g


Cheek - Middle - Phone slide in MPS position - Camera slide closed /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 5.12 V/m Peak SAR (extrapolated) = 0.229 W/kg

SAR(1 g) = 0.119 mW/g SAR(10 g) = 0.060 mW/g Power Drift = -0.314 dB

Warning: Maximum averaged SAR over 10 g is located on the boundary of the measurement cube. This cube might not incorporate the absolute averaged SAR. Please consider a refinement of the Area Scan measurement.

Maximum value of SAR (measured) = 0.132 mW/g

Date/Time: 2009-10-08 13:27:07

Test Laboratory: TCC Nokia

Type: RM-484; Serial: 354203/03/565297/5

Communication System: WLAN2450 Frequency: 2442 MHz; Duty Cycle: 1:1 Medium: HSL2450; Medium Notes: 21.2 C

Medium parameters used: f = 2442 MHz; $\sigma = 1.85$ mho/m; $\varepsilon_r = 37.6$; $\rho = 1000$ kg/m³

Phantom section: Right Section

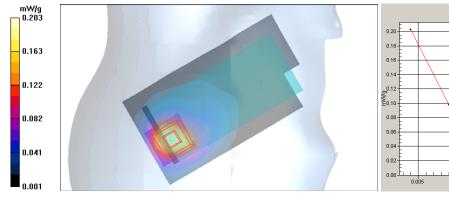
DASY4 Configuration:

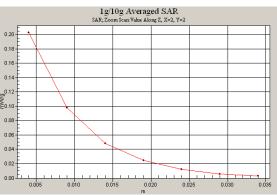
- Probe: ES3DV3 SN3165
- ConvF(4.49, 4.49, 4.49); Calibrated: 2009-05-25
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn555; Calibrated: 2008-11-07
- Phantom: SAM 1; Type: Twin SAM 040 CA; Serial: TP-1449
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Tilt - Middle – Phone slide in MPS position – Camera slide closed /Area Scan (51x91x1): Measurement grid:

dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.205 mW/g


Tilt - Middle - Phone slide in MPS position - Camera slide closed /Zoom Scan (5x5x7)/Cube 0: Measurement


grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 5.52 V/m Peak SAR (extrapolated) = 0.382 W/kg

SAR(1 g) = 0.185 mW/g SAR(10 g) = 0.091 mW/g Power Drift = 0.067 dB

Maximum value of SAR (measured) = 0.203 mW/g

Date/Time: 2009-10-09 09:24:03

Test Laboratory: TCC Nokia

Type: RM-484; Serial: 354203/03/565297/5

Communication System: WLAN2450 Frequency: 2442 MHz; Duty Cycle: 1:1 Medium: HSL2450; Medium Notes: 21,2C

Medium parameters used: f = 2442 MHz; $\sigma = 1.84 \text{ mho/m}$; $\varepsilon_r = 37.5$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

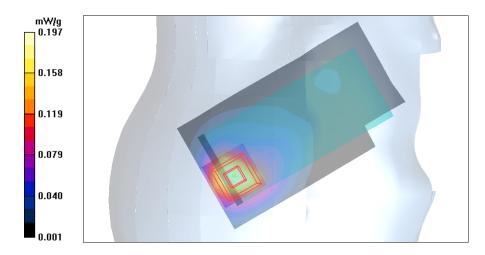
DASY4 Configuration:

- Probe: ES3DV3 SN3165
- ConvF(4.49, 4.49, 4.49); Calibrated: 2009-05-25
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn555; Calibrated: 2008-11-07
- Phantom: SAM 1; Type: Twin SAM 040 CA; Serial: TP-1449
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Tilt - Middle - Phone slide in MPS position - Camera slide open/Area Scan (51x91x1): Measurement grid:

dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.203 mW/g


Tilt - Middle - Phone slide in MPS position - Camera slide open /Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 5.51 V/m Peak SAR (extrapolated) = 0.379 W/kg

SAR(1 g) = 0.181 mW/g SAR(10 g) = 0.090 mW/g Power Drift = 0.075 dB

Maximum value of SAR (measured) = 0.197 mW/g

Date/Time: 2009-10-09 12:36:38

Test Laboratory: TCC Nokia

Type: RM-484; Serial: 354203/03/565297/5

Communication System: WLAN2450 Frequency: 2442 MHz; Duty Cycle: 1:1 Medium: BSL2450; Medium Notes: 20.6C

Medium parameters used: f = 2442 MHz; $\sigma = 2.02$ mho/m; $\varepsilon_r = 50.8$; $\rho = 1000$ kg/m³

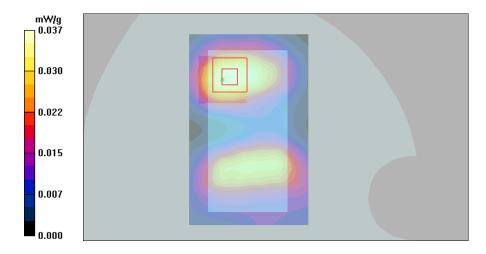
Phantom section: Flat Section

DASY4 Configuration:

- Probe: ES3DV3 SN3165
- ConvF(4.17, 4.17, 4.17); Calibrated: 2009-05-25
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn555: Calibrated: 2008-11-07
- Phantom: SAM 2; Type: Twin SAM 040 CA; Serial: TP 1177
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Body - Middle - Phone slide closed - Camera slide closed - No accessory - Display facing phantom/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.040 mW/g


Body - Middle - Phone slide closed - Camera slide closed - No accessory - Display facing phantom /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 2.73 V/m Peak SAR (extrapolated) = 0.053 W/kg

SAR(1 g) = 0.035 mW/gSAR(10 g) = 0.019 mW/gPower Drift = 0.011 dB

Warning: Maximum averaged SAR over 10 g is located on the boundary of the measurement cube. This cube might not incorporate the absolute averaged SAR. Please consider a refinement of the Area Scan measurement.

Maximum value of SAR (measured) = 0.037 mW/g

Date/Time: 2009-10-09 13:02:18

Test Laboratory: TCC Nokia

Type: RM-484; Serial: 354203/03/565297/5

Communication System: WLAN2450 Frequency: 2442 MHz; Duty Cycle: 1:1 Medium: BSL2450; Medium Notes: 20.6C

Medium parameters used: f = 2442 MHz; $\sigma = 2.02 \text{ mho/m}$; $\varepsilon_r = 50.8$; $\rho = 1000 \text{ kg/m}^3$

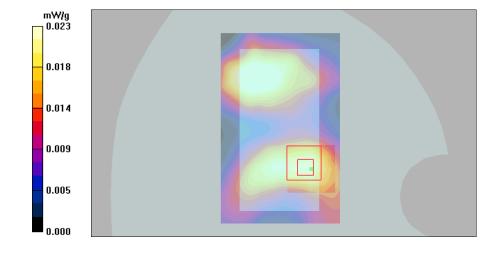
Phantom section: Flat Section

DASY4 Configuration:

- Probe: ES3DV3 SN3165
- ConvF(4.17, 4.17, 4.17); Calibrated: 2009-05-25
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn555: Calibrated: 2008-11-07
- Phantom: SAM 2; Type: Twin SAM 040 CA; Serial: TP 1177
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Body - Middle - Phone slide closed - Camera slide closed - HS-83 + AD-54 - Display Facing Phantom/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.027 mW/g


Body - Middle - Phone slide closed - Camera slide closed - HS-83 + AD-54 - Display Facing Phantom/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 2.27 V/m Peak SAR (extrapolated) = 0.045 W/kg

SAR(1 g) = 0.022 mW/g SAR(10 g) = 0.012 mW/g Power Drift = 0.328 dB

Warning: Maximum averaged SAR over 10 g is located on the boundary of the measurement cube. This cube might not incorporate the absolute averaged SAR. Please consider a refinement of the Area Scan measurement.

Maximum value of SAR (measured) = 0.023 mW/g

Date/Time: 2009-10-09 12:09:29

Test Laboratory: TCC Nokia

Type: RM-484; Serial: 354203/03/565297/5

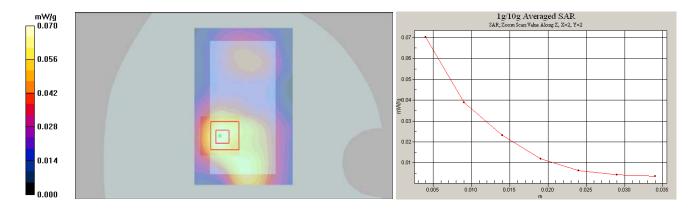
Communication System: WLAN2450 Frequency: 2442 MHz; Duty Cycle: 1:1 Medium: BSL2450; Medium Notes: 20.6C

Medium parameters used: f = 2442 MHz; $\sigma = 2.02$ mho/m; $\varepsilon_r = 50.8$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ES3DV3 SN3165
- ConvF(4.17, 4.17, 4.17); Calibrated: 2009-05-25
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn555; Calibrated: 2008-11-07
- Phantom: SAM 2; Type: Twin SAM 040 CA; Serial: TP 1177
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176


Body - Middle - Phone slide closed - Camera slide closed - No accessory - Back facing phantom/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.070 mW/g

Body - Middle - Phone slide closed - Camera slide closed - No accessory - Back pacing phantom/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 5.63 V/m
Peak SAR (extrapolated) = 0.115 W/kg
SAR(1 g) = 0.065 mW/g
SAR(10 g) = 0.037 mW/g

Power Drift = -0.242 dB Maximum value of SAR (measured) = 0.070 mW/g

Date/Time: 2009-10-09 12:22:48

Test Laboratory: TCC Nokia

Type: RM-484; Serial: 354203/03/565297/5

Communication System: WLAN2450 Frequency: 2442 MHz; Duty Cycle: 1:1 Medium: BSL2450; Medium Notes: 20.6C

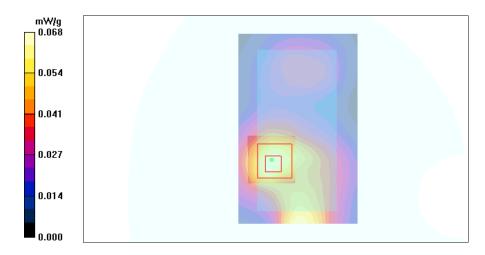
Medium parameters used: f = 2442 MHz; σ = 2.02 mho/m; ε_r = 50.8; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ES3DV3 SN3165
- ConvF(4.17, 4.17, 4.17); Calibrated: 2009-05-25
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn555; Calibrated: 2008-11-07
- Phantom: SAM 2; Type: Twin SAM 040 CA; Serial: TP 1177
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Body - Middle - Phone slide closed - Camera slide closed - HS-83 + AD-54 - Back Facing Phantom/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.067 mW/g

Body - Middle - Phone slide closed - Camera slide closed - HS-83 + AD-54 - Back Facing Phantom/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 4.89 V/m
Peak SAR (extrapolated) = 0.116 W/kg
SAR(1 g) = 0.065 mW/g
SAR(10 g) = 0.037 mW/g

Power Drift = -0.104 dB

Maximum value of SAR (measured) = 0.068 mW/g

APPENDIX C: RELEVANT PAGES FROM PROBE CALIBRATION REPORT(S)

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

S

C

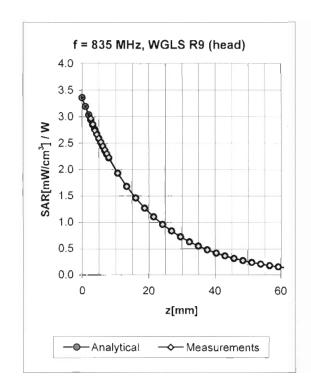
S

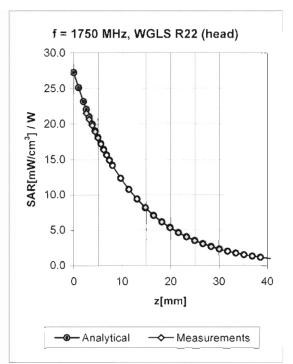
Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108


Nokia Salo TCC Certificate No: E\$3-3165_May09 Client **IBRATION CERTIFICATE** ES3DV3 - SN:3165 Object Calibration procedure(s) QA CAL-01.v6 and QA CAL-23.v3 Calibration procedure for dosimetric E-field probes May 25, 2009 Calibration date: Condition of the calibrated item In Tolerance This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date (Certificate No.) Scheduled Calibration Power meter E4419B GB41293874 1-Apr-09 (No. 217-01030) Apr-10 Power sensor E4412A MY41495277 1-Apr-09 (No. 217-01030) Арг-10 Power sensor E4412A MY41498087 Apr-10 1-Apr-09 (No. 217-01030) Reference 3 dB Attenuator SN: S5054 (3c) 31-Mar-09 (No. 217-01026) Mar-10 Reference 20 dB Attenuator SN: S5086 (20b) 31-Mar-09 (No. 217-01028) Mar-10 Reference 30 dB Attenuator SN: S5129 (30b) 31-Mar-09 (No. 217-01027) Mar-10 Reference Probe ES3DV2 SN: 3013 2-Jan-09 (No. ES3-3013_Jan09) DAE4 SN: 660 9-Sep-08 (No. DAE4-660_Sep08) Sep-09 Secondary Standards 1D# Check Date (in house) Scheduled Check RF generator HP 8648C US3642U01700 4-Aug-99 (in house check Oct-07) In house check: Oct-09 Network Analyzer HP 8753E US37390585 18-Oct-01 (in house check Oct-08) In house check: Oct-09 Signature Jeton Kastrati Calibrated by: Laboratory Technician Approved by: Katja Pokovic Technical Manager


Certificate No: ES3-3165_May09

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

ES3DV3 SN:3165 May 25, 2009

Conversion Factor Assessment

f [MHz]	Validity [MHz] ^C	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
835	± 50 / ± 100	Head	41.5 ± 5%	0.90 ± 5%	0.45	1.64	5.98 ± 11.0% (k=2)
1750	± 50 / ± 100	Head	40.1 ± 5%	1.37 ± 5%	0.65	1.29	5.17 ± 11.0% (k=2)
1900	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.60	1.48	5.00 ± 11.0% (k=2)
2450	± 50 / ± 100	Head	39.2 ± 5%	1.80 ± 5%	0.80	1.34	4.49 ± 11.0% (k=2)
835	± 50 / ± 100	Body	55.2 ± 5%	$0.97 \pm 5\%$	0.40	1.64	5.95 ± 11.0% (k=2)
1750	± 50 / ± 100	Body	53.4 ± 5%	1.49 ± 5%	0.54	1.59	4.89 ± 11.0% (k=2)
1900	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.39	2.01	4.60 ± 11.0% (k=2)
2450	± 50 / ± 100	Body	52.7 ± 5%	1.95 ± 5%	0.70	1.30	4.17 ± 11.0% (k=2)

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

APPENDIX D: RELEVANT PAGES FROM DIPOLE VALIDATION KIT REPORT(S)

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S

C

S

Accreditation No.: SCS 108

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Client

Nokia Salo TCC

Certificate No: D2450V2-729_Jan08

CALIBRATION CERTIFICATE

Object

D2450V2 - SN: 729

Calibration procedure(s)

QA CAL-05.v7

Calibration procedure for dipole validation kits

Calibration date:

January 30, 2008

Condition of the calibrated item

In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	04-Oct-07 (METAS, No. 217-00736)	Oct-08
Power sensor HP 8481A	US37292783	04-Oct-07 (METAS, No. 217-00736)	Oct-08
Reference 20 dB Attenuator	SN: 5086 (20g)	07-Aug-07 (METAS, No 217-00718)	Aug-08
Reference 10 dB Attenuator	SN: 5047.2 (10r)	07-Aug-07 (METAS, No 217-00718)	Aug-08
Reference Probe ES3DV2	SN: 3025	26-Oct-07 (SPEAG, No. ES3-3025_Oct07)	Oct-08
DAE4	SN 601	03-Jan-08 (SPEAG, No. DAE4-601_Jan08)	Jan-09
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (SPEAG, in house check Oct-07)	In house check: Oct-08
RF generator R&S SMT-06	100005	4-Aug-99 (SPEAG, in house check Oct-07)	In house check: Oct-09
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (SPEAG, in house check Oct-07)	In house check: Oct-08
	Name	Function	Signature
Calibrated by:	Claudio Leubler	Laboratory Technician	det.
Approved by:	Katja Pokovic	Technical Manager	28-11
	Carlotte Company		1 11 21 222

Issued: January 31, 2008

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2450V2-729 Jan08

Page 1 of 9

DASY4 Validation Report for Head TSL

Date/Time: 30.01.2008 12:36:45

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN729

Communication System: CW-2450; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: HSL U10 BB;

Medium parameters used: f = 2450 MHz; $\sigma = 1.82$ mho/m; $\varepsilon_r = 37.8$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

Probe: ES3DV2 - SN3025 (HF); ConvF(4.41, 4.41, 4.41); Calibrated: 26.10.2007

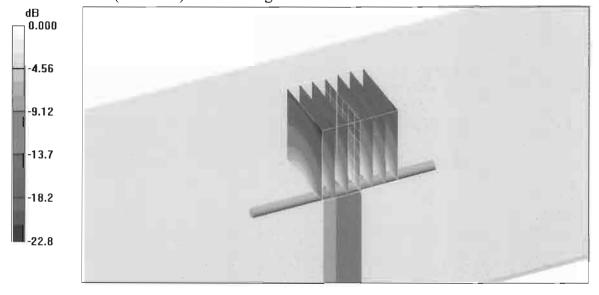
• Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 03.01.2008

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA;;

Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 172

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 92.1 V/m; Power Drift = 0.058 dB

Peak SAR (extrapolated) = 30.7 W/kg

SAR(1 g) = 14.3 mW/g; SAR(10 g) = 6.57 mW/g

Maximum value of SAR (measured) = 15.4 mW/g

0 dB = 15.4 mW/g

DASY4 Validation Report for Body TSL

Date/Time: 23.01.2008 12:53:20

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN729

Communication System: CW-2450; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: MSL U10 BB;

Medium parameters used: f = 2450 MHz; $\sigma = 1.99 \text{ mho/m}$; $\epsilon_r = 52.5$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

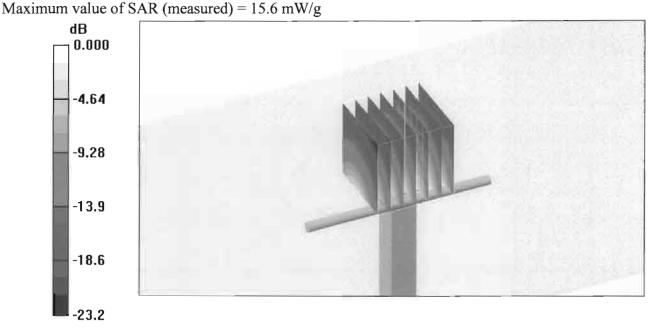
Probe: ES3DV2 - SN3025 (HF); ConvF(4.02, 4.02, 4.02); Calibrated: 26.10.2007

Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 03.01.2008

• Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; ;

Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 172


Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 82.8 V/m; Power Drift = 0.091 dB

Peak SAR (extrapolated) = 28.8 W/kg

SAR(1 g) = 13.8 mW/g; SAR(10 g) = 6.33 mW/g

0 dB = 15.6 mW/g