

110 Nortech Parkway San Jose, California, 95134

> FCC Part 15, Subpart E, UNII (Part 15.401) Certification Application

EMI Test Report and Technical Documentation on Airespace Virtual Access point. Model: 1200

FCC ID: QTZVAP1200

Prepared by:

David Waitt 202 Calvert Drive #217 Cupertino, Ca. 95014 <u>david@waitt.us</u> (408) 832 7053

Table of Contents

Section	Page
General information	3
Detailed product information	4
Results summary	5
Test facilities	б
Test Equipment	7
Test methods	8
Test Results	9
Maximum power at RF Output	11
6dB Bandwidth	12
Power spectral density	16
Out of band emissions	20
Peak Excursion	35
Radiated emissions in restricted bands	39
AC Line Conducted Emissions	46

General Information

Unit(s) Under Test: Model: Product Description:	Airespace Virtual Access point 1200 IEEE 802.11A / B Access point
FCC ID:	QTZVAP1200
Tested For:	Airespace 110 Nortech Parkway San Jose, CA. 95134
Tested At:	Elliott Laboratories 684 West Maude Ave Sunnyvale, CA 94086
Tested By:	Chris Byleckie, Sr. Test Engineer, Elliott Laboratories Juan Martinez, Sr. Test Engineer, Elliott Laboratories David Waitt, (Independent Consultant)
Test Specifications:	FCC CFR 47, Part Subpart E, (15 401 UNII)
Test Date:	December 2002

Requested Certification: Part 15 Subpart E Certification

Company Background

Started in 2001, Airspace (formerly Black Storm Networks) is a small privately funded start up company based in San Jose, California. Airespace is currently developing state of the art IEEE802.11 products.

Detailed Product Information / Operational Description

The Airespace radio is an IEEE 802.11 A / B Virtual Access point (VAP) intended to be professionally installed and configured in corporate and industrial environments.

The device utilizes a mini PCI module manufactured by an outside vendor. At the time of this certification the module had not received FCC approval as a module. For this reason, Airespace is pursuing its own certification.

The VAP utilizes integral antennas on the 802.11 A / B bands. The VAP includes two integral 5 GHz patch antennas pointing 180° from each other to create a somewhat omni directional 5GHz pattern. The VAP includes only a single 2.4GHz patch antenna (the 2.4 GHz antenna is discussed in the 15.247 report). The effective gain of the 5 GHz antenna path (the antenna switch and the antenna itself) is 5.9dBi. The diagrams below outline the RF path from the output of the mini PCI module within the VAP to the integral antennas within the VAP .See the antenna patterns included with this application (Note that only the Subpart E, 15.401 UNII 5 GHz portion is covered by this particular report)

There is a provision for attaching external antennas to the VAP (which, when implemented will disable the integral antenna by means of the switch) however at this time, since external antennas are not included in this certification application, the ability to utilize an external antenna, and even switch the antenna selection switch to the other position will be disabled in the configuration software. The hardware was put in place to support the future use of external antennas once such use is authorized either by permissive change of new grant.

The VAP is powered either by an external 48V power supply or via power over Ethernet.

RF Path Schematics

Report Organization and Results Summary

This report presents the results of the tests that verify compliance with FCC Part 15.401. Though this product must comply with FCC Part 15.247 as well, only the 15.401 (UNII) results are contained in this report. The compliance information for Part 15.247 is contained in a separate report.

A brief results summary of all the in this report is below.

Part 15		
<u>Paragraph</u>	Test	Results
15.407(a)(5)	Power Spectral Density	2.7dBm MAX
15.407(b)(1)	Out of Band Emissions (5.15 - 5.25)	-35.67dBm MAX
15.407(b)(1)	Out of Band Emissions (5.25 - 5.35)	-35.40dBm MAX
15.407(b)(1)	Out of Band Emissions (5.725 - 5.825)	-36.17dBm MAX
15.407(a)	26dB Bandwidth	27.08MHz
15.407(a)(1)	Transmit Power (5.15 - 5.35)	20dBm MAX
15.407(a)(3)	Transmit Power (5.275 - 5.825)	19.1 dBm MAX
15.407(a)(6)	Peak Excursion	3.6dB MAX
15.205	Radiated Emissions in Restricted bands	.5 dB in spec
CISPR 22	AC Line Conducted Emissions	15.25dB in Spec

Test Facilities

All of the certification tests were performed at:

Elliott Labs 684 West Maude Ave Sunnyvale, CA 94086

General:

Final radiated test measurements were taken in Dec 2002 at the Elliott Laboratories Open Area Test Site #4.

The test site contains separate areas for radiated and conducted emissions testing. Pursuant to section 2.948 of the Rules, construction, calibration, and equipment data has been filed with the Commission.

The FCC recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement with the exception of predictable local TV, radio, and mobile communications traffic. The test site contains separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent FCC requirements.

OATS:

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated emissions are performed in an open field environment. The test site is maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4 Guidelines.

Antenna, Antenna Mast and Turntable

The Horn antennas that are use to measure radiated emissions above 1000MHz are amounted on a non-conductive antenna mast equipped with a motor drive to vary the antenna height.

ANSI C63.4 specifies that the test height above the ground plane shall be 80cm unless the equipment is intended to be floor mounted. During the radiated emissions tests the equipment is positioned on a motorized turntable in conformance with the ANSI requirement.

Equipment Lists

Instrument Calibration

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

The following test equipment was used to perform the testing

Elliott Test Equipment

Item	Desc.	Manufacturer	Model	S/N(Elliott #)	Cal due date
1.	Spectrum Analyzer	Agilent	8564E	Elliott 1393	21 Feb 03
2.	3.5 GHz HPF	HP	NA	84300-80038	1 Mar 03
3.	Pre Amp	Miteq	ASF 44	805817	7 Jan 03
4.	Antenna	EMCO	3116	9711-5359	2 Mar 03
5.	Antenna	EMCO	3115	487	22 Apr 03
6.	Spectrum Analyzer 9k	Hz - 40 GHz	8564E	1393	21 Feb 03
		HP	(84125C)		
7.	Peak Power Meter	Rhode & Schwartz	NRYS	835360/070	6 Sept 03
8.	Power Head	Rhode & Swartz		836019/016	6 Sep 03

Additional Test Equipment

ltem	Desc.	Manufacturer	Model	S/N	Cal due date
1.	Peak Power meter	Agilent	4416A	GB40320299	7 July 03
2.	Power Head	Agilent	E9327A	US40440899	16 Oct 03
3.	Spectrum Analyzer	Agilent	E4404B	US40521093	3 Sep 03

Test Methods

Many of the tests are performed at a low, middle and high channel of the applicable band The typical frequencies used for the test for each band are listed below. Recall that this report details the results for the UNII bands only. Where applicable, the test procedures outlined in FCC Public notice DA 02-2138 (30 Aug 2002) were used.

UNII 802.11 A 5.15 – 5.25 GHz 5 25 – 5 35 GHz		UNII / 802.11 A 5.725 5.825 GHz Channel	Freq(MHz)
Channel Low Mid High	<u>Freq(MHz)</u> 5180 5260 5320	Low Mid High	5745 5765 5805

In order to comply with the "radiated emissions in restricted bands" requirements the transmit power had to be lowered on some of the channels at the edges of the band. The maximum power setting that yielded compliance with the radiated emissions requirements will be programmed into the configuration firmware of the access point ensuring that maximum possible power setting will be correct for each channel. Given that the access point will normally be operated at these power settings, they were also used during the "bench top" conducted RF tests (spectral density, bandwidth etc). The tests listed below are performed using the basic test setup shown below. In several cases, the EUT was running special diagnostic firmware to allow it to transmit random data on a particular channel indefinitely.

Part 15	Test
15.407(a)(5)	Power Spectral Density
15.407(b)(1)	Out of Band Emissions (5.15 - 5.25)
15.407(b)(1)	Out of Band Emissions (5.25 - 5.35)
15.407(b)(1)	Out of Band Emissions (5.725 - 5.825)
15.407(a)	26dB Bandwidth
15.407(a)(1)	Transmit Power (5.15 - 5.25)
15.407(a)(2)	Transmit Power (5.25 - 5.35)
15.407(a)(3)	Transmit Power (5.275 - 5.825)
15.407(a)(6)	Peak Excursion

Basic Conducted RF Bench Test Setup

Unless otherwise noted, the support equipment for the bench tests is listed below.

Support Equipment						
Description	Model number	FCC ID or SN	Manufacturer	Power Cable		
Laptop	Armada E 500	P31000T4X20DC12N2	Compaq	Laptop PS		
Test Software	Atheros Radio Test		Atheros			
48VDC AC adapter	Generic		Generic	Standard Twin lead DC wire		

Test Results

Detailed test procedures and test results are contained in the following sections. In cases where the test setup differs from the Conducted RF test setup shown earlier, the test setup is also presented.

Test Conditions					
Temperature	24 C	Humidity:	52%		
ATM pressure	1017 mBar	Grounding:	None		
Tested By	David Waitt	Date of Test:	Dec 02 / Jan 03		
Test Reference	Refer to individual test results				
Tested Range	Test Dependent				
Test Voltage	48 VDC to the VAP				
Modifications	No modifications were made to the	e unit during the	e tests		

Airespace

802.11 A Maximum RF Power Output at Antenna Terminals

Specifications:

FCC Specification: Paragraph(s):

15.401(a)(1), 15.401(a)(2), 15.401(a)(3)

Procedure:

The test was conducted by connecting the secondary output of the 802.11 module directly to a peak power meter. This measured power is therefore the same level that will be present at the input of the FET antenna switch under normal operation.

The unit was tuned to the test channels and configured to transmit random data packets. The transmit power was measured directly off of the meter.

Because the unit will be operated at different power levels depending on the channel / band being used, the RF power out was measured at the appropriate power setting for the given test channel / band. The settings that were used during the test are the settings that will be entered into the firmware of the VAP. These firmware configuration limits will ensure that the power levels are not exceeded.

RF Transmit Power Result:

The following power levels were measured on low and high channels for each sub-band.

Pout settings Vs. Channel	802.11a/b Channel	Frequency (MHz)	Specification (dBm) into 6 dBi	AVG Measured Pout (dBm)	AVG Measured Pout (mWatts)
	149	5745.00	30	17.8	60.25
5 GHz UNII upper	153	5765.00	30	18.2	66.06
	161	5805.00	30	16.2	41.68
	36	5180.00	17	13.2	20.89
	48	5240.00	17	14.1	25.70
5 GHz UNII lower	52	5260.00	24	18.0	63.09
	64	5320.00	24	9.8	9.54

5 GHz 26 dB bandwidth

Specification

FCC Specification: Paragraph 15.407(a)

The Airespace VAP access point operates on the standard IEEE 802.11 A channels. The 26dB bandwidth was measured on the low middle and high channel of the 5 GHz UNII bands using the conducted RF test setup. The spectrum analyzer was configured for MAX HOLD and the trace allowed to stabilize. A peak search was performed and the then Delta-Marker used to locate the point –26dB below the peak.

Once this was complete, the point was used as a reference and another delta measurement was performed to the and an attempt made to make the two markers "level". The delta frequency between the two markers was measured as the 26 dB BW of the signal. The bandwidth test was performed at the power settings that will be used in the final system. **Results:**

Channel	Frequency (MHz)	Resolution Bandwidth	26 dB Signal Bandwidth (MHz)	20 dB Signal Bandwidth (MHz)	Graph reference #
161	5805	300 kHz	31.58	22.42	refer to plots below
153	5765	300 kHz	37.75	27.08	refer to plots below
149	5745	300 kHz	27.83	20.17	refer to plots below
64	5320	300 kHz	27.08	21.00	refer to plots below
52	5260	300 kHz	36.75	26.17	refer to plots below
36	5180	300 kHz	28.42	21.42	refer to plots below

26dB BW Plots

Channel 161 (5805)

Airespace

Channel 153 (5765)

Channel 149 (5745))

Channel 64 (5320)

Channel 52 (5260)

Channel 36 (5180)

5 GHz Power Spectral Density

Specification

FCC Specification: Paragraph 15.407(a)(5)

Procedure:

The test setup was configured as shown in the conducted test setup. The UUT was configured to continuously transmit random data packets. Initially the bandwidth of the entire channel was examined. Using MAX HOLD and peak search, the frequency with the maximum power was determined.

The above measurements were made using RBW = 1MHz, VBW = 1MHz, video averaging on. The peak PSD of 11.7 dBm did not exceed the maximum permitted average PSD of 10dBm (5.15 to 5.25 GHz band) or 11dBm (5.25-5.35GHz band), (Peak PSD limits have an additional 6 dB) so no restriction are placed on the output power or average PSD with respect to RSS 210.

The power spectral density was measured at the designated test channels with the appropriate power setting for the given test channel.

Frequency (MHz)	FCC P.S.D. (dBm/MHz)	Canada P.S.D (dBm/MHz)	FCC Limit (dBm)	Graph Reference
5805	0.3	9.5	17.0	refer to plots below
5765	2.7	11.7	17.0	refer to plots below
5745	2.4	12.0	17.0	refer to plots below
5320	-4.3	3.7	11.0	refer to plots below
5260	2.5	11.6	11.0	refer to plots below
5180	-0.38	8.9	4.0	refer to plots below

Results:

Power Spectral Density Plots

Airespace

Channel 149 (5745)

Channel 52 (5260)

Channel 36 (5180)

5 GHz Out of band Spurious Emissions

Specification

FCC Specifications: Paragraphs 15.407(b)(1), 15.407(b)(2), 15.407(b)(3),

Procedure:

The test was configured as shown in the Conducted RF test setup. The UUT was configured to transmit random data packets. The band from 1 GHz to 40GHz was examined spurious emissions. This test was conducted on the low middle and high

Results:

Lower UNII band(s) emissions summary.

The specification references -27dBm (or -17dBm) present at the output of the product. Since this data was measured at an RF conducted port, the measured level would not include any antenna gain. This, the -27dBm spec out of the unit referenced back to the output of the module where this data was measured is equal to -27dBm - 5.9dBi of antenna gain = -32.9 dBm out of the RF module. This assumes a worst-case scenario that the antenna has 5.9 dBi of gain at all of these frequencies, which, of course, is not the case. The same procedure is used for the upper UNII band summary

Channel	Frequency	Frequency Range	Limit	Highest	Delta
	(MHz)		-27dBm-5.9dBi=	Spurious	
			-32.9dBm	Signal	
				(dBm)	
36	5180	30 - 1000 MHz	-32.9	-55.83	22.93
		1 to 5.15 GHz	-32.9	-35.67	2.77
		5.25 to 10 GHz	-32.9	-44.17	11.27
		10 GHz to 20 GHz	-32.9	-45.67	12.77
		20 GHz to 40 GHz	-32.9	-43.83	10.93
52	5260	30 - 1000 MHz	-32.9	-56.33	23.43
		1 to 5.15 GHz	-32.9	-54.33	21.43
		5.35 to 10 GHz	-32.9	-45.83	12.93
		10 GHz to 20 GHz	-32.9	-34.50	1.60
		20 GHz to 40 GHz	-32.9	-44.00	11.10
64	5320	30 - 1000 MHz	-32.9	59.00	26.10
		1 to 5.15 GHz	-32.9	-52.17	19.27
		5.35 to 10 GHz	-32.9	-36.17	3.27
		10 GHz to 20 GHz	-32.9	-41.67	8.77
		20 GHz to 40 GHz	-32.9	-44.00	11.10

Lower UNII band(s) emissions plots UUT Transmitting on 5.15 GHz

ATT	ΕN	20c	B			М	KR -	35.6	7d Bm		
RL	10	. Ød E	3m	10	3d B∕	5	.150	GHz			
						Т	4972	8 /	201		
	+										
										*	
	+										
	+										
4	-	سد اله	سامتحدم	and discout		ار د است	. بلد	محالا در			
-							No. 199-114				
	+										
STA RBW	RT 1	1.0 .0MH	000G⊦ Iz	lz VBμ	11.0	ST: MHz	0P 5	.150 SWP	GHz 83.0	ms	

ATTEN	ATTEN 20dB MKR -44.17dBm RL 10 0dBm 10dB/ 5.250GHz											
RL I	0.0d1	3m	16	Ja B/	- 5	. 250	GHZ					
					Т	4972	8 /	203				
I.		l										
"Mynicolaria	****	ALALAYA	the harper		****	~*****						
STAR RBW 1	I I											

13TTA	1 200	ΙB		MKR -45.67dBm						
RL 10	0.0dI	3m	10	∂d B∕	1	0.35	GHz			
					Т	4972	8 /	204		
2										
	alone that	Marton 14	and the second	ي. پېچدارا د م		salv-dugo	****		mplante	
STAR	Г 10.	00GH	Iz		ST	0P 2	0.00	GHz		

RBW 1.0MHz VBW 1.0MHz SWP 200ms

ATTE	1 200	1B			M	KR -	43.8	3d Bm	
RL 10	3.0d]	3m	10	3d B∕	3	<u>9.60</u>	GHz		
					Т	4972	8 /	205	
					70 24	ul-		-	
	فميدانعاه	how h	Non the state	F-414,044, F -	***	*~~~		Ĭ	

Lower UNII band(s) emissions plots UUT Transmitting on 5.26 GHz

ATTEN 20dB	-54.3	3d Bm									
RL 10.0dBm	IQ4R\	5.0	ISSGHZ								
		T 49	972 8 /	207							
			_								
	<u> </u>										
	h.		!		ئ ر. ا						
Page and the second	A SHOW AND A DATE OF A DAT		and the second secon	4.4	1						
START 1 000G	START 1 000GHz STOP 5 100GHz										

ATTEN 20dB MKR −45.83dBm RL 10.0dBm 10dB⁄ 6.311GHz											
					Т	4972	8 /	208			
N .		Ĵ									
"heferfede		un the start and	manti	ill and the second s	www.htp	nt harty	and and a stage	e the second	****		
I I											

RBW 1.0MHz VBW 1.0MHz SWP 93.0ms

ATTEN 20dB MKR -34.50dBm											
<u>RL 10</u>	0.0d1	3m	10]dB∕	1	<u>0.52</u>	GHz				
					Т	4972	8 /	209			
ĵ											
بمعاليم	مەرىپىرىيە	السريبية	V ierred Ale	hand the state of	e for the state of	u.	re-aling-gr	*****	°≁ ™ ^∙*		
TART 10.00GHz STOP 20.00GHz BHW 1.0MHz VBW 1.0MHz SWP 200ms											

Lower UNII band(s) emissions plots UUT Transmitting on 5.32 GHz

VBW 1.0MHz SWP 50.0ms

F	AT TEN	1 200	ĮΒ			M	KR -	52.1	7d Bm			
h	<l 10<="" td=""><td>3.0ai</td><td>5m</td><td>16</td><td>10 B/</td><td>5</td><td>. 122</td><td>GHZ</td><td>0</td><td></td></l>	3.0ai	5m	16	10 B/	5	. 122	GHZ	0			
							4972	8 /	211			
				فالسبيط	الريمة والمراجع	hushnu	و المعاد المعاد و	فيق والحاد		L HARRY		
9	START 1 000CH7 STOR 5 150CH7											
F	RBM 1	. ØMH	lz	¯νΒμ	11.0	MHz .	U	SWP	83.0	ms		

F F	NTTEN RL 10	4 20d 8.0d1	łB ∃m	10	3dB∕	M 5	KR — .350	36.1 GHz	7d Bm					
						Т	4972	8 /	213					
1														
	\ \		-											
	Yhly	******		****	, the second	***	an finalife		Alter Par	***				
F	28W 1	0MH	START 5.350GHz STOP 10.000GHz RBW 1.0MHz VBW 1.0MHz SWP 93.0ms											

ATTEN 20dB MKR -41.67dBm RL 10.0dBm 10dB/ 10.63GHz T49728 / 213 T4978 / 2

Highest Spurious Channel Frequency Frequency Range Delta dB Limit Signal (dBm) (MHz) -27dBm-5.9dBi= -32.9dBm 149 5745 23.27 30 - 1000 MHz -32.9 -56.17 7.27 1 to 5.7 GHz -32.9 -40.17 5.7 to 5.725 GHz See Bandedge data 5.825 to 10 GHz -50.83 17.93 -32.9 10 GHz to 20 GHz -32.9 -51.17 18.27 -32.9 -42.50 9.6 20 GHz to 40 GHz 153 5765 30 - 1000 MHz -32.9 -56.00 23.1 1 to 5.725 GHz -32.9 -40.17 7.27 -47.00 14.1 5.825 to 10 GHz -32.9 10 GHz to 20 GHz -32.9 -51.50 18.6 20 GHz to 40 GHz -32.9 -43.00 10.1 5805 30 - 1000 MHz -58.83 25.93 161 -32.9 1 to 5.725 GHz -32.9 -49.83 16.93 5.825 to 5.85 GHz See Bandedge data 5.85 to 10 GHz 10.77 -32.9 -43.67 -32.9 -49.33 16.43 10 GHz to 20 GHz 20 GHz to 40 GHz -32.9 -54.67 21.77

Upper UNII band(s) emissions summary

Upper UNII band(s) emissions plots

UUT Transmitting on 5.745 GHz

Mary High & Mary Marine Marine Station and and a strategy and and and a strategy and we are all the second and the second second

Ж

STOP 10.000GHz START 5.825GHz VBW 1.0MHz RBW 1.0MHz SWP 84.0ms

ATTEN RI 10	RL 10.0dBm 10dB/ 5.82405 GHz										
					T	4972	8 /	305			
									*		
******	www.	,,	v ₩	antres stops	₩₩₩₩ ₩₩₩₩₩₩₩	affere tur	ي موا ^ر م	****			
STARI RBW 1	Г 10. . 0МН	.00G⊦ Hz	lz VBμ	1 1.e	ST MHz	0P 2	0.00 SWP	GHz 200m	IS		

Upper UNII band(s) emissions plots

UUT Transmitting on 5.765 GHz

ATTEN 20dB CNT −56.00dBm RL 10.0dBm 10dB⁄ 982.15 MHz									
					Т	4972	8 /	307	
									*
d riddaa	ما د الله د ا	ليقرب والمقار	ينى بالىغى،	الحدادة والدر	mill	- Balakati ka	6 40.000		a la las mais
		and the set of the							
STARI	г <u>з</u> Ø.	ØMHz	<u>z</u>		ST	OP 1	. 000	ØGHz	

RBW 1.0MHz VBW 1.0MHz SWP 50.0ms

ATTEN RL 10	4 20d 8.0d1	∦B ∃m	10]dB∕	C 1	NT — 0.00	47.0 009	Ød Bm GHz		
					Т	4972	8 /	309		
									*	
t										
1. Margan	- UMANYA				man	-	Marter of the second	****	he have been a	
STARI RBW 1	START 5.825GHz STOP 10.000GHz RBW 1.0MHz VBW 1.0MHz SWP 84.0ms									

F	13TTEN 21 10	4 20d 7 0d7	∦B ∃m	10	1d BZ	C	NT - 825	51.5 00 с	ØdBm H 7		
						Τ	4972	8 /	310		
										*	
										*	
		1.		1 1 × 1	a second as	الله مالي		alchevat. a	k		
	in the	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	YAUNA ALA		nd	-V-via aderivity			i an	₩₩₩₽₽₩₽₽₽₽₽₽ ₽	
F	28W 1	0MF	lz ober	יz ע₿µ	11.0)MHz	UF 2	0.00 SWP	спz 200m	IS	

Upper UNII band(s) emissions plots UUT Transmitting on 5.805 GHz

ATTEN RL 10	ł 20d 3.0dł	∦B ∃m	10	∂d B∕	C 5	NT – .386	49.8 45 G	3d Bm Hz	
					Т	4972	8 /	313	
									*
									q
فعلورجنوها					and set the	ورجابتهم		المليان	have by
								-1-	
STARI	Г 1 0	ааасн	17		ST	0P 5	725	GH7	

RBW 1.0MHz VBW 1.0MHz SWP 95.0ms

Airespace

F	NTTEN	ł 20d 3.0dł	∦B ∃m	10)dB∕	C 5	NT - .849	43.6 82 G	7d Bm Hz			
						Т	4972	8 /	315			
										*		
1												
	With yoldy	8		and the second second	the second	****	minter a	wheth	***	ul/art-t-t-pert		
9 F	START 5.850GHz STOP 10.000GHz RBW 1.0MHz VBW 1.0MHz SWP 83.0ms											

ATTEN	1 200	βB			CNT -49.33dBm					
RL 10	0. Ød I	Bm	10	3d B∕	1	0.03	344	GHz		
					Т	4972	8 /	316		
									*	
	0									
***mm	N-sylver	-	, water a		,	49.~~~	n-definition		,	

START 10.00GHz STOP 20.00GHz RBW 1.0MHz VBW 1.0MHz SWP 200ms

ATTEN	1 200	яB			С	NT -	54.E	7d Bm	
RL 10	3. Ød I	Зm	10	3d B∕	2	З. 1З	339	GHz	
					Т	4972	8 /	317	
									*
					1-8ite				and with the
يدقونهم والمراجع	L. J. L. P.	~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	an the second	العبو				

 START 20.00GHz
 STOP 40.00GHz

 RBW 1.0MHz
 VBW 1.0MHz

5.725 – 5.825 GHz bandedge

Specification

FCC Specifications:

Paragraphs 15.407(b)(3)

Procedure:

The test was configured as shown in the Conducted RF test setup. The UUT was configured to transmit random data packets. 10 MHz immediately above and below the 5.735 – 5.825 GHz band was examined spurious emissions. This test was conducted on the low and high channels with the UUT configured to the appropriate power setting indicated in the "power setting table" depending on the test channel.

Results:

Upper UNII band bandedge emissions summary

Channel	Frequency (MHz)	Frequency Range	Limit -17dBm-5.9dBi= -22.9dBm	Level at the band edgel (dBm)	Delta dB Below Limit
149	5745	5.715 - 5.725 GHz	-22.9	-28.38	5.48
161	5805	5.825 - 5.835 GHz	-22.9	-36.10	13.20

Plot of the 5,725 GHz lower band edge showing the peak @ -28.38dBm

Peak Excursion

Specification

FCC Specifications:

Paragraphs 15.407(a)(5)

Procedure:

The test equipment was configured as shown in the RF Conducted bench setup. The analyzer was set to an appropriate span to view the entire emission bandwidth. There were two traces made in order to determine the peak excursion. The following settings were used for the two traces. The delta between the two traces must be less than 13 dB

Trace 1: RBW = 1 MHz, VBW =3 MHz with peak detector and max-hold settings. **Trace 2**: RBW = 1 MHz. Set VBW =300 kHz, set to Max Hold and allowed to settle for 60 seconds.

Peak Excursion = 3.03 dB. Frequency 5805 MHz

Peak Excursion = 3.03 dB. Frequency 5765 MHz

Peak Excursion = 3.60 dB. Frequency 5745 MHz

Peak Excursion = 2.87 dB. Frequency 5320 MHz

Peak Excursion = 2.97 dB. Frequency 5260 MHz

Peak Excursion = 3.40 dB. Frequency 5180 MHz

5 GHz Radiated Emissions in Restricted bands

Specification:

FCC Specification:

Paragraph 15.407(b)(6)

Procedure:

This test was conducted on a 3-meter open-air test site at Elliott Laboratories The unit was placed on a rotating wooden table 80cm above the ground plane. A Horn antenna(s) were secured to a mast 3 meters away. The unit was tested at each of the Low, Mid and High channels. The UUT was running in the diagnostic mode and set to transmit random data. The transmit power was set to the settings outlined in the power setting table. The test equipment was configured as shown below.

The harmonics of the fundamental that fell within restricted bands were measured (See table 1 below). A high pass filter prior to the pre-amplifier was required to prevent the signal level of the fundamental frequency from overloading the front end of the spectrum analyzer and creating harmonics within the analyzer.

The EUT was rotated 360 degrees and the height of the antenna adjusted from 1 to 4 meters above the ground plane to determine the maximum level of the emission. The level of the harmonic emission was measured in two modes, "Peak" and "Average".

The spectrum analyzer reading was entered into a spreadsheet where correction factors (antenna factor, cable loss, pre-amplifier gain, HPF loss...) were then applied by Elliott Lab's Software to obtain a final corrected measurement.

This procedure was repeated for the low mid and high channels across the 5 GHz bands. The table below indicates the harmonics that fall within restricted bands.

	Harmonic											
Fund	2	3	4	5	6	7	8	9	10			
5745	11490	17235	22980	28725	34470	40215	45960	51705	57450			
5765	11530	17295	23060	28825	34590	40355	46120	51885	57650			
5805	11610	17415	23220	29025	34830	40635	46440	52245	58050			

15.407(b)(6) Harmonic test table

<u>NOTE</u>: **RED** indicates a harmonic that falls within a restricted band, the harmonics in **gray** are NOT in restricted bands.

Airespace

Test Setup

Radiated Emissions in Restricted Bands Test Setup

Support Equipment									
Description	Model number	FCC ID or SN	Manufacturer	Power Cable					
Laptop	Armada E 500	P31000T4X20DC12N2	Compaq	Laptop PS					
Test Software	Atheros Radio Test		Atheros	"Zip" cord					

Test Conditions									
Temperature	15 C	Humidity:	49%						
ATM pressure	1020 mBar	Grounding:	None						
Tested By	J Martinez / C Byleckie	Date of Test:	Dec 2002						
Test Reference	FCC Part 15.205								
	IC Paragraph RSS210, 6.2.3 (c)								
Setup Method	ANSI C63.4								
Tested Range	1 GHz to 40 GHz								
Test Voltage	120 VAC / 60 Hz								
Modifications	No modifications were made to the	unit							

<u>Results:</u>

There were some emissions detected during the test. In the case of the "PEAK" measurement the RBW and VBW were always set to 1 MHz. The "AVG" test was conducted with the RBW = 1MHz and VBW = 10Hz.

Radiated emissions with device transmitting in the lower UNII band

Run #1b:	Radiated	l Spur	ious Emis	sions,			
1000 - 400 EUT On Low	00 MHz ost Chan		vailable	(5 18 CH	z)		
Frequency	Level	Pol	15.209	/ 15.407	Detector	Azimuth	Height
MHz	dBmV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters
1166.658	37.9	V	54.0	-16.1	Pk	0	0.0
15540.54	62.2	V	74.0	-11.8	Pk	0	1.0
15539.42	49.3	V	54.0	-4.7	Avg	0	1.0
15540.36	62.0	Н	74.0	-12.0	Pk	0	1.0
15540.02	48.9	Н	54.0	-5.1	Avg	0	1.0
EUT On Cen	ter Chan	nel (5.26 GHz)	•			
6311.983	51.8	V	74.0	-2.2	Pk	0	1.0
6311.983	51.3	Н	54.0	-2.7	Avg	0	1.0
15780.36	61.7	V	74.0	-12.3	Pk	0	1.0
15779.48	48.6	V	54.0	-5.4	Avg	0	1.0
15780.07	61.8	Н	74.0	-12.2	Pk	0	1.0
15780.43	48.6	Н	54.0	-5.4	Avg	0	1.0
EUT On Hig	hest Cha	nnel 2	Available	(5.32 G	Hz).	-	
10638.67	68.6	Н	74.0	-5.4	Pk	330	1.2
10639.69	53.3	Н	54.0	-0.7	Avg	330	1.2
15958.74	61.3	Н	74.0	-12.7	Pk	0	1.0
15959.74	48.5	Н	54.0	-5.5	Avg	0	1.0
10638.00	57.5	V	74.0	-16.5	Pk	0	0.0
10638.14	43.4	V	54.0	-10.6	Avg	0	0.0
15964.15	61.8	V	74.0	-12.2	Pk	0	0.0
15962.82	48.4	V	54.0	-5.6	Avg	0	0.0

Run #3b:	Radiated	d Spu	rious Emi	ssions,	1000 - 4	0000 MHz	
EUT On Upp	er UNII	band	, Lowest	Channe	al Availab	le	
(5.745 GHz).				ii		
Frequency	Level	Pol	15.209 /	15.407	Detector	Azimuth	Height
MHz	dBmV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters
11486.81	65.9	Н	74.0	-8.1	Pk	5	1.1
11486.21	50.8	Н	54.0	-3.2	Avg	5	1.1
11488.80	64.2	V	74.0	-9.8	Pk	0	1.2
11489.63	49.7	V	54.0	-4.3	Avg	0	1.2
4595.805	44.3	Н	74.0	-29.7	Pk	0	1.0
4595.776	31.6	Н	54.0	-22.4	Avg	0	1.0
4596.035	44.6	V	74.0	-29.4	Pk	0	1.0
4595.877	31.6	V	54.0	-22.4	Avg	0	1.0
EUT On Upp	er UNII	band	, Center	Channel	(5.765		
GHz).							
4611.107	44.0	V	74.0	-30.0	Pk	0	1.0
4611.632	31.3	V	54.0	-22.7	Avg	0	1.0
11531.05	66.9	V	74.0	-7.1	Pk	309	1.2
11530.30	51.8	V	54.0	-2.2	Avg	309	1.2
11528.72	69.3	Н	74.0	-4.7	Pk	26	1.1
11528.93	53.5	Н	54.0	-0.5	Avg	26	1.1
4610.823	43.9	Н	74.0	-30.1	Pk	0	1.0
4610.170	31.3	Н	54.0	-22.7	Avg	0	1.0
EUT On Upp	er UNII	band	, Highest	Channe	al Availab	le	
(5.805 GHz)						
11608.78	67.9	Н	74.0	-6.1	Pk	310	1.1
11608.90	52.4	Н	54.0	-1.6	Avg	310	1.1
4642.882	44.2	Н	74.0	-29.8	Pk	0	1.0
4642.658	30.9	Η	54.0	-23.1	Avg	0	1.0
4644.553	44.0	V	74.0	-30.0	Pk	0	1.0
4644.309	30.8	V	54.0	-23.2	Avg	0	1.0
11607.80	62.1	V	74.0	-11.9	Pk	0	0.0
11607.36	47.2	V	54.0	-6.8	Avg	0	0.0

Radiated Emissions in the Restricted bands

Ending at 5.15 GHz and beginning at 5.35 GHz

Procedure

There are three steps to performing this test.

STEP 1: Make a radiated measurement of the fundamental signal with the UUT on the highest channel. This measurement is used using the peak and average RBW and VBW of 1MHz/1MHz and 1MHz/10Hz. This measured radiated level is then used as a reference and is referred to as the *Fundamental Reference Measurement* in the table below

STEP 2: A measurement is made using narrower bandwidths (100 kHz) to determine a – dBc (delta dB) level between the fundamental reference level and the actual level at highest point in the restricted band. This delta dB is then subtracted from the radiated field strength reference measurement made earlier.

STEP 3 A third and final measurement is made to determine the apparent drop in fundamental carrier power when the RBW is narrowed from 1MHz (in the reference measurement) to 100kHz (for the delta dB measurement). This is referred to below as the "BW Delta". This correction factor is only allowed in the highest emission in the restricted band is less than 2 "standard bandwidths" from the edge of the restricted band.

This measurement is made because it is the intent of the restricted band emission test to reference the measurement made in the restricted band to a radiated measurement made in a 1 MHz BW

This procedure is outline in FCC Public Notice DA 00-705, released on 30 March 2000 and is referred to as the "Marker-Delta Method"

The restricted bands that are of concern in the test are 4.5 - 5.15 GHz and 5.35 - 5.46GHz because these restricted bands are adjacent to one of the operating bands of the VAP.

The power setting of the VAP during this test was as shown in the power settings table.

A summary of the test results for each antenna at its applicable setting is presented on the next page. Note that the BW delta correction was not applied to the restricted band edge at 5.35 because the unit was within specification without applying this additional correction.

Chan	Pwr	Fundemental		Delta	RBW	Radiated		Specification		Delta Below	
						Level at				Spec	
						Band Edge					
	Stg	Ref Msmt		Msmt	Delta						
		Peak	Avg		msmt	Peak	Avg	Peak	Avg	Peak	Avg
	dB	dbuv/	dbuv/	dBc	dB	dBuv/	dBuv/	dBuv/	dBuv/	dBuv/	dBuv/
	m	m	m			m	m	m	m	m	m
Vert		115.9	106.7	47.8	7.5	60.6	51.4	74	54	13.4	2.6
Horz		107.8	98.2	47.8	7.5	52.5	42.9	74	54	21.5	11.1

5.15 GHz UNII Band Edge (Restricted band @ 5.15GHz)

5.35 UNII Band Edge (Restricted band @ 5.35GHz)

Chan	Pwr	Fundemental		Delta	RBW	Radiated Level at Band Edge		Specification		Delta Below Spec	
	Stg	Ref Msmt		Msmt	Delta						
		Peak	Avg		msmt	Peak	Avg	Peak	Avg	Peak	Avg
	dB	dbuv/	dbuv/	dBc	dB	dBuv	dBuv/m	dBuv	dBuv/m	dBuv/	dBuv/
	m	m	m			/m		/m		m	m
Vert		112.2	103.4	50.17	NA	65.04	53.23	74	54	8.96	0.77
Horz		103.4	93.6	47.16	NA	56.24	43.43	74	54	30.6	10.6

5.15 band edge measurement showing Delta measurement and BW delta measurement.

5.35GHz band edge peak delta measurement

5.35GHz band edge peak delta measurement

Radiated Emissions Sample Calculations

Restricted band level (AVG) = AVG reference level - delta dB - BW Delta dB Restricted band level (Peak) = Peak reference level - delta dB - BW Delta dB

Unwanted emissions outside of the restircted bands

Radiated spurious emissions occuring outside of restricted bands are subject to the field strength limits outlined in the table below. In all cases the limit that was applied to the spurious emissions was the restricted band limits which are lower than the allowed limits by 14.3 dB. Since all of the spurious emissions comply with the restricted band emission requirements, they also also comply with the limits below.

Freq Band (MHz)	EIRP Limit (dBm)	Equiv Field Strength (dBuV/M @ 3 meters)
5150 - 5250	-27	68.3
5250 - 5350	-27	68.3
5725 - 5825	-27 (note 1)	68.3
	-17 (note 2)	78.3

Note 1: for frequencies greater then 10 MHz above or below the the band edge Note 2: All emissions between the band edge and 10 MHz above or below the band edge. Note 3: The -27 or -17 dBm limit is converted to a field strength at 3 meters using the following formula:

E (dBuV/M @ 3M) =
$$\frac{1000000\sqrt{30 * p (W EIRP)}}{3}$$

AC Line Conducted Emissions

Specification:

FCC Specification: Paragraph CISPR 22

Procedure:

The test was set up according to the guidelines set forth in 15.207 and FCC Part 2 for AC Line Conducted Emissions. The measurement used a LISN line on each AC line and an EMI receiver. A peak scan was made over the measurement frequency range (150 kHz to 30 MHz). The highest peaks were then marked and re-measured and quasi-peaked and averaged.

The test was configured as shown below. The product was tested while running on 120 VAC @ 60 Hz .

Results:

The "Quasi-peak" and Average results for the unit transmitting packets are contained on the following page. No emissions exceed the Class B limits.

AC Line Conducted Emission results

Erog	Line	QP Level	Class B QP Spec	Delta	Frog	Line	QP Level	Class B QP Spec	Delta
(MHz)	Neutral	(dBuV)	(dBuV)	(dB)	(MHz)	Neutral	(dBuV)	(dBuV)	(dB)
25.83	Line	40.97	60	19.03	25.65.	Neutral	40.05	60	19.95
26.35	Line	47.89	60	12.11	26.35	Neutral	43.48	60	16.52
26.62	Line	41.25	60	18.75	26.62	Neutral	42.53	60	17.47
26.85	Line	46.92	60	13.08	26.84	Neutral	46.86	60	13.14
27.10	Line	46.91	60	13.09	27.1	Neutral	43.35	60	16.65
27.29	Line	58.75	60	1.25	27.59	Neutral	48.14	60	11.86
27.60	Line	46.98	60	13.02	27.86	Neutral	41.28	60	18.72
27.83	Line	48.61	60	11.39	28/09	Neutral	46.23	60	13.77
28.12	Line	41.46	60	18.54	28.32	Neutral	48.92	60	11.08
29.58	Line	45.29	60	14.71	28.57	Neutral	45.20	60	14.80
		AVG	Class B				AVG	Class B	
Freq	Line	Level	AVG Spec	Delta	Freq	Line	Level	AVG Spec	Delta
(MHz)	Neutral	(dBuV)	(dBuV)	(dB)	(MHz)	Neutral	(dBuV)	(dBuV)	(dB)
25.83	Line	25.48	50	24.52	25.65.	Neutral	30.70	50	19.30
26.35	Line	30.23	50	19.77	26.35	Neutral	30.35	50	19.65
26.62	Line	31.44	50	18.56	26.62	Neutral	33.06	50	16.94
26.85	Line	34.26	50	15.74	26.84	Neutral	32.17	50	17.83
27.10	Line	29.6	50	20.40	27.10	Neutral	30.37	50	19.63
27.29	Line	36.12	50	13.88	27.59	Neutral	27.96	50	22.04
27.60	Line	28.64	50	21.36	27.86	Neutral	31.04	50	18.96
27.83	Line	29.91	50	20.09	28/09	Neutral	31.56	50	18.44
28.12	Line	34.03	50	15.97	28.32	Neutral	35.91	50	14.09
29.58	Line	32.43	50	17.57	28.57	Neutral	28.19	50	21.81