

SAR Compliance Test Report

Test report no.:	FCC_RM-678_02	Date of report:	2010-04-20
Template version:	15.0	Number of pages:	28
Testing laboratory:	TCC Nokia Beijing Laboratory Beijing Economic and Technological Development Area No.5 Donghuan Zhonglu Beijing PRC China 100176 Tel. +86 10 8711 8888 Fax. +86 10 8711 4550	Client:	Nokia Corporation Beijing Economic and Technological Development Area No.5 Donghuan Zhonglu Beijing PRC China 100176 Tel. +86 10 8711 8888 Fax. +86 10 8711 4550
Responsible test engineer:	Liang Dong	Product contact person:	Sun Michael
Measurements made by:	Liang Dong, Zou Ming		
Tested device:	RM-678		
FCC ID:	QTLRM-678	IC:	-
Supplement reports:	SAR_Photo_RM-678_04		
Testing has been carried out in accordance with:	<p>47CFR §2.1093 Radiofrequency Radiation Exposure Evaluation: Portable Devices FCC OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01) Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields</p> <p>RSS-102 Evaluation Procedure for Mobile and Portable Radio Transmitters with Respect to Health Canada's Safety Code 6 for Exposure of Humans to Radio Frequency Fields</p> <p>IEEE 1528 - 2003 IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Technique</p>		
Documentation:	The documentation of the testing performed on the tested devices is archived for 15 years at TCC Nokia.		
Test results:	<p>The tested device complies with the requirements in respect of all parameters subject to the test. The test results and statements relate only to the items tested. The test report shall not be reproduced except in full, without written approval of the laboratory.</p>		

Date and signatures:

For the contents:

CONTENTS

1. SUMMARY OF SAR TEST REPORT.....	3
1.1 TEST DETAILS.....	3
1.2 MAXIMUM RESULTS.....	3
1.2.1 <i>Head Configuration</i>	3
1.2.2 <i>Body Worn Configuration</i>	3
1.2.3 <i>Maximum Drift</i>	3
1.2.4 <i>Measurement Uncertainty</i>	4
2. DESCRIPTION OF THE DEVICE UNDER TEST.....	4
2.1 DESCRIPTION OF THE ANTENNA.....	4
3. TEST CONDITIONS	4
3.1 TEMPERATURE AND HUMIDITY.....	4
3.2 TEST SIGNAL, FREQUENCIES AND OUTPUT POWER.....	4
3.3 TEST CASES AND TEST MINIMISATION	5
4. DESCRIPTION OF THE TEST EQUIPMENT	7
4.1 MEASUREMENT SYSTEM AND COMPONENTS	7
4.1.1 <i>Isotropic E-field Probe Type ET3DV6</i>	8
4.2 PHANTOMS	8
4.3 TISSUE SIMULANTS	8
4.3.1 <i>Tissue Simulant Recipes</i>	9
4.3.2 <i>System Checking</i>	9
4.3.3 <i>Tissue Simulants used in the Measurements</i>	9
5. DESCRIPTION OF THE TEST PROCEDURE	11
5.1 DEVICE HOLDER.....	11
5.2 TEST POSITIONS.....	11
5.2.1 <i>Against Phantom Head</i>	11
5.2.2 <i>Body Worn Configuration</i>	11
5.3 SCAN PROCEDURES.....	12
5.4 SAR AVERAGING METHODS.....	12
6. MEASUREMENT UNCERTAINTY.....	13
7. RESULTS	14
APPENDIX A: SYSTEM CHECKING SCANS.....	15
APPENDIX B: MEASUREMENT SCANS.....	17
APPENDIX C: RELEVANT PAGES FROM PROBE CALIBRATION REPORT(S)	27
APPENDIX D: RELEVANT PAGES FROM DIPOLE VALIDATION KIT REPORT(S)	28

1. SUMMARY OF SAR TEST REPORT

1.1 Test Details

Period of test	2010-03-30
SN, HW and SW numbers of tested device	SN: 004401/01/971710/3, HW: 2001, SW: 0.1011.c.16, DUT: 51212
Batteries used in testing	BL-5F, DUT: 51209, 51210
Headsets used in testing	WH-205, DUT: 51213
Other accessories used in testing	-
State of sample	Prototype unit
Notes	-

1.2 Maximum Results

The maximum measured SAR values for Head configuration and Body Worn configuration are given in section 1.2.1 and 1.2.2 respectively. The device conforms to the requirements of the standard(s) when the maximum measured SAR value is less than or equal to the limit.

1.2.1 Head Configuration

Mode	Ch / f(MHz)	Conducted power	Position	Measured SAR value (1g avg)	Scaled* SAR value (1g avg)	SAR limit (1g avg)	Result
GSM1900	661 / 1880.0	29.5 dBm	Right, Cheek	0.649 W/kg	0.73 W/kg	1.6 W/kg	PASSED

1.2.2 Body Worn Configuration

Mode	Ch / f(MHz)	Conducted power	Separation distance	Measured SAR value (1g avg)	Scaled* SAR value (1g avg)	SAR limit (1g avg)	Result
2-slot GPRS1900	512 / 1850.2	29.5 dBm	1.5 cm	0.714 W/kg	0.80 W/kg	1.6 W/kg	PASSED

* SAR values are scaled up by 12% to cover measurement drift. As a consequence of this upwards correction of the SAR values, the contribution of measurement drift to the overall measurement uncertainty (Section 6) is reduced to zero.

1.2.3 Maximum Drift

Maximum drift covered by 12% scaling up of the SAR values	Maximum drift during measurements
0.5dB	0.27 dB

1.2.4 Measurement Uncertainty

Expanded Uncertainty (k=2) 95%	± 25.8%
--------------------------------	---------

2. DESCRIPTION OF THE DEVICE UNDER TEST

Device category	Portable
Exposure environment	General population / uncontrolled

Modes of Operation	Bands	Modulation Mode	Duty Cycle	Transmitter Frequency Range (MHz)
GSM	1900	GMSK	1/8	1850 – 1910
GPRS	1900	GMSK	1/8 to 2/8	1850 – 1910
EGPRS	1900	GMSK / 8PSK	1/8 to 2/8	1850 – 1910
BT	2450	GFSK	1	2402 – 2480

Outside of USA and Canada, the transmitter of the device is capable of operating also in GSM/GPRS/EGPRS900, GSM/GPRS/EGPRS1800, TD-SCDMA1900 and TD-SCDMA2000 bands which are not part of this filing.

8PSK EGPRS mode was not measured, because maximum averaged output power is lower in 8PSK EGPRS mode than in GPRS mode.

2.1 Description of the Antenna

The device has an internal antenna for cellular use. The cellular antenna is located at the bottom underneath the back cover.

3. TEST CONDITIONS

3.1 Temperature and Humidity

Ambient temperature (°C):	21.0 to 22.0
Ambient humidity (RH %):	50 to 70

3.2 Test Signal, Frequencies and Output Power

The device was put into operation by using a call tester. Communication between the device and the call tester was established by air link.

The device output power was set to maximum power level for all tests; a fully charged battery was used for every test sequence.

In all operating bands the measurements were performed on lowest, middle and highest channels.

The radiated output power of the device was measured by a separate test laboratory on the same unit(s) as used for SAR testing. The results are given in the EMC report supporting this application.

3.3 Test Cases and Test Minimisation

The tested device examined in this report may not incorporate all of the features described in the text that follows, but its SAR evaluation will have been subjected to the same considerations and test logic described below.

Whilst it's possible to identify the maximum SAR test cases from inspection of the conducted power levels given in the Results tables (Section 7), different modes in the same band and multi-slot transmit GSM/GPRS modes can create some difficulties. Therefore the sequence of the SAR tests made in evaluating this device has used test logic that is based on measured SAR values. Comparison of measured SAR values in this way, can also allow some test minimization (i.e. test elimination) to be made.

For example, when SAR testing multi-slot GSM/GPRS/EGPRS modes, it is an inefficient use of test resources to fully SAR test every test configuration in each of the different modes as these modes have a fixed power relationship between them that is the same, irrespective of the test configuration. In the case of multi-slot GSM/GPRS modes, a single comparative SAR test - using the same test channel and test configuration - is made in each of the n-slot modes; the mode with the highest measured SAR value is then subjected to full SAR testing in all test configurations. These comparative SAR tests (same frequency, same test configuration) are regarded as extremely accurate as they are relative tests in which the tested device changes neither its frequency nor its position between tests. For different modes that operate in the same band and use the same antenna e.g. GSM/GPRS850 and WCDMA850, full SAR testing is carried out in the GSM/GPRS850 mode but WCDMA850 testing is limited to 3 channel testing in the maximum SAR test configuration for GSM/GPRS850.

Multi-slot SAR testing against the Head is always performed whenever such a device offers Push to Talk over cellular with the internal earpiece active, Dual Transfer Mode (i.e. the ability to transmit voice and data simultaneously using the same transmitter) or has WLAN (which enables a Voice over IP call to take place whilst the device can simultaneously transmit data on a cellular band). Whenever a device has an intended multi-slot use against the head, it is also Head SAR tested in EGPRS mode. It should be noted that EGPRS transmit modes can have either

GMSK or 8PSK modulation but, when tested, only 8PSK EGPRS will appear explicitly in the results tables, as GMSK EGPRS mode has identical time-averaged power to the reported GPRS mode.

Devices that have flips or slides are fully SAR tested in all device configurations consistent with their intended usage. For example, flip phones that can receive a call in closed mode are SAR tested against the head in both open and closed configurations. Similarly, slide phones are fully SAR tested in all slide configurations in which calls are intended to be made or received.

In the results tables in Section 7, the maximum SAR value for the 'basic' tests (i.e. left cheek, left tilt, right cheek and right tilt in Head SAR testing; with and without headset with the back &/or display side facing the flat phantom in Body SAR testing) is bolded for each band. In some cases, after full testing of the basic SAR test configurations has been completed, additional checking SAR tests are made. These checking tests are always based on the bolded result from the 'basic' testing. When the SAR value of a checking test exceeds the maximum value from the basic tests, it is also bolded and used as the basis for any further checking tests that might be needed.

Checking tests are largely voluntary and can cover optional batteries, different camera slide positions, optional covers, etc. In the case of optional batteries, if the construction of the optional battery is significantly different to the battery used in the full testing e.g. if the outer can is floating electrically rather than grounded, then the maximum SAR test configuration in each band is tested with the optional battery in 3 channels. For camera slides, if the slide material is metal, then checking tests in 3 channels are again run for the maximum SAR test configuration in each band. For plastic camera slides, SAR checking is only carried out in the channel that provided the maximum SAR value for the original. Optional front and back covers are tested if their shape differs significantly from the original or if their metallic content varies by more than 15% from the original; in the former case, the testing depends on the extent of the physical differences, whereas in the latter case, 3 channel SAR testing is performed in every band in the max SAR test configuration.

4. DESCRIPTION OF THE TEST EQUIPMENT

4.1 Measurement System and Components

The measurements were performed using an automated near-field scanning system, DASY4, manufactured by Schmid & Partner Engineering AG (SPEAG) in Switzerland. The SAR extrapolation algorithm used in all measurements was the 'advanced extrapolation' algorithm.

The following table lists calibration dates of SPEAG components:

Test Equipment	Serial Number	Calibration interval	Calibration expiry
DAE 4	480	12 months	2010-09
E-field Probe ET3DV6	1652	12 months	2010-09
Dipole Validation Kit, D1900V2	547	24 months	2011-09
DASY4 software	Version 4.7	-	-

Additional test equipment used in testing:

Test Equipment	Model	Serial Number	Calibration interval	Calibration expiry
Signal Generator	8648C	3847M00258	12 months	2010-05
Call Tester	CMU200	835352/008	-	-
Amplifier	AR 5SIG4M3	302339	12 months	2010-05
RF Network Analyzer	8753ES	My40002096	12 months	2010-05
Dielectric Probe Kit	85070C	01033717	-	-
Power Meter	Agilent E4419B	My41291520	12 months	2010-05
Power Sensor	Agilent 8482A	US37295411	12 months	2010-05

4.1.1 Isotropic E-field Probe Type ET3DV6

Construction	Symmetrical design with triangular core Built-in optical fiber for surface detection system Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., butyl diglycol)
Calibration	Calibration certificate in Appendix C
Frequency	10 MHz to 3 GHz (dosimetry); Linearity: ± 0.2 dB (30 MHz to 3 GHz)
Optical Surface Detection	± 0.2 mm repeatability in air and clear liquids over diffuse reflecting surfaces
Directivity	± 0.2 dB in HSL (rotation around probe axis) ± 0.4 dB in HSL (rotation normal to probe axis)
Dynamic Range	5 μ W/g to > 100 mW/g; Linearity: ± 0.2 dB
Dimensions	Overall length: 330 mm Tip length: 16 mm Body diameter: 12 mm Tip diameter: 6.8 mm Distance from probe tip to dipole centers: 2.7 mm
Application	General dosimetry up to 3 GHz Compliance tests of mobile phones Fast automatic scanning in arbitrary phantoms

4.2 Phantoms

The phantom used for all tests i.e. for both system checks and device testing, was the twin-headed "SAM Phantom", manufactured by SPEAG. The phantom conforms to the requirements of IEEE 1528 - 2003.

System checking was performed using the flat section, whilst Head SAR tests used the left and right head profile sections. Body SAR testing also used the flat section between the head profiles.

The SPEAG device holder (see Section 5.1) was used to position the device in all tests whilst a tripod was used to position the validation dipoles against the flat section of phantom.

4.3 Tissue Simulants

Recommended values for the dielectric parameters of the tissue simulants are given in IEEE 1528 - 2003 and FCC Supplement C to OET Bulletin 65. All tests were carried out using simulants whose dielectric parameters were within $\pm 5\%$ of the recommended values. All tests were carried out within 24 hours of measuring the dielectric parameters.

The depth of the tissue simulant was 15.0 ± 0.5 cm measured from the ear reference point during system checking and device measurements.

4.3.1 Tissue Simulant Recipes

The following recipe(s) were used for Head and Body tissue simulant(s):

1900MHz band

Ingredient	Head (% by weight)	Body (% by weight)
Deionised Water	54.50	70.25
Tween 20	45.23	29.41
Salt	0.27	0.34

4.3.2 System Checking

The manufacturer calibrates the probes annually. Dielectric parameters of the tissue simulants were measured every day using the dielectric probe kit and the network analyser. A system check measurement was made following the determination of the dielectric parameters of the simulant, using the dipole validation kit. A power level of 250 mW was supplied to the dipole antenna, which was placed under the flat section of the twin SAM phantom. The system checking results (dielectric parameters and SAR values) are given in the table below.

System checking, head tissue simulant

f [MHz]	Description	SAR [W/kg], 1g	Dielectric Parameters		Temp [°C]
			ϵ_r	σ [S/m]	
1900	Reference result	10.4	40.8	1.45	
	$\pm 10\%$ window	9.4 – 11.4			
	2010-03-30	9.61	38.8	1.44	21.4

Plots of the system checking scans are given in Appendix A.

4.3.3 Tissue Simulants used in the Measurements

Head tissue simulant measurements

f [MHz]	Description	Dielectric Parameters		Temp [°C]
		ϵ_r	σ [S/m]	
1880	Recommended value	40.0	1.40	
	$\pm 5\%$ window	38.0 – 42.0	1.33 – 1.47	
	2010-03-30	38.9	1.42	21.4

Body tissue simulant measurements

f [MHz]	Description	Dielectric Parameters		Temp [°C]
		ϵ_r	σ [S/m]	
1880	Recommended value	53.3	1.52	
	\pm 5% window	50.6 – 56.0	1.44 – 1.60	
	2010-03-30	51.7	1.53	21.4

5. DESCRIPTION OF THE TEST PROCEDURE

5.1 Device Holder

The device was placed in the device holder (illustrated below) that is supplied by SPEAG as an integral part of the Dasy system.

Device holder supplied by SPEAG

A Nokia designed spacer (illustrated below) was used to position the device within the SPEAG holder. The spacer positions the device so that the holder has minimal effect on the test results but still holds the device securely. The spacer was removed before the tests.

Nokia spacer

5.2 Test Positions

5.2.1 Against Phantom Head

Measurements were made in "cheek" and "tilt" positions on both the left hand and right hand sides of the phantom.

The positions used in the measurements were according to IEEE 1528 - 2003 "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques".

5.2.2 Body Worn Configuration

The device was placed in the SPEAG holder using the Nokia spacer and placed below the flat section of the phantom. The distance between the device and the phantom was kept at the separation distance indicated in Section 1.2.2 using a separate flat spacer that was removed

before the start of the measurements. The device was oriented with both sides facing the phantom to find the highest results.

5.3 Scan Procedures

First, area scans were used for determination of the field distribution. Next, a zoom scan, a minimum of 5x5x7 points covering a volume of at least 30x30x30mm, was performed around the highest E-field value to determine the averaged SAR value. Drift was determined by measuring the same point at the start of the area scan and again at the end of the zoom scan.

5.4 SAR Averaging Methods

The maximum SAR value was averaged over a cube of tissue using interpolation and extrapolation.

The interpolation, extrapolation and maximum search routines within Dasy4 are all based on the modified Quadratic Shepard's method (Robert J. Renka, "Multivariate Interpolation Of Large Sets Of Scattered Data", University of North Texas ACM Transactions on Mathematical Software, vol. 14, no. 2, June 1988, pp. 139-148).

The interpolation scheme combines a least-square fitted function method with a weighted average method. A trivariate 3-D / bivariate 2-D quadratic function is computed for each measurement point and fitted to neighbouring points by a least-square method. For the zoom scan, inverse distance weighting is incorporated to fit distant points more accurately. The interpolating function is finally calculated as a weighted average of the quadratics.

In the zoom scan, the interpolation function is used to extrapolate the Peak SAR from the deepest measurement points to the inner surface of the phantom.

6. MEASUREMENT UNCERTAINTY

Table 6.1 – Measurement uncertainty evaluation

Uncertainty Component	Section in IEEE 1528	Tol. (%)	Prob Dist	Div	c_i	$c_i \cdot u_i$ (%)	v_i
Measurement System							
Probe Calibration	E2.1	± 5.9	N	1	1	± 5.9	∞
Axial Isotropy	E2.2	± 4.7	R	$\sqrt{3}$	$(1-c_p)^{1/2}$	± 1.9	∞
Hemispherical Isotropy	E2.2	± 9.6	R	$\sqrt{3}$	$(c_p)^{1/2}$	± 3.9	∞
Boundary Effect	E2.3	± 1.0	R	$\sqrt{3}$	1	± 0.6	∞
Linearity	E2.4	± 4.7	R	$\sqrt{3}$	1	± 2.7	∞
System Detection Limits	E2.5	± 1.0	R	$\sqrt{3}$	1	± 0.6	∞
Readout Electronics	E2.6	± 1.0	N	1	1	± 1.0	∞
Response Time	E2.7	± 0.8	R	$\sqrt{3}$	1	± 0.5	∞
Integration Time	E2.8	± 2.6	R	$\sqrt{3}$	1	± 1.5	∞
RF Ambient Conditions - Noise	E6.1	± 3.0	R	$\sqrt{3}$	1	± 1.7	∞
RF Ambient Conditions - Reflections	E6.1	± 3.0	R	$\sqrt{3}$	1	± 1.7	∞
Probe Positioner Mechanical Tolerance	E6.2	± 0.4	R	$\sqrt{3}$	1	± 0.2	∞
Probe Positioning with respect to Phantom Shell	E6.3	± 2.9	R	$\sqrt{3}$	1	± 1.7	∞
Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation	E5	± 3.9	R	$\sqrt{3}$	1	± 2.3	∞
Test sample Related							
Test Sample Positioning	E4.2	± 6.0	N	1	1	± 6.0	11
Device Holder Uncertainty	E4.1	± 5.0	N	1	1	± 5.0	7
Output Power Variation - SAR drift measurement	6.6.3	± 0.0	R	$\sqrt{3}$	1	± 0.0	∞
Phantom and Tissue Parameters							
Phantom Uncertainty (shape and thickness tolerances)	E3.1	± 4.0	R	$\sqrt{3}$	1	± 2.3	∞
Conductivity Target - tolerance	E3.2	± 5.0	R	$\sqrt{3}$	0.64	± 1.8	∞
Conductivity - measurement uncertainty	E3.3	± 5.5	N	1	0.64	± 3.5	5
Permittivity Target - tolerance	E3.2	± 5.0	R	$\sqrt{3}$	0.6	± 1.7	∞
Permittivity - measurement uncertainty	E3.3	± 2.9	N	1	0.6	± 1.7	5
Combined Standard Uncertainty				RSS		± 12.9	116
Coverage Factor for 95%				k=2			
Expanded Uncertainty						± 25.8	

7. RESULTS

The measured Head SAR values for the test device are tabulated below:

1900MHz Head SAR results

Mode	Test configuration	SAR, averaged over 1g (W/kg)		
		Ch 512 1850.2 MHz	Ch 661 1880.0 MHz	Ch 810 1909.8 MHz
GSM	Conducted Power		29.5 dBm	29.5 dBm
	Left	Cheek	-	0.366
		Tilt	-	0.230
	Right	Cheek	0.584	0.649
		Tilt	-	0.177

The measured Body SAR values for the test device are tabulated below:

1900MHz Body SAR results

Mode	Device orientation	Test configuration	SAR, averaged over 1g (W/kg)		
			Ch 512 1850.2 MHz	Ch 661 1880.0 MHz	Ch 810 1909.8 MHz
GSM		Conducted Power	-	29.5 dBm	-
	Display facing phantom	Without headset	-	0.170	-
		Headset WH-205	-	-	-
	Back facing phantom	Without headset	-	-	-
		Headset WH-205	-	-	-
2-slot GPRS		Conducted Power	29.5 dBm	29.5 dBm	29.5 dBm
	Display facing phantom	Without headset	-	0.376	-
		Headset WH-205	-	0.336	-
	Back facing phantom	Without headset	0.714	0.649	0.532
		Headset WH-205	-	0.603	-

Plots of the Measurement scans are given in Appendix B.

APPENDIX A: SYSTEM CHECKING SCANS

Date/Time: 2010-03-30 9:52:14 AM

Test Laboratory: TCC Nokia

Type: D1900V2; Serial: 547

Communication System: CW1900

Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: Head 1900; Medium Notes: Medium Temperature: $t=21.4$ C

Medium parameters used: $f = 1900$ MHz; $\sigma = 1.44$ mho/m; $\epsilon_r = 38.8$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

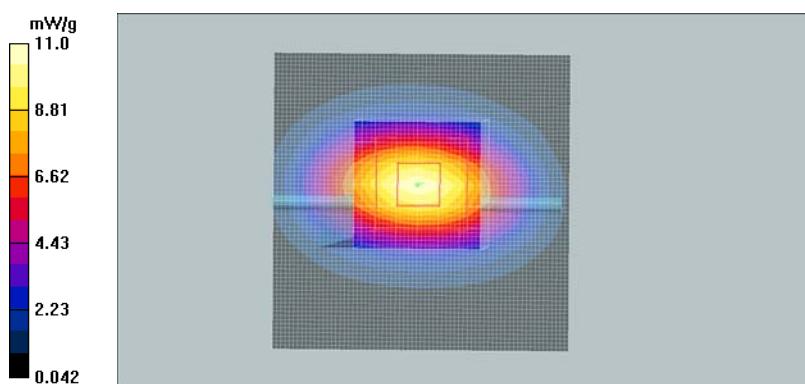
- Probe: ET3DV6 - SN1652; Probe Notes:
- ConvF(4.91, 4.91, 4.91); Calibrated: 2009-09-21
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn480; Calibrated: 2009-09-15
- Phantom: SAM3; Type: SAM; Serial: TP-1427
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 186

d=10mm, Pin=250mW/Area Scan (71x71x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 11.0 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 89.8 V/m


Peak SAR (extrapolated) = 16.7 W/kg

SAR(1 g) = 9.61 mW/g

SAR(10 g) = 5.02 mW/g

Power Drift = -0.130 dB

Maximum value of SAR (measured) = 11.0 mW/g

APPENDIX B: MEASUREMENT SCANS

Date/Time: 2010-03-30 10:29:52 AM

Test Laboratory: TCC Nokia
Type: RM-678; Serial: 004401/01/971710/3

Communication System: GSM 1900

Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: Head 1900; Medium Notes: Medium Temperature: $t=21.4$ C

Medium parameters used: $f = 1880$ MHz; $\sigma = 1.42$ mho/m; $\epsilon_r = 38.9$; $\rho = 1000$ kg/m³

Phantom section: Left Section

DASY4 Configuration:

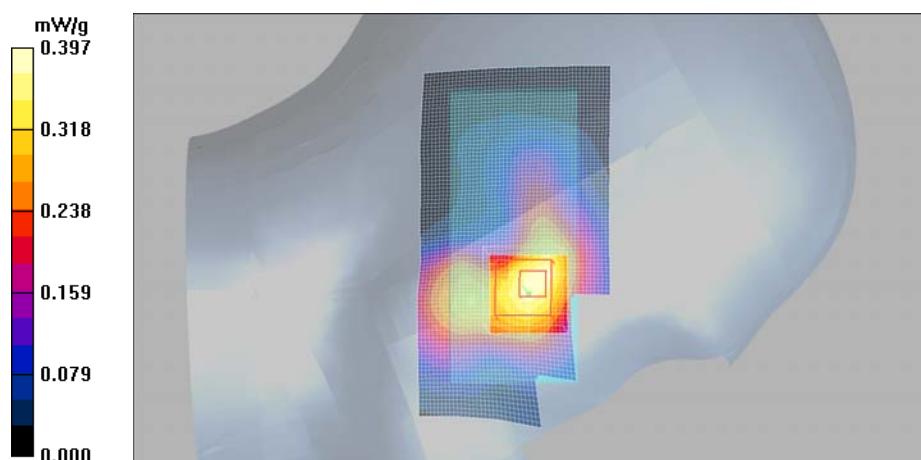
- Probe: ET3DV6 - SN1652; Probe Notes:
- ConvF(4.91, 4.91, 4.91); Calibrated: 2009-09-21
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn480; Calibrated: 2009-09-15
- Phantom: SAM3; Type: SAM; Serial: TP-1427
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek position - Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.397 mW/g

Cheek position - Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 5.36 V/m


Peak SAR (extrapolated) = 0.541 W/kg

SAR(1 g) = 0.366 mW/g

SAR(10 g) = 0.233 mW/g

Power Drift = -0.111 dB

Maximum value of SAR (measured) = 0.391 mW/g

Date/Time: 2010-03-30 10:46:21 AM

Test Laboratory: TCC Nokia
Type: RM-678; Serial: 004401/01/971710/3

Communication System: GSM 1900

Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: Head 1900; Medium Notes: Medium Temperature: $t=21.4$ C

Medium parameters used: $f = 1880$ MHz; $\sigma = 1.42$ mho/m; $\epsilon_r = 38.9$; $\rho = 1000$ kg/m³

Phantom section: Left Section

DASY4 Configuration:

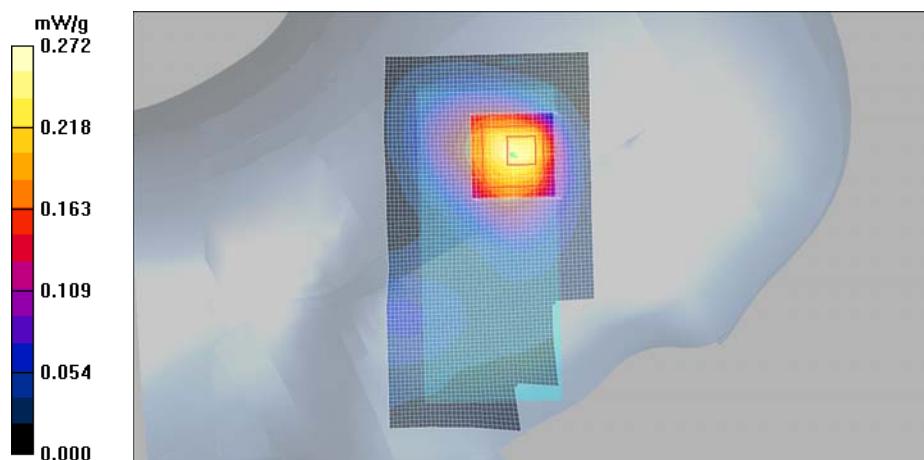
- Probe: ET3DV6 - SN1652; Probe Notes:
- ConvF(4.91, 4.91, 4.91); Calibrated: 2009-09-21
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn480; Calibrated: 2009-09-15
- Phantom: SAM3; Type: SAM; Serial: TP-1427
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 186

Tilt position - Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.272 mW/g

Tilt position - Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 10.5 V/m


Peak SAR (extrapolated) = 0.347 W/kg

SAR(1 g) = 0.230 mW/g

SAR(10 g) = 0.139 mW/g

Power Drift = -0.105 dB

Maximum value of SAR (measured) = 0.239 mW/g

Date/Time: 2010-03-30 11:18:11 AM

Test Laboratory: TCC Nokia
Type: RM-678; Serial: 004401/01/971710/3

Communication System: GSM 1900

Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: Head 1900; Medium Notes: Medium Temperature: $t=21.4$ C

Medium parameters used: $f = 1880$ MHz; $\sigma = 1.42$ mho/m; $\epsilon_r = 38.9$; $\rho = 1000$ kg/m³

Phantom section: Right Section

DASY4 Configuration:

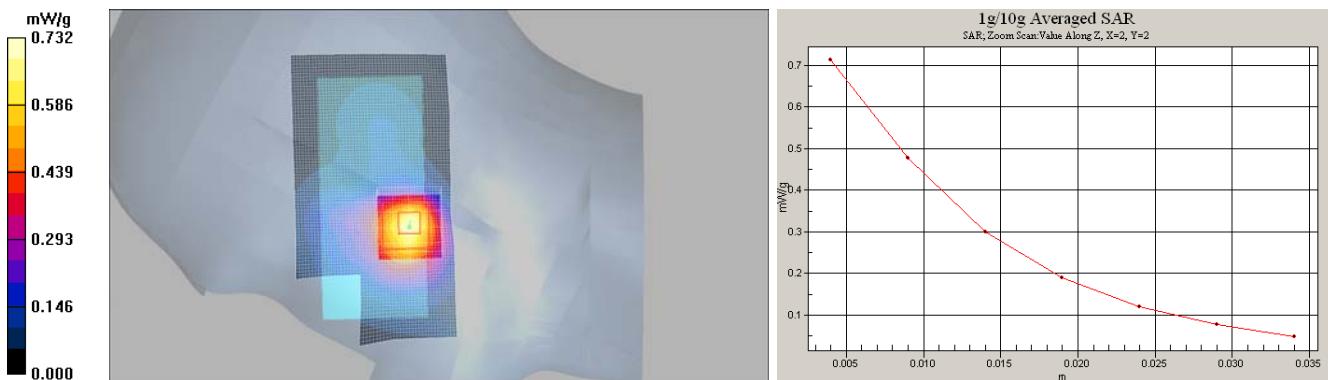
- Probe: ET3DV6 - SN1652; Probe Notes:
- ConvF(4.91, 4.91, 4.91); Calibrated: 2009-09-21
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn480; Calibrated: 2009-09-15
- Phantom: SAM3; Type: SAM; Serial: TP-1427
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek position - Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.732 mW/g

Cheek position - Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 7.53 V/m


Peak SAR (extrapolated) = 1.02 W/kg

SAR(1 g) = 0.649 mW/g

SAR(10 g) = 0.381 mW/g

Power Drift = -0.006 dB

Maximum value of SAR (measured) = 0.712 mW/g

Date/Time: 2010-03-30 11:33:25 AM

Test Laboratory: TCC Nokia
Type: RM-678; Serial: 004401/01/971710/3

Communication System: GSM 1900

Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: Head 1900; Medium Notes: Medium Temperature: $t=21.4$ C

Medium parameters used: $f = 1880$ MHz; $\sigma = 1.42$ mho/m; $\epsilon_r = 38.9$; $\rho = 1000$ kg/m³

Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1652; Probe Notes:
- ConvF(4.91, 4.91, 4.91); Calibrated: 2009-09-21
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn480; Calibrated: 2009-09-15
- Phantom: SAM3; Type: SAM; Serial: TP-1427
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 186

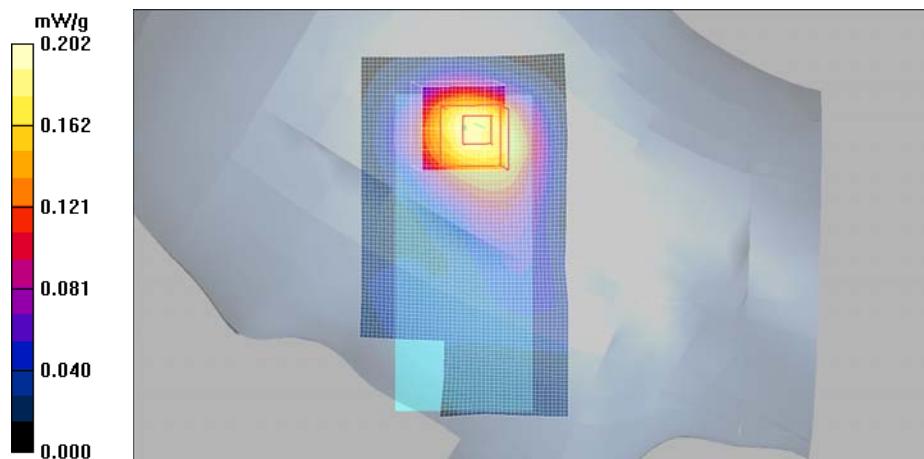
Tilt position - Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.202 mW/g

Tilt position - Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 11.8 V/m

Peak SAR (extrapolated) = 0.248 W/kg


SAR(1 g) = 0.177 mW/g

SAR(10 g) = 0.113 mW/g

Power Drift = -0.087 dB

Warning: Maximum averaged SAR over 10 g is located on the boundary of the measurement cube. This cube might not incorporate the absolute averaged SAR. Please consider a refinement of the Area Scan measurement.

Maximum value of SAR (measured) = 0.191 mW/g

Date/Time: 2010-03-30 1:16:16 PM

Test Laboratory: TCC Nokia
Type: RM-678; Serial: 004401/01/971710/3

Communication System: GSM 1900

Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: Body 1900; Medium Notes: Medium Temperature: $t=21.4$ C

Medium parameters used: $f = 1880$ MHz; $\sigma = 1.53$ mho/m; $\epsilon_r = 51.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1652; Probe Notes:
- ConvF(4.44, 4.44, 4.44); Calibrated: 2009-09-21
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn480; Calibrated: 2009-09-15
- Phantom: SAM2; Type: SAM; Serial: TP - 1508
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 186

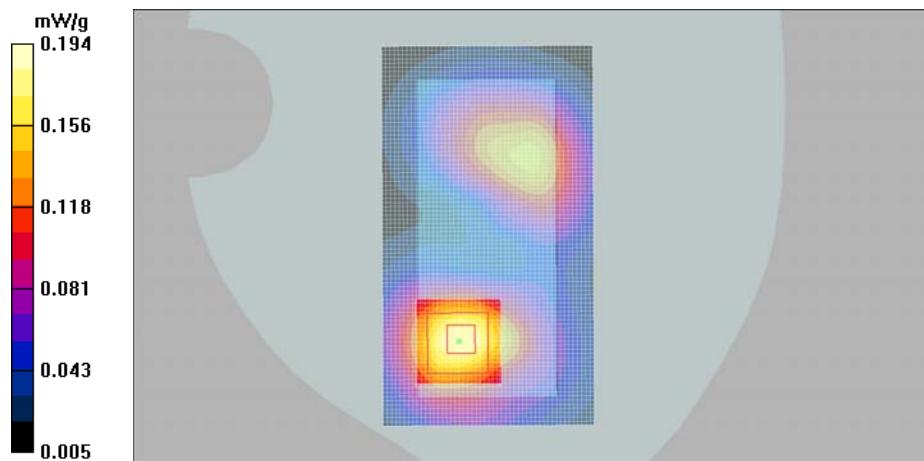
Body - Middle - No Accessory - Display facing phantom/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.194 mW/g

Body - Middle - No Accessory - Display facing phantom/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 8.37 V/m


Peak SAR (extrapolated) = 0.240 W/kg

SAR(1 g) = 0.170 mW/g

SAR(10 g) = 0.106 mW/g

Power Drift = -0.270 dB

Maximum value of SAR (measured) = 0.184 mW/g

Date/Time: 2010-03-30 1:32:19 PM

Test Laboratory: TCC Nokia
Type: RM-678; Serial: 004401/01/971710/3

Communication System: 2-slot GPRS1900

Frequency: 1880 MHz; Duty Cycle: 1:4.2

Medium: Body 1900; Medium Notes: Medium Temperature: $t=21.4$ C

Medium parameters used: $f = 1880$ MHz; $\sigma = 1.53$ mho/m; $\epsilon_r = 51.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1652; Probe Notes:
- ConvF(4.44, 4.44, 4.44); Calibrated: 2009-09-21
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn480; Calibrated: 2009-09-15
- Phantom: SAM2; Type: SAM; Serial: TP - 1508
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 186

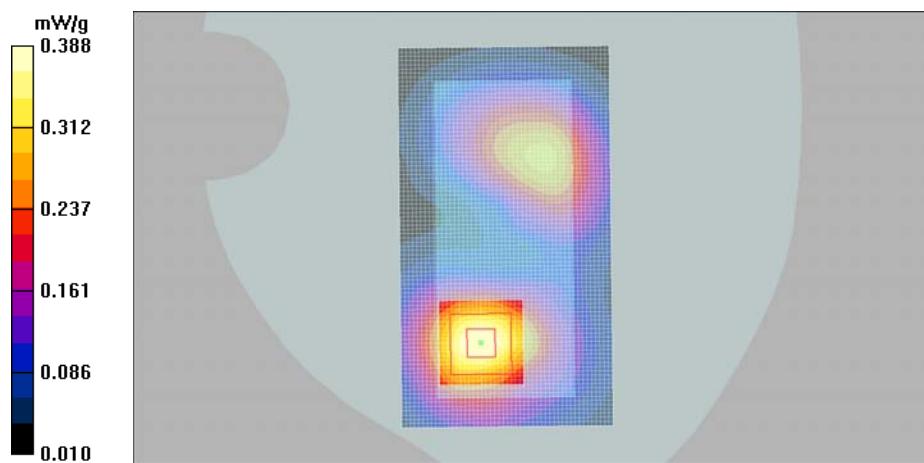
Body - Middle - No Accessory - Display facing phantom/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.388 mW/g

Body - Middle - No Accessory - Display facing phantom/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 11.6 V/m


Peak SAR (extrapolated) = 0.538 W/kg

SAR(1 g) = 0.376 mW/g

SAR(10 g) = 0.232 mW/g

Power Drift = 0.158 dB

Maximum value of SAR (measured) = 0.412 mW/g

Date/Time: 2010-03-30 1:46:27 PM

Test Laboratory: TCC Nokia
Type: RM-678; Serial: 004401/01/971710/3

Communication System: 2-slot GPRS1900

Frequency: 1880 MHz; Duty Cycle: 1:4.2

Medium: Body 1900; Medium Notes: Medium Temperature: $t=21.4$ C

Medium parameters used: $f = 1880$ MHz; $\sigma = 1.53$ mho/m; $\epsilon_r = 51.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

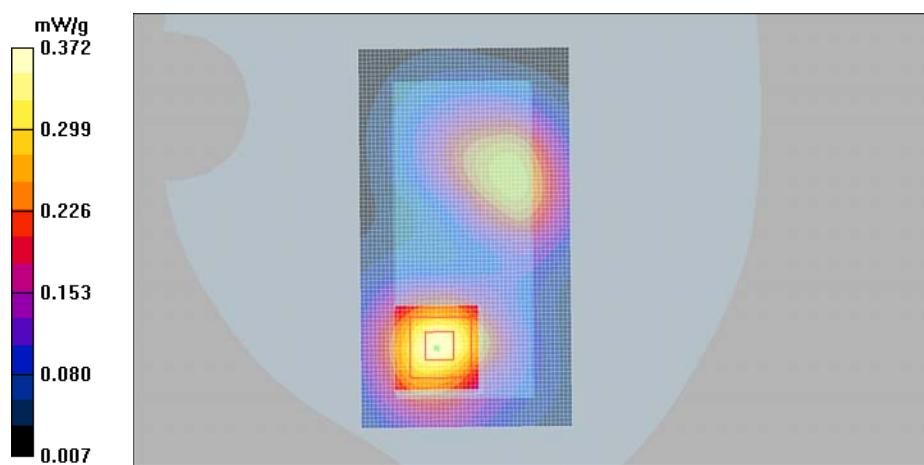
- Probe: ET3DV6 - SN1652; Probe Notes:
- ConvF(4.44, 4.44, 4.44); Calibrated: 2009-09-21
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn480; Calibrated: 2009-09-15
- Phantom: SAM2; Type: SAM; Serial: TP - 1508
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 186

Body - Middle - WH-205 - Display facing phantom/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.372 mW/g

Body - Middle - WH-205 - Display facing phantom/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 9.99 V/m


Peak SAR (extrapolated) = 0.485 W/kg

SAR(1 g) = 0.336 mW/g

SAR(10 g) = 0.208 mW/g

Power Drift = 0.002 dB

Maximum value of SAR (measured) = 0.368 mW/g

Date/Time: 2010-03-30 3:12:41 PM

Test Laboratory: TCC Nokia
Type: RM-678; Serial: 004401/01/971710/3

Communication System: 2-slot GPRS1900

Frequency: 1850.2 MHz; Duty Cycle: 1:4.2

Medium: Body 1900; Medium Notes: Medium Temperature: $t=21.4$ C

Medium parameters used (interpolated): $f = 1850.2$ MHz; $\sigma = 1.5$ mho/m; $\epsilon_r = 51.8$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

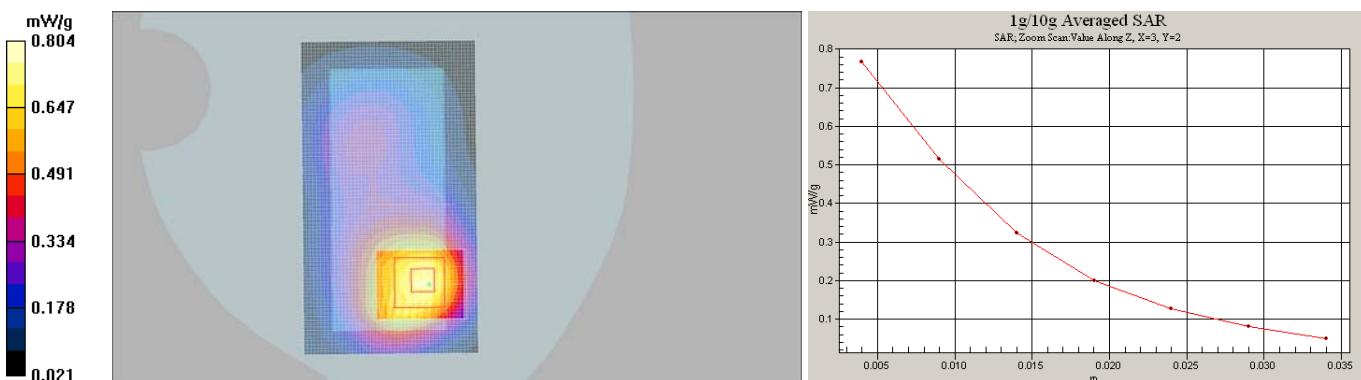
- Probe: ET3DV6 - SN1652; Probe Notes:
- ConvF(4.44, 4.44, 4.44); Calibrated: 2009-09-21
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn480; Calibrated: 2009-09-15
- Phantom: SAM2; Type: SAM; Serial: TP - 1508
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 186

Body - Low - No Accessory - Back facing phantom/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.804 mW/g

Body - Low - No Accessory - Back facing phantom/Zoom Scan (6x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 13.2 V/m


Peak SAR (extrapolated) = 1.00 W/kg

SAR(1 g) = 0.714 mW/g

SAR(10 g) = 0.458 mW/g

Power Drift = -0.074 dB

Maximum value of SAR (measured) = 0.766 mW/g

Date/Time: 2010-03-30 2:18:15 PM

Test Laboratory: TCC Nokia
Type: RM-678; Serial: 004401/01/971710/3

Communication System: 2-slot GPRS1900

Frequency: 1880 MHz; Duty Cycle: 1:4.2

Medium: Body 1900; Medium Notes: Medium Temperature: $t=21.4$ C

Medium parameters used: $f = 1880$ MHz; $\sigma = 1.53$ mho/m; $\epsilon_r = 51.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

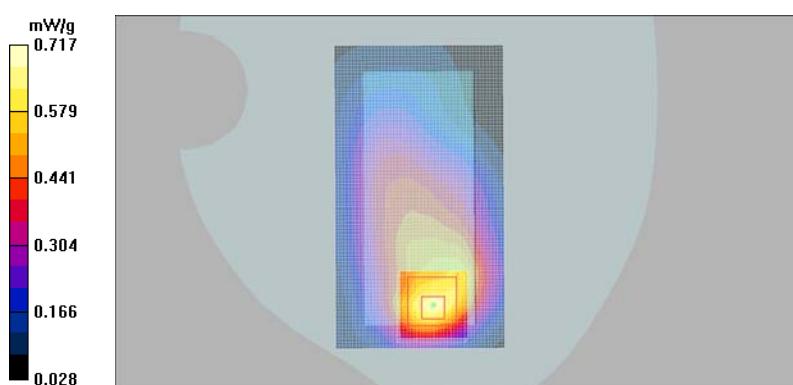
DASY4 Configuration:

- Probe: ET3DV6 - SN1652; Probe Notes:
- ConvF(4.44, 4.44, 4.44); Calibrated: 2009-09-21
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn480; Calibrated: 2009-09-15
- Phantom: SAM2; Type: SAM; Serial: TP - 1508
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 186

Body - Middle - WH-205 - Back facing phantom/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm
Maximum value of SAR (interpolated) = 0.717 mW/g

Body - Middle - WH-205 - Back facing phantom/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 11.1 V/m


Peak SAR (extrapolated) = 0.827 W/kg

SAR(1 g) = 0.603 mW/g

SAR(10 g) = 0.385 mW/g

Power Drift = -0.002 dB

Maximum value of SAR (measured) = 0.655 mW/g

APPENDIX C: RELEVANT PAGES FROM PROBE CALIBRATION REPORT(S)

See the following pages.

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client Nokia Beijing TCC

Certificate No: ET3-1652_Sep09

CALIBRATION CERTIFICATE

Object ET3DV6 - SN:1652

Calibration procedure(s) QA CAL-01.v6, QA CAL-23.v3 and QA CAL-25.v2
Calibration procedure for dosimetric E-field probes

Calibration date: September 21, 2009

Condition of the calibrated item In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	1-Apr-09 (No. 217-01030)	Apr-10
Power sensor E4412A	MY41495277	1-Apr-09 (No. 217-01030)	Apr-10
Power sensor E4412A	MY41498087	1-Apr-09 (No. 217-01030)	Apr-10
Reference 3 dB Attenuator	SN: S5054 (3c)	31-Mar-09 (No. 217-01026)	Mar-10
Reference 20 dB Attenuator	SN: S5086 (20b)	31-Mar-09 (No. 217-01028)	Mar-10
Reference 30 dB Attenuator	SN: S5129 (30b)	31-Mar-09 (No. 217-01027)	Mar-10
Reference Probe ES3DV2	SN: 3013	2-Jan-09 (No. ES3-3013_Jan09)	Jan-10
DAE4	SN: 660	9-Sep-08 (No. DAE4-660_Sep08)	Sep-09

Secondary Standards	ID #	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Oct-07)	In house check: Oct-09
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-08)	In house check: Oct-09

Calibrated by:	Name	Function	Signature
	Jeton Kastrati	Laboratory Technician	
Approved by:	Katja Pokovic	Technical Manager	

Issued: September 21, 2009

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

DASY - Parameters of Probe: ET3DV6 SN:1652

Sensitivity in Free Space ^A			Diode Compression ^B	
NormX	2.00 \pm 10.1%	$\mu\text{V}/(\text{V}/\text{m})^2$	DCP X	94 mV
NormY	2.07 \pm 10.1%	$\mu\text{V}/(\text{V}/\text{m})^2$	DCP Y	94 mV
NormZ	1.97 \pm 10.1%	$\mu\text{V}/(\text{V}/\text{m})^2$	DCP Z	93 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

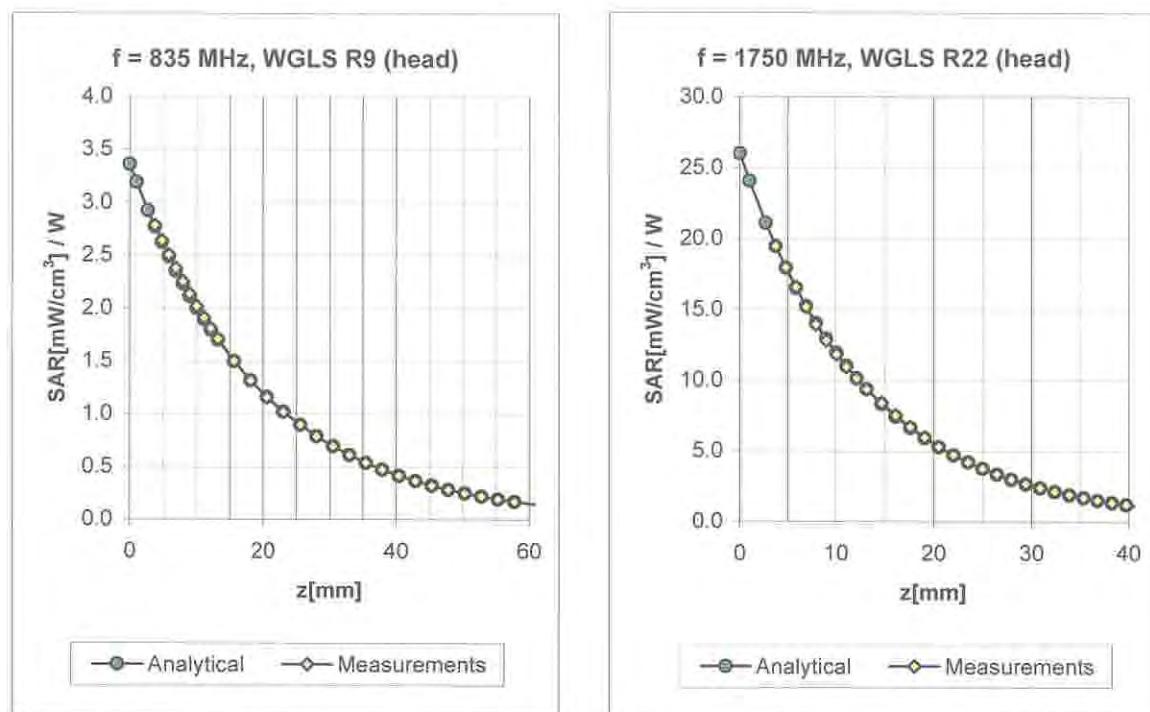
TSL 835 MHz Typical SAR gradient: 5 % per mm

Sensor Center to Phantom Surface Distance	3.7 mm	4.7 mm
SAR _{be} [%] Without Correction Algorithm	10.1	5.9
SAR _{be} [%] With Correction Algorithm	0.8	0.5

TSL 1750 MHz Typical SAR gradient: 10 % per mm

Sensor Center to Phantom Surface Distance	3.7 mm	4.7 mm
SAR _{be} [%] Without Correction Algorithm	10.0	5.5
SAR _{be} [%] With Correction Algorithm	0.9	0.6

Sensor Offset


Probe Tip to Sensor Center **2.7 mm**

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E^2 -field uncertainty inside TSL (see Page 8).

^B Numerical linearization parameter: uncertainty not required.

Conversion Factor Assessment

f [MHz]	Validity [MHz] ^c	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF	Uncertainty
835	$\pm 50 / \pm 100$	Head	$41.5 \pm 5\%$	$0.90 \pm 5\%$	0.66	1.85	$6.19 \pm 11.0\%$ (k=2)	
1750	$\pm 50 / \pm 100$	Head	$40.1 \pm 5\%$	$1.37 \pm 5\%$	0.54	2.64	$5.15 \pm 11.0\%$ (k=2)	
1900	$\pm 50 / \pm 100$	Head	$40.0 \pm 5\%$	$1.40 \pm 5\%$	0.68	2.31	$4.91 \pm 11.0\%$ (k=2)	
1950	$\pm 50 / \pm 100$	Head	$40.0 \pm 5\%$	$1.40 \pm 5\%$	0.71	2.27	$4.76 \pm 11.0\%$ (k=2)	
2450	$\pm 50 / \pm 100$	Head	$39.2 \pm 5\%$	$1.80 \pm 5\%$	0.99	1.70	$4.33 \pm 11.0\%$ (k=2)	

835	$\pm 50 / \pm 100$	Body	$55.2 \pm 5\%$	$0.97 \pm 5\%$	0.48	2.24	$5.91 \pm 11.0\%$ (k=2)
1750	$\pm 50 / \pm 100$	Body	$53.4 \pm 5\%$	$1.49 \pm 5\%$	0.65	3.14	$4.65 \pm 11.0\%$ (k=2)
1900	$\pm 50 / \pm 100$	Body	$53.3 \pm 5\%$	$1.52 \pm 5\%$	0.83	2.58	$4.44 \pm 11.0\%$ (k=2)
1950	$\pm 50 / \pm 100$	Body	$53.3 \pm 5\%$	$1.52 \pm 5\%$	0.99	2.27	$4.54 \pm 11.0\%$ (k=2)
2450	$\pm 50 / \pm 100$	Body	$52.7 \pm 5\%$	$1.95 \pm 5\%$	0.99	1.71	$4.08 \pm 11.0\%$ (k=2)

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

APPENDIX D: RELEVANT PAGES FROM DIPOLE VALIDATION KIT REPORT(S)

See the following pages.

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client Nokia Beijing TCC

Certificate No: D1900V2-547-Sep09

CALIBRATION CERTIFICATE

Object D1900V2 - SN: 547

Calibration procedure(s) QA CAL-05.v7
Calibration procedure for dipole validation kits

Calibration date: September 15, 2009

Condition of the calibrated item In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	08-Oct-08 (No. 217-00898)	Oct-09
Power sensor HP 8481A	US37292783	08-Oct-08 (No. 217-00898)	Oct-09
Reference 20 dB Attenuator	SN: 5086 (20g)	31-Mar-09 (No. 217-01025)	Mar-10
Type-N mismatch combination	SN: 5047.2 / 06327	31-Mar-09 (No. 217-01029)	Mar-10
Reference Probe ES3DV3	SN: 3205	26-Jun-09 (No. ES3-3205_Jun09)	Jun-10
DAE4	SN: 601	07-Mar-09 (No. DAE4-601_Mar09)	Mar-10
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-07)	In house check: Oct-09
RF generator R&S SMT-06	100005	4-Aug-99 (in house check Oct-07)	In house check: Oct-09
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-08)	In house check: Oct-09

Calibrated by:	Name Jeton Kastrati	Function Laboratory Technician	Signature
Approved by:	Katja Pokovic	Technical Manager	

Issued: September 18, 2009

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:547

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL U11 BB

Medium parameters used: $f = 1900$ MHz; $\sigma = 1.45$ mho/m; $\epsilon_r = 40.8$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(5.09, 5.09, 5.09); Calibrated: 26.06.2009
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 07.03.2009
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- Measurement SW: DASY 5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Pin = 250 mW; dip = 10 mm/Zoom Scan (dist=3.0 mm, probe 0deg) (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 97.7 V/m; Power Drift = 0.017 dB

Peak SAR (extrapolated) = 19.1 W/kg

SAR(1 g) = 10.4 mW/g; SAR(10 g) = 5.41 mW/g

Maximum value of SAR (measured) = 13 mW/g

