

SAR Compliance Test Report

Test report no.: FCC_RM-720_02 Date of report: 2010-11-03

Template version: 16.0 Number of pages: 59

Testing laboratory: TCC Nokia Copenhagen Client: Nokia Corporation

Laboratory Frederikskaj 1790 COPENHAGEN V

1790 COPENHAGEN V DENMARK
DENMARK Tel. +45 33 292929

Tel. +45 33 292929 Fax. +45 33 292934

Responsible test Jesper Nielsen Product contact Mohammad El-Haj

engineer: person:

Measurements made by: Preben Runchel, Leif Klysner &

Jesper Nielsen

FCC ID: QTKRM-720 IC: 661AD-RM720

Supplement reports: SAR_Photo_RM-720_03

Testing has been carried out in accordance with:

Tested device:

47CFR §2.1093

RM-720

Radiofrequency Radiation Exposure Evaluation: Portable Devices

FCC OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01)

Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency

Electromagnetic Fields

RSS-102

Evaluation Procedure for Mobile and Portable Radio Transmitters with Respect to Health Canada's Safety Code 6 for Exposure of Humans to Radio Frequency Fields

IEEE 1528 - 2003

IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices:

Measurement Technique

Documentation: The documentation of the testing performed on the tested devices is archived for 15 years at

TCC Nokia.

Test results: The tested device complies with the requirements in respect of all parameters subject to the

test. The test results and statements relate only to the items tested. The test report shall not

be reproduced except in full, without written approval of the laboratory.

Date and signatures:

For the contents:

CONTENTS

1.	SUMN	1ARY OF SAR TEST REPORT	3
	1.1	TEST DETAILS	
	1.2	MAXIMUM RESULTS	
	1.2.1	Head Configuration	
	1.2.2		
	1.2.3		
	1.2.4		
2.		RIPTION OF THE DEVICE UNDER TEST	
	2.1	DESCRIPTION OF THE ANTENNA	
3.	TEST	CONDITIONS	(
	3.1	TEMPERATURE AND HUMIDITY	6
	3.2	TEST SIGNAL, FREQUENCIES AND OUTPUT POWER	6
	3.3	TEST CASES AND TEST MINIMISATION	6
4.	DESC	RIPTION OF THE TEST EQUIPMENT	<u>c</u>
	4.1	MEASUREMENT SYSTEM AND COMPONENTS	
	4.1.1	Isotropic E-field Probe Type ES3DV3	
	4.1.2		
	4.2	PHANTOMS	
	4.3	TISSUE SIMULANTS	
	4.3.1		
	4.3.2		
	4.3.3	-,	
5.	DESC	RIPTION OF THE TEST PROCEDURE	
	5.1 5.2	DEVICE HOLDER	
		Test Positions	
	5.2.1 5.2.2	· ·	
	5.2.2 5.3	SCAN PROCEDURES	
	5.4	SAR AVERAGING METHODS	
6.	MEAS	UREMENT UNCERTAINTY	10
7.	RESU	LTS	17
ΑPI	PENDIX A	A: SYSTEM CHECKING SCANS	20
API	PENDIX I	3: MEASUREMENT SCANS	26
API	PENDIX (C: CONDUCTED AVERAGE POWER MEASUREMENTS FOR WCDMA AND HSUPA	57
API	PENDIX I	D: RELEVANT PAGES FROM PROBE CALIBRATION REPORT(S)	58
ΔDI	PENDIY I	RELEVANT PAGES FROM DIPOLE VALIDATION KIT REPORT(S)	50

1. SUMMARY OF SAR TEST REPORT

1.1 Test Details

Period of test	2010-10-15 to 2010-11-03		
SN, HW and SW numbers of tested	SN: 004402/13/217650/8, HW: 3103, SW: 10.0.018, DUT: 23998		
device	3N. 004402/13/217030/6, NW. 3103, 3W. 10.0.016, DUT. 23996		
Batteries used in testing	BL-4U, DUT: 14984, 14985, 24081, 24083		
Headsets used in testing	HS-125, DUT: 23993		
Other accessories used in testing	-		
State of sample	Prototype unit		
Notes	-		

1.2 Maximum Results

The maximum measured SAR values for Head configuration and Body Worn configuration are given in section 1.2.1 and 1.2.2 respectively. The device conforms to the requirements of the standard(s) when the maximum measured SAR value is less than or equal to the limit.

1.2.1 Head Configuration

Mode	Ch / f (MHz)	Conducted power	Position	Measured SAR value (1g avg)	Scaled* SAR value (1g avg)	SAR limit (1g avg)	Result
2-slot GPRS850	251 / 848.8	30.0 dBm	Right, Cheek	0.556 W/kg	0.62 W/kg	1.6 W/kg	PASSED
WCDMA 1700/2100	1312 / 1712.4	22.5 dBm	Left, Cheek	1.27 W/kg	1.42 W/kg	1.6 W/kg	PASSED
GSM1900	661 / 1880.0	29.2 dBm	Left, Cheek	0.754 W/kg	0.84 W/kg	1.6 W/kg	PASSED

1.2.2 Body Worn Configuration

Mode	Ch / f (MHz)	Conducted power	Separation distance	Measured SAR value (1g avg)	Scaled* SAR value (1g avg)	SAR limit (1g avg)	Result
2-slot GPRS850	251 / 848.8	30.0 dBm	1.5 cm	0.810 W/kg	0.91 W/kg	1.6 W/kg	PASSED
WCDMA 1700/2100	1513 / 1752.6	22.5 dBm	1.5 cm	0.930 W/kg	1.04 W/kg	1.6 W/kg	PASSED
GSM1900	810 / 1909.8	29.2 dBm	1.5 cm	0.385 W/kg	0.43 W/kg	1.6 W/kg	PASSED

^{*} SAR values are scaled up by 12% to cover measurement drift. As a consequence of this upwards correction of the SAR values, the contribution of measurement drift to the overall measurement uncertainty (Section 6) is reduced to zero.

1.2.3 Maximum Drift

Maximum drift covered by 12% scaling up of the SAR values	Maximum drift during measurements
0.5dB	0.48 dB

1.2.4 Measurement Uncertainty

Expanded Uncertainty (k=2) 95%	± 25.8%

2. DESCRIPTION OF THE DEVICE UNDER TEST

Device category	Portable
Exposure environment	General population / uncontrolled

Modes of Operation	Bands	Modulation Mode	Duty Cycle	Transmitter Frequency Range (MHz)
GSM	850 1900	GMSK	1/8	824 - 849 1850 - 1910
GPRS	850 1900	GMSK	1/8 to 3/8	824 - 849 1850 - 1910
EGPRS	850 1900	GMSK / 8PSK	1/8 to 3/8	824 - 849 1850 - 1910
WCDMA	1700/2100 (Band IV)		1	1712 - 1753
HSUPA	1700/2100 (Band IV)		1	1712 – 1753
BT	2450	GFSK	1	2402 – 2480

Outside of USA and Canada, the transmitter of the device is capable of operating also in GSM/GPRS/EGPRS900, GSM/GPRS/EGPRS1800, WCDMA900 and WCDMA2100 bands which are not part of this filing.

This device has Voice-over-IP/Dual Transfer Mode capability for use at the ear. Therefore, SAR for multi slot GPRS mode was evaluated against the head profile of the phantom. Dual Transfer Mode is a feature that utilises the multi-slot GPRS capability in this device; it allows simultaneous transmission of voice and data during the same call, using the same transmitter and antenna.

This is a WCDMA HSUPA device, but SAR tests for HSUPA mode have not been performed as no HSUPA Sub-test mode has an average power > 0.25dB above the basic WCDMA 12.2kbps RMC mode. Appendix C of this report gives a summary of the measured WCDMA and HSUPA average powers; a detailed report of these WCDMA and HSUPA conducted power tests is submitted separately.

2.1 Description of the Antenna

The device has an internal antenna for cellular use. The cellular antenna is located at the bottom underneath the back cover.

3. TEST CONDITIONS

3.1 Temperature and Humidity

Ambient temperature (°C):	20.5 to 22.5
Ambient humidity (RH %):	35 to 55

3.2 Test Signal, Frequencies and Output Power

The device was put into operation by using a call tester. Communication between the device and the call tester was established by air link.

The device output power was set to maximum power level for all tests; a fully charged battery was used for every test sequence.

The transmission mode of the device in all WCDMA tests was configured to 12.2kbps RMC with all TPC bits set as "1".

In all operating bands the measurements were performed on lowest, middle and highest channels.

The radiated output power of the device was measured by a separate test laboratory on the same unit(s) as used for SAR testing. The results are given in the EMC report supporting this application.

3.3 Test Cases and Test Minimisation

The tested device examined in this report may not incorporate all of the features described in the text that follows, but its SAR evaluation will have been subjected to the same considerations and test logic described below.

Whilst it's possible to identify the maximum SAR test cases from inspection of the conducted power levels given in the Results tables (Section 7), different modes in the same band and multi-slot transmit GSM/GPRS modes can create some difficulties. Therefore the sequence of the SAR tests made in evaluating this device has used test logic that is based on measured SAR values. Comparison of measured SAR values in this way, can also allow some test minimization (i.e. test elimination) to be made.

For example, when SAR testing multi-slot GSM/GPRS/EGPRS modes, it is an inefficient use of test resources to fully SAR test every test configuration in each of the different modes as these modes have a fixed power relationship between them that is the same, irrespective of the test configuration. In the case of multi-slot GSM/GPRS modes, a single comparative SAR test - using the same test channel and test configuration – is made in each of the n-slot modes; the mode with the highest measured SAR value is then subjected to full SAR testing in all test configurations. These comparative SAR tests (same frequency, same test configuration) are regarded as extremely accurate as they are relative tests in which the tested device changes neither its frequency nor its position between tests. For different modes that operate in the same band and use the same antenna e.g. GSM/GPRS850 and WCDMA850, full SAR testing is carried out in the GSM/GPRS850 mode but WCDMA850 testing is limited to 3 channel testing in the maximum SAR test configuration for GSM/GPRS850.

Multi-slot SAR testing against the Head is always performed whenever such a device offers Push to Talk over cellular with the internal earpiece active, Dual Transfer Mode (i.e. the ability to transmit voice and data simultaneously using the same transmitter) or has WLAN (which enables a Voice over IP call to take place whilst the device can simultaneously transmit data on a cellular band). Whenever a device has an intended multi-slot use against the head, it is also Head SAR tested in EGPRS mode. It should be noted that EGPRS transmit modes can have either GMSK or 8PSK modulation but, when tested, only 8PSK EGPRS will appear explicitly in the results tables, as GMSK EGPRS mode has identical time-averaged power to the reported GPRS mode.

Devices that have flips or slides are fully SAR tested in all device configurations consistent with their intended usage. For example, flip phones that can receive a call in closed mode are SAR tested against the head in both open and closed configurations. Similarly, slide phones are fully SAR tested in all slide configurations in which calls are intended to be made or received.

In the results tables in Section 7, the maximum SAR value for the 'basic' tests (i.e. left cheek, left tilt, right cheek and right tilt in Head SAR testing; with and without headset with the back &/or display side facing the flat phantom in Body SAR testing) is bolded for each band. In some cases, after full testing of the basic SAR test configurations has been completed, additional checking SAR tests are made. These checking tests are always based on the bolded result from the 'basic' testing. When the SAR value of a checking test exceeds the maximum value from the basic tests, it is also bolded and used as the basis for any further checking tests that might be needed.

Checking tests are largely voluntary and can cover optional batteries, different camera slide positions, optional covers, etc. In the case of optional batteries, if the construction of the optional battery is significantly different to the battery used in the full testing e.g. if the outer can is floating electrically rather than grounded, then the maximum SAR test configuration in each band is tested with the optional battery in 3 channels. For camera slides, if the slide material is metal, then checking tests in 3 channels are again run for the maximum SAR test configuration in each band. For plastic camera slides, SAR checking is only carried out in the channel that provided the maximum SAR value for the original. Optional front and back covers are tested if their shape differs significantly from the original or if their metallic content varies by more than 15% from the original; in the former case, the testing depends on the extent of the physical differences, whereas in the latter case, 3 channel SAR testing is performed in every band in the max SAR test configuration.

4. DESCRIPTION OF THE TEST EQUIPMENT

4.1 Measurement System and Components

The measurements were performed using an automated near-field scanning system, DASY4, manufactured by Schmid & Partner Engineering AG (SPEAG) in Switzerland. The SAR extrapolation algorithm used in all measurements was the 'advanced extrapolation' algorithm.

The following table lists calibration dates of SPEAG components:

Test Equipment	Serial Number	Calibration interval	Calibration expiry
DAE 3	339	12 months	2011-02
DAE 3	501	12 months	2011-02
DAE 4	682	12 months	2011-07
E-field Probe ES3DV3	3116	12 months	2011-02
E-field Probe ES3DV3	3117	12 months	2011-07
E-field Probe EX3DV4	3581	12 months	2011-07
Dipole Validation Kit, D835V2	4d042	24 months	2012-07
Dipole Validation Kit, D1800V2	2d075	24 months	2012-02
Dipole Validation Kit, D1900V2	5d063	24 months	2012-02
DASY4 software	Version 4.7	-	-

Additional test equipment used in testing:

Test Equipment	Model	Serial Number	Calibration interval	Calibration expiry
Signal Generator	SME06	829445/008	36 months	2012-02
Amplifier	ZHL-42W	E012903	-	-
Power Meter	NRP	100808	24 months	2012-04
Power Sensor	NRP-Z51	100410	24 months	2012-04
Vector Network Analyzer	AT8753ES	MY40001091	12 months	2011-08
Dielectric Probe Kit	HP85070B	US33020403	-	-

4.1.1 Isotropic E-field Probe Type ES3DV3

Construction Symmetrical design with triangular core

Interleaved sensors

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, e.g., butyl

diglycol)

Calibration Calibration certificate in Appendix D

Frequency 10 MHz to 4 GHz (dosimetry); Linearity: ± 0.2 dB (30 MHz to 4 GHz)

Directivity ± 0.2 dB in HSL (rotation around probe axis)

± 0.3 dB in HSL (rotation normal to probe axis)

Dynamic Range 5 μ W/g to > 100 mW/g; Linearity: \pm 0.2 dB

Dimensions Overall length: 330 mm

Tip length: 20 mm Body diameter: 12 mm Tip diameter: 3.9 mm

Distance from probe tip to dipole centers: 2.0 mm

Application General dosimetry up to 4 GHz

Compliance tests of mobile phones

Fast automatic scanning in arbitrary phantoms

4.1.2 Isotropic E-field Probe Type EX3DV4

Construction Symmetrical design with triangular core

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, e.g., DGBE)

Calibration Calibration certificate in Appendix D

Frequency 10 MHz to >6 GHz (dosimetry); Linearity: ± 0.2 dB (30 MHz to 6

GHz)

Directivity ± 0.3 dB in HSL (rotation around probe axis)

± 0.5 dB in tissue material (rotation normal to probe axis)

Dynamic Range $10 \mu \text{W/g to} > 100 \text{ mW/g, Linearity:} \pm 0.2 \text{ dB}$

Dimensions Overall length: 330 mm

Tip length: 10 mm Body diameter: 12 mm Tip diameter: 2.5 mm

Distance from probe tip to dipole centers: 1.0 mm

Application General dosimetry up to 6 GHz

Compliance tests of mobile phones

Fast automatic scanning in arbitrary phantoms

SAR Report Type: RM-720

FCC_RM-720_02

Applicant: Nokia Corporation

4.2 Phantoms

The phantom used for all tests i.e. for both system checks and device testing, was the twinheaded "SAM Phantom", manufactured by SPEAG. The phantom conforms to the requirements of IEEE 1528 - 2003.

System checking was performed using the flat section, whilst Head SAR tests used the left and right head profile sections. Body SAR testing also used the flat section between the head profiles.

The SPEAG device holder (see Section 5.1) was used to position the device in all tests whilst a tripod was used to position the validation dipoles against the flat section of phantom.

4.3 Tissue Simulants

Recommended values for the dielectric parameters of the tissue simulants are given in IEEE 1528 - 2003 and FCC Supplement C to 0ET Bulletin 65. All tests were carried out using simulants whose dielectric parameters were within $\pm\,5\%$ of the recommended values. All tests were carried out within 24 hours of measuring the dielectric parameters.

The depth of the tissue simulant was at least 15.0 cm measured from the ear reference point during system checking and device measurements.

4.3.1 Tissue Simulant Recipes

The following recipe(s) were used for Head and Body tissue simulant(s):

800MHz band

Ingredient	Head (% by weight)	Body (% by weight)
Deionised Water	39.74	55.97
HEC	0.25	1.21
Sugar	58.31	41.76
Preservative	0.15	0.27
Salt	1.55	0.79

1700MHz band

Ingredient	Head (% by weight)	Body (% by weight)	
Deionised Water	54.0	70.20	
Tween 20	45.6	29.37	
Salt	0.4	0.43	

SAR Report FCC_RM-720_02 Applicant: Nokia Corporation

1900MHz band

Ingredient	Head (% by weight)	Body (% by weight)	
Deionised Water	54.50	70.25	
Tween 20	45.23	29.41	
Salt	0.27	0.34	

4.3.2 System Checking

The manufacturer calibrates the probes annually. Dielectric parameters of the tissue simulants were measured every day using the dielectric probe kit and the network analyser. A system check measurement was made following the determination of the dielectric parameters of the simulant, using the dipole validation kit. A power level of 250 mW was supplied to the dipole antenna, which was placed under the flat section of the twin SAM phantom. The system checking results (dielectric parameters and SAR values) are given in the table below.

System checking, head tissue simulant

	Эуэссі	SAR [W/kg], Dielectric Parameters Temp				
			Dielectric		•	
f [MHz]	Description	1g	Er	σ [S/m]	[°C]	
	Reference result	2.31	40.1	0.87		
	$\pm10\%$ window	2.08 - 2.54				
835	2010-10-15	2.44	41.1	0.90	21.8	
	Reference result	9.50	39.4	1.37		
	$\pm10\%$ window	8.55 - 10.45				
	2010-10-20	9.49	39.3	1.41	22.3	
1800	2010-10-21	9.97	39.3	1.37	22.1	
	2010-11-03	9.93	40.2	1.38	22.1	
	Reference result	9.98	39.2	1.42		
	$\pm10\%$ window	8.98 - 11.0				
1900	2010-10-25	10.6	39.6	1.42	21.3	

Plots of the system checking scans are given in Appendix A.

4.3.3 Tissue Simulants used in the Measurements

Head tissue simulant measurements

f		Dielectric F	Parameters	Temp
[MHz]	Description	Er	σ [S/m]	[°C]
	Recommended value	41.5	0.90	
836	\pm 5% window 2010-10-15	39.4 - 43.6 41.1	0.86 - 0.95 0.90	21.8
030	Recommended value	40.1	1.36	21.0
	Recommended value	10.1	1.50	
	\pm 5% window	38.1 – 42.1	1.29 - 1.43	
1732	2010-10-20	39.7	1.33	22.3
	2010-11-03	40.5	1.31	22.1
	Recommended value	40.0	1.40	
	± 5% window	38.0 – 42.0	1.33 – 1.47	
1880	2010-10-25	39.6	1.40	21.3

Body tissue simulant measurements

f		Dielectric F	Parameters	Temp
[MHz]	Description	Er	σ [S/m]	[°C]
	Recommended value	55.2	0.97	
	\pm 5% window	52.4 – 58.0	0.92 – 1.02	
836	2010-10-15	54.1	0.97	21.8
	Recommended value	53.5	1.48	
	\pm 5% window	50.8 - 56.2	1.40 - 1.55	
1732	2010-10-21	53.0	1.41	22.2
	2010-11-03	52.6	1.42	22.1
	Recommended value	53.3	1.52	
	\pm 5% window	50.6 - 56.0	1.44 - 1.60	
1880	2010-10-25	52.2	1.51	21.5

5. DESCRIPTION OF THE TEST PROCEDURE

5.1 Device Holder

The device was placed in the device holder (illustrated below) that is supplied by SPEAG as an integral part of the Dasy system.

Device holder supplied by SPEAG

A Nokia designed spacer (illustrated below) was used to position the device within the SPEAG holder. The spacer positions the device so that the holder has minimal effect on the test results but still holds the device securely. The spacer was removed before the tests.

Nokia spacer

5.2 Test Positions

5.2.1 Against Phantom Head

Measurements were made in "cheek" and "tilt" positions on both the left hand and right hand sides of the phantom.

The positions used in the measurements were according to IEEE 1528 - 2003 "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques".

5.2.2 Body Worn Configuration

The device was placed in the SPEAG holder using the Nokia spacer and placed below the flat section of the phantom. The distance between the device and the phantom was kept at the separation distance indicated in Section 1.2.2 using a separate flat spacer that was removed before the start of the measurements. The device was oriented with both sides facing the phantom to find the highest results.

5.3 Scan Procedures

First, area scans were used for determination of the field distribution. Next, a zoom scan, a minimum of 5x5x7 points covering a volume of at least 30x30x30mm, was performed around the highest E-field value to determine the averaged SAR value. Drift was determined by measuring the same point at the start of the area scan and again at the end of the zoom scan.

5.4 SAR Averaging Methods

The maximum SAR value was averaged over a cube of tissue using interpolation and extrapolation.

The interpolation, extrapolation and maximum search routines within Dasy4 are all based on the modified Quadratic Shepard's method (Robert J. Renka, "Multivariate Interpolation Of Large Sets Of Scattered Data", University of North Texas ACM Transactions on Mathematical Software, vol. 14, no. 2, June 1988, pp. 139-148).

The interpolation scheme combines a least-square fitted function method with a weighted average method. A trivariate 3-D / bivariate 2-D quadratic function is computed for each measurement point and fitted to neighbouring points by a least-square method. For the zoom scan, inverse distance weighting is incorporated to fit distant points more accurately. The interpolating function is finally calculated as a weighted average of the quadratics.

In the zoom scan, the interpolation function is used to extrapolate the Peak SAR from the deepest measurement points to the inner surface of the phantom.

6. MEASUREMENT UNCERTAINTY

Table 6.1 – Measurement uncertainty evaluation

Table 6.1 – Measurement uncertainty evaluation Section — Doub							
Uncertainty Component		Tol. (%)	Prob Dist	Div	Ci	C _i .U _i (%)	Vi
Measurement System							
Probe Calibration	E2.1	±5.9	N	1	1	±5.9	8
Axial Isotropy	E2.2	±4.7	R	√3	$(1-c_p)^{1/2}$	±1.9	8
Hemispherical Isotropy	E2.2	±9.6	R	√3	$(c_p)^{1/2}$	±3.9	8
Boundary Effect	E2.3	±1.0	R	√3	1	±0.6	8
Linearity	E2.4	±4.7	R	√3	1	±2.7	8
System Detection Limits	E2.5	±1.0	R	√3	1	±0.6	8
Readout Electronics	E2.6	±1.0	N	1	1	±1.0	8
Response Time	E2.7	±0.8	R	√3	1	±0.5	8
Integration Time	E2.8	±2.6	R	√3	1	±1.5	8
RF Ambient Conditions - Noise	E6.1	±3.0	R	√3	1	±1.7	8
RF Ambient Conditions - Reflections	E6.1	±3.0	R	√3	1	±1.7	8
Probe Positioner Mechanical Tolerance	E6.2	±0.4	R	√3	1	±0.2	8
Probe Positioning with respect to Phantom Shell	E6.3	±2.9	R	√3	1	±1.7	8
Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation	E5	±3.9	R	√3	1	±2.3	8
Test sample Related							
Test Sample Positioning	E4.2	±6.0	N	1	1	±6.0	11
Device Holder Uncertainty	E4.1	±5.0	N	1	1	±5.0	7
Output Power Variation - SAR drift measurement	6.6.3	±0.0	R	√3	1	±0.0	8
Phantom and Tissue Parameters							
Phantom Uncertainty (shape and thickness tolerances)	E3.1	±4.0	R	√3	1	±2.3	8
Conductivity Target - tolerance	E3.2	±5.0	R	√3	0.64	±1.8	8
Conductivity - measurement uncertainty	E3.3	±5.5	N	1	0.64	±3.5	5
Permittivity Target - tolerance	E3.2	±5.0	R	√3	0.6	±1.7	8
Permittivity - measurement uncertainty	E3.3	±2.9	N	1	0.6	±1.7	5
Combined Standard Uncertainty	<u> </u>	•	RSS			±12.9	116
Coverage Factor for 95%			k=2				
Expanded Uncertainty						±25.8	
<u> </u>				1	l .		

7. RESULTS

The measured Head SAR values for the test device are tabulated below:

850 MHz Head SAR results

			SAR SAR	, averaged over 1g (W	/kg)
Mode	Test conf	figuration	Ch 128	Ch190	Ch 251
			824.2 MHz	836.6 MHz	848.8 MHz
GSM	Conduct	ed Power	32.5 dBm	32.5 dBm	32.5 dBm
	Left	Cheek	-	0.329	-
		Tilt	-	-	-
	Right	Cheek	-	-	-
		Tilt	-	-	-
2-slot GPRS	Conduct	ed Power	30.0 dBm	30.0 dBm	30.0 dBm
	Left	Cheek	-	0.491	-
		Tilt	-	0.274	-
	Right	Cheek	0.403	0.497	0.556
		Tilt	-	0.252	-
3-slot GPRS	Conduct	ed Power	28.2 dBm	28.2 dBm	28.2 dBm
	Left	Cheek	-	0.476	-
		Tilt	-	-	-
	Right	Cheek	-	-	-
		Tilt	-	-	-
2-slot 8PSK EGPRS	Conduct	ed Power	26.5 dBm	26.5 dBm	26.5 dBm
	Left	Cheek	-	-	-
		Tilt	-	-	-
	Right	Cheek	-	-	0.147
		Tilt	-	-	-

1700/2100 MHz Head SAR results

			SAR, averaged over 1g (W/kg)			
Mode	Test conf	iguration	Ch 1312	Ch1412	Ch 1513	
			1712.4 MHz	1732.4 MHz	1752.6 MHz	
WCDMA	Conducted Power		22.5 dBm	22.5 dBm	22.5 dBm	
	Left	Cheek	1.27	1.13	1.17	
		Tilt	-	0.469	-	
	Right	Cheek	1.25	1.13	1.22	
		Tilt	-	0.481	-	

1900 MHz Head SAR results

			CAP averaged ever 1 a (M/km)			
				, averaged over 1g (W		
Mode	Test conf	figuration	Ch 512	Ch 661	Ch 810	
			1850.2 MHz	1880.0 MHz	1909.8 MHz	
GSM	Conduct	ed Power	29.2 dBm	29.2 dBm	29.2 dBm	
	Left	Cheek	0.642	0.754	0.624	
		Tilt	•	0.300	-	
	Right	Cheek	-	0.534	-	
		Tilt	-	0.356	-	
2-slot GPRS	Conduct	ed Power	26.2 dBm	26.2 dBm	26.2 dBm	
	Left	Cheek	-	0.747	-	
		Tilt	-	-	-	
	Right	Cheek	-	-	-	
		Tilt	•	-	-	
3-slot GPRS	Conduct	ed Power	24.4 dBm	24.4 dBm	24.4 dBm	
	Left	Cheek	-	0.752	-	
	Left	Cheek Tilt	•	0.752 -	-	
	Left Right		-	0.752 - -		
		Tilt		-	- - -	
1-slot 8PSK EGPRS	Right	Tilt Cheek		-	- - - - 23.2 dBm	
	Right	Tilt Cheek Tilt	-		- - - - 23.2 dBm	
	Right Conduct	Tilt Cheek Tilt ed Power	-	- - - 23.2 dBm	- - - - 23.2 dBm - -	
	Right Conduct	Tilt Cheek Tilt ed Power Cheek	-	- - - 23.2 dBm		

The measured Body SAR values for the test device are tabulated below:

850 MHz Body SAR results

			SAR, averaged over 1g (W/kg)			
Mode	Device orientation	Test configuration	Ch 128 824.2 MHz	Ch190 836.6 MHz	Ch 251 848.8 MHz	
2-slot GPRS		Conducted Power	30.0 dBm	30.0 dBm	30.0 dBm	
	Display facing	Without headset	-	0.376	-	
	phantom	Headset HS-125	•	0.129	-	
	Back facing	Without headset	0.505	0.705	0.810	
	phantom	Headset HS-125	-	0.187	-	

1700/2100 MHz Body SAR results

			SAR, averaged over 1g (W/kg)			
Mode	Device	Test configuration	Ch 1312	Ch1412	Ch 1513	
	orientation		1712.4 MHz	1732.4 MHz	1752.6 MHz	
WCDMA		Conducted Power	22.5 dBm	22.5 dBm	22.5 dBm	
	Display facing	Without headset	-	0.563	-	
	phantom	Headset HS-125	-	0.545	-	
	Back facing	Without headset	0.855	0.841	0.930	
	phantom	Headset HS-125	0.636	0.829	0.718	

1900 MHz Body SAR results

			SAR, averaged over 1g (W/kg)			
Mode	Device orientation	Test configuration	Ch 512 1850.2 MHz	Ch 661 1880.0 MHz	Ch 810 1909.8 MHz	
GSM		Conducted Power	29.2 dBm	29.2 dBm	29.2 dBm	
	Display facing	Without headset	-	0.224	-	
	phantom	Headset HS-125	-	0.224		
	Back facing	Without headset	-	0.369	-	
	phantom	Headset HS-125	0.367	0.374	0.385	

Plots of the Measurement scans are given in Appendix B.

SAR Report FCC_RM-720_02 Applicant: Nokia Corporation

APPENDIX A: SYSTEM CHECKING SCANS

See the following pages.

Date/Time: 2010-10-15 09:31:18

Test Laboratory: TCC Nokia Type: D835V2; Serial: 4d042

Communication System: CW835 Frequency: 835 MHz; Duty Cycle: 1:1

Medium: Head 835; Medium Notes: Medium Temperature: 21.8 C

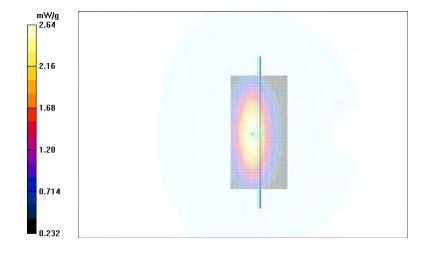
Medium parameters used: f = 835 MHz; σ = 0.899 mho/m; ε_r = 41.1; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ES3DV3 SN3116; Probe Notes:
- ConvF(5.94, 5.94, 5.94); Calibrated: 2010-02-24
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn501; Calibrated: 2010-02-19
- Phantom: SAM 4; Type: Twin Phantom; Serial: TP-1410
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

d=15mm, Pin=250mW/Area Scan (61x121x1): Measurement grid: dx=10mm, dy=10mm


Maximum value of SAR (interpolated) = 2.63 mW/g

d=15mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 50.7 V/m Peak SAR (extrapolated) = 3.71 W/kg

SAR(1 g) = 2.44 mW/g SAR(10 g) = 1.58 mW/g Power Drift = 0.071 dB

Maximum value of SAR (measured) = 2.64 mW/g

Date/Time: 2010-10-20 12:11:44

Test Laboratory: TCC Nokia

Type: D1800V2; Serial: 2d075

Communication System: CW1800 Frequency: 1800 MHz; Duty Cycle: 1:1

Medium: Head 1800; Medium Notes: Medium Temperature: 22.3 C

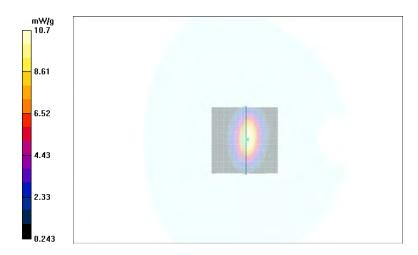
Medium parameters used: f = 1800 MHz; $\sigma = 1.41 \text{ mho/m}$; $\epsilon_r = 39.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3581; Probe Notes:
- ConvF(7.42, 7.42, 7.42); Calibrated: 2010-07-19
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn682; Calibrated: 2010-07-16
- Phantom: SAM 3; Type: Twin Phantom; Serial: TP-1302
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

d=10mm, Pin=250mW/Area Scan (71x71x1): Measurement grid: dx=10mm, dy=10mm


Maximum value of SAR (interpolated) = 10.7 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 83.9 V/m Peak SAR (extrapolated) = 17.5 W/kg

SAR(1 g) = 9.49 mW/g SAR(10 g) = 5.01 mW/g Power Drift = -0.028 dB

Maximum value of SAR (measured) = 10.7 mW/g

Date/Time: 2010-10-21 09:12:42

Test Laboratory: TCC Nokia

Type: D1800V2; Serial: 2d075

Communication System: CW1800 Frequency: 1800 MHz; Duty Cycle: 1:1

Medium: Head 1800; Medium Notes: Medium Temperature: 22.1 C

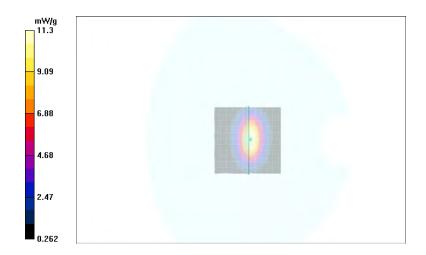
Medium parameters used: f = 1800 MHz; $\sigma = 1.37 \text{ mho/m}$; $\varepsilon_r = 39.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3581; Probe Notes:
- ConvF(7.42, 7.42, 7.42); Calibrated: 2010-07-19
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn682; Calibrated: 2010-07-16
- Phantom: SAM 3; Type: Twin Phantom; Serial: TP-1302
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

d=10mm, Pin=250mW/Area Scan (71x71x1): Measurement grid: dx=10mm, dy=10mm


Maximum value of SAR (interpolated) = 11.3 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 87.4 V/m Peak SAR (extrapolated) = 18.4 W/kg

SAR(1 g) = 9.97 mW/g SAR(10 g) = 5.26 mW/g Power Drift = -0.027 dB

Maximum value of SAR (measured) = 11.3 mW/g

Date/Time: 2010-11-03 17:41:59

Test Laboratory: TCC Nokia

Type: D1800V2; Serial: 2d075

Communication System: CW1800 Frequency: 1800 MHz; Duty Cycle: 1:1

Medium: Head 1800; Medium Notes: Medium Temperature: 22.1 C

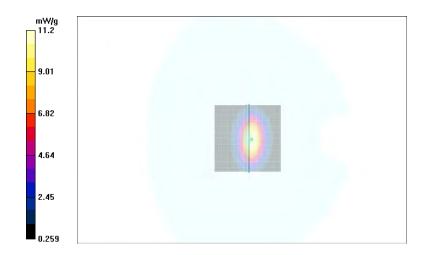
Medium parameters used: f = 1800 MHz; $\sigma = 1.38 \text{ mho/m}$; $\varepsilon_r = 40.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ES3DV3 SN3116; Probe Notes:
- ConvF(5.05, 5.05, 5.05); Calibrated: 2010-02-24
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn501; Calibrated: 2010-02-19
- Phantom: SAM 3; Type: Twin Phantom; Serial: TP-1302
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

d=10mm, Pin=250mW/Area Scan (71x71x1): Measurement grid: dx=10mm, dy=10mm


Maximum value of SAR (interpolated) = 11.3 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 87.0 V/m Peak SAR (extrapolated) = 17.9 W/kg

SAR(1 g) = 9.93 mW/g SAR(10 g) = 5.25 mW/g Power Drift = -0.144 dB

Maximum value of SAR (measured) = 11.2 mW/g

Date/Time: 2010-10-25 13:00:45

Test Laboratory: TCC Nokia

Type: D1900V2; Serial: 5d063

Communication System: CW1900 Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: Head 1900; Medium Notes: Medium Temperature: 21.3 C

Medium parameters used: f = 1900 MHz; $\sigma = 1.42 \text{ mho/m}$; $\varepsilon_r = 39.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ES3DV3 SN3117; Probe Notes:
- ConvF(4.71, 4.71, 4.71); Calibrated: 2010-07-19
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn339; Calibrated: 2010-02-15
- Phantom: SAM 6; Type: SAM Twin Phantom; Serial: TP-1301
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

d=10mm, Pin=250mW/Area Scan (71x71x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 12.2 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 91.7 V/m Peak SAR (extrapolated) = 19.6 W/kg

SAR(1 g) = 10.6 mW/g SAR(10 g) = 5.47 mW/g Power Drift = -0.106 dB

Maximum value of SAR (measured) = 12.0 mW/g

APPENDIX B: MEASUREMENT SCANS

See the following pages.

Date/Time: 2010-10-15 10:29:22

Test Laboratory: TCC Nokia

Type: RM-720; Serial: 004402/13/217650/8

Communication System: GSM850 Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Medium: Head 835; Medium Notes: Medium Temperature: 21.8 C

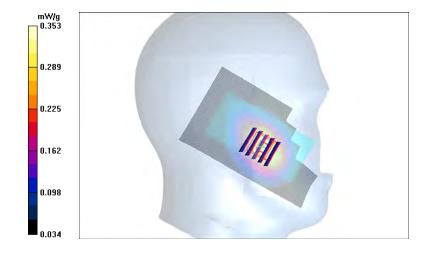
Medium parameters used: f = 837 MHz; $\sigma = 0.901$ mho/m; $\varepsilon_r = 41.1$; $\rho = 1000$ kg/m³

Phantom section: Left Section

DASY4 Configuration:

- Probe: ES3DV3 SN3116; Probe Notes:
- ConvF(5.94, 5.94, 5.94); Calibrated: 2010-02-24
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn501; Calibrated: 2010-02-19
- Phantom: SAM 4; Type: Twin Phantom; Serial: TP-1410
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Cheek - Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.358 mW/g

Cheek - Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 6.62 V/m Peak SAR (extrapolated) = 0.443 W/kg

SAR(1 g) = 0.329 mW/g SAR(10 g) = 0.229 mW/g Power Drift = -0.160 dB

Maximum value of SAR (measured) = 0.353 mW/g

Date/Time: 2010-10-15 10:42:21

Test Laboratory: TCC Nokia

Type: RM-720; Serial: 004402/13/217650/8

Communication System: 2-slot GPRS850 Frequency: 836.6 MHz; Duty Cycle: 1:4.2

Medium: Head 835; Medium Notes: Medium Temperature: 21.8 C

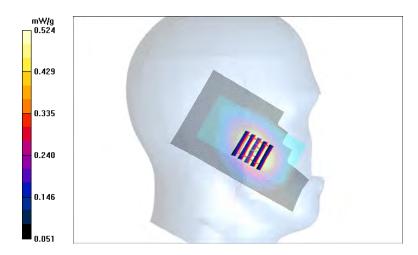
Medium parameters used: f = 837 MHz; $\sigma = 0.901$ mho/m; $\varepsilon_r = 41.1$; $\rho = 1000$ kg/m³

Phantom section: Left Section

DASY4 Configuration:

- Probe: ES3DV3 SN3116; Probe Notes:
- ConvF(5.94, 5.94, 5.94); Calibrated: 2010-02-24
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn501; Calibrated: 2010-02-19
- Phantom: SAM 4; Type: Twin Phantom; Serial: TP-1410
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Cheek - Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.548 mW/g

Cheek - Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 8.03 V/m
Peak SAR (extrapolated) = 0.673 W/kg
SAR(1 g) = 0.491 mW/g

SAR(10 g) = 0.341 mW/g Power Drift = -0.104 dB

Maximum value of SAR (measured) = 0.524 mW/g

Date/Time: 2010-10-15 11:38:21

Test Laboratory: TCC Nokia

Type: RM-720; Serial: 004402/13/217650/8

Communication System: 2-slot GPRS850 Frequency: 836.6 MHz; Duty Cycle: 1:4.2

Medium: Head 835; Medium Notes: Medium Temperature: 21.8 C

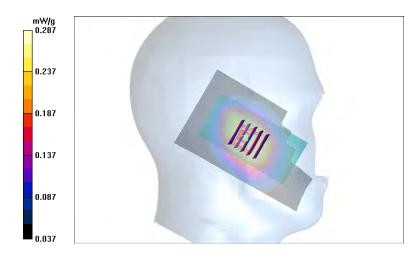
Medium parameters used: f = 837 MHz; $\sigma = 0.901$ mho/m; $\varepsilon_r = 41.1$; $\rho = 1000$ kg/m³

Phantom section: Left Section

DASY4 Configuration:

- Probe: ES3DV3 SN3116; Probe Notes:
- ConvF(5.94, 5.94, 5.94); Calibrated: 2010-02-24
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn501; Calibrated: 2010-02-19
- Phantom: SAM 4; Type: Twin Phantom; Serial: TP-1410
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Tilt - Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.297 mW/g

Tilt - Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 10.8 V/m
Peak SAR (extrapolated) = 0.350 W/kg
SAR(1 g) = 0.274 mW/g
SAR(10 g) = 0.203 mW/g

Power Drift = -0.291 dB

Maximum value of SAR (measured) = 0.287 mW/g

Date/Time: 2010-10-15 12:33:57

Test Laboratory: TCC Nokia

Type: RM-720; Serial: 004402/13/217650/8

Communication System: 2-slot GPRS850 Frequency: 848.8 MHz; Duty Cycle: 1:4.2

Medium: Head 835; Medium Notes: Medium Temperature: 21.8 C

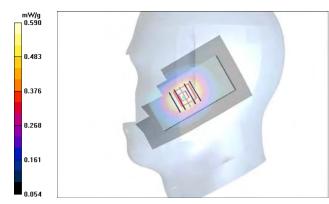
Medium parameters used: f = 849 MHz; σ = 0.913 mho/m; ϵ_r = 41; ρ = 1000 kg/m³

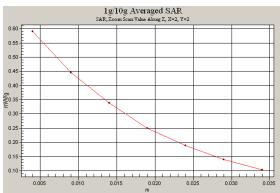
Phantom section: Right Section

DASY4 Configuration:

- Probe: ES3DV3 SN3116; Probe Notes:
- ConvF(5.94, 5.94, 5.94); Calibrated: 2010-02-24
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn501: Calibrated: 2010-02-19
- Phantom: SAM 4; Type: Twin Phantom; Serial: TP-1410
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Cheek - High/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.627 mW/g


Cheek - High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 7.06 V/m
Peak SAR (extrapolated) = 0.736 W/kg
SAR(1 g) = 0.556 mW/g

SAR(10 g) = 0.390 mW/gPower Drift = -0.363 dB

Maximum value of SAR (measured) = 0.590 mW/g

Date/Time: 2010-10-15 12:08:32

Test Laboratory: TCC Nokia

Type: RM-720; Serial: 004402/13/217650/8

Communication System: 2-slot GPRS850 Frequency: 836.6 MHz; Duty Cycle: 1:4.2

Medium: Head 835; Medium Notes: Medium Temperature: 21.8 C

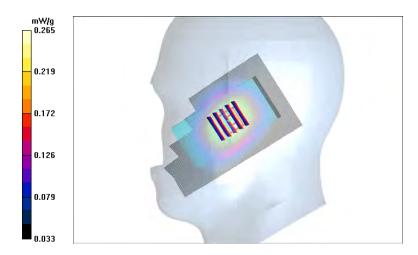
Medium parameters used: f = 837 MHz; $\sigma = 0.901$ mho/m; $\varepsilon_r = 41.1$; $\rho = 1000$ kg/m³

Phantom section: Right Section

DASY4 Configuration:

- Probe: ES3DV3 SN3116; Probe Notes:
- ConvF(5.94, 5.94, 5.94); Calibrated: 2010-02-24
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn501; Calibrated: 2010-02-19
- Phantom: SAM 4; Type: Twin Phantom; Serial: TP-1410
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Tilt - Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.279 mW/g

Tilt - Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 10.4 V/mPeak SAR (extrapolated) = 0.324 W/kgSAR(1 g) = 0.252 mW/gSAR(10 g) = 0.187 mW/g

Power Drift = -0.198 dB

Maximum value of SAR (measured) = 0.265 mW/g

Date/Time: 2010-10-15 11:21:43

Test Laboratory: TCC Nokia

Type: RM-720; Serial: 004402/13/217650/8

Communication System: 3-slot GPRS850 Frequency: 836.6 MHz; Duty Cycle: 1:2.8

Medium: Head 835; Medium Notes: Medium Temperature: 21.8 C

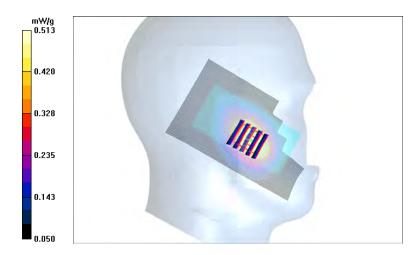
Medium parameters used: f = 837 MHz; $\sigma = 0.901$ mho/m; $\varepsilon_r = 41.1$; $\rho = 1000$ kg/m³

Phantom section: Left Section

DASY4 Configuration:

- Probe: ES3DV3 SN3116; Probe Notes:
- ConvF(5.94, 5.94, 5.94); Calibrated: 2010-02-24
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn501; Calibrated: 2010-02-19
- Phantom: SAM 4; Type: Twin Phantom; Serial: TP-1410
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Cheek - Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.529 mW/g

Cheek - Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 8.00 V/m
Peak SAR (extrapolated) = 0.651 W/kg
SAR(1 g) = 0.476 mW/g
SAR(10 g) = 0.331 mW/g

SAR(10 g) = 0.331 mW/g Power Drift = -0.480 dB

Maximum value of SAR (measured) = 0.513 mW/g

Date/Time: 2010-10-15 12:53:22

Test Laboratory: TCC Nokia

Type: RM-720; Serial: 004402/13/217650/8

Communication System: 2-slot 8PSK EGPRS850

Frequency: 848.8 MHz; Duty Cycle: 1:4.2

Medium: Head 835; Medium Notes: Medium Temperature: 21.8 C

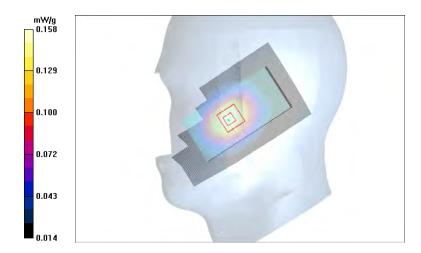
Medium parameters used: f = 849 MHz; $\sigma = 0.913$ mho/m; $\varepsilon_r = 41$; $\rho = 1000$ kg/m³

Phantom section: Right Section

DASY4 Configuration:

- Probe: ES3DV3 SN3116; Probe Notes:
- ConvF(5.94, 5.94, 5.94); Calibrated: 2010-02-24
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn501; Calibrated: 2010-02-19
- Phantom: SAM 4; Type: Twin Phantom; Serial: TP-1410
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Cheek - High/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.155 mW/g

Cheek - High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 3.34 V/m
Peak SAR (extrapolated) = 0.200 W/kg
SAR(1 g) = 0.147 mW/g

SAR(10 g) = 0.103 mW/gPower Drift = 0.242 dB

Maximum value of SAR (measured) = 0.158 mW/g

Date/Time: 2010-11-03 23:06:41

Test Laboratory: TCC Nokia

Type: RM-720; Serial: 004402/13/217650/8

Communication System: WCDMA1700/2100 Frequency: 1712.4 MHz; Duty Cycle: 1:1

Medium: Head 1800; Medium Notes: Medium Temperature: 22.1 C

Medium parameters used (interpolated): f = 1712.4 MHz; $\sigma = 1.29 \text{ mho/m}$; $\epsilon_r = 40.6$; $\rho = 1000 \text{ kg/m}^3$

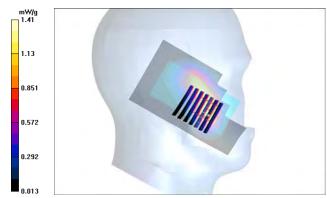
Phantom section: Left Section

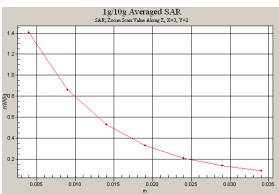
DASY4 Configuration:

- Probe: ES3DV3 SN3116; Probe Notes:
- ConvF(5.05, 5.05, 5.05); Calibrated: 2010-02-24
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn501: Calibrated: 2010-02-19
- Phantom: SAM 3; Type: Twin Phantom; Serial: TP-1302
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Cheek - Low/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.42 mW/g


Cheek - Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm


Reference Value = 8.31 V/m Peak SAR (extrapolated) = 2.16 W/kg

SAR(1 g) = 1.27 mW/gSAR(10 g) = 0.746 mW/g

Power Drift = 0.018 dB

Maximum value of SAR (measured) = 1.41 mW/g

Date/Time: 2010-10-20 13:13:39

Test Laboratory: TCC Nokia

Type: RM-720; Serial: 004402/13/217650/8

Communication System: WCDMA1700/2100 Frequency: 1732.4 MHz; Duty Cycle: 1:1

Medium: Head 1800; Medium Notes: Medium Temperature: 22.3 C

Medium parameters used (interpolated): f = 1732.4 MHz; $\sigma = 1.33$ mho/m; $\varepsilon_r = 39.7$; $\rho = 1000$ kg/m³

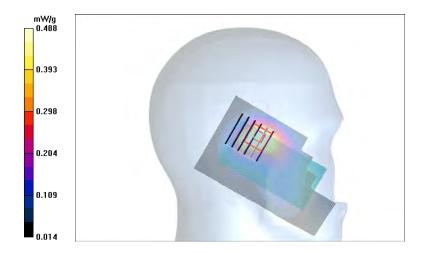
Phantom section: Left Section

DASY4 Configuration:

- Probe: EX3DV4 SN3581; Probe Notes:
- ConvF(7.42, 7.42, 7.42); Calibrated: 2010-07-19
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn682: Calibrated: 2010-07-16
- Phantom: SAM 3; Type: Twin Phantom; Serial: TP-1302
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Tilt - Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.496 mW/g


Tilt - Middle/Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 13.2 V/m
Peak SAR (extrapolated) = 0.676 W/kg

SAR(1 g) = 0.469 mW/g SAR(10 g) = 0.303 mW/g Power Drift = 0.017 dB

Warning: Maximum averaged SAR over 10 g is located on the boundary of the measurement cube. This cube might not incorporate the absolute averaged SAR. Please consider a refinement of the Area Scan measurement.

Maximum value of SAR (measured) = 0.488 mW/g

Date/Time: 2010-10-20 14:22:47

Test Laboratory: TCC Nokia

Type: RM-720; Serial: 004402/13/217650/8

Communication System: WCDMA1700/2100 Frequency: 1712.4 MHz; Duty Cycle: 1:1

Medium: Head 1800; Medium Notes: Medium Temperature: 22.3 C

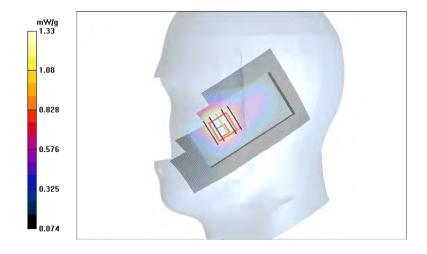
Medium parameters used (interpolated): f = 1712.4 MHz; $\sigma = 1.31 \text{ mho/m}$; $\varepsilon_r = 39.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

DASY4 Configuration:

- Probe: EX3DV4 SN3581; Probe Notes:
- ConvF(7.42, 7.42, 7.42); Calibrated: 2010-07-19
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn682; Calibrated: 2010-07-16
- Phantom: SAM 3; Type: Twin Phantom; Serial: TP-1302
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Cheek -Low/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 1.43 mW/g

Cheek -Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 12.9 V/m
Peak SAR (extrapolated) = 1.74 W/kg
SAR(1 g) = 1.25 mW/g

SAR(10 g) = 0.811 mW/g Power Drift = -0.078 dB

Maximum value of SAR (measured) = 1.33 mW/g

Date/Time: 2010-10-20 13:55:20

Test Laboratory: TCC Nokia

Type: RM-720; Serial: 004402/13/217650/8

Communication System: WCDMA1700/2100 Frequency: 1732.4 MHz; Duty Cycle: 1:1

Medium: Head 1800; Medium Notes: Medium Temperature: 22.3 C

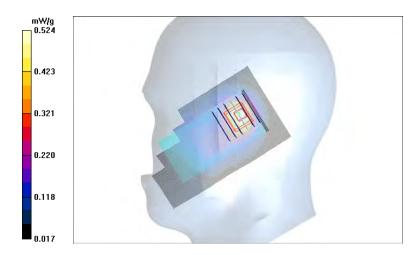
Medium parameters used (interpolated): f = 1732.4 MHz; $\sigma = 1.33$ mho/m; $\varepsilon_r = 39.7$; $\rho = 1000$ kg/m³

Phantom section: Right Section

DASY4 Configuration:

- Probe: EX3DV4 SN3581; Probe Notes:
- ConvF(7.42, 7.42, 7.42); Calibrated: 2010-07-19
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn682: Calibrated: 2010-07-16
- Phantom: SAM 3; Type: Twin Phantom; Serial: TP-1302
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Tilt - Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.563 mW/g

Tilt - Middle/Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 16.1 V/m
Peak SAR (extrapolated) = 0.763 W/kg
SAR(1 g) = 0.481 mW/g

SAR(10 g) = 0.294 mW/gPower Drift = -0.074 dB

Maximum value of SAR (measured) = 0.524 mW/g

Date/Time: 2010-10-25 13:28:58

Test Laboratory: TCC Nokia

Type: RM-720; Serial: 004402/13/217650/8

Communication System: GSM 1900 Frequency: 1880.0 MHz; Duty Cycle: 1:8.3

Medium: Head 1900; Medium Notes: Medium Temperature: 21.3 C

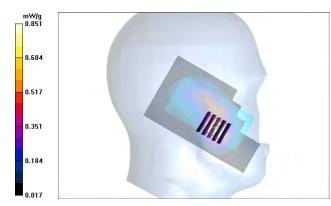
Medium parameters used: f = 1880 MHz; σ = 1.4 mho/m; ε_r = 39.6; ρ = 1000 kg/m³

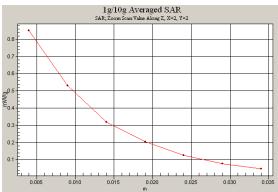
Phantom section: Left Section

DASY4 Configuration:

- Probe: ES3DV3 SN3117; Probe Notes:
- ConvF(4.71, 4.71, 4.71); Calibrated: 2010-07-19
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn339; Calibrated: 2010-02-15
- Phantom: SAM 6; Type: SAM Twin Phantom; Serial: TP-1301
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Cheek - Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.872 mW/g


Cheek - Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 10.8 V/m
Peak SAR (extrapolated) = 1.25 W/kg
SAR(1 g) = 0.754 mW/g

SAR(10 g) = 0.734 mW/g SAR(10 g) = 0.426 mW/g Power Drift = 0.016 dB

Maximum value of SAR (measured) = 0.851 mW/g

Date/Time: 2010-10-25 14:21:31

Test Laboratory: TCC Nokia

Type: RM-720; Serial: 004402/13/217650/8

Communication System: GSM 1900 Frequency: 1880.0 MHz; Duty Cycle: 1:8.3

Medium: Head 1900; Medium Notes: Medium Temperature: 21.3 C

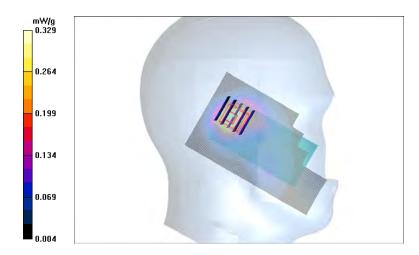
Medium parameters used: f = 1880 MHz; σ = 1.4 mho/m; ε_r = 39.6; ρ = 1000 kg/m³

Phantom section: Left Section

DASY4 Configuration:

- Probe: ES3DV3 SN3117; Probe Notes:
- ConvF(4.71, 4.71, 4.71); Calibrated: 2010-07-19
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn339: Calibrated: 2010-02-15
- Phantom: SAM 6; Type: SAM Twin Phantom; Serial: TP-1301
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Tilt - Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.348 mW/g

Tilt - Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 15.2 V/m Peak SAR (extrapolated) = 0.481 W/kg SAR(1 g) = 0.300 mW/g SAR(10 g) = 0.178 mW/g

Power Drift = 0.000 dB

Maximum value of SAR (measured) = 0.329 mW/g

Date/Time: 2010-10-25 14:40:02

Test Laboratory: TCC Nokia

Type: RM-720; Serial: 004402/13/217650/8

Communication System: GSM 1900 Frequency: 1880.0 MHz; Duty Cycle: 1:8.3

Medium: Head 1900; Medium Notes: Medium Temperature: 21.3 C

Medium parameters used: f = 1880 MHz; σ = 1.4 mho/m; ε_r = 39.6; ρ = 1000 kg/m³

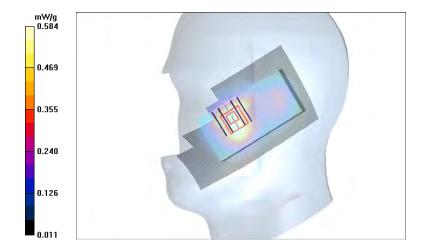
Phantom section: Right Section

DASY4 Configuration:

- Probe: ES3DV3 SN3117; Probe Notes:
- ConvF(4.71, 4.71, 4.71); Calibrated: 2010-07-19
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn339; Calibrated: 2010-02-15
- Phantom: SAM 6; Type: SAM Twin Phantom; Serial: TP-1301
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Cheek - Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.596 mW/g


Cheek - Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 13.2 V/m Peak SAR (extrapolated) = 0.837 W/kg

SAR(1 g) = 0.534 mW/g SAR(10 g) = 0.330 mW/g Power Drift = -0.117 dB

Warning: Maximum averaged SAR over 10 g is located on the boundary of the measurement cube. This cube might not incorporate the absolute averaged SAR. Please consider a refinement of the Area Scan measurement.

Maximum value of SAR (measured) = 0.584 mW/g

Date/Time: 2010-10-25 14:57:16

Test Laboratory: TCC Nokia

Type: RM-720; Serial: 004402/13/217650/8

Communication System: GSM 1900 Frequency: 1880.0 MHz; Duty Cycle: 1:8.3

Medium: Head 1900; Medium Notes: Medium Temperature: 21.3 C

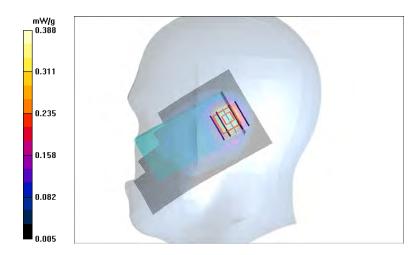
Medium parameters used: f = 1880 MHz; σ = 1.4 mho/m; ε_r = 39.6; ρ = 1000 kg/m³

Phantom section: Right Section

DASY4 Configuration:

- Probe: ES3DV3 SN3117; Probe Notes:
- ConvF(4.71, 4.71, 4.71); Calibrated: 2010-07-19
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn339; Calibrated: 2010-02-15
- Phantom: SAM 6; Type: SAM Twin Phantom; Serial: TP-1301
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Tilt - Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.390 mW/g

Tilt - Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 16.5 V/m
Peak SAR (extrapolated) = 0.599 W/kg
SAR(1 g) = 0.356 mW/g

SAR(10 g) = 0.203 mW/g Power Drift = 0.171 dB

Maximum value of SAR (measured) = 0.388 mW/g

Date/Time: 2010-10-25 13:46:32

Test Laboratory: TCC Nokia

Type: RM-720; Serial: 004402/13/217650/8

Communication System: 2-slot GPRS1900 Frequency: 1880.0 MHz; Duty Cycle: 1:4.2

Medium: Head 1900; Medium Notes: Medium Temperature: 21.3 C

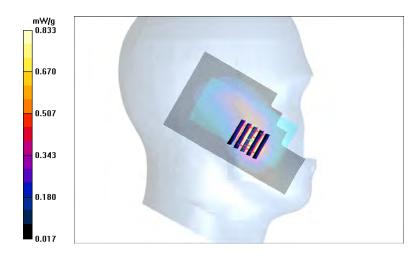
Medium parameters used: f = 1880 MHz; σ = 1.4 mho/m; ε_r = 39.6; ρ = 1000 kg/m³

Phantom section: Left Section

DASY4 Configuration:

- Probe: ES3DV3 SN3117; Probe Notes:
- ConvF(4.71, 4.71, 4.71); Calibrated: 2010-07-19
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn339; Calibrated: 2010-02-15
- Phantom: SAM 6; Type: SAM Twin Phantom; Serial: TP-1301
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Cheek - Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.885 mW/g

Cheek - Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 10.6 V/m Peak SAR (extrapolated) = 1.23 W/kg SAR(1 g) = 0.747 mW/g SAR(10 g) = 0.424 mW/g

Power Drift = -0.006 dB

Maximum value of SAR (measured) = 0.833 mW/g

Date/Time: 2010-10-25 14:04:02

Test Laboratory: TCC Nokia

Type: RM-720; Serial: 004402/13/217650/8

Communication System: 3-slot GPRS1900 Frequency: 1880.0 MHz; Duty Cycle: 1:2.8

Medium: Head 1900; Medium Notes: Medium Temperature: 21.3 C

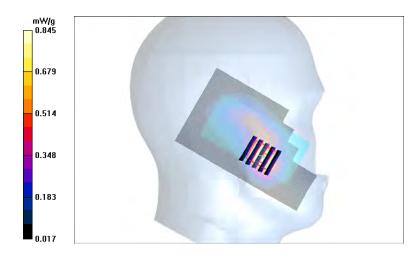
Medium parameters used: f = 1880 MHz; σ = 1.4 mho/m; ε_r = 39.6; ρ = 1000 kg/m³

Phantom section: Left Section

DASY4 Configuration:

- Probe: ES3DV3 SN3117; Probe Notes:
- ConvF(4.71, 4.71, 4.71); Calibrated: 2010-07-19
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn339; Calibrated: 2010-02-15
- Phantom: SAM 6; Type: SAM Twin Phantom; Serial: TP-1301
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Cheek - Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.893 mW/g

Cheek - Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 10.6 V/m
Peak SAR (extrapolated) = 1.27 W/kg
SAR(1 g) = 0.752 mW/g
SAR(10 g) = 0.428 mW/g

SAR(10 g) = 0.428 mW/g Power Drift = 0.106 dB

Maximum value of SAR (measured) = 0.845 mW/g

Date/Time: 2010-10-25 16:01:28

Test Laboratory: TCC Nokia

Type: RM-720; Serial: 004402/13/217650/8

Communication System: 1-slot 8PSK EGPRS 1900

Frequency: 1880.0 MHz; Duty Cycle: 1:8.3

Medium: Head 1900; Medium Notes: Medium Temperature: 21.3 C

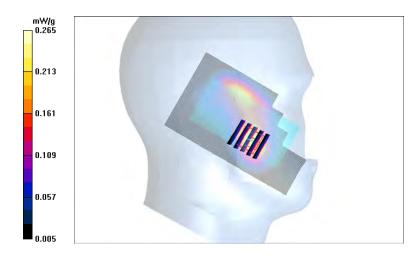
Medium parameters used: f = 1880 MHz; σ = 1.4 mho/m; ε_r = 39.6; ρ = 1000 kg/m³

Phantom section: Left Section

DASY4 Configuration:

- Probe: ES3DV3 SN3117; Probe Notes:
- ConvF(4.71, 4.71, 4.71); Calibrated: 2010-07-19
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn339; Calibrated: 2010-02-15
- Phantom: SAM 6; Type: SAM Twin Phantom; Serial: TP-1301
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Cheek - Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.277 mW/g

Cheek - Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 6.74 V/m
Peak SAR (extrapolated) = 0.412 W/kg
SAR(1 g) = 0.243 mW/g

SAR(10 g) = 0.139 mW/g Power Drift = 0.051 dB

Maximum value of SAR (measured) = 0.265 mW/g

Date/Time: 2010-10-15 13:27:53

Test Laboratory: TCC Nokia

Type: RM-720; Serial: 004402/13/217650/8

Communication System: 2-slot GPRS850 Frequency: 836.6 MHz; Duty Cycle: 1:4.2

Medium: Body 835; Medium Notes: Medium Temperature: 21.8 C

Medium parameters used: f = 837 MHz; σ = 0.97 mho/m; ε_r = 54; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

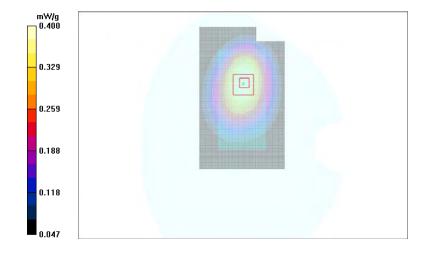
- Probe: ES3DV3 SN3116; Probe Notes:
- ConvF(5.84, 5.84, 5.84); Calibrated: 2010-02-24
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn501; Calibrated: 2010-02-19
- Phantom: SAM 5; Type: Twin Phantom; Serial: TP-1302
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Body - Middle - No Accessory - Display Facing Phantom/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.404 mW/g

Body - Middle - No Accessory - Display Facing Phantom/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=7.5mm, dy=7.5mm, dz=5mm


Reference Value = 7.17 V/m Peak SAR (extrapolated) = 0.488 W/kg

SAR(1 g) = 0.376 mW/g

SAR(10 g) = 0.272 mW/g

Power Drift = -0.223 dB

Maximum value of SAR (measured) = 0.400 mW/g

Date/Time: 2010-10-15 13:41:39

Test Laboratory: TCC Nokia

Type: RM-720; Serial: 004402/13/217650/8

Communication System: 2-slot GPRS850 Frequency: 836.6 MHz; Duty Cycle: 1:4.2

Medium: Body 835; Medium Notes: Medium Temperature: 21.8 C

Medium parameters used: f = 837 MHz; σ = 0.97 mho/m; ε_r = 54; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

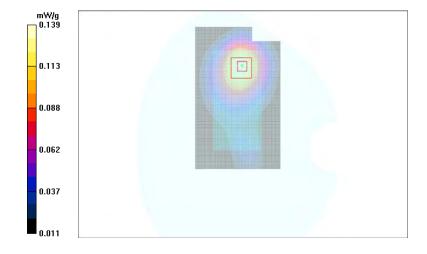
- Probe: ES3DV3 SN3116; Probe Notes:
- ConvF(5.84, 5.84, 5.84); Calibrated: 2010-02-24
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn501: Calibrated: 2010-02-19
- Phantom: SAM 5; Type: Twin Phantom; Serial: TP-1302
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Body - Middle – HS-125 - Display Facing Phantom/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.136 mW/g

Body - Middle - HS-125 - Display Facing Phantom/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm,

dy=7.5mm, dz=5mm


Reference Value = 5.62 V/m Peak SAR (extrapolated) = 0.185 W/kg

SAR(1 g) = 0.129 mW/g

SAR(10 g) = 0.087 mW/g

Power Drift = 0.077 dB

Maximum value of SAR (measured) = 0.139 mW/g

Date/Time: 2010-10-15 14:55:28

Test Laboratory: TCC Nokia

Type: RM-720; Serial: 004402/13/217650/8

Communication System: 2-slot GPRS850 Frequency: 848.8 MHz; Duty Cycle: 1:4.2

Medium: Body 835; Medium Notes: Medium Temperature: 21.8 C

Medium parameters used: f = 849 MHz; $\sigma = 0.983$ mho/m; $\varepsilon_r = 53.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

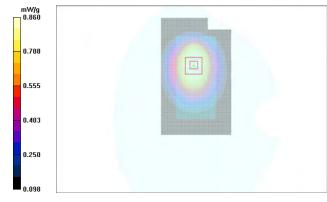
DASY4 Configuration:

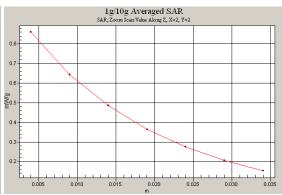
- Probe: ES3DV3 SN3116; Probe Notes:
- ConvF(5.84, 5.84, 5.84); Calibrated: 2010-02-24
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn501: Calibrated: 2010-02-19
- Phantom: SAM 5; Type: Twin Phantom; Serial: TP-1302
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Body - High - No Accessory -Back Facing Phantom/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.881 mW/g

Body - High - No Accessory -Back Facing Phantom/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm,


dy=7.5mm, dz=5mm Reference Value = 10.5 V/m


Peak SAR (extrapolated) = 1.07 W/kg

SAR(1 g) = 0.810 mW/g

SAR(10 g) = 0.584 mW/g Power Drift = -0.140 dB

Maximum value of SAR (measured) = 0.860 mW/g

Date/Time: 2010-10-15 14:20:08

Test Laboratory: TCC Nokia

Type: RM-720; Serial: 004402/13/217650/8

Communication System: 2-slot GPRS850 Frequency: 836.6 MHz; Duty Cycle: 1:4.2

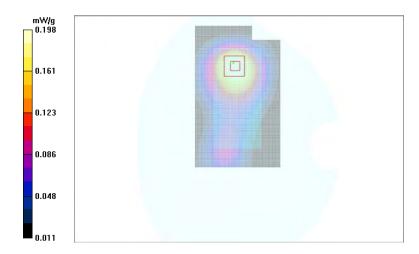
Medium: Body 835; Medium Notes: Medium Temperature: 21.8 C

Medium parameters used: f = 837 MHz; σ = 0.97 mho/m; ε_r = 54; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ES3DV3 SN3116; Probe Notes:
- ConvF(5.84, 5.84, 5.84); Calibrated: 2010-02-24
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn501; Calibrated: 2010-02-19
- Phantom: SAM 5; Type: Twin Phantom; Serial: TP-1302
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184


Body - Middle – HS-125 -Back Facing Phantom/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.209 mW/g

Body - Middle – HS-125 -Back Facing Phantom/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 8.44 V/m Peak SAR (extrapolated) = 0.272 W/kg

SAR(1 g) = 0.187 mW/g SAR(10 g) = 0.125 mW/g Power Drift = -0.258 dB

Maximum value of SAR (measured) = 0.198 mW/g

Date/Time: 2010-10-21 11:32:19

Test Laboratory: TCC Nokia

Type: RM-720; Serial: 004402/13/217650/8

Communication System: WCDMA1700/2100

Frequency: 1732.4 MHz; Duty Cycle: 1:1

Medium: Body 1800; Medium Notes: Medium Temperature: 22.2 C

Medium parameters used (interpolated): f = 1732.4 MHz; $\sigma = 1.41 \text{ mho/m}$; $\epsilon_r = 53$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

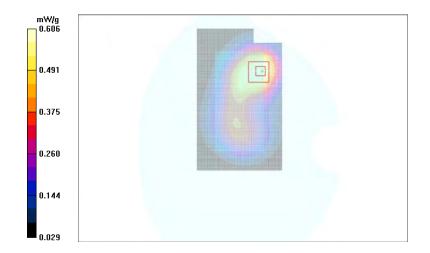
DASY4 Configuration:

- Probe: EX3DV4 SN3581; Probe Notes:
- ConvF(7.12, 7.12, 7.12); Calibrated: 2010-07-19
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn682: Calibrated: 2010-07-16
- Phantom: SAM 3; Type: Twin Phantom; Serial: TP-1302
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Body - Middle - No Accessory - Display Facing Phantom/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.630 mW/g

Body - Middle - No Accessory - Display Facing Phantom/Zoom Scan (5x5x7)/Cube 0: Measurement grid:


dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 13.3 V/m

Peak SAR (extrapolated) = 0.895 W/kg SAR(1 g) = 0.563 mW/g

SAR(10 g) = 0.355 mW/g

Power Drift = -0.129 dBMaximum value of SAR (measured) = 0.606 mW/g

Date/Time: 2010-10-21 13:24:56

Test Laboratory: TCC Nokia

Type: RM-720; Serial: 004402/13/217650/8

Communication System: WCDMA1700/2100

Frequency: 1732.4 MHz; Duty Cycle: 1:1

Medium: Body 1800; Medium Notes: Medium Temperature: 22.2 C

Medium parameters used (interpolated): f = 1732.4 MHz; $\sigma = 1.41 \text{ mho/m}$; $\epsilon_r = 53$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3581; Probe Notes:
- ConvF(7.12, 7.12, 7.12); Calibrated: 2010-07-19
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn682; Calibrated: 2010-07-16
- Phantom: SAM 3; Type: Twin Phantom; Serial: TP-1302
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Body - Middle - HS-125 - Display Facing Phantom/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

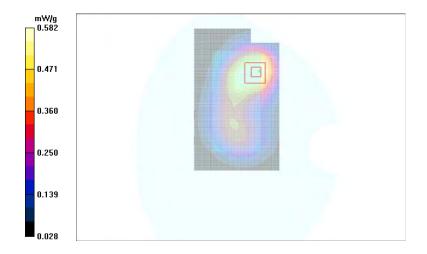
Maximum value of SAR (interpolated) = 0.618 mW/g

Body - Middle - HS-125 - Display Facing Phantom/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm,

dy=7.5mm, dz=5mm

Reference Value = 13.3 V/m

Peak SAR (extrapolated) = 0.861 W/kg


SAR(1 g) = 0.545 mW/g

SAR(10 g) = 0.347 mW/g

Power Drift = -0.269 dB

Warning: Maximum averaged SAR over 10 g is located on the boundary of the measurement cube. This cube might not incorporate the absolute averaged SAR. Please consider a refinement of the Area Scan measurement.

Maximum value of SAR (measured) = 0.582 mW/g

Date/Time: 2010-10-21 14:39:38

Test Laboratory: TCC Nokia

Type: RM-720; Serial: 004402/13/217650/8

Communication System: WCDMA1700/2100 Frequency: 1752.6 MHz; Duty Cycle: 1:1

Medium: Body 1800; Medium Notes: Medium Temperature: 22.2 C

Medium parameters used: f = 1753 MHz; $\sigma = 1.44$ mho/m; $\varepsilon_r = 52.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

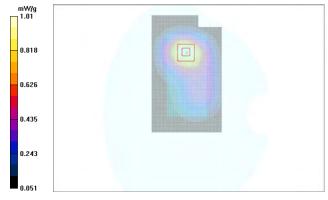
DASY4 Configuration:

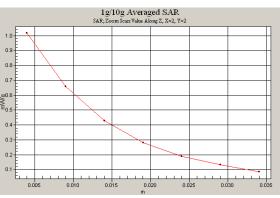
- Probe: EX3DV4 SN3581; Probe Notes:
- ConvF(7.12, 7.12, 7.12); Calibrated: 2010-07-19
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn682: Calibrated: 2010-07-16
- Phantom: SAM 3; Type: Twin Phantom; Serial: TP-1302
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Body - High - No Accessory - Back Facing Phantom/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.06 mW/g

Body - High - No Accessory - Back Facing Phantom/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm,


dy=7.5mm, dz=5mm Reference Value = 11.0 V/m


Peak SAR (extrapolated) = 1.45 W/kg

SAR(1 g) = 0.930 mW/g

SAR(10 g) = 0.574 mW/g Power Drift = -0.155 dB

Maximum value of SAR (measured) = 1.01 mW/g

Date/Time: 2010-10-21 14:04:34

Test Laboratory: TCC Nokia

Type: RM-720; Serial: 004402/13/217650/8

Communication System: WCDMA1700/2100

Frequency: 1732.4 MHz; Duty Cycle: 1:1

Medium: Body 1800; Medium Notes: Medium Temperature: 22.2 C

Medium parameters used (interpolated): f = 1732.4 MHz; σ = 1.41 mho/m; ϵ_r = 53; ρ = 1000 kg/m³

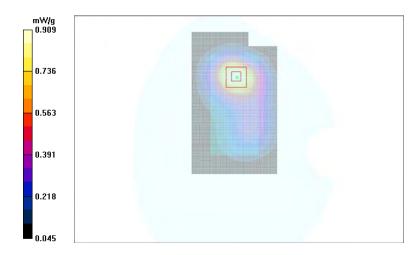
Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3581; Probe Notes:
- ConvF(7.12, 7.12, 7.12); Calibrated: 2010-07-19
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn682: Calibrated: 2010-07-16
- Phantom: SAM 3; Type: Twin Phantom; Serial: TP-1302
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Body - Middle – HS-125 - Back Facing Phantom/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.927 mW/g


Body - Middle - HS-125 - Back Facing Phantom/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm,

dy=7.5mm, dz=5mm Reference Value = 10.8 V/m Peak SAR (extrapolated) = 1.28 W/kg

SAR(1 g) = 0.829 mW/gSAR(10 g) = 0.511 mW/g

Power Drift = -0.158 dB

Maximum value of SAR (measured) = 0.909 mW/g

Date/Time: 2010-10-25 23:33:12

Test Laboratory: TCC Nokia

Type: RM-720; Serial: 004402/13/217650/8

Communication System: GSM 1900 Frequency: 1880.0 MHz; Duty Cycle: 1:8.3

Medium: Body 1900; Medium Notes: Medium Temperature: 21.5 C

Medium parameters used: f = 1880 MHz; $\sigma = 1.51 \text{ mho/m}$; $\varepsilon_r = 52.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

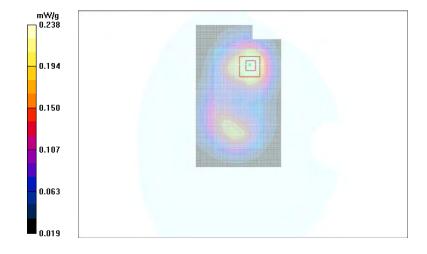
- Probe: ES3DV3 SN3117; Probe Notes:
- ConvF(4.46, 4.46, 4.46); Calibrated: 2010-07-19
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn339; Calibrated: 2010-02-15
- Phantom: SAM 1; Type: Twin Phantom; Serial: TP-1215
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Body - Middle - No Accessory - Display Facing Phantom/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.252 mW/g

Body - Middle - No Accessory - Display Facing Phantom/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=7.5mm, dy=7.5mm, dz=5mm


Reference Value = 9.30 V/m Peak SAR (extrapolated) = 0.334 W/kg

SAR(1 g) = 0.224 mW/g

SAR(10 g) = 0.143 mW/g

Power Drift = -0.155 dB

Maximum value of SAR (measured) = 0.238 mW/g

Date/Time: 2010-10-25 23:47:48

Test Laboratory: TCC Nokia

Type: RM-720; Serial: 004402/13/217650/8

Communication System: GSM 1900 Frequency: 1880.0 MHz; Duty Cycle: 1:8.3

Medium: Body 1900; Medium Notes: Medium Temperature: 21.5 C

Medium parameters used: f = 1880 MHz; $\sigma = 1.51 \text{ mho/m}$; $\varepsilon_r = 52.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

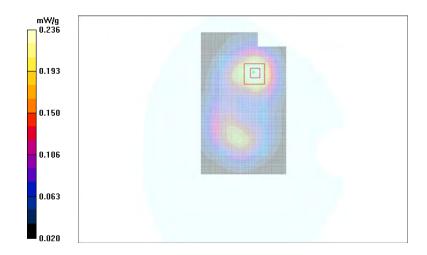
- Probe: ES3DV3 SN3117; Probe Notes:
- ConvF(4.46, 4.46, 4.46); Calibrated: 2010-07-19
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn339: Calibrated: 2010-02-15
- Phantom: SAM 1; Type: Twin Phantom; Serial: TP-1215
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Body - Middle – HS-125 - Display Facing Phantom/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.252 mW/g

Body - Middle - HS-125 - Display Facing Phantom/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm,

dy=7.5mm, dz=5mm


Reference Value = 9.22 V/m Peak SAR (extrapolated) = 0.341 W/kg

SAR(1 g) = 0.224 mW/g

SAR(10 g) = 0.142 mW/g

Power Drift = -0.196 dB

Maximum value of SAR (measured) = 0.236 mW/g

Date/Time: 2010-10-25 23:59:48

Test Laboratory: TCC Nokia

Type: RM-720; Serial: 004402/13/217650/8

Communication System: GSM 1900 Frequency: 1880.0 MHz; Duty Cycle: 1:8.3

Medium: Body 1900; Medium Notes: Medium Temperature: 21.5 C

Medium parameters used: f = 1880 MHz; $\sigma = 1.51 \text{ mho/m}$; $\varepsilon_r = 52.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

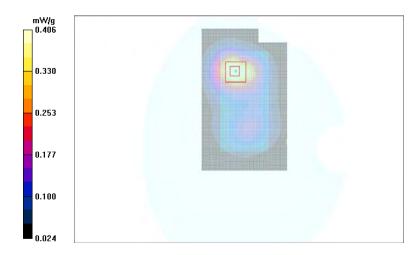
DASY4 Configuration:

- Probe: ES3DV3 SN3117; Probe Notes:
- ConvF(4.46, 4.46, 4.46); Calibrated: 2010-07-19
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn339: Calibrated: 2010-02-15
- Phantom: SAM 1; Type: Twin Phantom; Serial: TP-1215
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Body - Middle - No Accessory - Back Facing Phantom/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.431 mW/g

Body - Middle - No Accessory - Back Facing Phantom/Zoom Scan (5x5x7)/Cube 0: Measurement grid:


dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 7.67 V/m
Peak SAR (extrapolated) = 0.574 W/kg

SAR(1 g) = 0.369 mW/gSAR(10 g) = 0.224 mW/g

Power Drift = 0.093 dB

Maximum value of SAR (measured) = 0.406 mW/g

Date/Time: 2010-10-26 00:35:30

Test Laboratory: TCC Nokia

Type: RM-720; Serial: 004402/13/217650/8

Communication System: GSM 1900 Frequency: 1909.8 MHz; Duty Cycle: 1:8.3

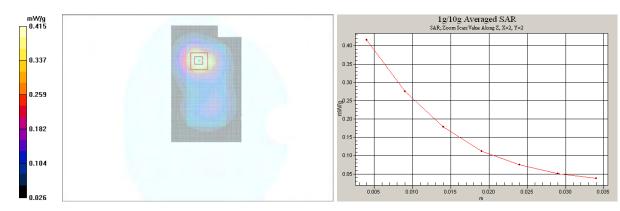
Medium: Body 1900; Medium Notes: Medium Temperature: 21.5 C

Medium parameters used: f = 1910 MHz; $\sigma = 1.54 \text{ mho/m}$; $\varepsilon_r = 52.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ES3DV3 SN3117; Probe Notes:
- ConvF(4.46, 4.46, 4.46); Calibrated: 2010-07-19
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn339: Calibrated: 2010-02-15
- Phantom: SAM 1; Type: Twin Phantom; Serial: TP-1215
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184


Body - High – HS-125 - Back Facing Phantom/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.443 mW/g

Body - High – HS-125 - Back Facing Phantom/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 7.87 V/m
Peak SAR (extrapolated) = 0.589 W/kg

SAR(1 g) = 0.385 mW/g SAR(10 g) = 0.235 mW/g Power Drift = 0.037 dB

Maximum value of SAR (measured) = 0.415 mW/g

APPENDIX C: CONDUCTED AVERAGE POWER MEASUREMENTS FOR WCDMA AND HSUPA

Test Laboratory: TCC Nokia

Type: RM-720; Serial: 004402/13/217656/5, HW: 3103, SW: 10.0.018

C.1. WCDMA1700/2100Test results

Average power

Ch / f (MHz)	P [dBm]
1313 / 1712.6	23.21
1450 / 1740.0	22.79
1512 / 1752.4	22.76

C.2. HSUPA1700/2100 Test results

Average power

		P [dBm]							
Ch / f (MHz)	Subtest mode								
CII / / (MIIZ)	1	2	3	4	5				
1313 / 1712.6	19.97	19.67	20.76	20.08	22.20				
1450 / 1740.0	19.54	19.23	20.66	19.77	21.92				
1512 / 1752.4	20.07	19.07	20.72	19.80	21.69				

Note: In HSUPA operation, the output power is reduced relative to the tuning target power for WCDMA. This device runs two separate HSUPA power control routines: MPR and E-TFC MPR. In each Subtest mode, the routine with the higher power reduction dominates. In addition, to ensure linearity of the PA output, a further 1dB power reduction for all Subtest modes is implemented in this band. As a result, the MPR for each of the Subtest modes is as follows:

Maximum Power Reduction (MPR)							
Subtest mode 1 Subtest mode 2 Subtest mode 3 Subtest mode 4 Subtest mode 3							
2.5dB	3.0dB	2.0dB	3.0dB	1.0dB			

APPENDIX D: RELEVANT PAGES FROM PROBE CALIBRATION REPORT(S)

See the following pages.

Calibration Laboratory of Schmid & Partner Engineering AG Zeug hausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Katibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Nokia Denmark A/S

Accreditation No.: SCS 108

S

C

S

Certificate No: ES3-3116_Feb10

CALIBRATION CERTIFICATE

Object ES3DV3 - SN:3116

Calibration procedure(s) QA CAL-01.v6, QA CAL-23.v3 and QA CAL-25.v2

Calibration procedure for dosimetric E-field probes

Calibration date: February 24, 2010

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	1-Apr-09 (No. 217-01030)	Apr-10
Power sensor E4412A	MY41495277	1-Apr-09 (No. 217-01030)	Apr-10
Power sensor E4412A	MY41498087	1-Apr-09 (No. 217-01030)	Apr-10
Reference 3 dB Attenuator	SN S5054 (3c)	31-Mar-09 (No. 217-01026)	Mar-10
Reference 20 dB Attenuator	SN S5086 (20b)	31-Mar-09 (No. 217-01028)	Маг-10
Reference 30 dB Attenuator	SN: S5129 (30b)	31-Mar-09 (No 217-01027)	Mar-10
Reference Probe ES3DV2	SN. 3013	30-Dec-09 (No. ES3-3013_Dec09)	Dec-10
DAE4	SN: 660	29-Sep-09 (No. DAE4-660_Sep09)	Sep-10
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Oct-09)	In house check. Oct-11
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-09)	In house check Oct10
	Name	Function	Signature
Calibrated by	Jeton Kastrati	Laboratory Technician	I be
Appro∨ed by:	Kalja Pokovic	Technical Manager	120

Issued: February 24, 2010

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

ES3DV3 SN:3116 February 24, 2010

DASY - Parameters of Probe: ES3DV3 SN:3116

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz]	Validity [MHz] ^C	Permittivity_	Conductivity	ConvF X Cor	nvFY Coi	nvF Z	Alpha	Depth Unc (k=2)
835	± 50 / ± 100	41.5 ± 5%	$0.90 \pm 5\%$	5.94	5.94	5.94	0.83	1.07 ± 11.0%
1750	± 50 / ± 100	40.1 ± 5%	1.37 ± 5%	5.05	5.05	5.05	0.45	1.55 ± 11.0%
1900	± 50 / ± 100	40.0 ± 5%	1.40 ± 5%	4.90	4.90	4.90	0.33	1.91 ± 11.0%
2450	± 50 / ± 100	39.2 ± 5%	1.80 ± 5%	4.36	4.36	4.36	0.41	1.86 ± 11.0%

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

ES3DV3 SN:3116 February 24, 2010

DASY - Parameters of Probe: ES3DV3 SN:3116

Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X Con	vF Y Co	nvF Z	Alpha	Depth Unc (k=2)
835	± 50 / ± 100	55.2 ± 5%	0.97 ± 5%	5.84	5.84	5.84	0.72	1.23 ± 11.0%
1750	± 50 / ± 100	53.4 ± 5%	1.49 ± 5%	4.82	4.82	4.82	0.45	1.75 ± 11.0%
1900	± 50 / ± 100	53.3 ± 5%	1.52 ± 5%	4.58	4.58	4.58	0.33	2.40 ± 11.0%
2450	± 50 / ± 100	52.7 ± 5%	1.95 ± 5%	4.12	4.12	4.12	0.82	1.17 ± 11.0%

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kallbrierdienst
Bervice suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client

Nokia Denmark A/S

Certificate No: ES3-3117 Jul10

CALIBRATION CERTIFICATE

Object ES3DV3 - SN:3117

Calibration procedure(s) QA CAL-01.v6, QA CAL-23.v3 and QA CAL-25.v2

Calibration procedure for dosimetric E-field probes

Calibration date: July 19, 2010

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	1-Apr-10 (No. 217-01136)	Apr-11
Power sensor E4412A	MY41495277	1-Apr-10 (No 217-01136)	Apr-11
Power sensor E4412A	MY41498087	1-Apr-10 (No. 217-01136)	Apr-11
Reference 3 dB Attenuator	SN: S5054 (3c)	30-Mar-10 (No 217-01159)	Mar-11
Reference 20 dB Attenuator	SN S5086 (20b)	30-Mar-10 (No. 217-01161)	Mar-11
Reference 30 dB Attenuator	SN: S5129 (30b)	30-Mar-10 (No. 217-01160)	Mar-11
Reference Probe ES3DV2	SN 3013	30-Dec-09 (No ES3-3013_Dec09)	Dec-10
DAE4	SN: 660	20-Apr-10 (No. DAE4-660_Apr10)	Apr-11
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Oct-09)	In house check: Oct-17
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-09)	In house check: Oct10
	Name	Function	Signature
Calibrated by.	Jelon Kastrati	Laboratory Technician	1-1
Approved by	Katia Pokovic	Technical Manager	The same of the sa

Issued: July 19, 2010

This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: ES3-3117 Jul10

ES3DV3 SN:3117 July 19, 2010

DASY/EASY - Parameters of Probe: ES3DV3 SN:3117

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz]	Validity [MHz]C	Permittivity	Conductivity	ConvF X Co	nvF Y	ConvF Z	Alpha	Depth Unc (k=2)
835	±50/±100	41.5 ± 5%	0.90 ± 5%	5.69	5.69	5.69	0.77	1.13 ± 11.0%
1750	±50/±100	40.1 ± 5%	1.37 ± 5%	4.94	4.94	4,94	0.45	1.56 ± 11.0%
1900	±50/±100	40.0 ± 5%	1.40 ± 5%	4.71	4.71	4.71	0.42	1.65 ± 11.0%
2450	±50/±100	39.2 ± 5%	1.80 ± 5%	4.22	4.22	4.22	0.46	1.64 ± 11.0%

The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

ES3DV3 SN:3117 July 19, 2010

DASY/EASY - Parameters of Probe: ES3DV3 SN:3117

Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz]	Validity [MHz]C	Permittivity	Conductivity	ConvF X Co	nvF Y	ConvF Z	Alpha	Depth Unc (k=2)
835	±50/±100	55.2 ± 5%	0.97 ± 5%	5,70	5.70	5.70	0.91	1.12 ± 11.0%
1750	± 50 / ± 100	53.4 ± 5%	1.49 ± 5%	4.68	4.68	4.68	0.42	1.74 ±11.0%
1900	±50/±100	53.3 ± 5%	1.52 ± 5%	4.46	4.46	4.46	0.35	2.10 ± 11.0%
2450	± 50 / ± 100	52.7 ± 5%	1.95 ± 5%	4.12	4.12	4.12	0.70	1.31 ± 11.0%

The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client

Nokia Denmark A/S

Certificate No: EX3-3581 Jul10

CALIBRATION CERTIFICATE

Object EX3DV4 - SN:3581

Calibration procedure(s) QA CAL-01.v6, QA CAL-14.v3, QA CAL-23.v3 and QA CAL-25.v2

Calibration procedure for dosimetric E-field probes

Calibration date July 19, 2010

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (Si).

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%

Calibration Equipment used (M&TE critical for calibration)

ID#	Cal Date (Certificate No.)	Scheduled Calibration
GB41293874	1-Apr-10 (No. 217-01136)	Apr-11
MY41495277	1-Apr-10 (No. 217-01136)	Apr-11
MY41498087	1-Apr-10 (No 217-01136)	Apr-11
SN S5054 (3c)	30-Mar-10 (No 217-01159)	Mar-11
SN: S5086 (20b)	30-Mar-10 (No. 217-01161)	Mar-11
SN: S5129 (30b)	30-Mar-10 (No 217-01160)	Mar-11
SN: 3013	30-Dec-09 (No ES3-3013 Dec09)	Dec-10
SN. 660	20-Apr-10 (No DAE4-660 Apr10)	Apr-11
ID#	Check Date (in house)	Scheduled Check
U\$3642U01700	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
US37390585	18-Oct-01 (in house check Oct-09)	In house check: Oct10
Name	Function	Signature
Katja Pokovic	Technical Manager	The My
Niels Kuster	Quality Manager	1/1
	GB41293874 MY41495277 MY41498087 SN S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 660 ID# US3642U01700 US37390585 Name Ketja Pokovic	GB41293874 1-Apr-10 (No. 217-01136) MY41495277 1-Apr-10 (No. 217-01136) MY41498087 1-Apr-10 (No. 217-01136) SN S5054 (3c) 30-Mar-10 (No. 217-01159) SN: S5086 (20b) 30-Mar-10 (No. 217-01161) SN: S5129 (30b) 30-Mar-10 (No. 217-01160) SN: 3013 30-Dec-09 (No. ES3-3013_Dec09) SN: 660 20-Apr-10 (No. DAE4-660_Apr10) ID # Check Date (in house) US3642U01700 4-Aug-99 (in house check Oct-09) US37390585 18-Oct-01 (in house check Oct-09) Name Function Kotja Pokovic Teichnical Manager

Issued: July 20, 2010

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX3-3581_Jul10

EX3DV4 SN:3581 July 19, 2010

DASY/EASY - Parameters of Probe: EX3DV4 SN:3581

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz]	Validity [MHz]C	Permittivity	Conductivity	ConvFX C	onvF Y	ConvF Z	Alpha	Depth Unc (k=2)
835	± 50 / ± 100	41.5 ± 5%	0.90 ± 5%	8.44	8.44	8.44	0.72	0.65 ± 11.0%
1750	±50/±100	40.1 ± 5%	1.37 ± 5%	7.42	7.42	7.42	0.96	0.54 ± 11.0%
1900	±50/±100	40.0 ± 5%	1.40 ± 5%	7.08	7.08	7.08	0.99	0.52 ± 11.0%
2450	± 50 / ± 100	39.2 ± 5%	1.80 ± 5%	6.51	6.51	6.51	0.69	0.62 ± 11.0%
2600	±50/±100	39.0 ± 5%	1.96 ± 5%	6.48	6.48	6.48	0.48	0.73 ± 11.0%
5200	± 50 / ± 100	$36.0 \pm 5\%$	4.66 ± 5%	4.54	4.54	4.54	0.32	1.80 ± 13.1%
5500	±50/±100	$35.6 \pm 5\%$	4.96 ± 5%	3.90	3.90	3.90	0.45	1.80 ± 13.1%
5800	± 50 / ± 100	35.3 ± 5%	5.27 ± 5%	3.75	3.75	3.75	0.50	1.80 ± 13.1%

The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

EX3DV4 SN:3581 July 19, 2010

DASY/EASY - Parameters of Probe: EX3DV4 SN:3581

Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz]	Validity [MHz]C	Permittivity	Conductivity	ConvF X	ConvF Y	ConvF Z	Alpha	Depth Unc (k=2)
835	± 50 / ± 100	55.2 ± 5%	0.97 ± 5%	8.61	8.61	8.61	0.67	0.68 ± 11.0%
1750	± 50 / ± 100	53.4 ± 5%	1.49 ± 5%	7.12	7.12	7.12	0.96	0.56 ± 11.0%
1900	± 50 / ± 100	53.3 ± 5%	1.52 ± 5%	6.86	6.86	6.86	0.89	0.57 ±11.0%
2450	± 50 / ± 100	52.7 ± 5%	1.95 ± 5%	6.81	6.81	6.81	0.45	0.75 ± 11.0%
2600	± 50 / ± 100	52.5 ± 5%	2.16 ± 5%	6.76	6.76	6.76	0.36	0.85 ±11.0%
5200	± 50 / ± 100	49.0 ± 5%	5.30 ± 5%	3.84	3.84	3.84	0.50	1.90 ± 13.1%
5500	± 50 / ± 100	48.6 ± 5%	5.65 ± 5%	3.40	3.40	3.40	0.60	1.90 ± 13.1%
5800	± 50 / ± 100	48.2 ± 5%	6.00 ± 5%	3.45	3.45	3.45	0.60	1.90 ± 13.1%

^C The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

APPENDIX E: RELEVANT PAGES FROM DIPOLE VALIDATION KIT REPORT(S)

See the following pages.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Nokia Denmark A/S

Accreditation No. SCS 108

Certificate No: D835V2-4d042 Jul10

CALIBRATION CERTIFICATE

D835V2 - SN: 4d042 Object

Calibration procedure(s) QA CAL-05.V7

Calibration procedure for dipole validation kits

Calibration date: July 20, 2010

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	06-Oct-09 (No. 217-01086)	Oct-10
Power sensor HP 8481A	US37292783	06-Oct-09 (No. 217-01086)	Oct-10
Reference 20 dB Attenuator	SN: 5086 (20g)	30-Mar-10 (No. 217-01158)	Mar-11
Type-N mismatch combination	SN: 5047.2 / 06327	30-Mar-10 (No. 217-01162)	Mar-11
Reference Probe ES3DV3	SN: 3205	30-Apr-10 (No. ES3-3205_Apr10)	Apr-11
DAE4	SN: 601	10-Jun-10 (Np. DAE4-601_Jun10)	Jun-11
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-09)	in house check: Oct-11
RF generator R&S SMT-06	100005	4-Aug-99 (in house check Oct-09)	In house check Oct-11
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-09)	In house check, Oct-10
	Name	Function	Signature
Calibrated by:	Dimce Illev	Laboratory Technician	W. Kuv
Approved by:	Katja Pokovic	Technical Manager	00 10

Issued: July 20, 2010

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

DASY5 Validation Report for Head TSL

Date/Time: 12.07.2010 10:35:49

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d042

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL900

Medium parameters used: f = 835 MHz; $\sigma = 0.9$ mho/m; $\varepsilon_r = 42.1$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(6.03, 6.03, 6.03); Calibrated: 30.04.2010

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 10.06.2010

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

Measurement SW: DASY52, V52.2 Build 0, Version 52.2.0 (163)

Postprocessing SW: SEMCAD X, V14.2 Build 2, Version 14.2.2 (1685)

Pin=250 mW /d=15mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 57 V/m; Power Drift = 0.025 dB

Peak SAR (extrapolated) = 3.56 W/kg

SAR(1 g) = 2.38 mW/g; SAR(10 g) = 1.55 mW/gMaximum value of SAR (measured) = 2.76 mW/g

DASY5 Validation Report for Body

Date/Time: 20.07.2010 11:38:55

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d042

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: MSL900

Medium parameters used: f = 835 MHz; $\sigma = 1.01$ mho/m; $\varepsilon_r = 55$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(5.86, 5.86, 5.86); Calibrated: 30.04.2010

Sensor-Surface: 3mm (Mechanical Surface Detection)

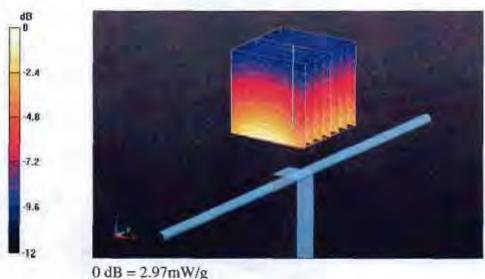
Electronics: DAE4 Sn601; Calibrated: 10.06.2010

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

Measurement SW: DASY52, V52.2 Build 0, Version 52.2.0 (163)

Postprocessing SW: SEMCAD X, V14.2 Build 2, Version 14.2.2 (1685)

Pin=250 mW /d=15mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) Cube 0: Measurement


grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.1 V/m; Power Drift = 0.014 dB

Peak SAR (extrapolated) = 3.78 W/kg

SAR(1 g) = 2.56 mW/g; SAR(10 g) = 1.68 mW/g

Maximum value of SAR (measured) = 2.97 mW/g

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Nokia Denmark A/S

Accreditation No.: SCS 108

C

S

Certificate No: D1800V2 2d075 Feb10

CALIBRATION CERTIFICATE

Object

D1800V2 - SN: 2d075

Calibration procedure(s)

QA CAL-05.v7

Calibration procedure for dipole validation kits

Calibration date:

February 23, 2010

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	06-Oct-09 (No. 217-01086)	Oct-10
Power sensor HP 8481A	US37292783	06-Oct-09 (No. 217-01086)	Oct-10
Reference 20 dB Attenuator	SN: 5086 (20g)	31-Mar-09 (No. 217-01025)	Mar-10
Type-N mismatch combination	SN: 5047.2 / 06327	31-Mar-09 (No. 217-01029)	Mar-10
Reference Probe ES3DV3	SN: 3205	26-Jun-09 (No. ES3-3205_Jun09)	Jun-10
DAE4	SN: 601	07-Mar-09 (No. DAE4-601_Mar09)	Mar-10
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-09)	In house check: Oct-11
RF generator R&S SMT-06	100005	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-09)	In house check: Oct-10
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	et l
Approved by:	Katja Pokovic	Technical Manager	The My

Issued: February 23, 2010

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1800V2-2d075_Feb10

Page 1 of 9

DASY5 Validation Report for Head TSL

Date/Time: 23.02.2010 11:16:34

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN:2d075

Communication System: CW; Frequency: 1800 MHz; Duty Cycle: 1:1

Medium: HSL U11 BB

Medium parameters used: f = 1800 MHz: $\sigma = 1.37 \text{ mho/m}$; $\epsilon_r = 39.4$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(5,25, 5,25, 5,25); Calibrated: 26.06.2009

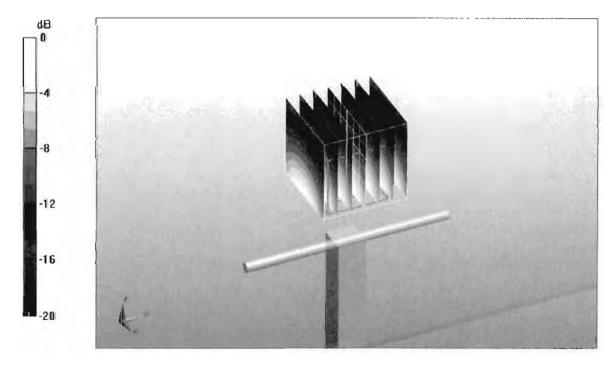
• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 07.03.2009

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7)/Cube 0: Measurement


grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.3 V/m; Power Drift = 0.050 dB

Peak SAR (extrapolated) = 17.2 W/kg

SAR(1 g) = 9.5 mW/g; SAR(10 g) = 5.01 mW/g

Maximum value of SAR (measured) = 11.9 mW/g

0 dB = 11.9 mW/g

DASY5 Validation Report for Body

Date/Time: 16.02.2010 10:42:30

Test Laboratory: SPEAG. Zurich, Switzerland

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN:2d075

Communication System: CW; Frequency: 1800 MHz; Duty Cycle: 1:1

Medium: MSL U10 BB

Medium parameters used: f = 1800 MHz; $\sigma = 1.49$ mho/m; $\varepsilon_r = 52.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.8, 4.8, 4.8); Calibrated: 26,06,2009

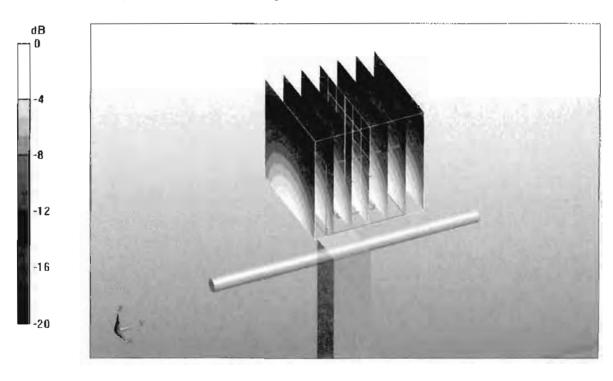
• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 07.03.2009

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

Pin250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7)/Cube 0: Measurement


grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 94.5 V/m; Power Drift = -0.015 dB

Peak SAR (extrapolated) = 16.7 W/kg

SAR(1 g) = 9.55 mW/g; SAR(10 g) = 5.07 mW/g

Maximum value of SAR (measured) = 12.1 mW/g

0 dB = 12.1 mW/g

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughau sstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Nokia Denmark A/S

Accreditation No.: SCS 108

Certificate No: D1900V2-5d063 Feb10

CALIBRATION CERTIFICATE

D1900V2 - SN: 5d063 Object

Calibration procedure(s) QA CAL-05.v7

Calibration procedure for dipole validation kits

Calibration date: February 23, 2010

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	06-Oct-09 (No. 217-01086)	Oct-10
Power sensor HP 8481A	US37292783	06-Oct-09 (No. 217-01086)	Oct-10
Reference 20 dB Attenuator	SN: 5086 (20g)	31-Mar-09 (No. 217-01025)	Mar-10
Type-N mismatch combination	SN: 5047.2 / 06327	31-Mar-09 (No. 217-01029)	Mar-10
Reference Probe ES3DV3	SN: 3205	26-Jun-09 (No. ES3-3205_Jun09)	Jun-10
DAE4	SN: 601	07-Mar-09 (No. DAE4-601_Mar09)	Mar-10
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-09)	In house check: Oct-11
RF generator R&S SMT-06	100005	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-09)	In house check: Oct-10
	Name	Function	Signature

Calibrated by:

Jeton Kastrati

Function

Laboratory Technician

Approved by:

Katja Pokovic

Technical Manager

Issued: February 25, 2010

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1900V2-5d063_Feb10

Page 1 of 9

DASY5 Validation Report for Head TSL

Date/Time: 23.02.2010 13:21:31

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d063

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL U11 BB

Medium parameters used: f = 1900 MHz; $\sigma = 1.42 \text{ mho/m}$; $\varepsilon_r = 39.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(5.09, 5.09, 5.09); Calibrated: 26.06.2009

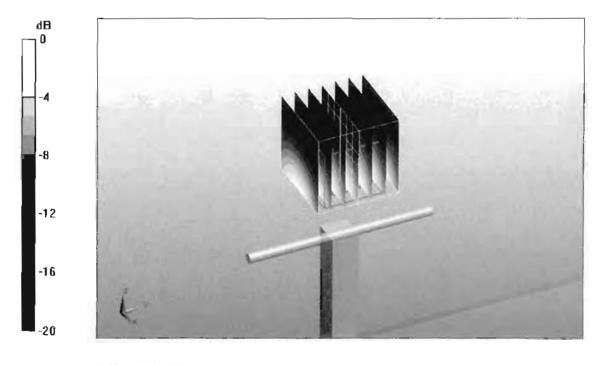
• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 07.03.2009

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

Measurement SW; DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7)/Cube 0: Measurement


grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 97.1 V/m; Power Drift = 0.041 dB

Peak SAR (extrapolated) = 18.3 W/kg

SAR(1 g) = 9.98 mW/g; SAR(10 g) = 5.2 mW/g

Maximum value of SAR (measured) = 12.4 mW/g

0 dB = 12.4 mW/g

DASY5 Validation Report for Body

Date/Time: 16.02.2010 13:00:42

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d063

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: MSL U10 BB

Medium parameters used: f = 1900 MHz; $\sigma = 1.56 \text{ mho/m}$; $\varepsilon_r = 52.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.59, 4.59, 4.59); Calibrated: 26.06.2009

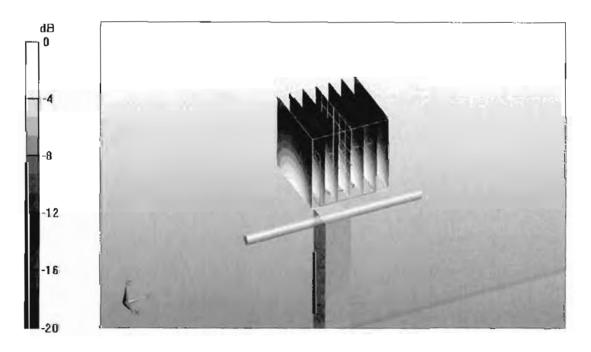
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics; DAE4 Sn601; Calibrated: 07.03.2009

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

Pin250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7)/Cube 0: Measurement


grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.1 V/m; Power Drift = 0.078 dB

Peak SAR (extrapolated) = 16.7 W/kg

SAR(1 g) = 10.1 mW/g; SAR(10 g) = 5.31 mW/g

Maximum value of SAR (measured) = 12.8 mW/g

0 dB = 12.8 mW/g