

Responsible test

Measurements made by:

SAR Compliance Test Report

Test report no.: FCC_RM-470_01 Date of report: 2010-07-16

Template version: Number of pages: 30 15.0

TCC Nokia Copenhagen **Nokia Corporation Testing laboratory:** Client:

Frederikskaj Laboratory 1790 COPENHAGEN V Frederikskaj 1790 COPENHAGEN V DENMARK

DFNMARK Tel. +45 33 292929 Fax. +45 33 292934

Product contact

Tel. +45 33 292929 Fax. +45 33 292934 Jan Rasmussen

engineer: person: Jesper Nielsen

Tested device: RM-470 FCC ID: QTKRM-470 IC: 661AD-RM470

Supplement reports: SAR_Photo_RM-470_02, Cph_SAR_0910_04

Testing has been carried 47CFR §2.1093

Jesper Nielsen

out in accordance with: Radiofrequency Radiation Exposure Evaluation: Portable Devices

FCC OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01)

Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency **Electromagnetic Fields**

RSS-102

Evaluation Procedure for Mobile and Portable Radio Transmitters with Respect to

Health Canada's Safety Code 6 for Exposure of Humans to Radio Frequency Fields

IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices:

Measurement Technique

Documentation: The documentation of the testing performed on the tested devices is archived for 15 years at

TCC Nokia.

Test results: The tested device complies with the requirements in respect of all parameters subject to the

test. The test results and statements relate only to the items tested. The test report shall not

be reproduced except in full, without written approval of the laboratory.

Date and signatures:

For the contents:

CONTENTS

1. SUMMARY OF SAR T	TEST REPORT	
1.1 TEST DETAILS		7
	LTS	
	iguration	
	Configuration	
	Drift	
1.2.4 Measureme	ent Uncertainty	4
2. DESCRIPTION OF TH	HE DEVICE UNDER TEST	5
2.1 DESCRIPTION OF	THE ANTENNA	5
3. TEST CONDITIONS1		6
3.1 TEMPERATURE AI	ND HUMIDITY	6
	REQUENCIES AND OUTPUT POWER	
	TEST MINIMISATION	
4. DESCRIPTION OF TH	HE TEST EQUIPMENT	
4.1 MEASUREMENT S	SYSTEM AND COMPONENTS	(
	-field Probe Type ES3DV3	
•		
	ITS	
4.3.1 Tissue Simu	ulant Recipes	
	ecking	
4.3.3 Tissue Simi	ulants used in the Measurements	
5. DESCRIPTION OF TH	HE TEST PROCEDURE	13
5.1 DEVICE HOLDER.		13
5.2 TEST POSITIONS.		13
	antom Head	
_	n Configuration	
	ES	
5.4 SAR AVERAGING	METHODS	14
6. MEASUREMENT UN	CERTAINTY	15
7. RESULTS		16
APPENDIX A: SYSTEM CHI	ECKING SCANS	18
	ENT SCANS	
	O AVERAGE POWER MEASUREMENTS FOR WCDMA AND HSUPA	
	PAGES FROM PROBE CALIBRATION REPORT(S)	
APPENDIX E: RELEVANT F	PAGES FROM DIPOLE VALIDATION KIT REPORT(S)	30
		Type: RM-470
FCC_RM-470_01		

1. SUMMARY OF SAR TEST REPORT

1.1 Test Details

Period of test	2010-07-15
SN, HW and SW numbers of tested device	SN: 351525/04/761130/7, HW: 0705, SW: 13.10, DUT: 24176
Batteries used in testing	BL-6Q, DUT: 24172, 24173, 24174, 24175
Headsets used in testing	-
Other accessories used in testing	-
State of sample	Prototype unit
Notes	-

1.2 Maximum Results

The maximum measured SAR values for Head configuration and Body Worn configuration are given in section 1.2.1 and 1.2.2 respectively. The device conforms to the requirements of the standard(s) when the maximum measured SAR value is less than or equal to the limit.

1.2.1 Head Configuration

Mode	Ch / f (MHz)	Conducted power	Position	Measured SAR value (1g avg)	Scaled* SAR value (1g avg)	SAR limit (1g avg)	Result
GSM 850	190 / 836.6	32.8 dBm	Left, Tilt	0.321 W/kg	0.36 W/kg	1.6 W/kg	PASSED
GSM 1900	810 / 1909.8	29.7 dBm	Left, Cheek	0.542 W/kg	0.61 W/kg	1.6 W/kg	PASSED
WCDMA 1900	9538 / 1907.6	21.0 dBm	Left, Tilt	0.734 W/kg	0.82 W/kg	1.6 W/kg	PASSED

1.2.2 Body Worn Configuration

Mode	Ch / f (MHz)	Conducted power	Separation distance	Measured SAR value (1g avg)	Scaled* SAR value (1g avg)	SAR limit (1g avg)	Result
GSM 850	251 / 848.8	32.8 dBm	1.5 cm	0.724 W/kg	0.81 W/kg	1.6 W/kg	PASSED
GSM 1900	810 / 1909.8	29.7 dBm	1.5 cm	0.202 W/kg	0.23 W/kg	1.6 W/kg	PASSED
WCDMA 1900	9538 / 1907.6	21.0 dBm	1.5 cm	0.909 W/kg	1.02 W/kg	1.6 W/kg	PASSED

^{*} SAR values are scaled up by 12% to cover measurement drift. As a consequence of this upwards correction of the SAR values, the contribution of measurement drift to the overall measurement uncertainty (Section 6) is reduced to zero.

1.2.3 Maximum Drift

Maximum drift covered by 12% scaling up of the SAR values	Maximum drift during measurements
0.5dB	0.38 dB

1.2.4 Measurement Uncertainty

Expanded Uncertainty (k=2) 95%	± 25.8%

2. DESCRIPTION OF THE DEVICE UNDER TEST

Device category	Portable
Exposure environment	General population / uncontrolled

Modes of Operation	Bands	Modulation Mode	Duty Cycle	Transmitter Frequency Range (MHz)
GSM	850 1900	GMSK	1/8	824 - 849 1850 - 1910
GPRS	850 1900	GMSK	1/8 to 3/8	824 - 849 1850 - 1910
EGPRS	850 1900	GMSK / 8PSK	1/8 to 3/8	824 - 849 1850 - 1910
WCDMA	1900 (Band II)		1	1852 – 1908
HSUPA	1900 (Band II)		1	1852 - 1908
BT	2450	GFSK	1	2402 – 2480

Outside of USA and Canada, the transmitter of the device is capable of operating also in GSM/GPRS/EGPRS900, GSM/GPRS/EGPRS1800, WCDMA900 and WCDMA2100 bands which are not part of this filing.

This device has Voice-over-IP capability for use at the ear. Therefore, SAR for multi slot GPRS mode was evaluated against the head profile of the phantom. Dual Transfer Mode is a feature that utilises the multi-slot GPRS capability in this device; it allows simultaneous transmission of voice and data during the same call, using the same transmitter and antenna.

This is a WCDMA HSUPA device, but SAR tests for HSUPA mode have not been performed as no HSUPA Sub-test mode has an average power > 0.25dB above the basic WCDMA 12.2kbps RMC mode. Appendix C of this report gives a summary of the measured WCDMA and HSUPA average powers; a detailed report of these WCDMA and HSUPA conducted power tests is submitted separately.

2.1 Description of the Antenna

The device has an internal antenna for cellular use. The cellular antenna is located at the top underneath the back cover.

3. TEST CONDITIONS1

3.1 Temperature and Humidity

Ambient temperature (°C):	20.5 to 22.5
Ambient humidity (RH %):	35 to 55

3.2 Test Signal, Frequencies and Output Power

The device was put into operation by using a call tester. Communication between the device and the call tester was established by air link.

The device output power was set to maximum power level for all tests; a fully charged battery was used for every test sequence.

The transmission mode of the device in all WCDMA tests was configured to 12.2kbps RMC with all TPC bits set as "1".

In all operating bands the measurements were performed on lowest, middle and highest channels.

The radiated output power of the device was measured by a separate test laboratory on the same unit(s) as used for SAR testing. The results are given in the EMC report supporting this application.

The number of test cases reported in this document has been minimised based on the earlier testing in Cph_SAR_0910_04.

3.3 Test Cases and Test Minimisation

The tested device examined in this report may not incorporate all of the features described in the text that follows, but its SAR evaluation will have been subjected to the same considerations and test logic described below.

Whilst it's possible to identify the maximum SAR test cases from inspection of the conducted power levels given in the Results tables (Section 7), different modes in the same band and multi-slot transmit GSM/GPRS modes can create some difficulties. Therefore the sequence of the SAR tests made in evaluating this device has used test logic that is based on measured SAR values. Comparison of measured SAR values in this way, can also allow some test minimization (i.e. test elimination) to be made.

For example, when SAR testing multi-slot GSM/GPRS/EGPRS modes, it is an inefficient use of test resources to fully SAR test every test configuration in each of the different modes as these modes have a fixed power relationship between them that is the same, irrespective of the test configuration. In the case of multi-slot GSM/GPRS modes, a single comparative SAR test - using the same test channel and test configuration – is made in each of the n-slot modes; the mode with the highest measured SAR value is then subjected to full SAR testing in all test configurations. These comparative SAR tests (same frequency, same test configuration) are regarded as extremely accurate as they are relative tests in which the tested device changes neither its frequency nor its position between tests. For different modes that operate in the same band and use the same antenna e.g. GSM/GPRS850 and WCDMA850, full SAR testing is carried out in the GSM/GPRS850 mode but WCDMA850 testing is limited to 3 channel testing in the maximum SAR test configuration for GSM/GPRS850.

Multi-slot SAR testing against the Head is always performed whenever such a device offers Push to Talk over cellular with the internal earpiece active, Dual Transfer Mode (i.e. the ability to transmit voice and data simultaneously using the same transmitter) or has WLAN (which enables a Voice over IP call to take place whilst the device can simultaneously transmit data on a cellular band). Whenever a device has an intended multi-slot use against the head, it is also Head SAR tested in EGPRS mode. It should be noted that EGPRS transmit modes can have either GMSK or 8PSK modulation but, when tested, only 8PSK EGPRS will appear explicitly in the results tables, as GMSK EGPRS mode has identical time-averaged power to the reported GPRS mode.

Devices that have flips or slides are fully SAR tested in all device configurations consistent with their intended usage. For example, flip phones that can receive a call in closed mode are SAR tested against the head in both open and closed configurations. Similarly, slide phones are fully SAR tested in all slide configurations in which calls are intended to be made or received.

In the results tables in Section 7, the maximum SAR value for the 'basic' tests (i.e. left cheek, left tilt, right cheek and right tilt in Head SAR testing; with and without headset with the back &/or display side facing the flat phantom in Body SAR testing) is bolded for each band. In some cases, after full testing of the basic SAR test configurations has been completed, additional checking SAR tests are made. These checking tests are always based on the bolded result from the 'basic' testing. When the SAR value of a checking test exceeds the maximum value from the basic tests, it is also bolded and used as the basis for any further checking tests that might be needed.

Checking tests are largely voluntary and can cover optional batteries, different camera slide positions, optional covers, etc. In the case of optional batteries, if the construction of the optional battery is significantly different to the battery used in the full testing e.g. if the outer can is floating electrically rather than grounded, then the maximum SAR test configuration in each band is tested with the optional battery in 3 channels. For camera slides, if the slide material is metal, then checking tests in 3 channels are again run for the maximum SAR test configuration in each band. For plastic camera slides, SAR checking is only carried out in the channel that provided the maximum SAR value for the original. Optional front and back covers are tested if their shape differs significantly from the original or if their metallic content varies by more than 15% from the original; in the former case, the testing depends on the extent of the physical differences, whereas in the latter case, 3 channel SAR testing is performed in every band in the max SAR test configuration.

4. DESCRIPTION OF THE TEST EQUIPMENT

4.1 Measurement System and Components

The measurements were performed using an automated near-field scanning system, DASY4, manufactured by Schmid & Partner Engineering AG (SPEAG) in Switzerland. The SAR extrapolation algorithm used in all measurements was the 'advanced extrapolation' algorithm.

The following table lists calibration dates of SPEAG components:

Test Equipment	Serial Number	Calibration interval	Calibration expiry
DAE3	339	12 months	2011-02
DAE3	501	12 months	2011-02
E-field Probe ES3DV3	3118	12 months	2010-09
E-field Probe ES3DV3	3119	12 months	2010-09
Dipole Validation Kit, D835V2	476	24 months	2011-03
Dipole Validation Kit, D1900V2	5d063	24 months	2012-02
DASY4 software	Version 4.7	-	-

Additional test equipment used in testing:

Test Equipment	Model	Serial Number	Calibration interval	Calibration expiry
Signal Generator	SME06	829445/008	36 months	2012-02
Signal Generator	SME06	848650/011	36 months	2012-08
Amplifier	ZHL-42W	E012903	-	-
Amplifier	2100-BBS3Q8CCJ	1003	-	-
Power Meter	NRP	100808	24 months	2012-04
Power Meter	NRP	101293	24 months	2011-08
Power Sensor	NRP-Z51	100410	24 months	2012-04
Power Sensor	NRP-Z51	100830	24 months	2011-08
Call Tester	CMU200	110735	-	-
Call Tester	CMU200	105900	-	-
Vector Network Analyzer	AT8753ES	MY40001091	12 months	
Dielectric Probe Kit	HP85070B	US33020403	-	-

4.1.1 Isotropic E-field Probe Type ES3DV3

Construction Symmetrical design with triangular core

Interleaved sensors

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, e.g., butyl

diglycol)

Calibration Calibration certificate in Appendix D

Frequency 10 MHz to 4 GHz (dosimetry); Linearity: ± 0.2 dB (30 MHz to 4 GHz)

Directivity ± 0.2 dB in HSL (rotation around probe axis)

± 0.3 dB in HSL (rotation normal to probe axis)

Dynamic Range 5 μ W/g to > 100 mW/g; Linearity: \pm 0.2 dB

Dimensions Overall length: 330 mm

Tip length: 20 mm Body diameter: 12 mm Tip diameter: 3.9 mm

Distance from probe tip to dipole centers: 2.0 mm

Application General dosimetry up to 4 GHz

Compliance tests of mobile phones

Fast automatic scanning in arbitrary phantoms

4.2 Phantoms

The phantom used for all tests i.e. for both system checks and device testing, was the twinheaded "SAM Phantom", manufactured by SPEAG. The phantom conforms to the requirements of IEEE 1528 - 2003.

System checking was performed using the flat section, whilst Head SAR tests used the left and right head profile sections. Body SAR testing also used the flat section between the head profiles.

The SPEAG device holder (see Section 5.1) was used to position the device in all tests whilst a tripod was used to position the validation dipoles against the flat section of phantom.

4.3 Tissue Simulants

Recommended values for the dielectric parameters of the tissue simulants are given in IEEE 1528 - 2003 and FCC Supplement C to 0ET Bulletin 65. All tests were carried out using simulants whose dielectric parameters were within \pm 5% of the recommended values. All tests were carried out within 24 hours of measuring the dielectric parameters.

The depth of the tissue simulant was at least 15.0 cm measured from the ear reference point during system checking and device measurements.

4.3.1 Tissue Simulant Recipes

The following recipe(s) were used for Head and Body tissue simulant(s):

800MHz band

Ingredient	Head (% by weight)	Body (% by weight)
Deionised Water	39.74	55.97
HEC	0.25	1.21
Sugar	58.31	41.76
Preservative	0.15	0.27
Salt	1.55	0.79

1900MHz band

Ingredient	Head (% by weight)	Body (% by weight)
Deionised Water	54.88	69.02
Butyl Diglycol	44.91	30.76
Salt	0.21	0.22

4.3.2 System Checking

The manufacturer calibrates the probes annually. Dielectric parameters of the tissue simulants were measured every day using the dielectric probe kit and the network analyser. A system check measurement was made following the determination of the dielectric parameters of the simulant, using the dipole validation kit. A power level of 250 mW was supplied to the dipole antenna, which was placed under the flat section of the twin SAM phantom. The system checking results (dielectric parameters and SAR values) are given in the table below.

System checking, head tissue simulant

		SAR [W/kg],	Dielectric F	arameters	Temp
f [MHz]	Description	1 g	€r	σ [S/m]	[°C]
	Reference result	2.31	40.1	0.87	
	$\pm10\%$ window	2.08 - 2.54			
835	2010-07-15	2.40	41.8	0.91	22.3
	Reference result	9.98	39.2	1.42	
	$\pm10\%$ window	8.98 - 10.98			
1900	2010-07-15	9.90	38.3	1.36	22.0

Plots of the system checking scans are given in Appendix A.

4.3.3 Tissue Simulants used in the Measurements

Head tissue simulant measurements

f		Dielectric Parameters		Temp
[MHz]	Description	Er	σ [S/m]	[°C]
	Recommended value	41.5	0.90	
	± 5% window	39.4 – 43.6	0.86 – 0.95	
836	2010-07-15	41.8	0.92	22.3
	Recommended value	40.0	1.40	
	± 5% window	38.0 – 42.0	1.33 - 1.47	
1880	2010-07-15	38.4	1.33	22.0

Body tissue simulant measurements

f		Dielectric Parameters		Temp
[MHz]	Description	εr	σ [S/m]	[°C]
	Recommended value	55.2	0.97	
	\pm 5% window	52.4 – 58.0	0.92 – 1.02	
836	2010-07-15	55.0	0.98	22.3
	Recommended value	53.3	1.52	
	± 5% window	50.6 – 56.0	1.44 – 1.60	
1880	2010-07-15	51.3	1.45	22.5

SAR Report FCC_RM-470_01 Applicant: Nokia Corporation

5. DESCRIPTION OF THE TEST PROCEDURE

5.1 Device Holder

The device was placed in the device holder (illustrated below) that is supplied by SPEAG as an integral part of the Dasy system.

Device holder supplied by SPEAG

A Nokia designed spacer (illustrated below) was used to position the device within the SPEAG holder. The spacer positions the device so that the holder has minimal effect on the test results but still holds the device securely. The spacer was removed before the tests.

Nokia spacer

5.2 Test Positions

5.2.1 Against Phantom Head

Measurements were made in "cheek" and "tilt" positions on the left hand side of the phantom.

The positions used in the measurements were according to IEEE 1528 - 2003 "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques".

5.2.2 Body Worn Configuration

The device was placed in the SPEAG holder using the Nokia spacer and placed below the flat section of the phantom. The distance between the device and the phantom was kept at the separation distance indicated in Section 1.2.2 using a separate flat spacer that was removed before the start of the measurements.

5.3 Scan Procedures

First, area scans were used for determination of the field distribution. Next, a zoom scan, a minimum of 5x5x7 points covering a volume of at least 30x30x30mm, was performed around the highest E-field value to determine the averaged SAR value. Drift was determined by measuring the same point at the start of the area scan and again at the end of the zoom scan.

5.4 SAR Averaging Methods

The maximum SAR value was averaged over a cube of tissue using interpolation and extrapolation.

The interpolation, extrapolation and maximum search routines within Dasy4 are all based on the modified Quadratic Shepard's method (Robert J. Renka, "Multivariate Interpolation Of Large Sets Of Scattered Data", University of North Texas ACM Transactions on Mathematical Software, vol. 14, no. 2, June 1988, pp. 139-148).

The interpolation scheme combines a least-square fitted function method with a weighted average method. A trivariate 3-D / bivariate 2-D quadratic function is computed for each measurement point and fitted to neighbouring points by a least-square method. For the zoom scan, inverse distance weighting is incorporated to fit distant points more accurately. The interpolating function is finally calculated as a weighted average of the quadratics.

In the zoom scan, the interpolation function is used to extrapolate the Peak SAR from the deepest measurement points to the inner surface of the phantom.

6. MEASUREMENT UNCERTAINTY

Table 6.1 – Measurement uncertainty evaluation

Uncertainty Component	Section in IEEE 1528	Tol. (%)	Prob Dist	Div	Ci	Ci .Ui (%)	Vi
Measurement System							
Probe Calibration	E2.1	±5.9	N	1	1	±5.9	∞
Axial Isotropy	E2.2	±4.7	R	√3	$(1-c_p)^{1/2}$	±1.9	∞
Hemispherical Isotropy	E2.2	±9.6	R	√3	(C _p)1/2	±3.9	∞
Boundary Effect	E2.3	±1.0	R	√3	1	±0.6	∞
Linearity	E2.4	±4.7	R	√3	1	±2.7	∞
System Detection Limits	E2.5	±1.0	R	√3	1	±0.6	∞
Readout Electronics	E2.6	± 1.0	N	1	1	±1.0	∞
Response Time	E2.7	± 0.8	R	√3	1	±0.5	∞
Integration Time	E2.8	±2.6	R	√3	1	±1.5	∞
RF Ambient Conditions - Noise	E6.1	±3.0	R	√3	1	±1.7	∞
RF Ambient Conditions - Reflections	E6.1	±3.0	R	√3	1	±1.7	8
Probe Positioner Mechanical Tolerance	E6.2	±0.4	R	√3	1	±0.2	8
Probe Positioning with respect to Phantom Shell	E6.3	±2.9	R	√3	1	±1.7	8
Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation	E5	±3.9	R	√3	1	±2.3	8
Test sample Related							
Test Sample Positioning	E4.2	±6.0	N	1	1	±6.0	11
Device Holder Uncertainty	E4.1	±5.0	N	1	1	±5.0	7
Output Power Variation - SAR drift	6.6.3	± 0.0	R	√3	1	±0.0	∞
measurement							
Phantom and Tissue Parameters							
Phantom Uncertainty (shape and thickness tolerances)	E3.1	±4.0	R	√3	1	±2.3	∞
Conductivity Target - tolerance	E3.2	±5.0	R	√3	0.64	±1.8	∞
Conductivity - measurement uncertainty	E3.3	±5.5	N	1	0.64	±3.5	5
Permittivity Target - tolerance	E3.2	±5.0	R	√3	0.6	±1.7	∞
Permittivity - measurement uncertainty	E3.3	±2.9	N	1	0.6	±1.7	5
Combined Standard Uncertainty	RSS			±12.9	116		
Coverage Factor for 95%			k=2				110
Expanded Uncertainty						±25.8	

7. RESULTS

The measured Head SAR values for the test device are tabulated below:

850 MHz Head SAR results

			SAR, averaged over 1g (W/kg)			
Option used	Test conf	iguration	Ch 128	Ch 190	Ch 251	
			824.2 MHz	836.6 MHz	848.8 MHz	
GSM	Conducted Power		32.8 dBm	32.8 dBm	32.8 dBm	
	Left	Cheek	-	-	-	
		Tilt	0.309	0.321	0.286	
	Right	Cheek	-	1	-	
		Tilt	-	-	-	

1900 MHz Head SAR results

		13001111	SAR, averaged over 1g (W/kg)				
Option used	Test conf	iguration	Ch 512 1850.2 MHz	Ch 661 1880.0 MHz	Ch 810 1909.8 MHz		
GSM	Conducte	ed Power	29.7 dBm	29.7 dBm	29.7 dBm		
	Left	Cheek	0.387	0.495	0.542		
		Tilt	-	-	-		
	Right	Cheek	-	-	-		
		Tilt	-	•	-		
Option used	Test conf	iguration	Ch 9262 1852.4 MHz	Ch 9400 1880.0 MHz	Ch 9538 1907.6 MHz		
WCDMA	Conducte	ed Power	21.0 dBm	21.0 dBm	21.0 dBm		
	Left	Cheek	-	-	-		
		Tilt	0.504	0.637	0.734		
	Right	Cheek	-	-	-		
		Tilt	-	-	-		

The measured Body SAR values for the test device are tabulated below:

850 MHz Body SAR results

			SAR, averaged over 1g (W/kg)			
Option used	Device orientation	Test configuration	Ch 128 824.2 MHz	Ch 190 836.6 MHz	Ch 251 848.8 MHz	
GSM		Conducted Power	32.8 dBm	32.8 dBm	32.8 dBm	
	Back facing	Without headset	0.667	0.706	0.724	
	phantom	Headset WH-204	-	-	-	

1900 MHz Body SAR results

1500 THE BODY STATESALES						
			SAR, av	SAR, averaged over 1g (W/k		
Option used	Device orientation	Test configuration	Ch 512	Ch 661	Ch 810	
			1850.2 MHz	1880.0 MHz	1909.8 MHz	
GSM		Conducted Power	29.7 dBm	29.7 dBm	29.7 dBm	
	Display facing	Without headset	0.149	0.187	0.202	
	phantom	Headset WH-204	-	-	-	
Option used	Device orientation	Test configuration	Ch 9262 1852.4 MHz	Ch 9400 1880.0 MHz	Ch 9538 1907.6 MHz	
WCDMA		Conducted Power	21.0 dBm	21.0 dBm	21.0 dBm	
	Back facing	Without headset	0.804	0.799	0.909	
	phantom	Headset WH-204	-	-	-	

Plots of the Measurement scans are given in Appendix B.

APPENDIX A: SYSTEM CHECKING SCANS

See the following pages

Date/Time: 2010-07-15 13:57:20

Test Laboratory: TCC Nokia Type: D835V2; Serial: 476

Communication System: CW835 Frequency: 835 MHz; Duty Cycle: 1:1

Medium: Head 835; Medium Notes: Medium Temperature: 22.3 C

Medium parameters used: f = 835 MHz; $\sigma = 0.914$ mho/m; $\varepsilon_r = 41.8$; $\rho = 1000$ kg/m³

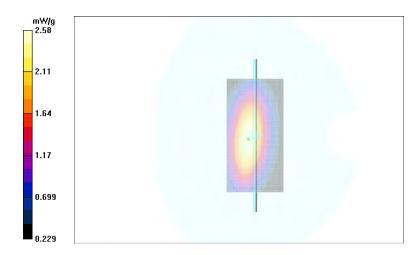
Phantom section: Flat Section

DASY4 Configuration:

- Probe: ES3DV3 - SN3118; Probe Notes:

- ConvF(5.85, 5.85, 5.85); Calibrated: 2009-09-22
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn339; Calibrated: 2010-02-15
- Phantom: SAM 4; Type: Twin Phantom; Serial: TP-1410
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

d=15mm, Pin=250mW/Area Scan (61x121x1): Measurement grid: dx=10mm, dy=10mm


Maximum value of SAR (interpolated) = 2.59 mW/g

d=15mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 51.1 V/m
Peak SAR (extrapolated) = 3.59 W/kg

SAR(1 g) = 2.4 mW/g SAR(10 g) = 1.57 mW/g Power Drift = -0.112 dB

Maximum value of SAR (measured) = 2.58 mW/g

Date/Time: 2010-07-15 17:06:33

Test Laboratory: TCC Nokia

Type: D1900V2; Serial: 5d063

Communication System: CW1900 Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: Head 1900; Medium Notes: Medium Temperature: 22.0 C

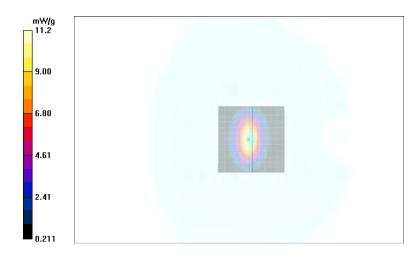
Medium parameters used: f = 1900 MHz; $\sigma = 1.36 \text{ mho/m}$; $\epsilon_r = 38.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ES3DV3 SN3119; Probe Notes:
- ConvF(4.81, 4.81, 4.81); Calibrated: 2009-09-22
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn501; Calibrated: 2010-02-19
- Phantom: SAM 6; Type: SAM Twin Phantom; Serial: TP-1301
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

d=10mm, Pin=250mW/Area Scan (71x71x1): Measurement grid: dx=10mm, dy=10mm


Maximum value of SAR (interpolated) = 11.3 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 91.2 V/m Peak SAR (extrapolated) = 18.3 W/kg

SAR(1 g) = 9.9 mW/g SAR(10 g) = 5.12 mW/g Power Drift = -0.034 dB

Maximum value of SAR (measured) = 11.2 mW/g

APPENDIX B: MEASUREMENT SCANS

See the following pages

Date/Time: 2010-07-15 15:56:20

Test Laboratory: TCC Nokia

Type: RM-470; Serial: 351525/04/761130/7

Communication System: GSM850 Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Medium: Head 835; Medium Notes: Medium Temperature: 22.3 C

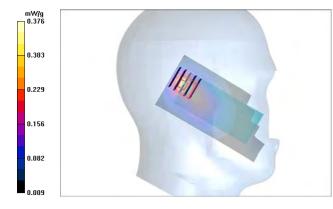
Medium parameters used: f = 837 MHz; $\sigma = 0.916$ mho/m; $\varepsilon_f = 41.8$; $\rho = 1000$ kg/m³

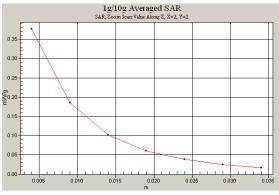
Phantom section: Left Section

DASY4 Configuration:

- Probe: ES3DV3 SN3118; Probe Notes:
- ConvF(5.85, 5.85, 5.85); Calibrated: 2009-09-22
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn339; Calibrated: 2010-02-15
- Phantom: SAM 4; Type: Twin Phantom; Serial: TP-1410
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Tilt - Middle/Area Scan (51x101x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.339 mW/g


Tilt - Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 17.6 V/m
Peak SAR (extrapolated) = 0.692 W/kg
SAR(1 g) = 0.321 mW/g

SAR(10 g) = 0.165 mW/g Power Drift = 0.001 dB

Maximum value of SAR (measured) = 0.376 mW/g

Date/Time: 2010-07-15 18:18:04

Test Laboratory: TCC Nokia

Type: RM-470; Serial: 351525/04/761130/7

Communication System: GSM 1900 Frequency: 1909.8 MHz; Duty Cycle: 1:8.3

Medium: Head 1900; Medium Notes: Medium Temperature: 22.0 C

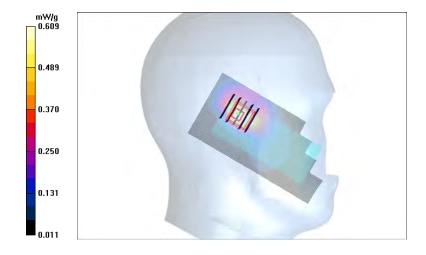
Medium parameters used: f = 1910 MHz; $\sigma = 1.36 \text{ mho/m}$; $\varepsilon_r = 38.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

DASY4 Configuration:

- Probe: ES3DV3 SN3119; Probe Notes:
- ConvF(4.81, 4.81, 4.81); Calibrated: 2009-09-22
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn501: Calibrated: 2010-02-19
- Phantom: SAM 6; Type: SAM Twin Phantom; Serial: TP-1301
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Cheek - High/Area Scan (51x101x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.672 mW/g

Cheek - High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 15.5 V/m Peak SAR (extrapolated) = 0.925 W/kg SAR(1 g) = 0.542 mW/g SAR(10 g) = 0.298 mW/g

Power Drift = -0.046 dB

Maximum value of SAR (measured) = 0.609 mW/g

Date/Time: 2010-07-15 19:14:50

Test Laboratory: TCC Nokia

Type: RM-470; Serial: 351525/04/761130/7

Communication System: WCDMA1900 Frequency: 1907.6 MHz; Duty Cycle: 1:1

Medium: Head 1900; Medium Notes: Medium Temperature: 22.0 C

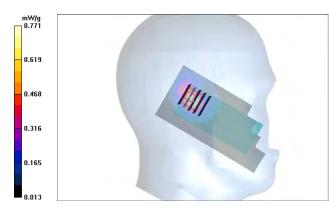
Medium parameters used: f = 1908 MHz; $\sigma = 1.36$ mho/m; $\varepsilon_r = 38.3$; $\rho = 1000$ kg/m³

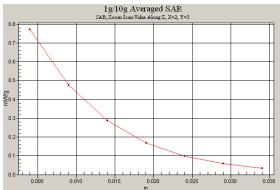
Phantom section: Left Section

DASY4 Configuration:

- Probe: ES3DV3 SN3119; Probe Notes:
- ConvF(4.81, 4.81, 4.81); Calibrated: 2009-09-22
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn501; Calibrated: 2010-02-19
- Phantom: SAM 6; Type: SAM Twin Phantom; Serial: TP-1301
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Tilt - High/Area Scan (51x101x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.860 mW/g


Tilt - High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 22.6 V/m Peak SAR (extrapolated) = 1.32 W/kg SAR(1 g) = 0.734 mW/g SAR(10 g) = 0.382 mW/g

Power Drift = -0.145 dB

Maximum value of SAR (measured) = 0.771 mW/g

Date/Time: 2010-07-15 17:14:34

Test Laboratory: TCC Nokia

Type: RM-470; Serial: 351525/04/761130/7

Communication System: GSM850

Frequency: 848.8 MHz; Duty Cycle: 1:8.3

Medium: Body 835; Medium Notes: Medium Temperature: 22.3 C

Medium parameters used: f = 849 MHz; $\sigma = 0.992$ mho/m; $\varepsilon_r = 54.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

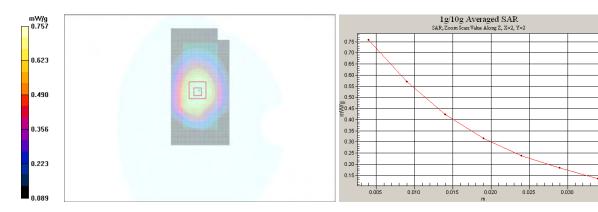
- Probe: ES3DV3 SN3118; Probe Notes:
- ConvF(5.65, 5.65, 5.65); Calibrated: 2009-09-22
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn339: Calibrated: 2010-02-15
- Phantom: SAM 5; Type: Twin Phantom; Serial: TP-1302
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Body - High - No Accessory - Back Facing Phantom/Area Scan (51x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.759 mW/g

Body - High - No Accessory - Back Facing Phantom/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm,

dy=7.5mm, dz=5mm


Reference Value = 16.0 V/m Peak SAR (extrapolated) = 0.976 W/kg

SAR(1 g) = 0.724 mW/g

SAR(10 g) = 0.522 mW/g

Power Drift = -0.003 dB

Maximum value of SAR (measured) = 0.757 mW/g

Date/Time: 2010-07-15 23:17:20

Test Laboratory: TCC Nokia

Type: RM-470; Serial: 351525/04/761130/7

Communication System: GSM 1900 Frequency: 1909.8 MHz; Duty Cycle: 1:8.3

Medium: Body 1900; Medium Notes: Medium Temperature: 22.5 C

Medium parameters used: f = 1910 MHz; $\sigma = 1.49 \text{ mho/m}$; $\varepsilon_r = 51.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ES3DV3 SN3119; Probe Notes:
- ConvF(4.43, 4.43, 4.43); Calibrated: 2009-09-22
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn501: Calibrated: 2010-02-19
- Phantom: SAM 1; Type: Twin Phantom; Serial: TP-1215
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

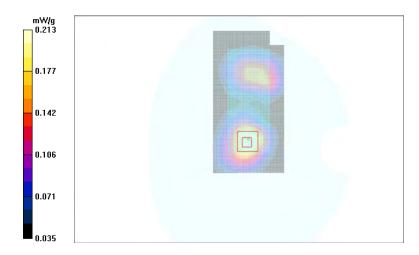
Body - High - No Accessory - Display Facing Phantom/Area Scan (51x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.240 mW/g

Body - High - No Accessory - Display Facing Phantom/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 11.9 V/m


Peak SAR (extrapolated) = 0.281 W/kg

SAR(1 g) = 0.202 mW/g

SAR(10 g) = 0.136 mW/g

Power Drift = -0.018 dB

Maximum value of SAR (measured) = 0.213 mW/g

Date/Time: 2010-07-15 22:13:17

Test Laboratory: TCC Nokia

Type: RM-470; Serial: 351525/04/761130/7

Communication System: WCDMA1900 Frequency: 1907.6 MHz; Duty Cycle: 1:1

Medium: Body 1900; Medium Notes: Medium Temperature: 22.5 C

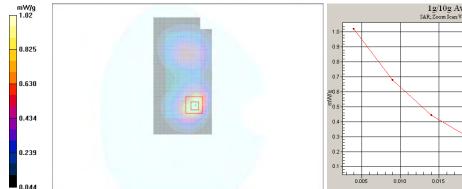
Medium parameters used: f = 1908 MHz; $\sigma = 1.48$ mho/m; $\varepsilon_r = 51.2$; $\rho = 1000$ kg/m³

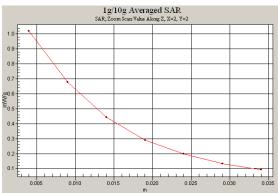
Phantom section: Flat Section

DASY4 Configuration:

- Probe: ES3DV3 SN3119; Probe Notes:
- ConvF(4.43, 4.43, 4.43); Calibrated: 2009-09-22
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn501; Calibrated: 2010-02-19
- Phantom: SAM 1; Type: Twin Phantom; Serial: TP-1215
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Body - High - No Accessory - Back Facing Phantom/Area Scan (51x101x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 1.06 mW/g


Body - High - No Accessory - Back Facing Phantom/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm,

dy=7.5mm, dz=5mm Reference Value = 19.8 V/m Peak SAR (extrapolated) = 1.39 W/kg SAR(1 g) = 0.909 mW/g

SAR(10 g) = 0.528 mW/g Power Drift = -0.046 dB

Maximum value of SAR (measured) = 1.02 mW/g

APPENDIX C: CONDUCTED AVERAGE POWER MEASUREMENTS FOR WCDMA AND HSUPA

Test Laboratory: TCC Nokia

Type: RM-470; Serial: 353181/03/002590/3, HW: 0602, SW: va7.47

C.1. WCDMA1900 Test results

Average power

Ch / f (MHz)	P [dBm]
9263 / 1852.6	20.64
9400 / 1880.0	20.78
9537 / 1907.4	20.77

C.2. HSUPA1900 Test results

Average power

	P [dBm]					
Ch / <i>f</i> (MHz)	Subtestmode 1	Subtestmode 1 Subtest mode 2 Subtest mode 3 Su			Subtest mode 5	
9263 / 1852.6	18.36	17.47	19.51	18.53	18.29	
9400 / 1880.0	18.93	17.26	19.56	17.56	19.20	
9537 / 1907.4	19.04	18.54	19.84	17.66	18.27	

Note: In HSUPA operation, the output power is reduced relative to the tuning target power for WCDMA. This device runs two separate HSUPA power control routines: MPR and E-TFC MPR. In each Subtest mode, the routine with the higher power reduction dominates. As a result, the MPR for each of the Subtest modes is as follows:

Maximum Power Reduction (MPR)						
	Subtest mode 1	Subtest mode 2	Subtest mode 3	Subtest mode 4	Subtest mode 5	
	1.5dB	2.0dB	1.0dB	2.0dB	1.5dB	

APPENDIX D: RELEVANT PAGES FROM PROBE CALIBRATION REPORT(S)

See the following pages

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurlch, Switzerland

S Schweizerischer Kallbrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client Nokia Denmark A/S

Certificate No: ES3-3118_Sep09

CALIBRATION CERTIFICATE

Object ES3DV3 - SN:3118

Calibration procedure(s) QA CAL-01.v6, QA CAL-23.v3 and QA CAL-25.v2

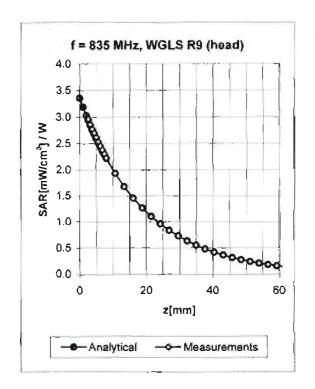
Calibration procedure for dosimetric E-field probes

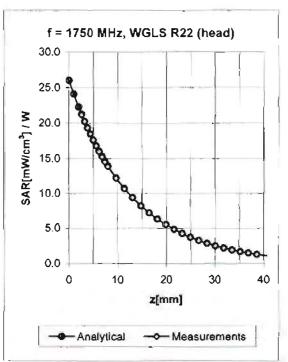
Calibration date: September 22, 2009

Condition of the calibrated item In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate,

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.


Calibration Equipment used (M&TE critical for calibration)


Primary Standards	10 #	Cal Date (Certificate No.)	Scheduled Calibration
Power meler E4419B	GB41293874	1-Apr-09 (No. 217-01030)	Apr-10
Power sensor E4412A	MY41495277	1-Apr-09 (No. 217-01030)	Apr-10
Power sensor E4412A	MY41498087	1-Apr-09 (No. 217-01030)	Apr-10
Reference 3 dB Attenuator	SN: S5054 (3c)	31-Mar-09 (No. 217-01026)	Mar-10
Reference 20 dB Attenuator	SN: S5086 (20b)	31-Mar-09 (No. 217-01028)	Mar-10
Reference 30 dB Attenuator	SN: S5129 (30b)	31-Mar-09 (No. 217-01027)	Mar-10
Reference Probe ES3DV2	SN: 3013	2-Jan-09 (No. ES3-3013_Jan09)	Jan-10
DAE4	SN. 660	9-Sep-08 (No. DAE4-660_Sep08)	Sep-09
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Oct-07)	In house check: Oct-09
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-08)	In house check: Oct-09
	Name	Function	Signature
Calibrated by:	Marcel Fehr	Laboratory Technician	MAM
Approved by:	Ksija Pokovic	Technical Manager	00.112

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Issued: September 22, 2009

Conversion Factor Assessment

f [MHz]	Validity [MHz] ^C	TSL	Permittivity	Conductivity	Aìpha	Depth	ConvF Uncertainty
835	± 50 / ± 100	Head	415±5%	0.90 ± 5%	0.97	1.07	5.85 ± 11.0% (k=2)
1750	± 50 / ± 100	Head	40.1 ± 5%	1.37 ± 5%	0.61	1.40	4.97 ± 11.0% (k=2)
1900	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.50	1.53	4.74 ± 11.0% (k=2)
2450	± 50 / ± 100	Head	39.2 ± 5%	1.80 ± 5%	0.46	1.69	4.21 ± 11.0% (k=2)
835	± 50 / ± 100	Body	55 2 ± 5%	0.97 ± 5%	0.95	1.13	5.65 ± 11.0% (k=2)
1750	± 50 / ± 100	Body	53.4 ± 5%	$1.49 \pm 5\%$	0.41	1.92	4.60 ± 11.0% (k=2)
1900	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.41	2.14	4.37 ± 11.0% (k=2)
2450	± 50 / ± 100	Body	52.7 ± 5%	1.95 ± 5%	0.99	1.05	4.05 ± 11.0% (k=2)

^c The validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Client

S Schwelzerischer Kalibrierdienst
Service sulsse d'étalonnage
Servizio svizzero di Laratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

tateral Agreement for the recognition of calibration certificates

Certificate No: ES3-3119 Sep09

CALIBRATION CERTIFICATE

Object ES3DV3 - SN:3119

Calibration procedure(s) QA CAL-01.v6, QA CAL-23.v3 and QA CAL-25.v2

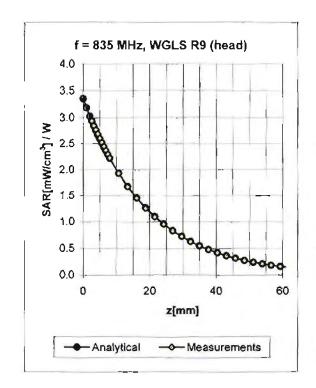
Calibration procedure for dosimetric E-field probes

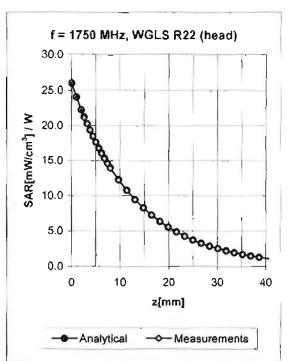
Calibration date: September 22, 2009

Condition of the calibrated item In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.


Calibration Equipment used (M&TE critical for calibration)


ID#	Cal Date (Certificate No.)	Scheduled Calibration
GB41293874	1-Apr-09 (No. 217-01030)	Apr-10
MY41495277	1-Apr-09 (No. 217-01030)	Apr-10
MY41498087	1-Apr-09 (No. 217-01030)	Apr-10
SN: S5054 (3c)	31-Mar-09 (No. 217-01026)	Маг-10
SN: \$5086 (20b)	31-Mar-09 (No. 217-01028)	Mar-10
SN: S5129 (30b)	31-Mar-09 (No. 217-01027)	Mar-10
SN: 3013	2-Jan-09 (No. ES3-3013_Jan09)	Jan-10
SN: 660	9-Sep-08 (No. DAE4-660_Sep08)	Sep-09
(D#	Check Dale (in house)	Scheduled Check
US3642U01700	4-Aug-99 (in house check Oct-07)	In house check: Oct-09
U\$37390585	18-Oct-01 (in house check Oct-08)	In house check: Oct-09
Name	Function	Signature
Marcel Fehr	Laboratory Technician	MAM
Katja Pokovis	Technical Manager	20. 110
	GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 680 (D# US3642U01700 US37390585 Name Marcel Fehr	GB41293874

Issued: September 22, 2009

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Conversion Factor Assessment

f [MHz]	Validity [MHz] ^C	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
835	± 50 / ± 100	Head	41.5 ± 5%	0.90 ± 5%	0.87	1.10	5.88 ± 11.0% (k=2)
1750	± 50 / ± 100	Head	40.1 ± 5%	1.37 ± 5%	0.46	1.61	5.03 ± 11.0% (k=2)
1900	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.45	1.62	4.81 ± 11.0% (k=2)
2450	± 50 / ± 100	Head	39.2 ± 5%	1.80 ± 5%	0.41	1.84	4.27 ± 11.0% (k=2)
835	± 50 / ± 100	Body	55.2 ± 5%	$0.97 \pm 5\%$	0.97	1,11	5.71 ± 11.0% (k=2)
1750	± 50 / ± 100	Body	53.4 ± 5%	1.49 ± 5%	0.37	2.06	4 65 ± 11.0% (k=2)
1900	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.37	2.25	4.43 ± 11.0% (k=2)
2450	± 50 / ± 100	Body	52.7 ± 5%	1.95 ± 5%	0.99	1.08	4.13 ± 11.0% (k=2)

 $^{^{\}rm C}$ The validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

APPENDIX E: RELEVANT PAGES FROM DIPOLE VALIDATION KIT REPORT(S)

See the following pages

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client

Nokia Denmark A/S

Certificate No: D835V2-476_Mar09

CALIBRATION CERTIFICATE

Object D835V2 - SN: 476

Calibration procedure(s) QA CAL-05.v7

Calibration procedure for dipole validation kits

Calibration date: March 16, 2009

Condition of the calibrated item In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	08-Oct-08 (No. 217-00898)	Oct-09
Power sensor HP 8481A	US37292783	08-Oct-08 (No. 217-00898)	Oct-09
Reference 20 dB Attenuator	SN: 5086 (20g)	01-Jul-08 (No. 217-00864)	Jul-09
Type-N mismatch combination	SN: 5047.2 / 06327	01-Jul-08 (No. 217-00867)	Jul-09
Reference Probe ES3DV2	SN: 3025	28-Apr-08 (No. ES3-3025_Apr08)	Apr-09
DAE4	SN: 601	07-Mar-09 (No. DAE4-601_Mar09)	Mar-10
Secondary Standards	10#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-07)	In house check: Oct-09
RF generator R&S SMT-06	100005	4-Aug-99 (in house check Oct-07)	In house check: Oct-09
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-08)	In house check: Oct-09
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	tolla
.ci.a		- 63000	
Approved by:	Katja Pokovic	Technical Manager	De 10

Issued: March 17, 2009

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

DASY5 Validation Report for Head TSL

Date/Time: 16.03.2009 11:39:39

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:476

Communication System: CW-835; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL 900 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.87$ mho/m; $\varepsilon_r = 40.1$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

Probe: ES3DV2 - SN3025; ConvF(5.97, 5.97, 5.97); Calibrated: 28.04.2008

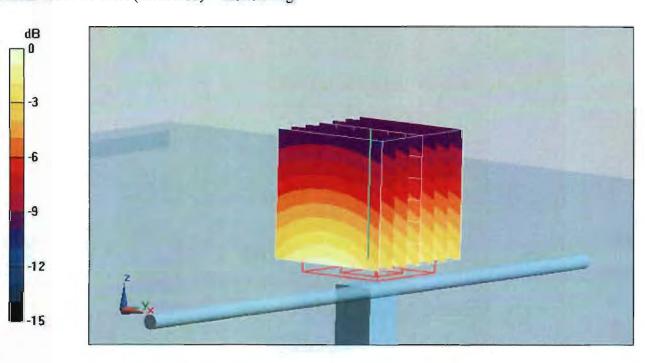
Sensor-Surface: 3.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 07.03.2009

Phantom: Flat Phantom 4.9L; Type: QD000P49AA: Serial: 1001

Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Pin=250mW; dip=15mm; dist=3.4mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.1 V/m; Power Drift = 0.013 dB

Peak SAR (extrapolated) = 3.4 W/kg

SAR(1 g) = 2.31 mW/g; SAR(10 g) = 1.52 mW/g

Maximum value of SAR (measured) = 2.62 mW/g

0 dB = 2.62 mW/g

DASY5 Validation Report for Body TSL

Date/Time: 09.03.2009 12:30:34

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:476

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: MSL900

Medium parameters used: f = 835 MHz; $\sigma = 0.98$ mho/m; $\varepsilon_r = 53.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

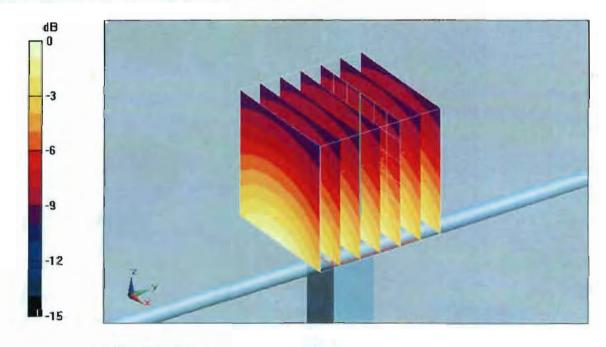
Probe: ES3DV2 - SN3025: ConvF(5.9, 5.9, 5.9); Calibrated: 28.04.2008

Sensor-Surface: 3.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn907; Calibrated: 18.07.2008

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45


Pin = 250mW, d = 15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 54.4 V/m: Power Drift = -0.000393 dB

Peak SAR (extrapolated) = 3.62 W/kg

SAR(1 g) = 2.47 mW/g; SAR(10 g) = 1.62 mW/g

Maximum value of SAR (measured) = 2.76 mW/g

 $0 \, dB = 2.76 \, mW/g$

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughau sstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Nokia Denmark A/S

Accreditation No.: SCS 108

Certificate No: D1900V2-5d063 Feb10

CALIBRATION CERTIFICATE

D1900V2 - SN: 5d063 Object

Calibration procedure(s) QA CAL-05.v7

Calibration procedure for dipole validation kits

Calibration date:

February 23, 2010

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

337480704 337292783 4: 5086 (20g) 4: 5047.2 / 06327 4: 3205	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029)	Oct-10 Oct-10 Mar-10 Mar-10
l: 5086 (20g) l: 5047.2 / 06327	31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029)	Mar-10
1: 5047.2 / 06327	31-Mar-09 (No. 217-01029)	
		Mar-10
l: 3205		
	26-Jun-09 (No. ES3-3205_Jun09)	Jun-10
J: 601	07-Mar-09 (No. DAE4-601_Mar09)	Mar-10
#_	Check Date (in house)	Scheduled Check
/41092317	18-Oct-02 (in house check Oct-09)	In house check: Oct-11
0005	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
37390585 S4206	18-Oct-01 (in house check Oct-09)	In house check: Oct-10
# // 0	# 41092317 005	Check Date (in house) 41092317

Calibrated by:

Jeton Kastrati

Function

Laboratory Technician

Approved by:

Katja Pokovic

Technical Manager

Issued: February 25, 2010

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1900V2-5d063_Feb10

Page 1 of 9

DASY5 Validation Report for Head TSL

Date/Time: 23.02.2010 13:21:31

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d063

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL U11 BB

Medium parameters used: f = 1900 MHz; $\sigma = 1.42 \text{ mho/m}$; $\epsilon_r = 39.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(5.09, 5.09, 5.09); Calibrated: 26.06.2009

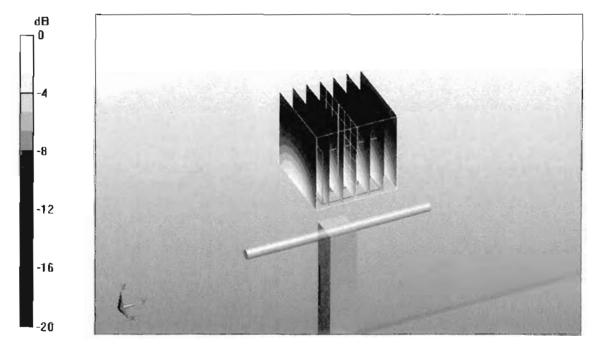
• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 07.03.2009

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

Measurement SW; DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7)/Cube 0: Measurement


grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 97.1 V/m; Power Drift = 0.041 dB

Peak SAR (extrapolated) = 18.3 W/kg

SAR(1 g) = 9.98 mW/g; SAR(10 g) = 5.2 mW/g

Maximum value of SAR (measured) = 12.4 mW/g

0 dB = 12.4 mW/g

DASY5 Validation Report for Body

Date/Time: 16.02.2010 13:00:42

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d063

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: MSL U10 BB

Medium parameters used: f = 1900 MHz; $\sigma = 1.56 \text{ mho/m}$; $\varepsilon_r = 52.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.59, 4.59, 4.59); Calibrated: 26.06.2009

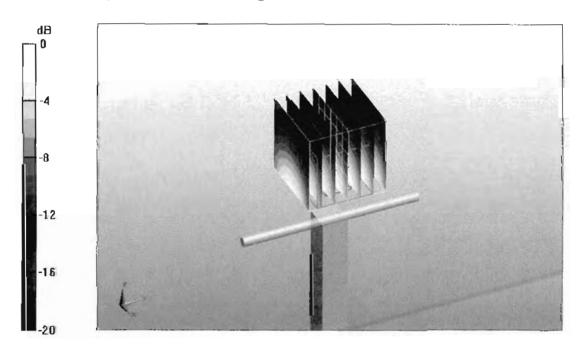
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics; DAE4 Sn601; Calibrated: 07.03.2009

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

Pin250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7)/Cube 0: Measurement


grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.1 V/m; Power Drift = 0.078 dB

Peak SAR (extrapolated) = 16.7 W/kg

SAR(1 g) = 10.1 mW/g; SAR(10 g) = 5.31 mW/g

Maximum value of SAR (measured) = 12.8 mW/g

0 dB = 12.8 mW/g