

Report No.: SZEM140500274501

No. 1 Workshop, M-10, Middle section, Science & Technology Park, Nanshan

District, Shenzhen, Guangdong, China 518057

Telephone: +86 (0) 755 2601 2053 Fax: +86 (0) 755 2671 0594

Email: ee.shenzhen@sgs.com Page: 1 of 89

FCC REPORT

Application No: SZEM1405002745RF

Applicant: ZAGG INC **Manufacturer:** ZAGG INC

Factory: Interface Tech Co., Ltd Product Name: iFrogz Tadpole Active

Model No.(EUT): IFTDLA-RD0

Add Model No.: IFTDLA-BK0, IFTDLA-WH0, IFTDLA-BL0, IFTDLA-GR0,

IFTDLA-PU0

FCC ID: QTG-TPACTIVE

Standards: 47 CFR Part 15, Subpart C (2013)

Date of Receipt: 2014-06-26

Date of Test: 2014-07-03 to 2014-07-07

Date of Issue: 2014-08-05

Test Result: PASS *

Authorized Signature:

Jack Zhang EMC Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. All test results in this report can be traceable to National or International Standards.

^{*} In the configuration tested, the EUT complied with the standards specified above.

Report No.: SZEM140500274501

Page: 2 of 89

2 Version

	Revision Record					
Version Chapter Date Modifier Remark						
00		2014-08-05		Original		

Authorized for issue by:		
Tested By	(Chris Zhong) /Project Engineer	2014-07-07 Date
Prepared By	(Hedy Wen) /Clerk	2014-08-05 Date
Checked By	Emen-Li	2014-08-08
	(Emen Li) /Reviewer	Date

Report No.: SZEM140500274501

Page: 3 of 89

3 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10 (2009)	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10 (2009)	PASS
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(1)	ANSI C63.10 (2009)	PASS
20dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2009)	PASS
Carrier Frequencies Separation	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2009)	PASS
Hopping Channel Number	47 CFR Part 15, Subpart C Section 15.247 (b)	ANSI C63.10 (2009)	PASS
Dwell Time	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2009)	PASS
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15, Subpart C Section 15.247(b)(4)&TCB Exclusion List (7 July 2002)	ANSI C63.10 (2009)	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 (2009)	PASS
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 (2009)	PASS
Radiated Spurious emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 (2009)	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 (2009)	PASS

Remark:

Model No.: IFTDLA-RD0, IFTDLA-BK0, IFTDLA-WH0, IFTDLA-BL0, IFTDLA-GR0, IFTDLA-PU0

Only the model IFTDLA-RD0 was tested, since the circuitry design, PCB layout, electrical components used, internal wiring, functions and case material were identical for all above models. Only different on model No. and colour.

Report No.: SZEM140500274501

Page: 4 of 89

4 Contents

			Page
1	1 COVER PAGE		1
2	2 VERSION		2
3			
4	4 CONTENTS		4
5	5 GENERAL INFORMATION		5
	5.1 CLIENT INFORMATION		5
	5.4 DESCRIPTION OF SUPPORT UNITS		7
		CONDITIONS	
		BY THE CUSTOMER	
6	6 TEST RESULTS AND MEASUREME	ENT DATA	12
	6.1 ANTENNA REQUIREMENT		12
			_
		R	
		ON	
		EMISSIONS	
		IONS	
		PPING SEQUENCE	
	6.11.1 Radiated Emission below 10	GHz	76
		e 1GHz	
	6.12 RESTRICTED BANDS ABOUND FUND	AMENTAL ERECLIENCY	80-89

Report No.: SZEM140500274501

Page: 5 of 89

5 General Information

5.1 Client Information

Applicant:	ZAGG INC
Address of Applicant:	3855 South 500 West, Suite Q · Salt Lake City, UT 84115
Manufacturer:	ZAGG INC
Address of Manufacturer:	3855 South 500 West, Suite Q · Salt Lake City, UT 84115
Factory:	Interface Tech Co., Ltd
Address of Factory:	Room 3008, Zian Business Building, Xin'an 2 nd Road, Baoan District, Shenzhen City, China

5.2 General Description of EUT

Product Name:	iFrogz Tadpole Active				
Model No.:	IFTDLA-RD0, IFTDLA-BK0, IFTDLA-WH0, IFTDLA-BL0, IFTDLA-GR0, IFTDLA-PU0				
Operation Frequency:	2402MHz~2480MHz				
Bluetooth Version:	V2.1+EDR				
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)				
Modulation Type:	GFSK, π/4DQPSK, 8DPSK				
Number of Channel:	79				
Hopping Channel Type:	Adaptive Frequency Hopping systems				
Sample Type:	Portable production				
EUT Function:	iFrogz Tadpole Active				
Test Power Grade:	13(manufacturer declare)				
Test Software of EUT:	CSR (manufacturer declare)				
Antenna Type:	Integral				
Antenna Gain:	0dBi				
Power Supply:	3.7V 400mAh (Li-ion Rechargeable Battery)				

Report No.: SZEM140500274501

Page: 6 of 89

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The Lowest channel	2402MHz
The Middle channel	2441MHz
The Highest channel	2480MHz

Report No.: SZEM140500274501

Page: 7 of 89

5.3 Test Environment

Operating Environment	Operating Environment:		
Temperature:	24.0 °C		
Humidity:	52 % RH		
Atmospheric Pressure:	1005 mbar		

5.4 Description of Support Units

The EUT has been tested with associated equipment below.

Description	Manufacturer	Model No.			
Adapter	Supply by SGS	HST-050100			
USB Cable	Supply by SGS	97cm (Length)			

5.5 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch E&E Lab,

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594

No tests were sub-contracted.

Report No.: SZEM140500274501

Page: 8 of 89

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

VCCI

The 3m Semi-anechoic chamber, Full-anechoic Chamber and Shielded Room (7.5m x 4.0m x 3.0m) of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-2197, G-416, T-1153 and C-2383 respectively.

FCC – Registration No.: 556682

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.: 556682.

Industry Canada (IC)

Two 3m Semi-anechoic chambers of SGS-CSTC Standards Technical Services Co., Ltd. have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1 & 4620C-2.

5.7 Deviation from Standards

None.

5.8 Abnormalities from Standard Conditions

None.

5.9 Other Information Requested by the Customer

None.

Report No.: SZEM140500274501

Page: 9 of 89

5.10 Equipment List

	Conducted Emission					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Due date (yyyy-mm-dd)	
1	Shielding Room	ZhongYu Electron	GB-88	SEL0042	2015-06-10	
2	LISN	Rohde & Schwarz	ENV216	SEL0152	2014-10-24	
3	LISN	ETS-LINDGREN	3816/2	SEL0021	2015-05-16	
4	8 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T8-02	SEL0162	2014-11-10	
5	4 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T4-02	SEL0163	2014-11-10	
6	2 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T2-02	SEL0164	2014-11-10	
7	EMI Test Receiver	Rohde & Schwarz	ESCI	SEL0022	2015-05-16	
8	Coaxial Cable	SGS	N/A	SEL0025	2015-05-29	
9	DC Power Supply	Zhao Xin	RXN-305D	SEL0117	2014-10-24	
10	Humidity/ Temperature Indicator	Shanhai Qixiang	ZJ1-2B	SEL0103	2014-10-24	
11	Barometer	Chang Chun	DYM3	SEL0088	2015-05-16	

Report No.: SZEM140500274501

Page: 10 of 89

RE in Chamber					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Due date (yyyy-mm-dd)
1	3m Semi-Anechoic Chamber	ETS-LINDGREN	N/A	SEL0017	2015-06-10
2	EMI Test Receiver	Rohde & Schwarz	ESIB26	SEL0023	2015-05-16
3	EMI Test software	AUDIX	E3	SEL0050	N/A
4	BiConiLog Antenna (26-3000MHz)	ETS-LINDGREN	3142C	SEL0015	2014-10-24
5	Double-ridged horn (1-18GHz)	ETS-LINDGREN	3117	SEL0006	2014-10-24
6	Horn Antenna (18-26GHz)	ETS-LINDGREN	3160	SEL0076	2014-10-24
7	Pre-amplifier (0.1-1300MHz)	Agilent Technologies	8447D	SEL0053	2015-05-16
8	Pre-Amplifier (0.1-26.5GHz)	Compliance Directions Systems Inc.	PAP-0126	SEL0168	2014-10-24
9	Coaxial cable	SGS	N/A	SEL0027	2015-05-29
10	Coaxial cable	SGS	N/A	SEL0189	2015-05-29
11	Coaxial cable	SGS	N/A	SEL0121	2015-05-29
12	Coaxial cable	SGS	N/A	SEL0178	2015-05-29
13	Band filter	Amindeon	82346	SEL0094	2015-05-16
14	Barometer	Chang Chun	DYM3	SEL0088	2015-05-16
15	DC Power Supply	Zhao Xin	RXN-305D	SEL0117	2014-10-24
16	Humidity/ Temperature Indicator	Shanhai Qixiang	ZJ1-2B	SEL0103	2014-10-24
17	Signal Generator (10M-27GHz)	Rohde & Schwarz	SMR27	SEL0067	2015-05-16
18	Signal Generator	Rohde & Schwarz	SMY01	SEL0155	2014-10-24
19	Loop Antenna	Beijing Daze	ZN30401	SEL0203	2015-06-04

Report No.: SZEM140500274501

Page: 11 of 89

	RF connected test				
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Due date (yyyy-mm-dd)
1	DC Power Supply	Zhao Xin	RXN-305D	SEL0117	2014-10-24
2	Humidity/ Temperature Indicator	HYGRO	ZJ1-2B	SEL0033	2014-10-24
3	Spectrum Analyzer	Rohde & Schwarz	FSP	SEL0154	2014-10-24
4	Coaxial cable	SGS	N/A	SEL0178	2015-05-29
5	Coaxial cable	SGS	N/A	SEL0179	2015-05-29
6	Barometer	ChangChun	DYM3	SEL0088	2015-05-16
7	Signal Generator	Rohde & Schwarz	SML03	SEL0068	2015-05-16
8	Band filter	amideon	82346	SEL0094	2015-05-16
9	POWER METER	R&S	NRVS	SEL0144	2014-10-24
10	Attenuator	Beijin feihang taida	TST-2-6dB	SEL0205	2015-05-16
11	Power Divider(splitter)	Agilent Technologies	11636B	SEL0130	2014-10-24

Note: The calibration interval is one year, all the instruments are valid.

Report No.: SZEM140500274501

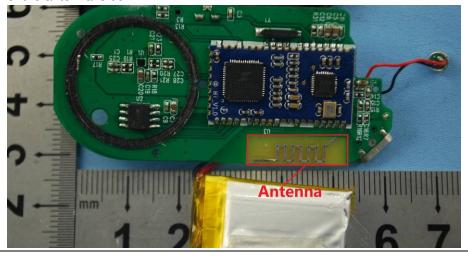
Page: 12 of 89

6 Test results and Measurement Data

6.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

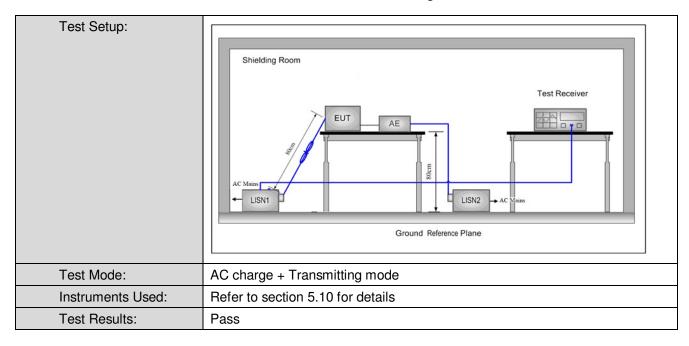
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0dBi.

Report No.: SZEM140500274501

Page: 13 of 89

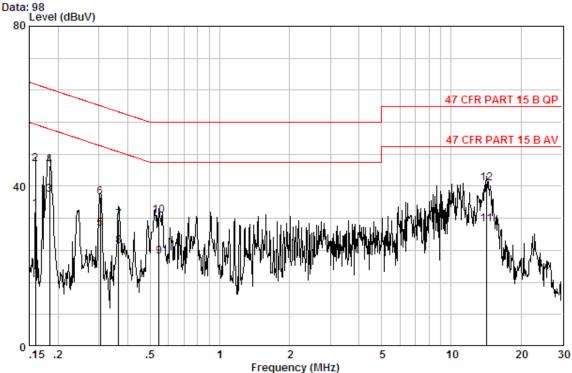

6.2 Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.207				
Test Method:	ANSI C63.10: 2009				
Test Frequency Range:	150kHz to 30MHz				
Limit:	- 441	Limit (dBuV)			
	Frequency range (MHz)	Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
	* Decreases with the logarithm	n of the frequency.		-	
Test Procedure:	 The mains terminal disturt room. 	bance voltage test was	s conducted in a shi	elded	
	 The mains terminal disturbance voltage test was conducted in a sroom. The EUT was connected to AC power source through a LISN 1 (Lir Impedance Stabilization Network) which provides a 50Ω/50μH + 50 impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multip power cables to a single LISN provided the rating of the LISN was exceeded. The tabletop EUT was placed upon a non-metallic table 0.8m abov ground reference plane. And for floor-standing arrangement, the EU placed on the horizontal ground reference plane. The test was performed with a vertical ground reference plane. The of the EUT shall be 0.4 m from the vertical ground reference plane. vertical ground reference plane was bonded to the horizontal groun reference plane. The LISN 1 was placed 0.8 m from the boundary ounit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other unit the EUT and associated equipment was at least 0.8 m from the LIS In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according. 		is a 50Ω/50μH + 5Ω lift the EUT were do to the ground or the unit being do to connect multiple of the LISN was not contained the transperse of the LISN was not do table 0.8m above the transperse of the EUT deference plane. The red reference plane. The end reference plane of the boundary of the plane for LISNs has distance was EUT. All other units 0.8 m from the LISN the positions of	the was ear he of 2.	

Report No.: SZEM140500274501

Page: 14 of 89

Report No.: SZEM140500274501


Page: 15 of 89

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

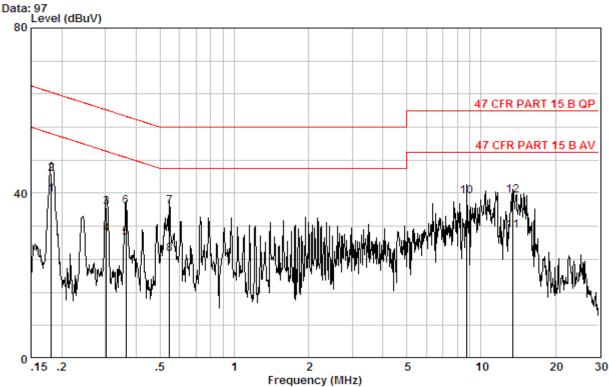
Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Site : Shielding Room

Condition : 47 CFR PART 15 B QP CE LINE

Job No. : 2745RF

Mode : AC charge+TX mode


Freq					Limit Line	Over Limit	Remark
MHz	dB	dB	dBuV	dBuV	dBuV	dB	
0.15985	0.02	9.70	24.48	34.20	55.47	-21.27	Average
0.15985	0.02	9.70	35.90	45.62	65.47	-19.85	QP
0.18346	0.02	9.70	28.14	37.86	54.33	-16.47	Average
0.18346	0.02	9.70	35.36	45.08	64.33	-19.25	QP
0.30509	0.01	9.71	19.73	29.45	50.10	-20.65	Average
0.30509	0.01	9.71	27.45	37.17	60.10	-22.93	QP
0.36531	0.01	9.77	21.78	31.56	58.61	-27.05	QP
0.36531	0.01	9.77	15.26	25.04	48.61	-23.57	Average
0.54644	0.01	9.80	12.57	22.38	46.00	-23.62	Average
0.54644	0.01	9.80	22.81	32.62	56.00	-23.38	QP
14.213	0.01	10.07	20.46	30.55	50.00	-19.45	Average
14.213	0.01	10.07	30.76	40.84	60.00	-19.16	QP
	MHz 0.15985 0.15985 0.18346 0.18346 0.30509 0.30509 0.36531 0.36531 0.54644 0.54644 14.213	Freq Loss MHz dB 0.15985 0.02 0.15985 0.02 0.18346 0.02 0.18346 0.02 0.30509 0.01 0.30509 0.01 0.36531 0.01 0.36531 0.01 0.36531 0.01 0.54644 0.01 14.213 0.01	MHz dB dB 0.15985 0.02 9.70 0.15985 0.02 9.70 0.18346 0.02 9.70 0.18346 0.02 9.70 0.30509 0.01 9.71 0.30509 0.01 9.71 0.36531 0.01 9.77 0.36531 0.01 9.77 0.36531 0.01 9.77 0.54644 0.01 9.80 0.54644 0.01 9.80 14.213 0.01 10.07	Freq Loss Factor Level MHz dB dB dBuV 0.15985 0.02 9.70 24.48 0.15985 0.02 9.70 35.90 0.18346 0.02 9.70 28.14 0.18346 0.02 9.70 35.36 0.30509 0.01 9.71 19.73 0.36531 0.01 9.77 21.78 0.36531 0.01 9.77 15.26 0.54644 0.01 9.80 12.57 0.54644 0.01 9.80 22.81 14.213 0.01 10.07 20.46	Freq Loss Factor Level Level MHz dB dB dBuV dBuV 0.15985 0.02 9.70 24.48 34.20 0.15985 0.02 9.70 35.90 45.62 0.18346 0.02 9.70 28.14 37.86 0.18346 0.02 9.70 35.36 45.08 0.30509 0.01 9.71 19.73 29.45 0.30509 0.01 9.71 27.45 37.17 0.36531 0.01 9.77 21.78 31.56 0.36531 0.01 9.77 15.26 25.04 0.54644 0.01 9.80 12.57 22.38 0.54644 0.01 9.80 22.81 32.62 14.213 0.01 10.07 20.46 30.55	Freq Loss Factor Level Level Line MHz dB dB dBuV dBuV dBuV dBuV 0.15985 0.02 9.70 24.48 34.20 55.47 0.15985 0.02 9.70 35.90 45.62 65.47 0.18346 0.02 9.70 28.14 37.86 54.33 0.30509 0.01 9.71 19.73 29.45 50.10 0.30509 0.01 9.71 27.45 37.17 60.10 0.36531 0.01 9.77 21.78 31.56 58.61 0.36531 0.01 9.77 15.26 25.04 48.61 0.54644 0.01 9.80 12.57 22.38 46.00 0.54644 0.01 9.80 22.81 32.62 56.00 14.213 0.01 10.07 20.46 30.55 50.00	Freq Loss Factor Level Level Line Limit MHz dB dB dBuV dBuV dBuV dBuV dB 0.15985 0.02 9.70 24.48 34.20 55.47 -21.27 0.15985 0.02 9.70 35.90 45.62 65.47 -19.85 0.18346 0.02 9.70 28.14 37.86 54.33 -16.47 0.18346 0.02 9.70 35.36 45.08 64.33 -19.25 0.30509 0.01 9.71 19.73 29.45 50.10 -20.65 0.30509 0.01 9.71 27.45 37.17 60.10 -22.93 0.36531 0.01 9.77 21.78 31.56 58.61 -27.05 0.36531 0.01 9.77 15.26 25.04 48.61 -23.57 0.54644 0.01 9.80 12.57 22.38 46.00 -23.38 14.213 0.01 <td< td=""></td<>

Report No.: SZEM140500274501

Page: 16 of 89

Neutral line:

Site : Shielding Room

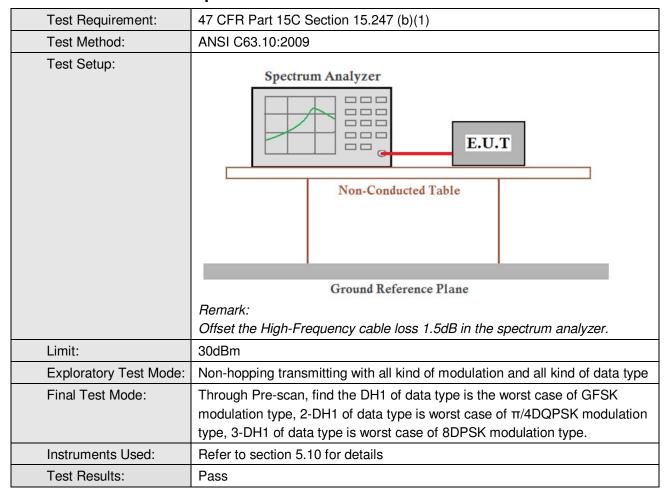
Condition : 47 CFR PART 15 B QP CE NEUTRAL

Job No. : 2745RF

Mode : AC charge+TX mode

	Freq	Cable Loss	LISN Factor	Read Level	Level	Limit Line	Over Limit	Remark
	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1	0.18152	0.02	9.70	29.86	39.58	54.42	-14.84	Average
2	0.18152	0.02	9.70	35.05	44.77	64.42	-19.65	QP
3	0.30348	0.01	9.71	26.97	36.68	60.15	-23.46	QP
4	0.30348	0.01	9.71	20.42	30.14	50.15	-20.01	Average
5	0.36338	0.01	9.77	19.39	29.17	48.65	-19.48	Average
6	0.36338	0.01	9.77	27.11	36.88	58.65	-21.77	QP
7	0.54644	0.01	9.80	27.02	36.83	56.00	-19.17	QP
8	0.54644	0.01	9.80	15.47	25.28	46.00	-20.72	Average
9	8.776	0.01	10.00	20.07	30.08	50.00	-19.92	Average
10	8.776	0.01	10.00	29.22	39.23	60.00	-20.77	QP
11	13.479	0.01	10.00	20.97	30.98	50.00	-19.02	Average
12	13.479	0.01	10.00	29.36	39.37	60.00	-20.63	QP

Notes:


- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level = Receiver Reading + LISN Factor + Cable Loss.

Report No.: SZEM140500274501

Page: 17 of 89

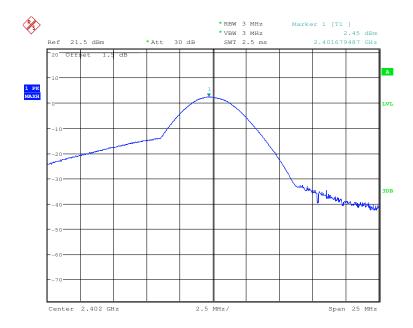
6.3 Conducted Peak Output Power

Report No.: SZEM140500274501

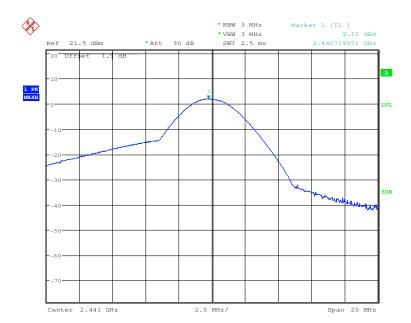
Page: 18 of 89

Measurement Data

GFSK mode						
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result			
Lowest	2.45	30.00	Pass			
Middle	2.10	30.00	Pass			
Highest	1.83	30.00	Pass			
	π/4DQPSK m	node				
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result			
Lowest	2.45	30.00	Pass			
Middle	2.29	30.00	Pass			
Highest	1.99	30.00	Pass			
	8DPSK mode					
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result			
Lowest	3.19	30.00	Pass			
Middle	2.87	30.00	Pass			
Highest	2.58	30.00	Pass			



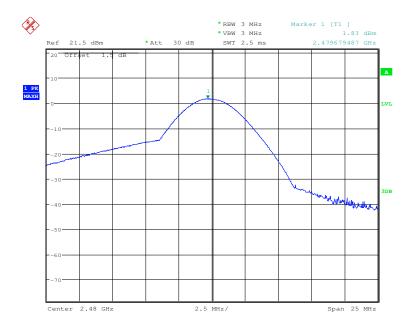
Report No.: SZEM140500274501


Page: 19 of 89

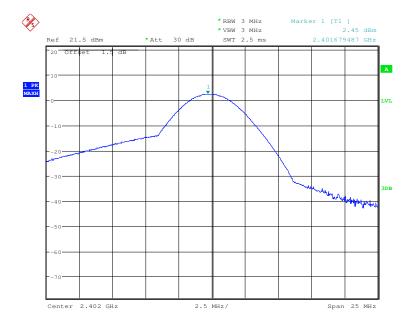
Test plot as follows:

Test mode: GFSK Test channel: Lowest

Test mode: GFSK Test channel: Middle

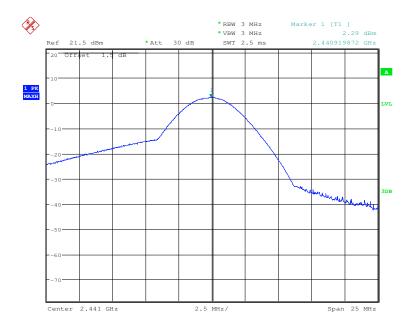


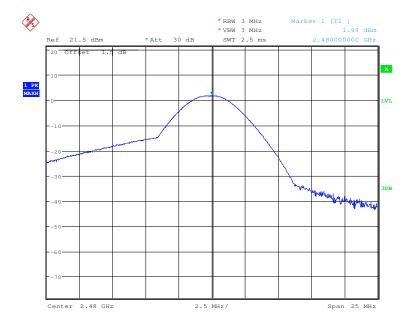



Report No.: SZEM140500274501

Page: 20 of 89

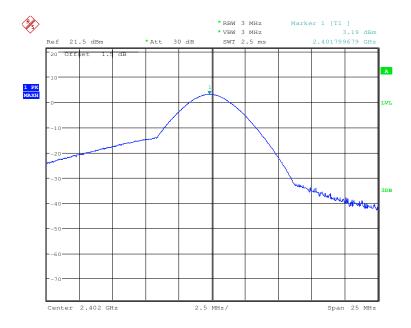
Test mode: GFSK Test channel: Highest

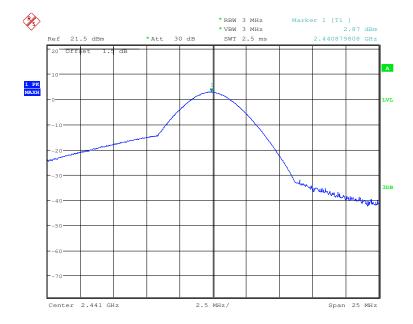



Report No.: SZEM140500274501

Page: 21 of 89

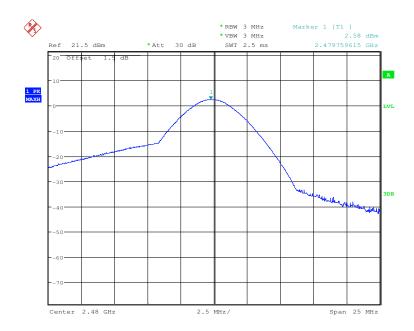
Test mode: π/4DQPSK Test channel: Middle




Report No.: SZEM140500274501

Page: 22 of 89

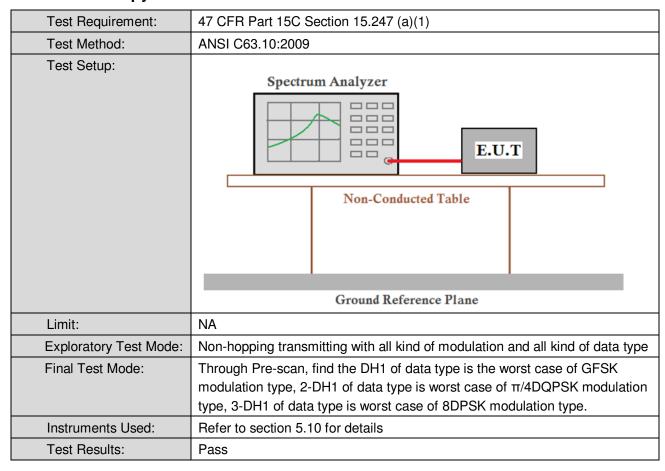
Test mode: 8DPSK Test channel: Lowest



Report No.: SZEM140500274501

Page: 23 of 89

Test mode: 8DPSK Test channel: Highest



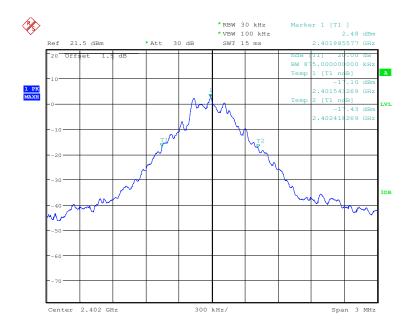
Report No.: SZEM140500274501

Page: 24 of 89

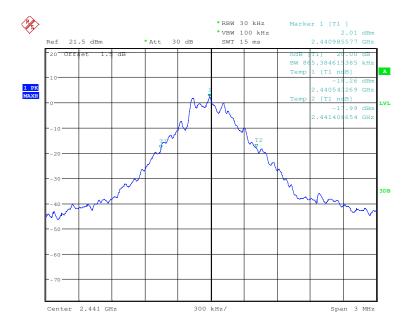
6.4 20dB Occupy Bandwidth

Measurement Data

Toot channel	20dB Occupy Bandwidth (kHz)				
Test channel	GFSK	π/4DQPSK	8DPSK		
Lowest	875.000000000	1120.192308	1144.230769		
Middle	865.384615385	1120.192308	1139.423077		
Highest	865.384615385	1129.807692	1139.423077		



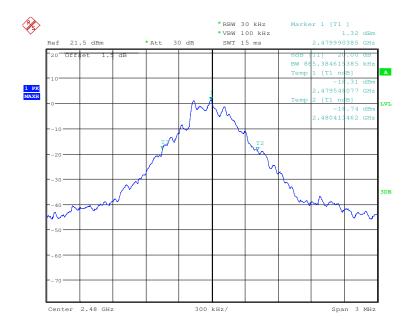
Report No.: SZEM140500274501

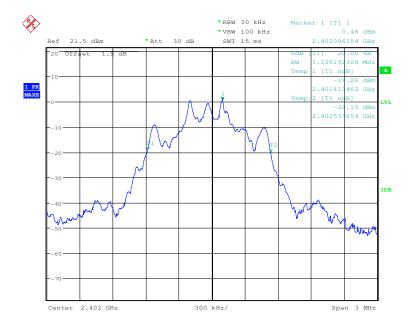

Page: 25 of 89

Test plot as follows:

Test mode: GFSK Test channel: Lowest

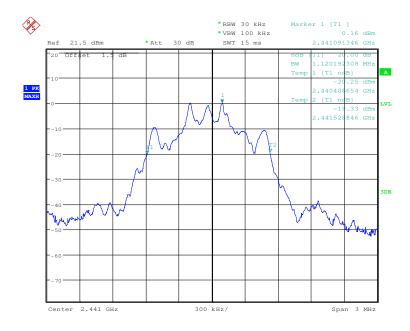
Test mode: GFSK Test channel: Middle

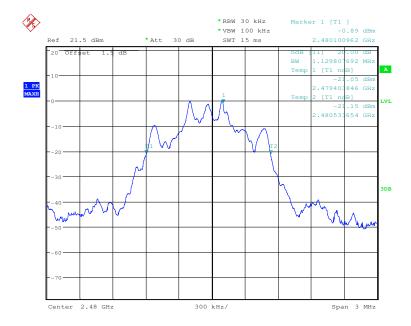



Report No.: SZEM140500274501

Page: 26 of 89

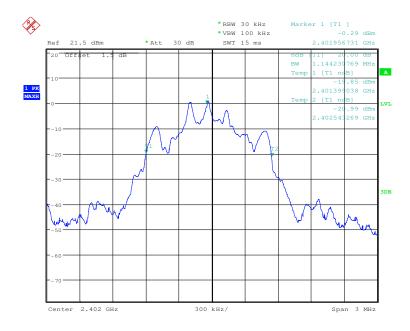
Test mode: GFSK Test channel: Highest

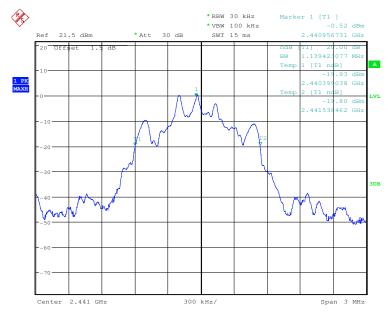



Report No.: SZEM140500274501

Page: 27 of 89

Test mode: π/4DQPSK Test channel: Middle

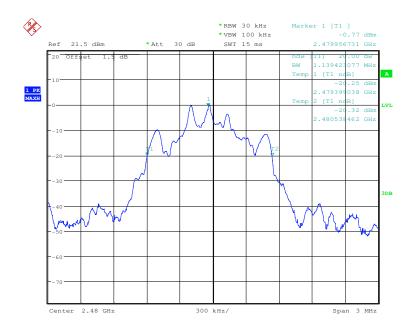



Report No.: SZEM140500274501

Page: 28 of 89

Test mode: 8DPSK Test channel: Lowest

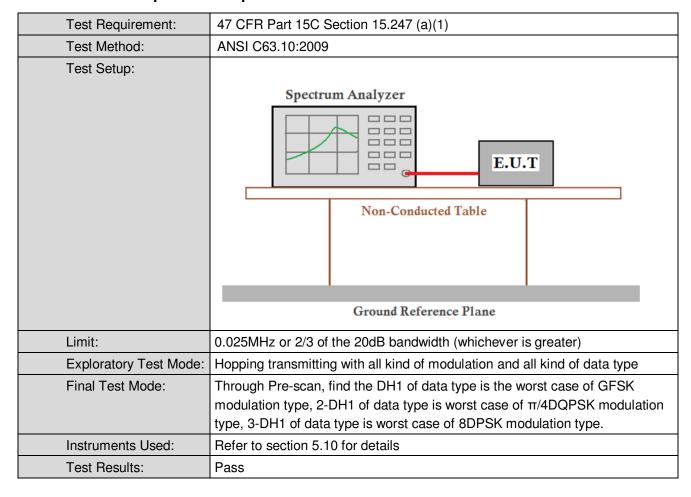
Test mode: 8DPSK Test channel: Middle



Report No.: SZEM140500274501

Page: 29 of 89

Test mode: 8DPSK Test channel: Highest



Report No.: SZEM140500274501

Page: 30 of 89

6.5 Carrier Frequencies Separation

Report No.: SZEM140500274501

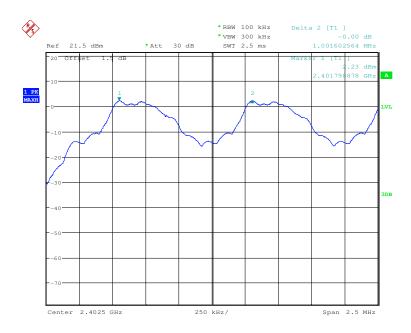
Page: 31 of 89

Measurement Data

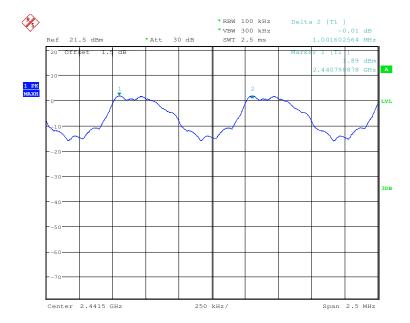
GFSK mode					
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result		
Lowest	1002	≥583	Pass		
Middle	1002	≥583	Pass		
Highest	1002	≥583	Pass		
	π/4DQPSK m	ode			
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result		
Lowest	1002	≥753	Pass		
Middle	1002	≥753	Pass		
Highest	1002	≥753	Pass		
	8DPSK mod	de			
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result		
Lowest	1002	≥763	Pass		
Middle	1006	≥763	Pass		
Highest	1002	≥763	Pass		

Note: According to section 5.4

Mode	20dB bandwidth (kHz) (worse case)	Limit (kHz) (Carrier Frequencies Separation)
GFSK	875.0000000	583
π/4DQPSK	1129.807692	753
8DPSK	1144.230769	763

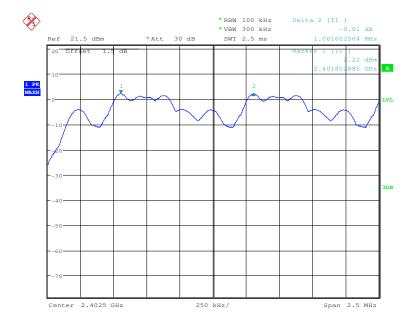


Report No.: SZEM140500274501


Page: 32 of 89

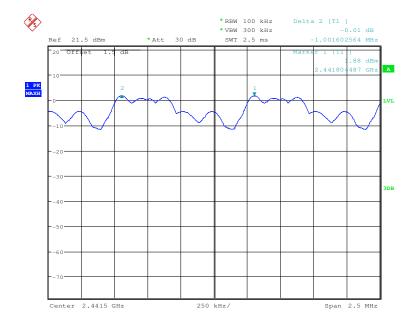
Test plot as follows:

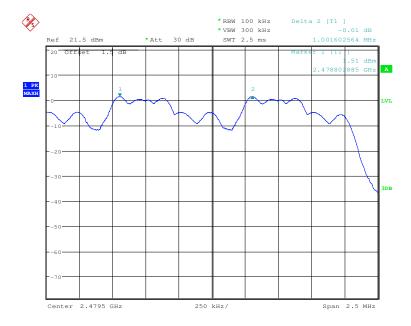
Test mode:	GFSK	Test channel:	Lowest
i est illoue.	GESIN	i est charmer.	LUWESI


Report No.: SZEM140500274501

Page: 33 of 89

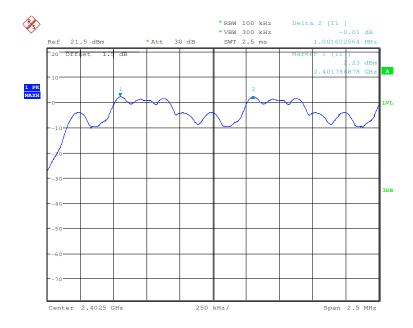
Test mode: GFSK Test channel: Highest

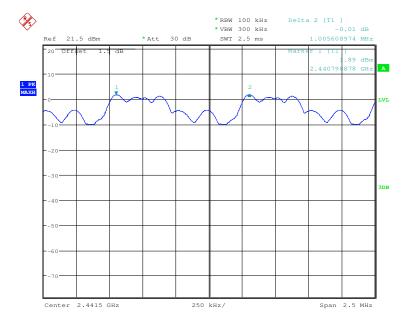



Report No.: SZEM140500274501

Page: 34 of 89

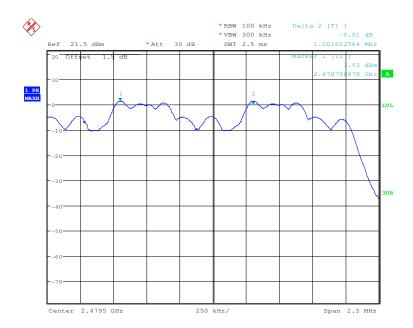
Test mode: π/4DQPSK Test channel: Middle


[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms and conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."


Report No.: SZEM140500274501

Page: 35 of 89

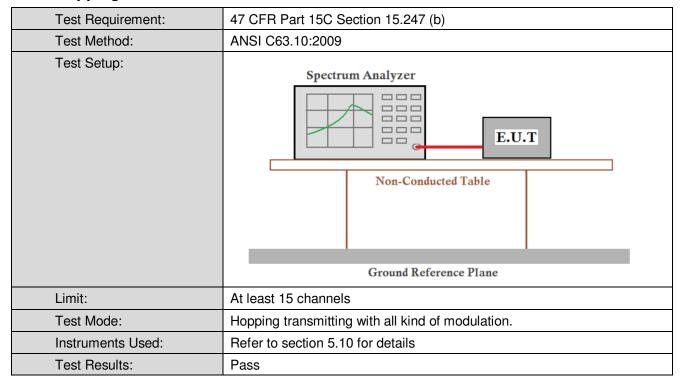
Test mode: 8DPSK Test channel: Lowest



Report No.: SZEM140500274501

Page: 36 of 89

Test mode: 8DPSK Test channel: Highest



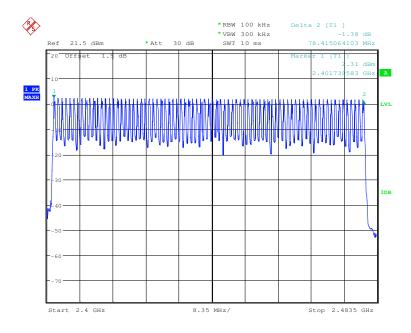
Report No.: SZEM140500274501

Page: 37 of 89

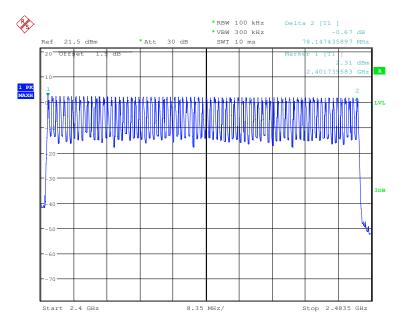
6.6 Hopping Channel Number

Measurement Data

Mode	Hopping channel numbers	Limit
GFSK	79	≥15
π/4DQPSK	79	≥15
8DPSK	79	≥15



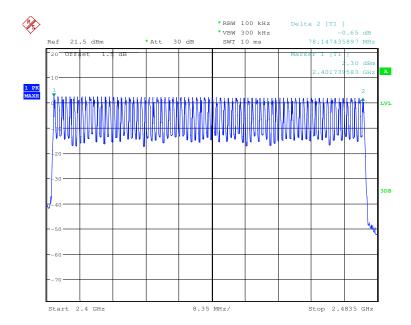
Report No.: SZEM140500274501


Page: 38 of 89

Test plot as follows:

Test mode: GFSK

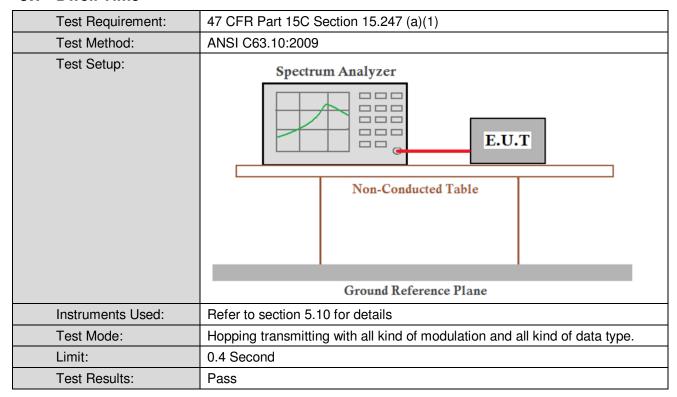
Test mode: $\pi/4DQPSK$



Report No.: SZEM140500274501

Page: 39 of 89

Test mode: 8DPSK



Report No.: SZEM140500274501

Page: 40 of 89

6.7 Dwell Time

Measurement Data

Mode	Packet	Dwell time (second)	Limit (second)
GFSK	DH1	0.13333	0.4
	DH3	0.27051	0.4
	DH5	0.31197	0.4
π/4DQPSK	2-DH1	0.13333	0.4
	2-DH3	0.26987	0.4
	2-DH5	0.31325	0.4
8DPSK	3-DH1	0.13333	0.4
	3-DH3	0.27051	0.4
	3-DH5	0.31538	0.4

Test Result:

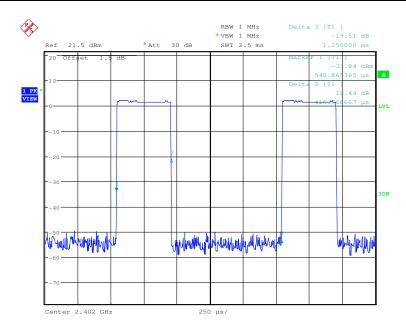
The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

The lowest channel (2402MHz), middle channel (2441MHz), highest channel (2480MHz) as below

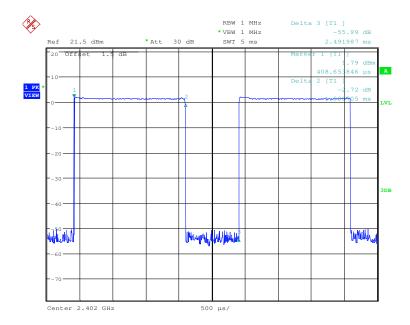
DH1 time slot=0.417(ms)*(1600/ (2*79))*31.6=133.33 ms

DH3 time slot=1.691(ms)*(1600/ (4*79))*31.6=270.51 ms

DH5 time slot=2.925(ms)*(1600/ (6*79))*31.6=311.97 ms

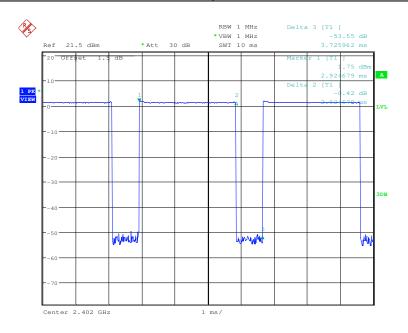


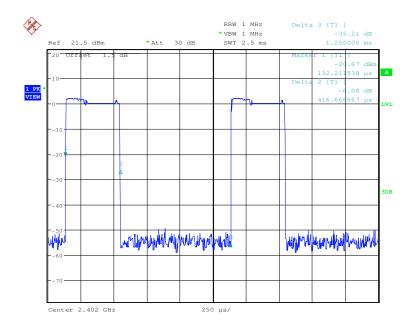
Report No.: SZEM140500274501


Page: 41 of 89

Test plot as follows:

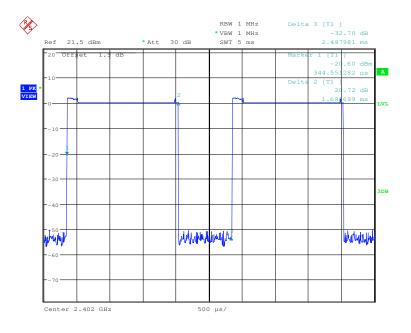
Test Packet: DH3

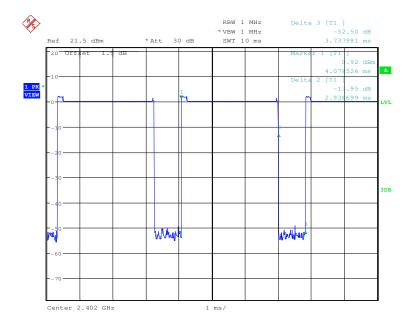

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms and conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."


Report No.: SZEM140500274501

Page: 42 of 89

Test Packet: DH5

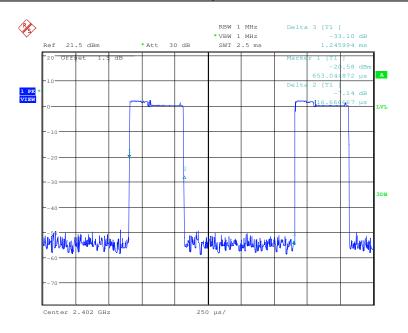

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms and conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

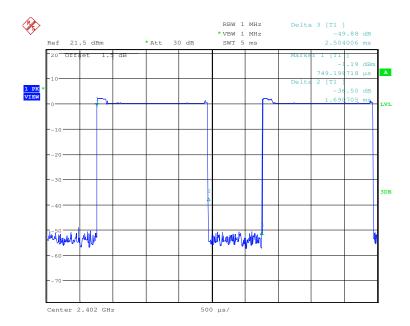

Report No.: SZEM140500274501

Page: 43 of 89

Test Packet: 2-DH3

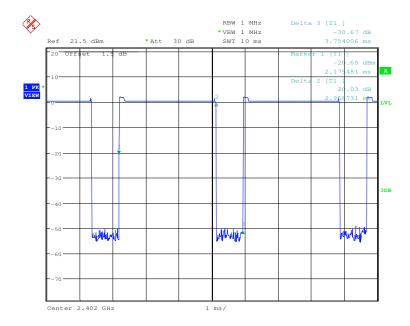
Test Packet: 2-DH5


[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms and conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."


Report No.: SZEM140500274501

Page: 44 of 89

Test Packet: 3-DH1


[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms and conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: SZEM140500274501

Page: 45 of 89

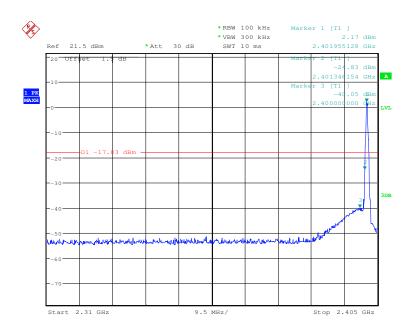
Test Packet: 3-DH5

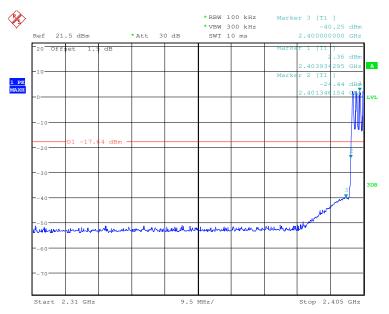
Report No.: SZEM140500274501

Page: 46 of 89

6.8 Band-edge for RF Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.247 (d)	
Test Method:	ANSI C63.10:2009	
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane Remark: Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer.	
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.	
Exploratory Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type	
Final Test Mode:	Through Pre-scan, find the DH1 of data type is the worst case of GFSK modulation type, 2-DH1 of data type is worst case of π/4DQPSK modulation type, 3-DH1 of data type is worst case of 8DPSK modulation type.	
Instruments Used:	Refer to section 5.10 for details	
Test Results:	Pass	

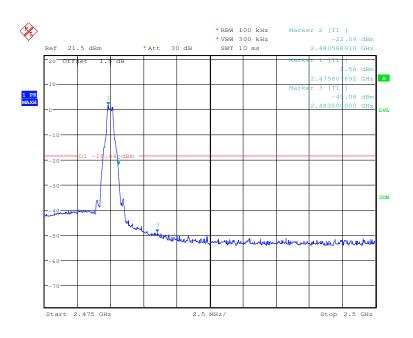


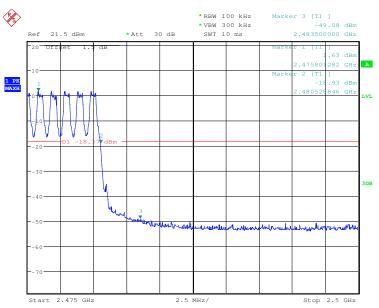

Report No.: SZEM140500274501

Page: 47 of 89

Test plot as follows:

Test mode: GFSK Test channel: Lowest

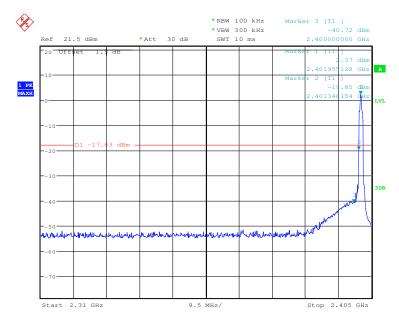


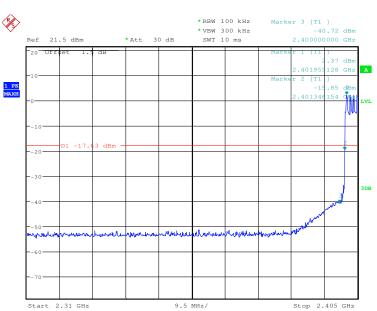


Report No.: SZEM140500274501

Page: 48 of 89

Test mode: GFSK Test channel: Highest

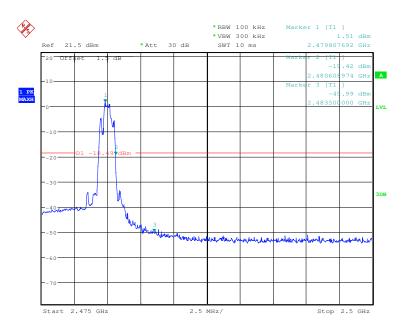


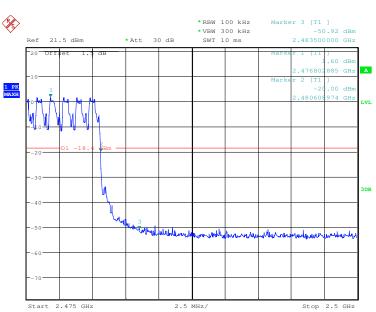


Report No.: SZEM140500274501

Page: 49 of 89

Test mode: π/4DQPSK Test channel: Lowest

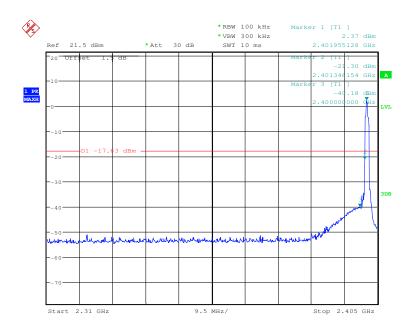


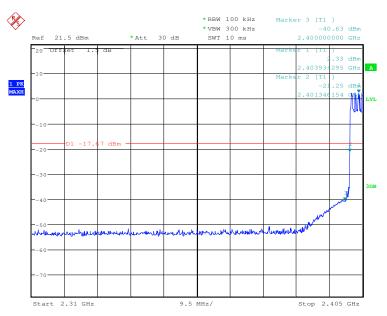


Report No.: SZEM140500274501

Page: 50 of 89

Test mode: π/4DQPSK Test channel: Highest

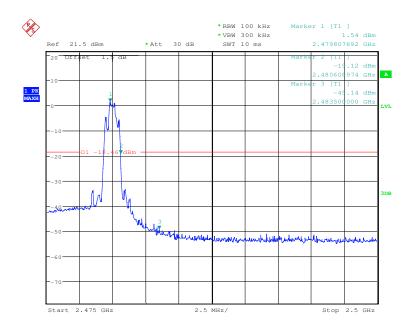


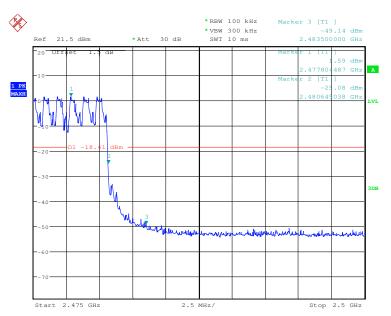


Report No.: SZEM140500274501

Page: 51 of 89

Test mode: 8DPSK Test channel: Lowest





Report No.: SZEM140500274501

Page: 52 of 89

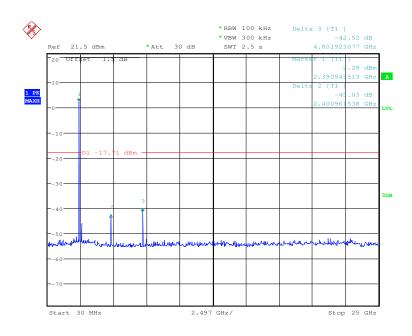
Test mode: 8DPSK Test channel: Highest

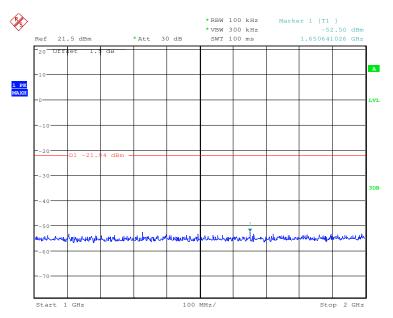
Report No.: SZEM140500274501

Page: 53 of 89

6.9 Spurious RF Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.247 (d)	
Test Method:	ANSI C63.10:2009	
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
	Remark: Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer.	
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.	
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type	
Final Test Mode:	Through Pre-scan, find the DH1 of data type is the worst case of GFSK modulation type, 2-DH1 of data type is worst case of π /4DQPSK modulation type, 3-DH1 of data type is worst case of 8DPSK modulation type.	
Instruments Used:	Refer to section 5.10 for details	
Test Results:	Pass	

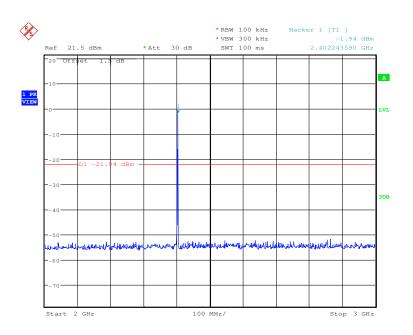


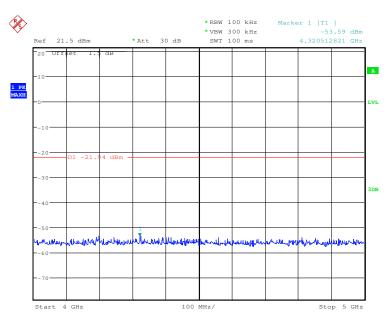

Report No.: SZEM140500274501

Page: 54 of 89

Test plot as follows:

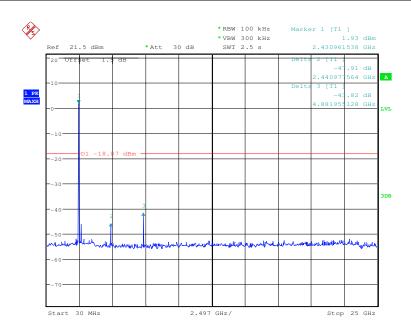
Test mode: GFSK Test channel: Lowest

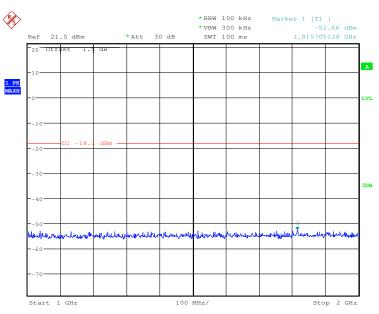




Report No.: SZEM140500274501

Page: 55 of 89

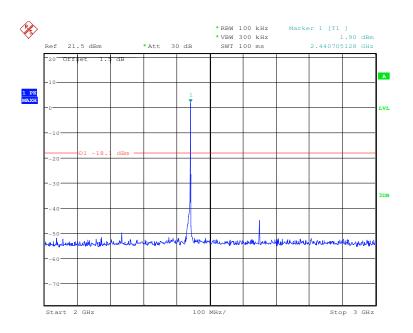


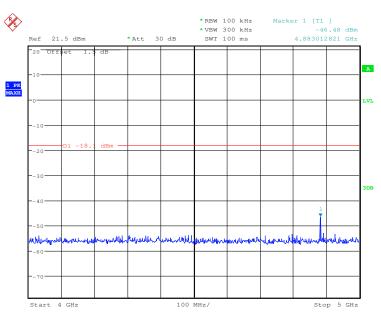


Report No.: SZEM140500274501

Page: 56 of 89

Test mode: GFSK Test channel: Middle

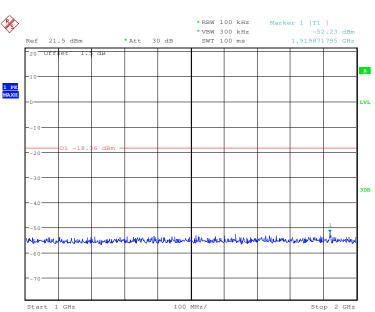




Report No.: SZEM140500274501

Page: 57 of 89

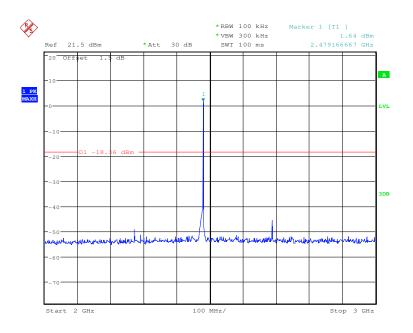


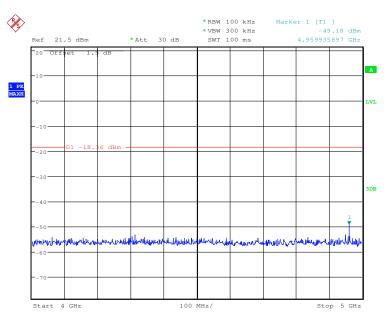


Report No.: SZEM140500274501

Page: 58 of 89

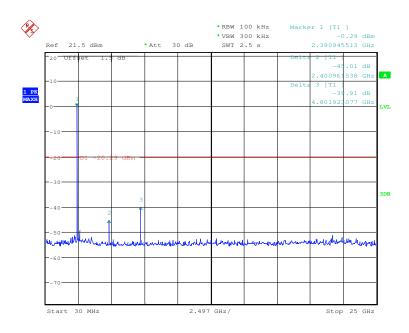
Test mode: GFSK Test channel: Highest

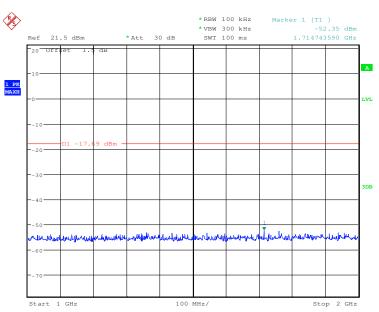




Report No.: SZEM140500274501

Page: 59 of 89

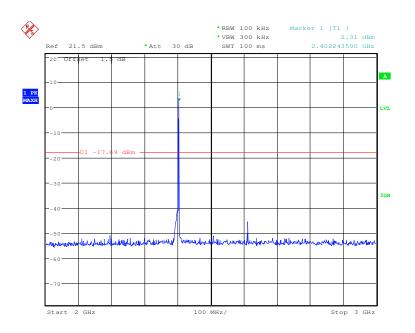


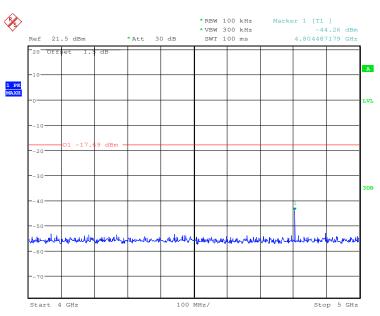


Report No.: SZEM140500274501

Page: 60 of 89

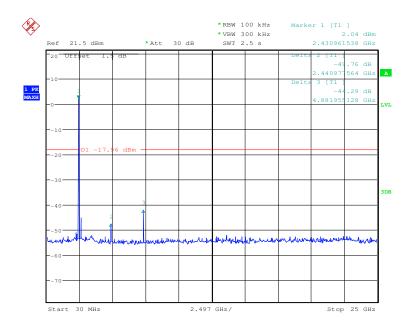
Test mode: π/4DQPSK Test channel: Lowest

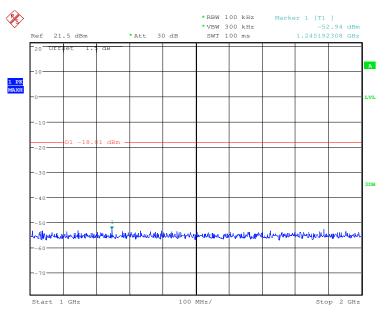




Report No.: SZEM140500274501

Page: 61 of 89

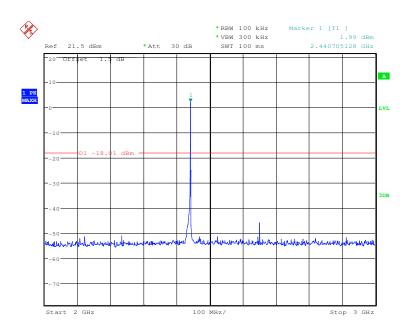


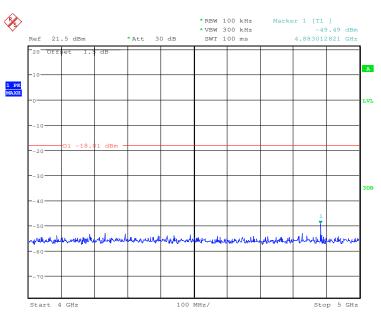


Report No.: SZEM140500274501

Page: 62 of 89

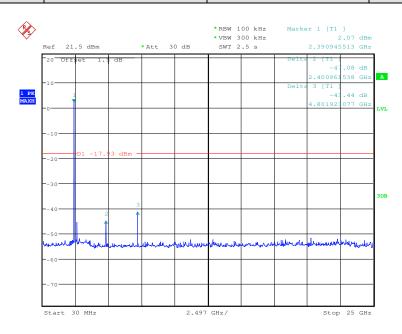
Test mode: π/4DQPSK Test channel: Middle

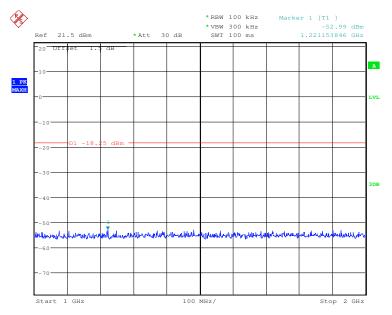




Report No.: SZEM140500274501

Page: 63 of 89

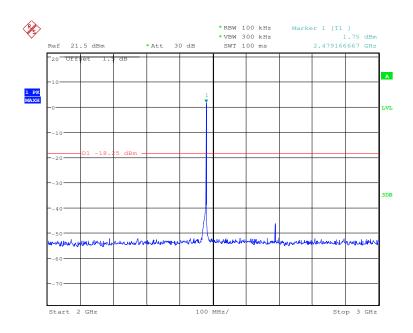


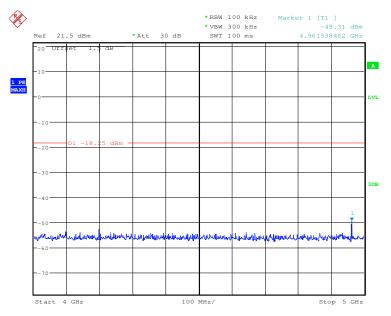


Report No.: SZEM140500274501

Page: 64 of 89

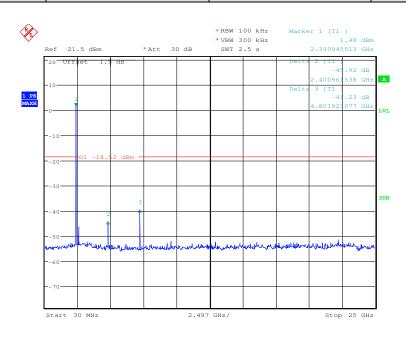
Test mode: π/4DQPSK Test channel: Highest

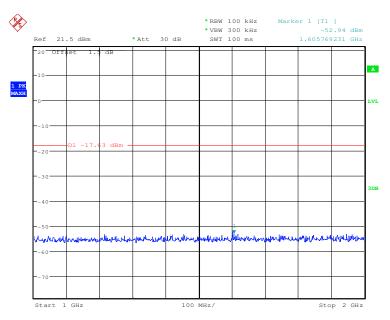




Report No.: SZEM140500274501

Page: 65 of 89

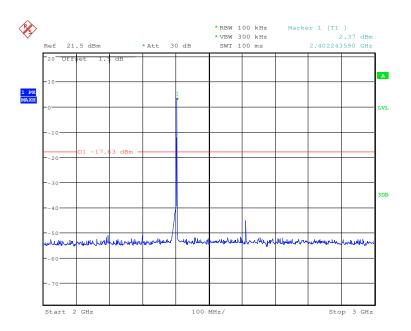


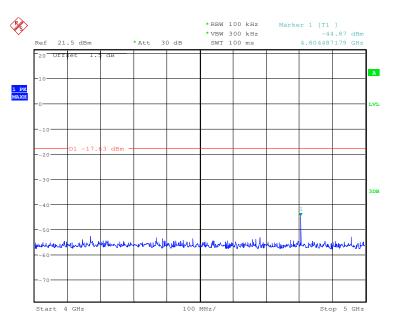


Report No.: SZEM140500274501

Page: 66 of 89

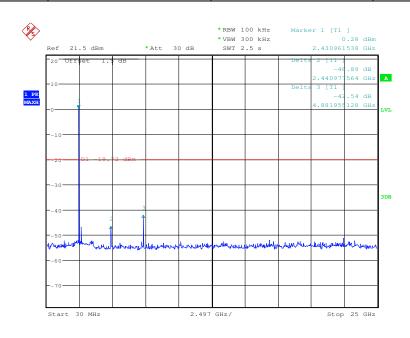
Test mode: 8DPSK Test channel: Lowest

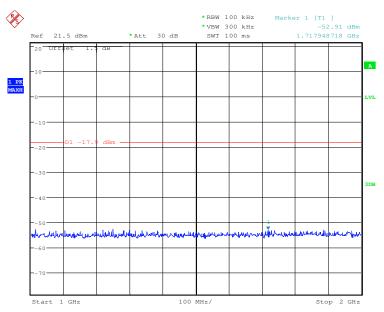




Report No.: SZEM140500274501

Page: 67 of 89

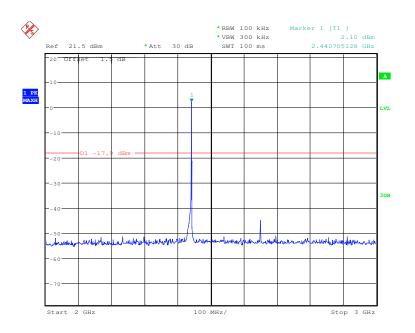


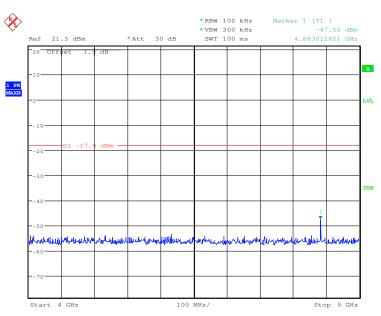


Report No.: SZEM140500274501

Page: 68 of 89

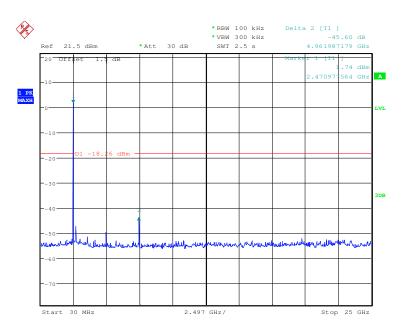
Test mode: 8DPSK Test channel: Middle

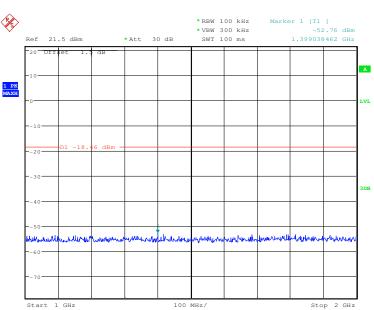




Report No.: SZEM140500274501

Page: 69 of 89

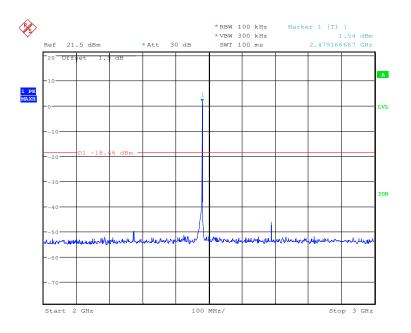


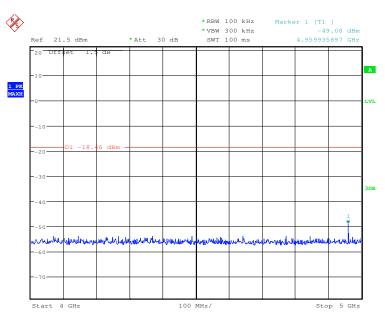


Report No.: SZEM140500274501

Page: 70 of 89

Test mode: 8DPSK Test channel: Highest





Report No.: SZEM140500274501

Page: 71 of 89

Remark:

Pretest 9kHz to 25GHz, find the highest point when testing, so only the worst data were shown in the test report.

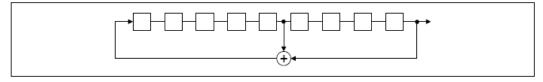
[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms and conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: SZEM140500274501

Page: 72 of 89

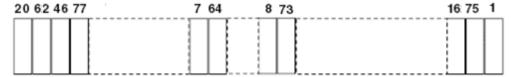
6.10 Pseudorandom Frequency Hopping Sequence

Test Requirement: 47 CFR Part 15C Section 15.247 (a)(1) requirement:


Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence


The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- · Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

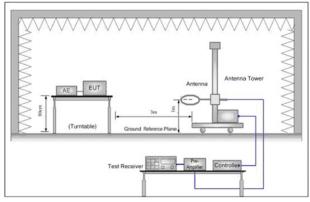
The system receivers have input bandwidths that match the hopping channel bandwidths of their Corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

The device does not have the ability to be coordinated with other FHSS systems in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitters.

Report No.: SZEM140500274501

Page: 73 of 89

6.11 Radiated Spurious Emission


Test Requirement:	47 CFR Part 15C Section	on 1	5.209 and 15.	205				
Test Method:	ANSI C63.10: 2009							
Test Site:	Measurement Distance	: 3m	n (Semi-Anech	oic Cham	ber)			
Receiver Setup:	Frequency		Detector	RBW	VBW	Remark		
	0.009MHz-0.090MH	Z	Peak	10kHz	z 30kHz	Peak		
	0.009MHz-0.090MH	Z	Average	10kHz	z 30kHz	Average		
	0.090MHz-0.110MH	Z	Quasi-peak	10kHz	z 30kHz	Quasi-peak		
	0.110MHz-0.490MH	Z	Peak	10kHz	30kHz	Peak		
	0.110MHz-0.490MH	Z	Average	10kHz	30kHz	Average		
	0.490MHz -30MHz		Quasi-peak	10kHz	z 30kHz	Quasi-peak		
	30MHz-1GHz	Quasi-peak	100 kH	lz 300kHz	Quasi-peak			
	Above 1GHz		Peak	1MHz	3MHz	Peak		
	Above IGHZ		Peak	1MHz	ı 10Hz	Average		
Limit:	Frequency	Frequency Field (micro		Limit (dBuV/m)	Remark	Measurement distance (m)		
	0.009MHz-0.490MHz	2	400/F(kHz)	-	-	300		
	0.490MHz-1.705MHz	24	1000/F(kHz)	-	-	30		
	1.705MHz-30MHz		30	-	-	30		
	30MHz-88MHz		100	40.0	Quasi-peak	3		
	88MHz-216MHz		150	43.5	Quasi-peak	3		
	216MHz-960MHz		200	46.0	Quasi-peak	3		
	960MHz-1GHz		500	54.0	Quasi-peak	3		
	Above 1GHz		500	54.0	Average	3		
	Note: 15.35(b), Unless otherwise specified, the limit on peak radio free emissions is 20dB above the maximum permitted average emiss applicable to the equipment under test. This peak limit applies to peak emission level radiated by the device.							

Report No.: SZEM140500274501

Page: 74 of 89

Test Setup:

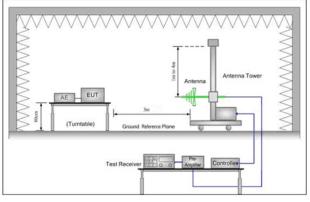


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

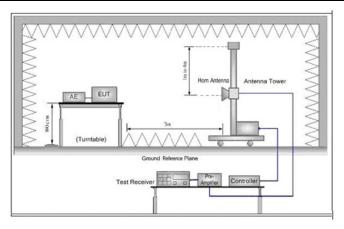


Figure 3. Above 1 GHz

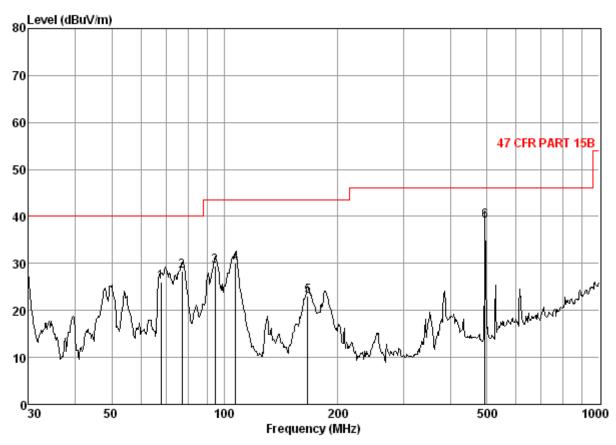
Test Procedure:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB

Report No.: SZEM140500274501

Page: 75 of 89

	 margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. g. Test the EUT in the lowest channel (2402MHz),the middle channel (2441MHz),the Highest channel (2480MHz) h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case. i. Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of data type. Transmitting mode, AC Charge + Transmitting mode.
Final Test Mode:	Through Pre-scan, find the DH1 of data type is the worst case of GFSK modulation type. Pretest the EUT at Transmitting mode and AC Charge + Transmitting mode, found the AC Charge + Transmitting mode which it is worse case. Only the worst case is recorded in the report.
Instruments Used:	Refer to section 5.10 for details
Test Results:	Pass



Report No.: SZEM140500274501

Page: 76 of 89

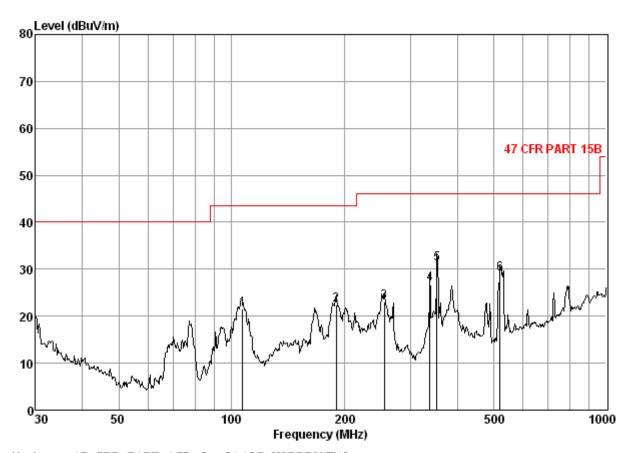
6.11.1 Radiated Emission below 1GHz

30MHz~1GHz (QP)		
Test mode:	AC Charge + Transmitting mode	Vertical

Condition: 47 CFR PART 15B 3m 3142C VERTICAL

Job No. : 2745RF

Mode : AC Charge+TX mode


040			intenna	Preamp Factor			Limit Line	Over Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	$\overline{\text{dBuV/m}}$	dB
1 2 3 4 5	67. 68 77. 05 94. 43 107. 13 166. 65	0.80 1.01 1.15 1.22 1.35	7. 17 9. 38	27. 25 27. 23 27. 21 27. 15 26. 83	50. 04 48. 84 39. 20	29. 47 30. 08 23. 10	40.00 43.50 43.50 43.50	-14.03 -13.42 -20.40
6	495.93	2.59	13.44	27.68	50.78	39.13	46.00	-6.87

Report No.: SZEM140500274501

Page: 77 of 89

Test mode: AC Charge + Transmitting mode Horizontal

Condition: 47 CFR PART 15B 3m 3142C HORIZONTAL

Job No. : 2745RF

Mode : AC Charge+TX mode

	Freq			Preamp Factor		Level		Over Limit
-	MHz	dB	dB/m	dB	dBuV	$\overline{\text{dBuV/m}}$	$\overline{\text{dBuV/m}}$	d B
1 2 3 4 5	107.13 190.41 255.62 338.40 352.94 520.89	1.22 1.39 1.70 2.02 2.07 2.62	7.17 6.80 8.90 10.46 10.59 14.10		40. 28 41. 03 38. 92 41. 11 45. 33 39. 91	23.00 26.89	43.50 46.00 46.00 46.00	

Report No.: SZEM140500274501

Page: 78 of 89

6.11.2 Transmitter Emission above 1GHz

Worse case r	mode: (GFSK(DH1)	Test	channel:	Lowest	F	Rema	rk:	Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit L (dBuV		Over Limit (dB)	Polarization
3616.451	5.93	33.34	40.76	47.27	45.78	74		-28.22	Vertical
4804.000	7.44	34.70	41.63	52.95	53.46	74		-20.54	Vertical
6001.768	7.97	35.70	40.92	47.68	50.43	74		-23.57	Vertical
7206.000	8.72	35.88	39.87	48.44	53.17	74		-20.83	Vertical
9608.000	9.68	37.30	37.80	44.37	53.55	74		-20.45	Vertical
10888.510	10.49	38.46	37.81	42.44	53.58	74		-20.42	Vertical
3625.669	5.93	33.34	40.76	47.00	45.51	74		-28.49	Horizontal
4804.000	7.44	34.70	41.63	48.71	49.22	74		-24.78	Horizontal
6047.776	7.99	35.76	40.87	47.71	50.59	74		-23.41	Horizontal
7206.000	8.72	35.88	39.87	48.03	52.76	74		-21.24	Horizontal
9608.000	9.68	37.30	37.80	43.94	53.12	74		-20.88	Horizontal
11027.980	10.59	38.49	37.88	42.72	53.92	74		-20.08	Horizontal

Worse case	mode:	GFSK(DH1) Tes	t channel:	Middle	Rem	ark:	Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
3598.087	5.90	33.32	40.74	47.46	45.94	74	-28.06	Vertical
4882.000	7.48	34.59	41.68	52.23	52.62	74	-21.38	Vertical
6094.137	8.01	35.82	40.84	47.60	50.59	74	-23.41	Vertical
7323.000	8.87	35.93	39.77	48.25	53.28	74	-20.72	Vertical
9764.000	9.74	37.48	37.66	43.62	53.18	74	-20.82	Vertical
11341.140	10.81	38.43	38.00	42.63	53.87	74	-20.13	Vertical
3454.486	5.70	33.22	40.63	47.67	45.96	74	-28.04	Horizontal
4882.000	7.48	34.59	41.68	48.12	48.51	74	-25.49	Horizontal
6094.137	8.01	35.82	40.84	48.01	51.00	74	-23.00	Horizontal
7323.000	8.87	35.93	39.77	48.21	53.24	74	-20.76	Horizontal
9764.000	9.74	37.48	37.66	43.76	53.32	74	-20.68	Horizontal
11027.980	10.59	38.49	37.88	42.61	53.81	74	-20.19	Horizontal

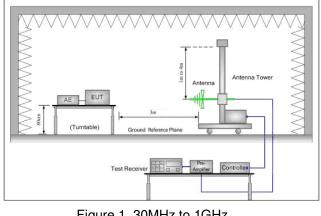
Report No.: SZEM140500274501

Page: 79 of 89

Worse case	mode:	GFSK(DH1) Tes	t channel:	Highest	Rem	ark:	Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
3700.260	6.05	33.45	40.81	48.14	46.83	74	-27.17	Vertical
4960.000	7.53	34.46	41.74	48.44	48.69	74	-25.31	Vertical
5850.919	7.91	35.45	41.06	48.27	50.57	74	-23.43	Vertical
7440.000	9.01	35.98	39.67	48.30	53.62	74	-20.38	Vertical
9920.000	9.81	37.63	37.53	43.65	53.56	74	-20.44	Vertical
10696.210	10.34	38.38	37.73	42.79	53.78	74	-20.22	Vertical
3588.939	5.88	33.30	40.73	47.71	46.16	74	-27.84	Horizontal
4960.000	7.53	34.46	41.74	47.91	48.16	74	-25.84	Horizontal
5850.919	7.91	35.45	41.06	47.67	49.97	74	-24.03	Horizontal
7440.000	9.01	35.98	39.67	48.24	53.56	74	-20.44	Horizontal
9920.000	9.81	37.63	37.53	43.54	53.45	74	-20.55	Horizontal
10999.950	10.56	38.50	37.86	42.48	53.68	74	-20.32	Horizontal

Remark:

- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level = Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.



Report No.: SZEM140500274501

Page: 80 of 89

6.12 Restricted bands around fundamental frequency

Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205							
Test Method:	ANSI C63.10: 2009							
Test Site:	Measurement Distance: 3m	Measurement Distance: 3m (Semi-Anechoic Chamber)						
Limit:	Frequency	Limit (dBuV/m @3m)	Remark					
	30MHz-88MHz	40.0	Quasi-peak Value					
	88MHz-216MHz	43.5	Quasi-peak Value					
	216MHz-960MHz	46.0	Quasi-peak Value					
	960MHz-1GHz	54.0	Quasi-peak Value					
	Above 1GHz	54.0	Average Value					
	Above IGHZ	74.0	Peak Value					
			·					
Test Setup:								

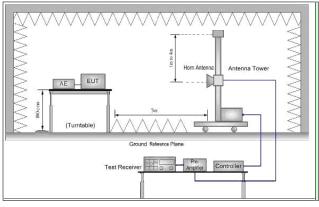


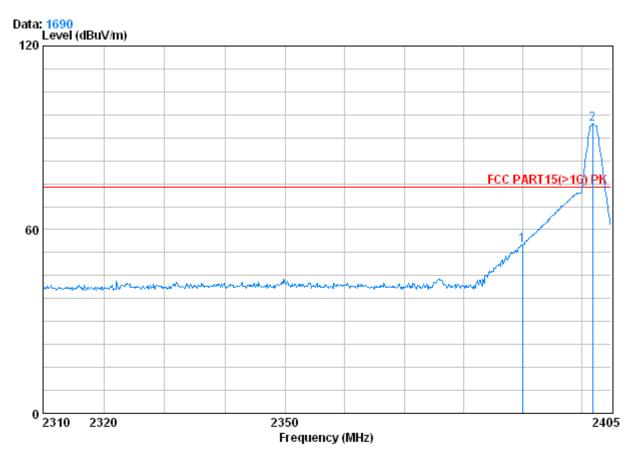
Figure 1. 30MHz to 1GHz

Figure 2. Above 1 GHz

Report No.: SZEM140500274501

Page: 81 of 89

Test Procedure:	 a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst
	case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	f. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel g. Test the EUT in the lowest channel, the Highest channel h. The radiation measurements are performed in X, Y, Z axis
	positioning for Transmitting mode, and found the X axis positioning which it is worse case.
	 Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of data type. Transmitting mode, AC Charge + Transmitting mode.
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type. Pretest the EUT at Transmitting mode and AC Charge + Transmitting mode, found the AC Charge + Transmitting mode which it is worse case.
	Only the worst case is recorded in the report.
Instruments Used:	Refer to section 5.10 for details
Test Results:	Pass



Report No.: SZEM140500274501

Page: 82 of 89

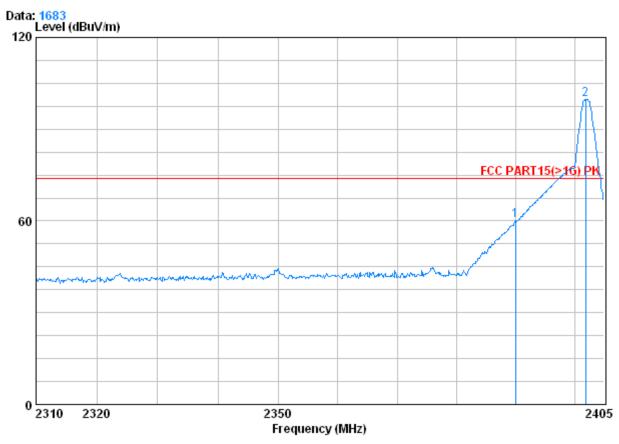
Test plot as follows:

Worse case mode: GFSK (DH5) Test channel: Lowest Remark: Peak Vertical

Condition : FCC PART15(>1G) PK 3m VERTICAL

Job No. : 2745RF

Mode : 2402 Bandedge


	Freq			-			Limit Level Line	
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 2 1	2390.000 3 2401.865			39.85 39.86				

Report No.: SZEM140500274501

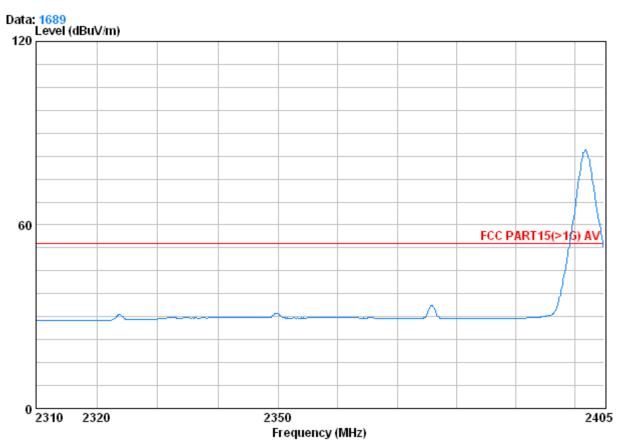
Page: 83 of 89

Worse case mode: GFSK (DH5) Test channel: Lowest Remark: Peak Horizontal

Condition : FCC PART15(>1G) PK 3m HORIZONTAL

Job No. : 2745RF

Mode : 2402 Bandedge


	Freq			-			Limit Level Line	
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 2 @	2390.000 2401.865				64.37 104.14			

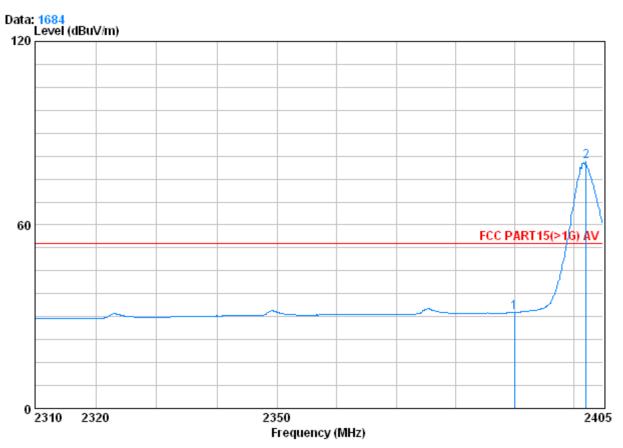
Report No.: SZEM140500274501

Page: 84 of 89

Worse case mode: GFSK (DH5) Test channel: Lowest Remark: Average Vertical

Condition : FCC PART15(>1G) AV 3m VERTICAL

Job No. : 2745RF


Mode : 2402 Bandedge

Report No.: SZEM140500274501

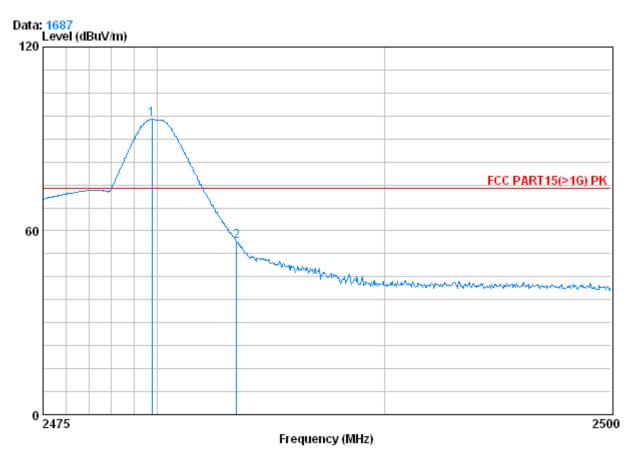
Page: 85 of 89

Worse case mode: GFSK (DH5) Test channel: Lowest Remark: Average Horizontal

Condition : FCC PART15(>1G) AV 3m HORIZONTAL

Job No. : 2745RF

Mode : 2402 Bandedge


	Freq	CableAntenna : Loss Factor :		-				
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 2 @	2390.000 2402.150			39.85 39.86				

Report No.: SZEM140500274501

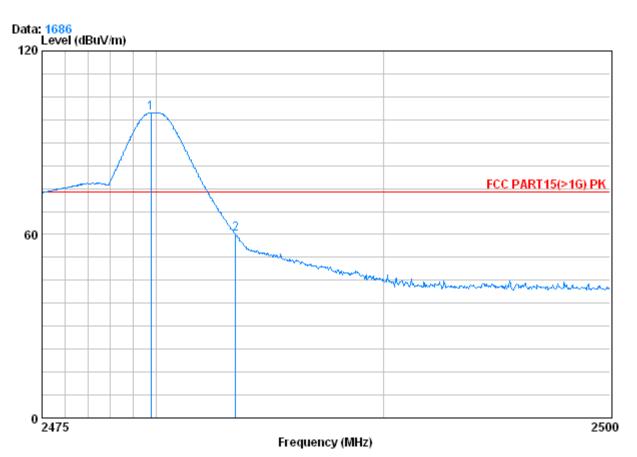
Page: 86 of 89

Worse case mode: GFSK (DH5) Test channel: Highest Remark: Peak Vertical

Condition : FCC PART15(>1G) PK 3m VERTICAL

Job No. : 2745RF

Mode : 2480 Bandedge


1040	Freq			•	Read Level		Limit Line	
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 0	2479.775	3.03	32.67	39.92	100.58	96.36	74.00	22.36
2	2483.500	3.03	32.67	39.92	60.75	56.53	74.00	-17.47

Report No.: SZEM140500274501

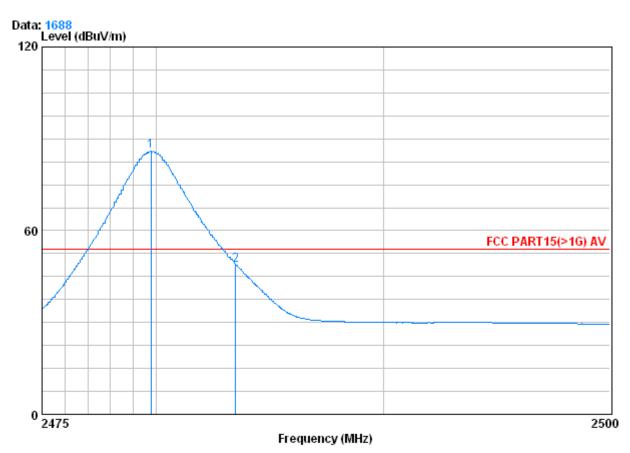
Page: 87 of 89

Worse case mode: GFSK (DH5) Test channel: Highest Remark: Peak Horizontal

Condition : FCC PART15(>1G) PK 3m VERTICAL

Job No. : 2745RF

Mode : 2480 Bandedge


		Cablei	Antenna	Preamp	Read		Limit	Over
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 0	2479.775	3.03	32.67	39.92	103.99	99.77	74.00	25.77
2	2483.500	3.03	32.67	39.92	64.22	60.00	74.00	-14.00

Report No.: SZEM140500274501

Page: 88 of 89

Worse case mode: GFSK (DH5) Test channel: Highest Remark: Average Vertical

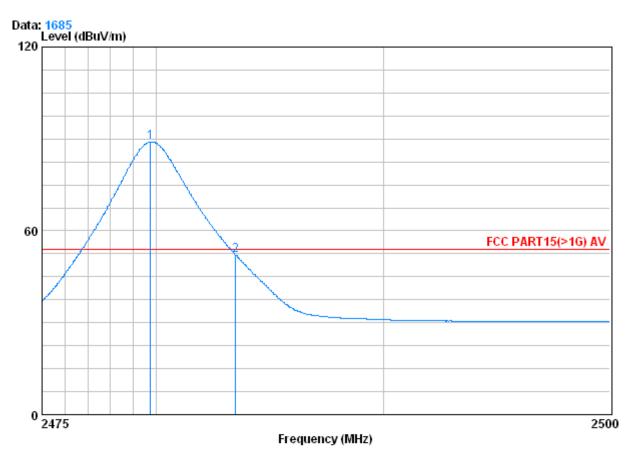
Condition : FCC PART15(>1G) AV 3m VERTICAL

Job No. : 2745RF

1 2

Mode : 2480 Bandedge

	Freq	CableAntenna Loss Factor		•			Limit Line	
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
0	2479.775 2483.500							



Report No.: SZEM140500274501

Page: 89 of 89

Worse case mode: GFSK (DH5) Test channel: Highest Remark: Average Horizontal

Condition : FCC PART15(>1G) AV 3m HORIZONTAL

Job No. : 2745RF

Mode : 2480 Bandedge

	Freq	CableAntenna Loss Factor		Preamp Read Factor Level				Over Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 0 2	2479.750 2483.500			39.92 39.92				

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms and conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."