

TEST REPORT

Report No.: BCTC2112498339E

Applicant: ZAGG Inc.

Product Name: HALO Wireless Charging Dock 10K/mophie

powerstation wireless dock

Model/Type

reference:

HWCD-10K/MPWD-10K

Tested Date: 2021-12-06 to 2021-12-14

Issued Date: 2021-12-14

No.: BCTC/RF-EMC-005 Page 1 of 23/

Edition: A.4

FCC ID: QTG-HWCD

Product Name: HALO Wireless Charging Dock 10K/mophie powerstation wireless dock

Trademark: HALO/mophie

Model/Type reference: HWCD-10K/MPWD-10K

Prepared For: ZAGG Inc.

Address: 910 West Legacy Center Way, Midvale Utah 84047, United States

Manufacturer: ZAGG Inc.

Address: 910 West Legacy Center Way, Midvale Utah 84047, United States

Prepared By: Shenzhen BCTC Testing Co., Ltd.

Address: 1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Tangwei,

Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Sample Received Date: 2021-12-06

Sample tested Date: 2021-12-06 to 2021-12-14

Issue Date: 2021-12-14

Report No.: BCTC2112498339E

Test Standards: FCC Part15.209 ANSI C63.10-2013

Test Results: PASS

Tested by:

Willem Wong

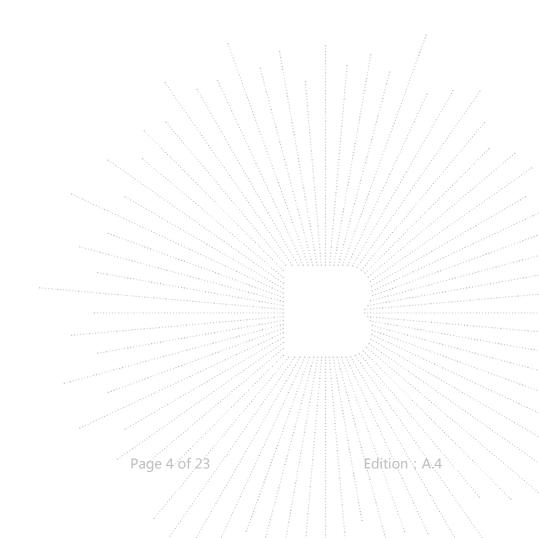
Willem Wang/Project Handler

Approved by:

Zero Zhou/Reviewer

The test report is effective only with both signature and specialized stamp. This result(s) shown in this report refer only to the sample(s) tested. Without written approval of Shenzhen BCTC Testing Co., Ltd, this report can't be reproduced except in full. The tested sample(s) and the sample information are provided by the client.

Table Of Content

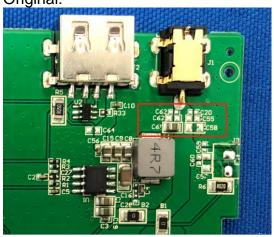

Test	Report Declaration	Page	
1.	Version		4
2.	Test Summary		5
3.	Measurement Uncertainty	(ô
4.	Product Information And Test Setup		7
4.1	Product Information		7
4.2	Test Setup Configuration		7
4.3	Support Equipment		3
4.4	Test Mode		
4.5	Copy of marking plate	8	3
5.	Test Facility And Test Instrument Used		9
5.1	Test Facility		
5.2	Test Instrument Used		9
6.	Conducted Emissions	1 ⁻	1
6.1	Block Diagram Of Test Setup	1	1
6.2	Limit	1 ⁻	1
6.3	Test procedure	1 ⁻	1
6.4	EUT operating Conditions		
6.5	Test Result		
7.	Radiated Emissions		
7.1	Block Diagram Of Test Setup		
7.2	Limit		
7.3	Test procedure	1	5
7.4	Test Result		
8.	EUT Photographs		
9.	EUT Test Setup Photographs	2 ¹	1

(Note: N/A Means Not Applicable)

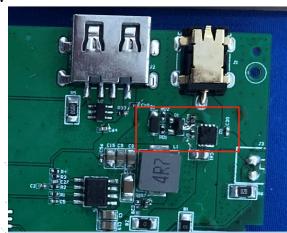
1. Version

Report No.	Issue Date	Description	Approved	
BCTC2112498339E	2021-12-14	Original	Valid	

2. Test Summary


The Product has been tested according to the following specifications:

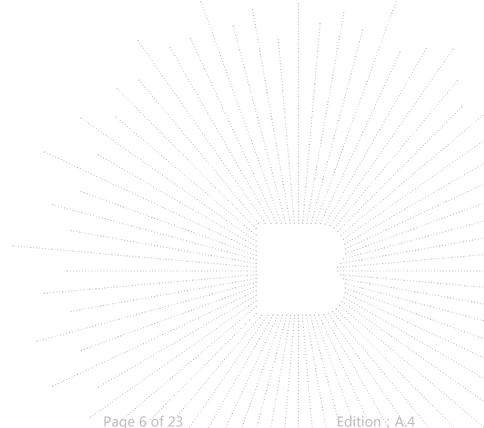
No.	Test Parameter	Clause No	Results	
1	Conducted Emission	15.207	PASS	
2	Radiated Emission	15.209	PASS	


Remark: Based on the following changes in the product, the RF chip remains unchanged. So the report is only updated Conducted emissions and Radiated Emissions for the original report (BCTC2011000942-1E) $_{\circ}$

Changes: 1. The new product add overvoltage protection circuit.

Original:

new



Measurement Uncertainty 3.

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

No.	Item	Uncertainty	
1	3m camber Radiated spurious emission(30MHz-1GHz)	U=4.3dB	
2	Conducted Emission (150kHz-30MHz)	U=3.2dB	
3	humidity uncertainty	U=5.3%	
4	Temperature uncertainty	U=0.59°C	

4. Product Information And Test Setup

4.1 Product Information

Model/Type Ref.: HWCD-10K/MPWD-10K

Model differences: N/A

Product Description: HALO Wireless Charging Dock 10K/mophie powerstation wireless dock

Operation Frequency: 115kHz-205kHz

Antenna installation: Inductive loop coil antenna

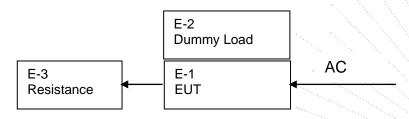
Ratings: Input: DC 9V 4A

Wireless Output:5W, 7.5W, 10W(Max)

USB-A Output: DC 5V 2A Pogo Pin Output: DC 9V 2A

Adapter Model No.: WTA36-0904000-U

Input: AC 100-240V 50/60Hz 1.6A


Output: DC 9V 4A

Hardware Version: S02 Software Version: V1.2

4.2 Test Setup Configuration

See test photographs attached in *EUT TEST SETUP PHOTOGRAPHS* for the actual connections between Product and support equipment.

Conducted Emission/Radiated Spurious Emission:

Support Equipment

No.	Device Type	Brand	Model	Series No.	Data Cable	Remark
E-1	HALO Wireless Charging Dock 10K/mophie powerstation wireless dock	HALO/mophie	HWCD-10K/ MPWD-10K	N/A	N/A	EUT
E-2	Dummy load	N/A	DL01	N/A	N/A	Auxiliary
E-3	Resistance	N/A	N/A	N/A	N/A	Auxiliary

Notes:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

4.4 Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Test Modes 1	Wireless output(5W)+ USB-A output DC 5V 2A+ Pogo Pin Output DC 9V 2A
Test Modes 2	Wireless output(7.5W)+ USB-A output DC 5V 2A+ Pogo Pin Output DC 9V 2A
Test Modes 3	Wireless output(10W)+ USB-A output DC 5V 2A+ Pogo Pin Output DC 9V 2A

Note:

All test mode were tested and passed, only Conducted Emissions, Radiated Emissions shows is the worst case mode which were recorded in this report.

Copy of marking plate

HALO Wireless Charging Dock 10K

M/N: HWCD-10K

Input: 9V === 4A Pogo pin Input: 9V === 2A

Wireless Output: 10W max FCC ID: QTG-HWCD

USB-A Output: 5V===2A Multi Output: 5V==3A max

Follow Manufacturer's Instructions. Made In China. 2021QU 110-07847-A

mophie powerstation wireless dock

M/N: MPWD-10K

Input: 9V === 4A

Pogo pin Input: 9V === 2A

USB-A Output:5V == 2A Multi Output: 5V == 3A max © 2021 mophie inc.

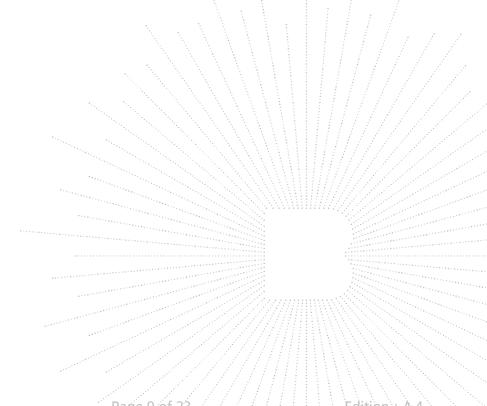
Wireless Output: 10W max FCC ID: QTG-HWCD

MADE IN CHINA 110-08677-A

ZAGG Inc | 910 Legacy Center Way, Ste. 500, Midvale, Utah 84047 ZAGG International | 103 Shannon Industrial Estate, Shannon Co. Clare, V14 PH21, Ireland

5. Test Facility And Test Instrument Used

5.1 Test Facility


All measurement facilities used to collect the measurement data are located at Shenzhen BCTC Testing Co., Ltd. Address:1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Tangwei, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China. The site and apparatus are constructed in conformance with the requirements of ANSI C63.4 and CISPR 16-1-1 other equivalent standards.

FCC Test Firm Registration Number: 712850

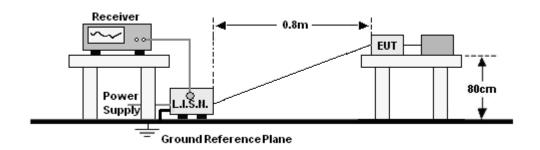
IC Registered No.: 23583

5.2 Test Instrument Used

Conducted Emissions Test								
Equipment	Last Cal.	Next Cal.						
Receiver	Receiver R&S		102075	May 28, 2021	May 27, 2022			
LISN	R&S	ENV216	101375	May 28, 2021	May 27, 2022			
Software	Frad	EZ-EMC	EMC-CON 3A1	\	\			
Attenuator	\	10dB DC-6GHz	1650	May 28, 2021	May 27, 2022			

No.: BCTC/RF-EMC-005 Page 9 of 23

Edition : A.4


Radiated Emissions Test (966 Chamber)							
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.		
966 chamber	ChengYu	966 Room	966	Jun. 06. 2020	Jun. 05, 2023		
Receiver	R&S	ESR3	102075	May 28, 2021	May 27, 2022		
Receiver	R&S	ESRP	101154	May 28, 2021	May 27, 2022		
Amplifier	SKET	LAPA_01G18 G-45dB	\	May 28, 2021	May 27, 2022		
Amplifier	Schwarzbeck	BBV9744	9744-0037	May 28, 2021	May 27, 2022		
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	942	Jun. 01, 2021	May 31, 2022		
Horn Antenna	Schwarzbeck	BBHA9120D	1541	Jun. 02, 2021	Jun. 01, 2022		
Horn Antenn(18GH z-40GHz)	Schwarzbeck	BBHA9170	00822	Jun. 15, 2021	Jun. 14, 2022		
Amplifier(18G Hz-40GHz)	MITEQ	TTA1840-35- HG	2034381	May 28, 2021	May 27, 2022		
Loop Antenna(9KHz -30MHz)	Schwarzbeck	FMZB1519B	00014	Jun. 02, 2021	Jun. 01, 2022		
RF cables1(9kHz- 30MHz)	Huber+Suhnar	9kHz-30MHz	B1702988-000 8	May 28, 2021	May 27, 2022		
RF cables2(30MH z-1GHz)	Huber+Suhnar	30MHz-1GHz	1486150	May 28, 2021	May 27, 2022		
RF cables3(1GHz -40GHz)	Huber+Suhnar	1GHz-40GHz	1607106	May 28, 2021	May 27, 2022		
Power Metter	Keysight	E4419		May 28, 2021	May 27, 2022		
Power Sensor (AV)	Keysight	E9300A		May 28, 2021	May 27, 2022		
Signal Analyzer20kH z-26.5GHz	Keysight	N9020A	MY49100060	May 28, 2021	May 27, 2022		
Spectrum Analyzer9kHz- 40GHz	R&S	FSP40		May 28, 2021	May 27, 2022		
Software	Frad	EZ-EMC	FA-03A2 RE	\			

No.: BCTC/RF-EMC-005 Page 10 of 23 / / / Edition: A.4

6. Conducted Emissions

6.1 Block Diagram Of Test Setup

6.2 Limit

Fraguency (MHz)	Limit (dBuV)		
Frequency (MHz)	Quas-peak	Average	
0.15 -0.5	66 - 56 *	56 - 46 *	
0.50 -5.0	56.00	46.00	
5.0 -30.0	60.00	50.00	

Notes:

- 1. *Decreasing linearly with logarithm of frequency.
- 2. The lower limit shall apply at the transition frequencies.

6.3 Test procedure

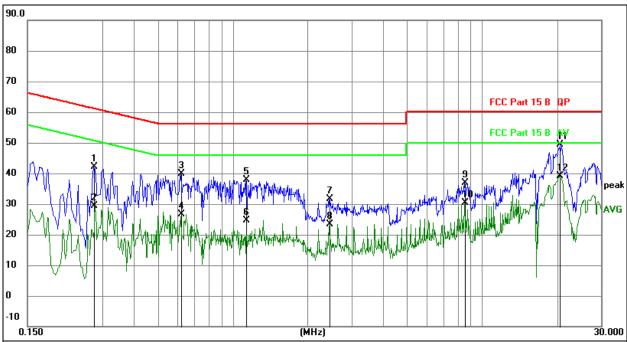
Receiver Parameters	Setting	
Attenuation	10 dB	
Start Frequency	0.15 MHz	
Stop Frequency	30 MHz	
IF Bandwidth	9 kHż	

a. The Product was placed on a nonconductive table 0.8 m above the horizontal ground reference plane, and 0.4 m from the vertical ground reference plane, and connected to the main through Line Impedance Stability Network (L.I.S.N).

6.4 EUT operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

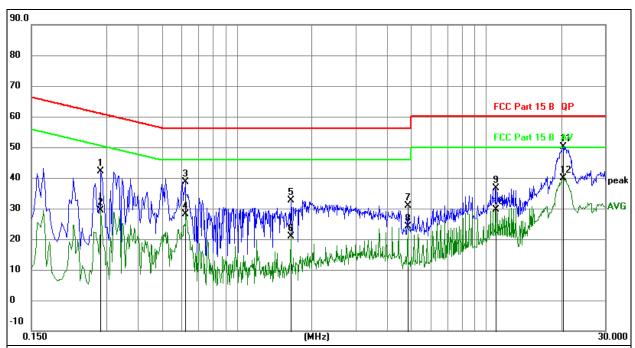
No.: BCTC/RF-EMC-005 Page 11 of 23/ / / / Edition: A.4


b. The RBW of the receiver was set at 9 kHz in 150 kHz ~ 30MHz with Peak and AVG detector in Max Hold mode. Run the receiver's pre-scan to record the maximum disturbance generated from Product in all power lines in the full band.

c. For each frequency whose maximum record was higher or close to limit, measure its QP and AVG values and record.

6.5 Test Result

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Phase :	L
Test Mode:	Mode 3	Test Voltage:	AC 120V/60Hz


Remark:

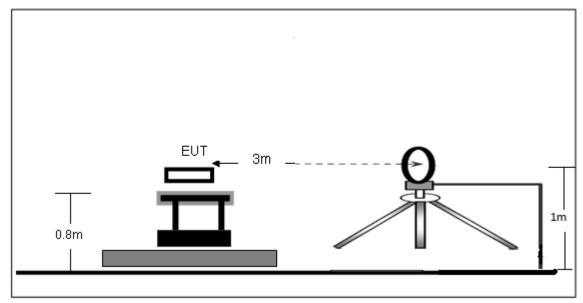
- All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.

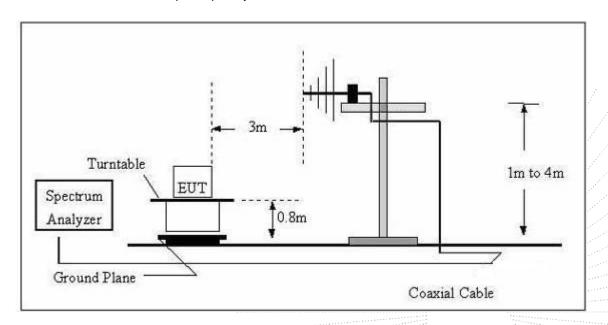
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz		dB	dBuV	dBuV	dB	Detector
1		0.2760	22.47	19.61	42.08	60.94	-18.86	QP
2		0.2760	9.75	19.61	29.36	50.94	-21.58	AVG
3		0.6180	20.20	19.62	39.82	56.00	-16.18	QP
4		0.6180	7.03	19.62	26.65	46.00	-19.35	AVG
5		1.1310	18.22	19.63	37.85	56.00	-18.15	QP
6		1.1310	5.05	19.63	24.68	46.00	-21.32	AVG
7		2.4360	11.87	19.64	31.51	56.00	-24.49	QP
8		2.4360	3.74	19.64	23.38	46.00	-22.62	AVG
9		8.5200	17.23	19.77	37.00	60.00	-23.00	QP
10		8.5200	10.49	19.77	30.26	50.00	-19.74	AVG
11	*	20.4585	29.69	19.75	49.44	60.00	-10.56	QP
12		20.4585	19.34	19.75	39.09	50.00	-10.91	AVG

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Phase :	Ν
Test Mode:	Mode 3	Test Voltage:	AC 120V/60Hz

Remark:

- 1. All readings are Quasi-Peak and Average values.
- 2. Factor = Insertion Loss + Cable Loss.


No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz		dB	dBuV	dBuV	dB	Detector
1	0.2847	22.60	19.61	42.21	60.68	-18.47	QP
2	0.2847	9.69	19.61	29.30	50.68	-21.38	AVG
3	0.6205	19.08	19.62	38.70	56.00	-17.30	QP
4	0.6205	8.40	19.62	28.02	46.00	-17.98	AVG
5	1.6450	12.91	19.63	32.54	56.00	-23.46	QP
6	1.6450	1.33	19.63	20.96	46.00	-25.04	AVG
7	4.8480	11.29	19.71	31.00	56.00	-25.00	QP
8	4.8480	4.31	19.71	24.02	46.00	-21.98	AVG
9	10.9050	16.72	19.80	36.52	60.00	-23.48	QP
10	10.9050	9.71	19.80	29.51	50.00	-20.49	AVG
11 *	20.2696	30.43	19.75	50.18	60.00	-9.82	QP
12	20.2696	20.09	19.75	39.84	50.00	-10.16	AVG


7. Radiated Emissions

7.1 Block Diagram Of Test Setup

(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

No.: BCTC/RF-EMC-005 Page 14 of 23 / / / Edition: A.2

7.2 Limit

FCC §15.209; §15.205.

Test Standard	FCC Part15 C Section 15.209 and 15.205								
	Frequency (MHz)	Field strength Limit (microvolt/meter) (dBuV/m)		Remark	Measurement distance (m)				
	0.009MHz~0.490MHz	2400/F(kHz)	-	-	300				
	0.490MHz-1.705MHz	24000/F(kHz)	-	-	30				
	1.705MHz-30MHz	30	-	-	30				
Test Limit	30MHz~88MHz	100	40.0	Quasi-peak	3				
	88MHz~216MHz	150	43.5	Quasi-peak	3				
	216MHz~960MHz	200	46.0	Quasi-peak	3				
	960MHz~1000MHz	500	54.0	Quasi-peak	3				
	A1 1000MII-	500	54.0	Average	3				
	Above 1000MHz		74.0	Peak	3				

7.3 Test procedure

Receiver Parameter	Setting
Attenuation	Auto
9kHz~150kHz	RBW 200Hz for QP
150kHz~30MHz	RBW 9kHz for QP
30MHz~1000MHz	RBW 120kHz for QP

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 metre to 1.5 metre(Above 18GHz the distance is 1 meter and table is 1.5 metre).

h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

7.4 Test Result

9kHz-30MHz

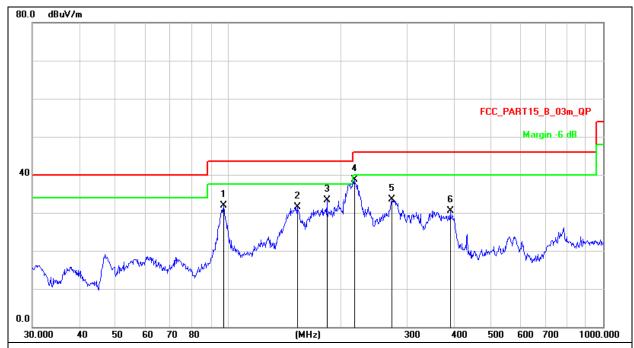
Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Test Voltage:	AC 120V/60Hz
Test Mode:	Mode 3(the worst data)	Polarization :	

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(kHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	20100101 1990
21.49	42.12	20.15	62.27	140.96	-78.69	PK
21.49	45.24	20.15	65.39	120.96	-55.57	AV
60.98	51.15	20.33	71.48	131.90	-60.42	PK
60.98	45.63	20.33	65.96	111.90	-45.94	AV
151.05	63.52	20.55	84.07	124.02	-39.95	PK
151.05	61.73	20.55	82.28	104.02	-21.74	AV
532.99	37.52	20.64	58.16	73,07	-14.91	QP /
751.02	36.63	21.26	57.89	70.09	-12.20	QP
1253.37	31.12	22.32	53.44	65.64	-12.20	QP

Note:

Pre-scan in the all of mode, the worst case in of was recorded.

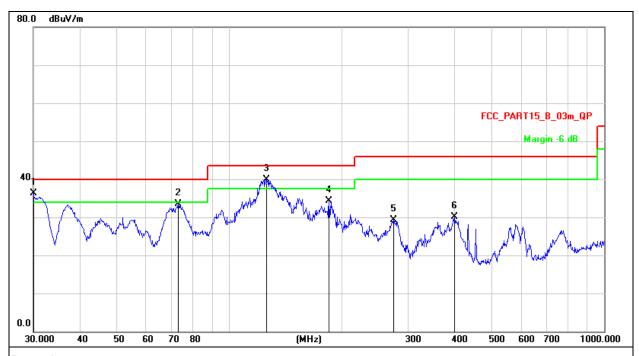
Factor = antenna factor + cable loss - pre-amplifier.


Margin = Emission Level- Limit.

No.: BCTC/RF-EMC-005 Page 16 of 23 / / / / Edition: A.4

Between 30MHz - 1GHz

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Phase :	Horizontal
Test Mode:	Mode 3(the worst data)	Test Voltage:	AC 120V/60Hz


Remark:

Factor = Antenna Factor + Cable Loss – Pre-amplifier.

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1	(97.1148	48.75	-16.81	31.94	43.50	-11.56	QP
2	1	52.6641	50.89	-19.33	31.56	43.50	-11.94	QP
3	18	83.2005	50.75	-17.38	33.37	43.50	-10.13	QP
4	* 2	16.7828	54.56	-15.91	38.65	46.00	-7.35	QP
5	27	73.2341	48.02	-14.43	33.59	46.00	-12.41	QP
6	39	90.7226	41.85	-11.30	30.55	46.00	-15.45	QP

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Phase :	Vertical
Test Mode:	Mode 3(the worst data)	Test Voltage:	AC 120V/60Hz

Remark:

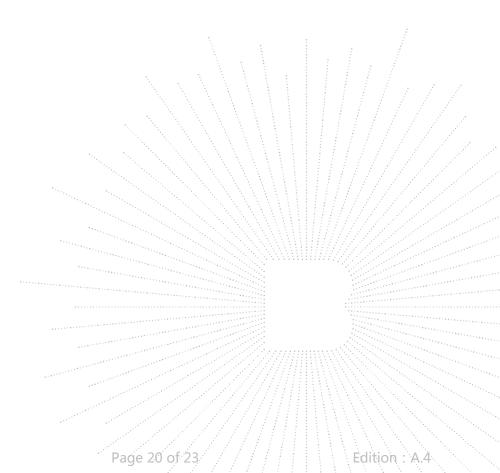
Factor = Antenna Factor + Cable Loss - Pre-amplifier.

								-
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1	İ	30.0000	53.49	-17.28	36.21	40.00	-3.79	QP
2		73.1025	52.44	-18.88	33.56	40.00	-6.44	QP
3	*	125.4457	57.84	-17.92	39.92	43.50	-3.58	QP
4	,	184.4898	51.52	-17.29	34.23	43.50	-9.27	QP
5	:	274.1939	43.73	-14.40	29.33	46.00	-16.67	QP
6	,	399.0302	41.27	-11.11	30.16	46.00	-15.84	QP
								'

8. EUT Photographs

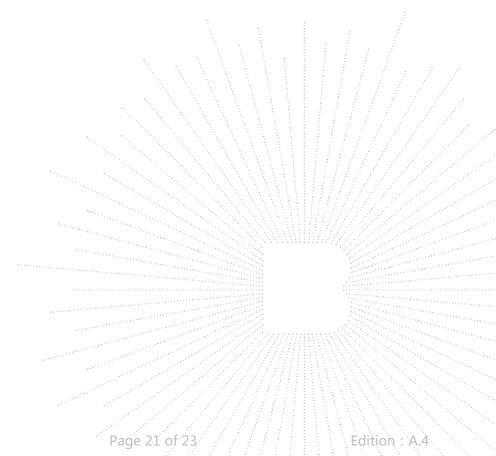
EUT Photo 1

EUT Photo 2



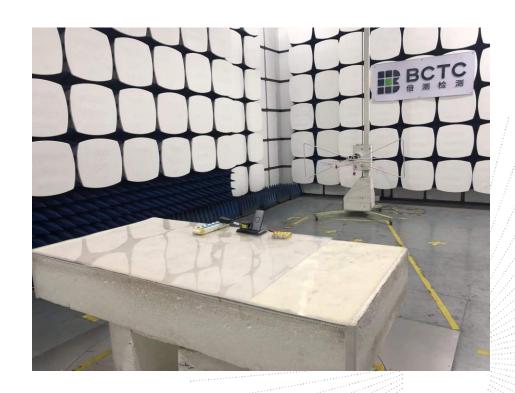
No.: BCTC/RF-EMC-005 Page 19 of 23 / / / Edition: A.4

EUT Photo 3



EUT Test Setup Photographs

Conducted emissions



Radiated Measurement Photos

No.: BCTC/RF-EMC-005 Page 22 of 23 / / / Edition: A.4

STATEMENT

- 1. The equipment lists are traceable to the national reference standards.
- 2. The test report can not be partially copied unless prior written approval is issued from our lab.
- 3. The test report is invalid without stamp of laboratory.
- 4. The test report is invalid without signature of person(s) testing and authorizing.
- 5. The test process and test result is only related to the Unit Under Test.
- 6. The quality system of our laboratory is in accordance with ISO/IEC17025.
- 7.If there is any objection to report, the client should inform issuing laboratory within 15 days from the date of receiving test report.

Address:

1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Tangwei, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China

TEL: 400-788-9558

P.C.: 518103

FAX: 0755-33229357

Website: http://www.chnbctc.com

E-Mail: bctc@bctc-lab.com.cn

**** END ****

No.: BCTC/RF-EMC-005 Page 23 of 23/ / / / Edition: A.4