

SAR TEST REPORT

Product Name	Multi-mode WiFi Storage
Model Name	Lenovo F800
FCC ID	QT7LENOVOF800
Client	Power7 Technology (Dong Guan)Co.,Ltd.
Manufacturer	LENOVO(BEIJING)LIMITED
Date of issue	November 25, 2013

TA Technology (Shanghai) Co., Ltd.

GENERAL SUMMARY

Reference Standard(s)	FCC 47CFR §2.1093 Radiofrequency Radiation Exposure Evaluation: Portable Devices ANSI C95.1, 1992: Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.(IEEE Std C95.1-1991) KDB 865664 D01 SAR measurement 100 MHz to 6 GHz v01r01: SAR Measurement Requirements for 100 MHz to 6 GHz KDB 447498 D01 General RF Exposure Guidance v05r01: Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies KDB 941225 D06 Hot Spot SAR v01r01 SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities KDB 248227 D01 SAR meas for 802 11 a b g v01r02: SAR Measurement Procedures for 802.11a/b/g Transmitters. Tracking Number: 622495
Conclusion	This portable wireless equipment has been measured in all cases requested by the relevant standards. Test results in Chapter 7 of this test report are below limits specified in the relevant standards for the tested bands only. General Judgment: Pass
Comment	The test result only responds to the measured sample.

Approved by

Director

Revised by_

复酸氢

SAR Manager

Performed by

SAR Engineer

TABLE OF CONTENT

1.	General	I Information	5
1.1.	Notes	s of the Test Report	5
1.2.	Testir	ng Laboratory	5
1.3.	Applio	cant Information	6
1.4.	Manu	ıfacturer Information	6
1.5.	Inforn	nation of EUT	7
1.6.	The N	Maximum Reported SAR _{1g}	g
1.7.	Test I	Date	g
2.	SAR Me	easurements System Configuration	1C
2.1.	SAR	Measurement Set-up	10
2.2.	DASY	Y5 E-field Probe System	11
	2.2.1.	EX3DV4 Probe Specification	11
	2.2.2.	E-field Probe Calibration	12
2.3.	Other	Test Equipment	12
	2.3.1.	Device Holder for Transmitters	12
	2.3.2.	Phantom	13
2.4.	Scani	ning Procedure	13
2.5.	Data	Storage and Evaluation	15
	2.5.1.	Data Storage	15
	2.5.2.	Data Evaluation by SEMCAD	15
3.	Laborat	ory Environment	17
4.	Tissue-	equivalent Liquid	18
4.1.	Tissu	e-equivalent Liquid Ingredients	18
4.2.	Tissu	e-equivalent Liquid Properties	18
5.	System	Check	19
5.1.	Desci	ription of System Check	19
5.2.	Syste	em Check Results	20
6.	Operation	onal Conditions during Test	21
6.1.	Test 0	Configuration	21
	6.1.1.	WIFI Test Configuration	21
6.2.	Meas	surement Variability	22
6.3.	Test F	Positions of Portable Devices	23
7.	Test Re	sults	25
7.1.	Cond	ucted Power Results	25
7.2.	SAR	Test Results	27
	7.2.1.	802.11b/n	27
8.	Measur	ement Uncertainty	28
		est Instruments	
ANN	NEX A: T	est Layout	31
		System Check Results	
		Graph Results	
		· Probe Calibration Certificate	
ANN	JEX E· D	02450V2 Dipole Calibration Certificate	58

Report No. RXA1311-0186SAR01	Page 4 of 76
ANNEX F: DAE4 Calibration Certificate	66
ANNEX G: The EUT Appearances and Test Configuration	71

Report No. RXA1311-0186SAR01

Page 5 of 76

1. General Information

1.1. Notes of the Test Report

TA Technology (Shanghai) Co., Ltd. has obtained the accreditation of China National Accreditation Service for Conformity Assessment (CNAS), and accreditation number: L2264.

TA Technology (Shanghai) Co., Ltd. guarantees the reliability of the data presented in this test report, which is the results of measurements and tests performed for the items under test on the date and under the conditions stated in this test report and is based on the knowledge and technical facilities available at TA Technology (Shanghai) Co., Ltd. at the time of execution of the test.

TA Technology (Shanghai) Co., Ltd. is liable to the client for the maintenance by its personnel of the confidentiality of all information related to the items under test and the results of the test. This report only refers to the item that has undergone the test.

This report standalone dose not constitute or imply by its own an approval of the product by the certification Bodies or competent Authorities. This report cannot be used partially or in full for publicity and/or promotional purposes without previous written approval of **TA Technology (Shanghai) Co., Ltd.** and the Accreditation Bodies, if it applies.

If the electronic report is inconsistent with the printed one, it should be subject to the latter.

1.2. Testing Laboratory

Company: TA Technology (Shanghai) Co., Ltd.

Address: No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China

City: Shanghai

Post code: 201201

Country: P. R. China

Contact: Yang Weizhong

Telephone: +86-021-50791141/2/3

Fax: +86-021-50791141/2/3-8000

Website: http://www.ta-shanghai.com

E-mail: yangweizhong@ta-shanghai.com

Report No. RXA1311-0186SAR01

Page 6 of 76

1.3. Applicant Information

Company: Power7 Technology (Dong Guan)Co.,Ltd.

No.28 Binjiang Blvd Shishuikou Village, Qiaotou Town,

Address: Dongguan City, Guang Dong Province

P.R. China

1.4. Manufacturer Information

Company: LENOVO(BEIJING)LIMITED

No.6 Chuang Ye Road Shangdi Information Industry Based, Haidian District,

Address: Beijing,

China

Report No. RXA1311-0186SAR01 Page 7 of 76

1.5. Information of EUT

General Information

Device Type:	Portable Device				
Exposure Category:	Uncontrolled Environr	ment / General Popula	tion		
State of Sample:	Prototype Unit				
SN:	OA0745934500001				
Hardware Version:	1				
Software Version:	1				
Antenna Type:	Internal Antenna				
Device Operating Configurations:					
Test Mode(s):	802.11b/n HT20/HT40 802.11g(untested)	O(tested)			
Test Channel:	1 - 6 - 11 (8	302.11b/n HT20)			
(Low - Middle - High)	3 - 6 - 9 (80	02.11 n HT40)			
	Mode	Tx (MHz)	Rx (MHz)		
Test Frequency Range(s):	802.11b/n HT20	2412 ~ 2462	2412 ~ 2462		
	802.11n HT40	2422 ~ 2452	2422 ~ 2452		

Report No. RXA1311-0186SAR01

Page 8 of 76

Auxiliary Equipment Details

AE:Battery

Model: 465464P

Manufacturer: ShenZhen Oceansun Battery Co., Ltd.

S/N: /

AE1:HD1

Model: WD10JPVX-75JC3T0

Manufacturer: Western Digital

S/N: WX51A9329534

AE2:HD2

Model: WD5000LPVT

Manufacturer: Western Digital

S/N: WX51A93E4872

AE3:HD3

Model: ST500LT012

Manufacturer: Seagate

S/N: W0VEASP2

AE4:HD4

Model: ST1000LM024

Manufacturer: SAMSUNG

S/N: S2R8J9ED710825

Equipment Under Test (EUT) has two WIFI antennas that are used with 802.11b/g/n for Tx/Rx. 802.11n supports MIMO.

The sample undergoing test was selected by the Client.

Components list please refer to documents of the manufacturer.

Report No. RXA1311-0186SAR01

Page 9 of 76

1.6. The Maximum Reported SAR_{1g}

Body Worn Configuration

		Channel	Limit SAR _{1g} 1.6 W/kg		
Mode	Test Position	/Frequency(MHz)	Measured SAR _{1g} (W/kg)	Reported SAR _{1g} (W/kg)	
WIFI	Test Position 1/back side	6/2437	0.033	0.046	

1.7. Test Date

The test performed on November 22, 2013.

2. SAR Measurements System Configuration

2.1. SAR Measurement Set-up

The DASY5 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc.
 The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- A unit to operate the optical surface detector which is connected to the EOC.
- The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY5 measurement server.
- The DASY5 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows 2003
- DASY5 software and SEMCAD data evaluation software.
- Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.
- The generic twin phantom enabling the testing of left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- System validation dipoles allowing to validate the proper functioning of the system.

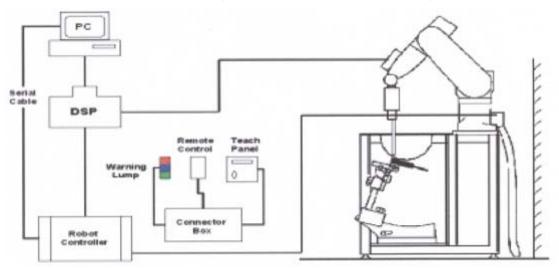


Figure 1. SAR Lab Test Measurement Set-up

Report No. RXA1311-0186SAR01 Page 11 of 76

2.2. DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe EX3DV4 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

2.2.1. EX3DV4 Probe Specification

Construction Symmetrical design with triangular core

Built-in shielding against static charges PEEK enclosure material (resistant to

organic solvents, e.g., DGBE)

Calibration ISO/IEC 17025 calibration service available

Frequency 10 MHz to > 6 GHz

Linearity: ± 0.2 dB (30 MHz to 6 GHz)

Directivity ± 0.3 dB in HSL (rotation around probe axis)

± 0.5 dB in tissue material (rotation normal to

probe axis)

Dynamic Range 10 μ W/g to > 100 mW/g Linearity:

 \pm 0.2dB (noise: typically < 1 μ W/g)

Dimensions Overall length: 330 mm (Tip: 20 mm) Tip

diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers:

1 mm

Application High precision dosimetric

measurements in any exposure

scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6 GHz

with precision of better 30%.

Figure 2.EX3DV4 E-field Probe

Figure 3. EX3DV4 E-field probe

2.2.2. E-field Probe Calibration

Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy was evaluated and found to be better than \pm 0.25dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1 GHz, and in a wave guide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$\mathbf{SAR} = \mathbf{C} \frac{\Delta T}{\Delta t}$$

Where: $\Delta t = \text{Exposure time (30 seconds)}$,

C = Heat capacity of tissue (brain or muscle),

 ΔT = Temperature increase due to RF exposure.

Or

$$SAR = \frac{|E|^2 \sigma}{\rho}$$

Where:

 σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m3).

2.3. Other Test Equipment

2.3.1. Device Holder for Transmitters

Construction: Simple but effective and easy-to-use extension for Mounting Device that facilitates the testing of larger devices according to IEC 62209-2 (e.g., laptops, cameras, etc.) It is lightweight and fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with the Twin SAM, ELI4 and SAM v6.0 Phantoms.

Material: POM, Acrylic glass, Foam

Report No. RXA1311-0186SAR01

Page 13 of 76

2.3.2. Phantom

The Generic Twin Phantom is constructed of a fiberglass shell integrated in a wooden Figure. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

Shell Thickness 2±0.1 mm Filling Volume Approx. 20 liters

Dimensions 810 x 1000 x 500 mm (H x L x W) Aailable Special

Figure 4 Generic Twin Phantom

2.4. Scanning Procedure

The DASY5 installation includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

- The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT's output power and should vary max. ± 5 %.
- The "surface check" measurement tests the optical surface detection system of the DASY5 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above ± 0.1mm). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe. (It does not depend on the surface reflectivity or the probe angle to the surface within ± 30°.)

Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values before running a detailed measurement around the hot spot. Before starting the area scan a grid

Page 14 of 76

spacing is set according to FCC KDB Publication 865664. During scan the distance of the probe to the phantom remains unchanged.

After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

Zoom Scan

After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm.

Spatial Peak Detection

The procedure for spatial peak SAR evaluation has been implemented and can determine values of masses of 1g and 10g, as well as for user-specific masses. The DASY5 system allows evaluations that combine measured data and robot positions, such as:

- maximum search
- extrapolation
- boundary correction
- peak search for averaged SAR

During a maximum search, global and local maxima searches are automatically performed in 2-D after each Area Scan measurement with at least 6 measurement points. It is based on the evaluation of the local SAR gradient calculated by the Quadratic Shepard's method. The algorithm will find the global maximum and all local maxima within -2 dB of the global maxima for all SAR distributions.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation. Extrapolation routines require at least 10 measurement points in 3-D space. They are used in the Zoom Scan to obtain SAR values between the lowest measurement points and the inner phantom surface. The routine uses the modified Quadratic Shepard's method for extrapolation.

• A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 5mm steps.

Table 1: Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01

Frequency	Maximum Area Scan Resolution (mm) $(\Delta \mathbf{x}_{\text{area}}, \Delta \mathbf{y}_{\text{area}})$	Maximum Zoom Scan Resolution (mm) (Δx _{zoom} , Δy _{zoom})	Maximum Zoom Scan Spatial Resolution (mm) ∆z _{zoom} (n)	Minimum Zoom Scan Volume (mm) (x,y,z)
≤ 2 GHz	≤ 15	≤ 8	≤ 5	≥ 30
2-3 GHz	≤ 12	≤ 5	≤ 5	≥ 30
3-4 GHz	≤ 12	≤ 5	≤ 4	≥ 28
4-5 GHz	≤ 10	≤ 4	≤ 3	≥ 25
5-6 GHz	≤ 10	≤ 4	≤ 2	≥ 22

2.5. Data Storage and Evaluation

2.5.1. Data Storage

The DASY5 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DAE4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

2.5.2. Data Evaluation by SEMCAD

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity Normi, a_{i0} , a_{i1} , a_{i2}

Conversion factor ConvF_i
 Diode compression point Dcp_i

Device parameters: - Frequency f

- Crest factor cf

Media parameters: - Conductivity

- Density

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY5 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics.

Page 16 of 76

If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot c f / d c p_i$$

With V_i = compensated signal of channel i (i = x, y, z)

 U_i = input signal of channel i (i = x, y, z)

cf = crest factor of exciting field (DASY parameter)

dcp_i = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes: $E_i = (V_i / Norm_i \cdot ConvF)^{1/2}$

H-field probes: $H_i = (V_i)^{1/2} \cdot (a_{i0} + a_{i1}f + a_{i2}f^2)/f$

With V_i = compensated signal of channel i (i = x, y, z)

Norm_i = sensor sensitivity of channel i (i = x, y, z)

[mV/(V/m)²] for E-field Probes

ConvF = sensitivity enhancement in solution

a_{ii} = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

 \mathbf{E}_{i} = electric field strength of channel i in V/m

 H_i = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = (E_x^2 + E_y^2 + E_z^2)^{1/2}$$

The primary field data are used to calculate the derived field units.

$$SAR = (E_{tot})^2 \cdot \sigma / (\rho \cdot 1000)$$

with **SAR** = local specific absorption rate in mW/g

$$\boldsymbol{E_{tot}}$$
 = total field strength in V/m

- = conductivity in [mho/m] or [Siemens/m]
- = equivalent tissue density in g/cm³

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{\text{pwe}} = E_{\text{tot}}^2 / 3770$$
 or $P_{\text{pwe}} = H_{\text{tot}}^2 \cdot 37.7$

with P_{pwe} = equivalent power density of a plane wave in mW/cm²

 E_{tot} = total electric field strength in V/m

 H_{tot} = total magnetic field strength in A/m

3. Laboratory Environment

Table 2: The Requirements of the Ambient Conditions

Temperature	Min. = 18°C, Max. = 25 °C					
Relative humidity	Min. = 30%, Max. = 70%					
Ground system resistance	< 0.5 Ω					
Ambient noise is checked and found very low and in compliance with requirement of standards.						
Reflection of surrounding objects is minimized	Reflection of surrounding objects is minimized and in compliance with requirement of standards.					

4. Tissue-equivalent Liquid

4.1. Tissue-equivalent Liquid Ingredients

The liquid is consisted of water, salt, Glycol, Preventol and Cellulose. The liquid has previously been proven to be suited for worst-case. Table 3 shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the KDB 865664 D01.

Table 3: Composition of the Body Tissue Equivalent Matter

	-			
MIXTURE%	FREQUENCY(Body) 2450MHz			
Water	73.2			
Glycol	26.7			
Salt	0.1			
Dielectric Parameters	5-0450MH- 0-50.704.05			
Target Value	f=2450MHz ε=52.70 σ=1.95			

4.2. Tissue-equivalent Liquid Properties

Table 4: Dielectric Performance of Tissue Simulating Liquid

Fraguency	Test Date	Temp	Measured Dielectric Parameters		Target Dielectric Parameters		Limit (Within ±5%)	
Frequency		င	٤ _r	σ(s/m)	٤r	σ(s/m)	Dev ε _r (%)	Dev σ(%)
2450MHz (body)	2013-11-22	21.5	52.14	1.994	52.70	1.95	-1.06	2.26

5. System Check

5.1. Description of System Check

The manufacturer calibrates the probes annually. Dielectric parameters of the tissue simulants were measured every day using the dielectric probe kit and the network analyzer. A system check measurement was made following the determination of the dielectric parameters of the simulant, using the dipole validation kit. A power level of 250 mW was supplied to the dipole antenna, which was placed under the flat section of the twin SAM phantom. The system check results (dielectric parameters and SAR values) are given in the table 5.

System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system (±10 %).

System check is performed regularly on all frequency bands where tests are performed with the DASY5 system.

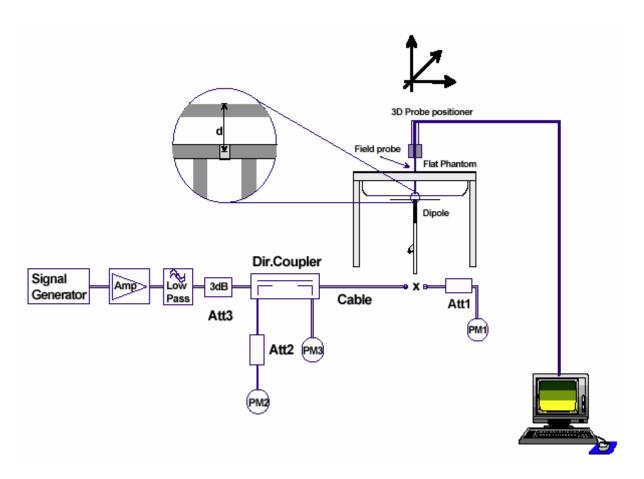


Figure 5. System Check Set-up

Report No. RXA1311-0186SAR01

Page 20 of 76

Justification for Extended SAR Dipole Calibrations

Usage of SAR dipoles calibrated less than 3 years ago but more than 1 year ago were confirmed in maintaining return loss (< - 20 dB, within 20% of prior calibration) and impedance (within 5 ohm from prior calibration) requirements per extended calibrations in KDB 865664 D01:

Dipole D2450V2 SN: 786								
Body Liquid								
Date of Measurement Return Loss(dB) Δ % Impedance (Ω) $\Delta\Omega$								
8/29/2011	-29.0	1	50.4	1				
8/28/2012	-29.9	3.1%	52.1	1.7Ω				
8/27/2013 -28.2 2.8% 52.7 2.3Ω								

5.2. System Check Results

Table 5: System Check in Body Tissue Simulating Liquid

Frequency	Test Date	Dielectric Parameters		Temp	250mW Measured SAR _{1g}	1W Normalized SAR _{1g}	1W Target SAR _{1g}	Limit (±10%
		٤r	σ(s/m)	(℃)		(W/kg)		Deviation)
2450MHz	2013-11-22	52.14	1.994	21.5	12.50	50.00	51.70	-3.29

Note: 1. The graph results see ANNEX B.

2. Target Values used derive from the calibration certificate

6. Operational Conditions during Test

6.1. Test Configuration

6.1.1. WIFI Test Configuration

For WLAN SAR testing, WLAN engineering testing software installed on the DUT can provide continuous transmitting RF signal. The Tx power is set to 13 for 802.11 b mode, set to 11 for 802.11 g mode, set to 12 for 802.11 n HT20 mode, set to 14 for 802.11 n HT40 mode. This RF signal utilized in SAR measurement has almost 100% duty cycle and its crest factor is 1.

For the 802.11b/g/n SAR tests, a communication link is set up with the test mode software for WIFI mode test. During the test, at the each test frequency channel, the EUT is operated at the RF continuous emission mode. Each channel should be tested at the lowest data rate. Testing at higher data rates is not required when the maximum average output power is less than 0.25dB higher than those measured at the lowest data rate.

802.11b/g/n operating modes are tested independently according to the service requirements in each frequency band. 802.11b/g/n modes are tested on the maximum average output channel;

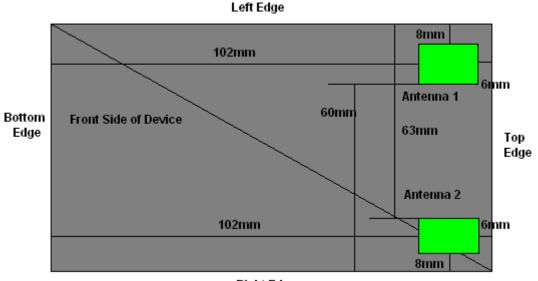
SAR is not required for 802.11g/n channels when the maximum average output power is less than 0.25dB higher than that measured on the corresponding 802.11b channels.

Report No. RXA1311-0186SAR01 Page 22 of 76

6.2. Measurement Variability

Per FCC KDB Publication 865664 D01, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media were required for SAR measurements in a frequency band, the variability measurement procedures were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. These additional measurements were repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR Measurement Variability was assessed using the following procedures for each frequency band:


- 1) When the original highest measured SAR is \geq 0.80 W/kg, the measurement was repeated once.
- 2) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).
- 3) A third repeated measurement was performed only if the original, first or second repeated measurement was \geq 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- 4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg

6.3. Test Positions of Portable Devices

Based upon KDB941225 D06 with a form factor 13 cm x 8.5 cm > 9 cm x 5 cm, a test separation distance of 10 mm is required for all sides (edges) and surfaces with a transmitting antenna located at \leq 25 mm from that surface or edge.

When the antenna-to-edge distance is greater than 2.5cm, such position does not need to be tested.

The location of the antennas inside EUT is shown in ANNEX G:

Right Edge

The EUT is tested at the following 6 test positions:

- Test Position 1: The back side of the EUT towards the bottom of the flat phantom. The
 distance between the back side of the EUT and the bottom of the flat phantom is 10mm.
 (ANNEX G Picture 4)
- Test Position 2: The front side of the EUT towards the bottom of the flat phantom. The distance between the front side of the EUT and the bottom of the flat phantom is 10mm. (ANNEX G Picture 5)
- Test Position 3: The left edge of the EUT towards the bottom of the flat phantom. The distance between the left edge of the EUT and the bottom of the flat phantom is 10mm. (ANNEX G Picture 6)

SAR_{WIFI.antenna 2} is not required for this position.

 Test Position 4: The right edge of the EUT towards the bottom of the flat phantom. The distance between the right edge of the EUT and the bottom of the flat phantom is 10mm. (ANNEX G Picture 7)

SAR_{WIFI.Antenna 1} is not required for this position.

Report No. RXA1311-0186SAR01

Page 24 of 76

- Test Position 5: The top edge of the EUT towards the bottom of the flat phantom. The distance between the top edge of the EUT and the bottom of the flat phantom is 10mm. (ANNEX G Picture 8)
- Test Position 6: The bottom edge of the EUT towards the bottom of the flat phantom. The
 distance between the top edge of the EUT and the bottom of the flat phantom is 10mm.

SAR_{WIFI.Antenna 1} is not required for this position.

SAR_{WIFI.antenna 2} is not required for this position.

Report No. RXA1311-0186SAR01 Page 25 of 76

7. Test Results

7.1. Conducted Power Results

Table 6: Conducted Power Measurement Results

Wi-Fi		Data Rates	Average Power (dBm)									
2.4G	Anetnna	(Mbps) Channel	1	2	5.5	11	1	1	1	1		
		1	13.64	13.61	13.57	13.46	1	1	1	1		
	Ant 1	6	14.01	13.89	13.78	13.59	1	1	1	1		
802.11b		11	13.87	13.55	13.26	13.37	1	1	1	1		
802.110		1	13.62	13.6	13.55	13.42	1	1	1	1		
	Ant 2	6	14.01	13.79	13.66	13.49	1	1	1	1		
		11	13.85	13.56	13.24	13.32	1	1	1	1		
/	/	Data Rates (Mbps)	6.00	9.00	12.00	18.00	24.00	36.00	48.00	54.00		
		Channel										
		1	13.9	13.87	13.81	13.59	13.75	13.77	13.64	13.66		
	Ant 1	6	14.02	13.95	13.84	13.75	13.69	13.62	13.68	13.58		
802.11g		11	13.8	13.76	13.74	13.68	13.67	13.53	13.35	13.54		
002.11g		1	13.89	13.86	13.79	13.62	13.78	13.71	13.67	13.62		
	Ant 2	6	14.01	13.89	13.78	13.66	13.58	13.61	13.68	13.69		
		11	13.78	13.75	13.71	13.65	13.62	13.54	13.32	13.51		
		Data Rates										
/	/	(Mbps) Channel	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7		
		1	13.81	13.76	13.74	13.68	13.67	13.53	13.35	13.54		
	Ant 1	6	14.01	13.89	13.78	13.74	13.67	13.64	13.61	13.59		
802.11n		11	13.78	13.6	13.52	13.55	13.52	13.53	13.49	13.45		
20M:		1	13.82	13.68	13.56	13.55	13.52	13.54	13.49	13.47		
(SISO)	Ant 2	6	14.01	13.91	13.82	13.77	13.74	13.67	13.55	13.57		
		11	13.81	13.76	13.78	13.68	13.65	13.53	13.56	13.54		
		Data Rates	10.01	10.70	10.70	10.00	10.00	10.00	10.00	10.01		
/	/	(Mbps) Channel	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7		
802.11n		3	14.01	13.89	13.86	13.82	13.79	13.75	13.73	13.71		
40M	Ant 1	6	13.71	13.69	13.67	13.62	13.58	13.55	13.53	13.68		
(SISO)		9	13.84	13.82	13.77	13.82	13.79	13.75	13.73	13.7		
	Ant 2	3	14.01	13.92	13.88	13.85	13.81	13.77	13.73	13.71		

Report No. RXA1311-0186SAR01

Page 26 of 76

		6	40.0	40.74	40.70	40.07	10.50	40.50	40.50	10.40
			13.8	13.74	13.72	13.67	13.58	13.52	13.53	13.48
		9	13.85	13.8	13.78	13.75	13.79	13.74	13.71	13.68
		Data Rates	MCS							
1	1	(Mbps)	8	9	10	11	12	13	14	15
		Channel								
		1	13.55	13.49	13.68	13.57	13.36	13.24	13.29	13.38
	Ant 1	6	13.56	13.46	13.42	13.45	13.38	13.36	13.33	13.31
		11	13.42	13.41	13.38	13.36	13.37	13.35	13.32	13.31
802.11n		1	13.46	13.44	13.39	13.37	13.38	13.45	13.36	13.34
20M:	Ant 2	6	13.59	13.56	13.52	13.54	13.58	13.46	13.33	13.32
(MIMO)		11	13.55	13.59	13.68	13.77	13.66	13.57	13.49	13.39
	Sum	1	16.52	16.48	16.55	16.48	16.38	16.36	16.34	16.37
		6	16.59	16.52	16.48	16.51	16.49	16.42	16.34	16.33
		11	16.50	16.51	16.54	16.58	16.53	16.47	16.42	16.36
		Data Rates	MCS							
1	1	(Mbps)	8	9	10	11	12	13	14	15
		Channel			10	•••		10	1.7	10
		3	13.68	13.62	13.63	13.57	13.53	13.55	13.47	13.46
	Ant 1	6	13.64	13.62	13.55	13.53	13.54	13.5	13.48	13.45
		9	13.67	13.65	13.6	13.58	13.52	13.5	13.45	13.42
802.11n		3	13.69	13.62	13.64	13.59	13.55	13.56	13.49	13.51
40M:	Ant 2	6	13.64	13.61	13.54	13.52	13.56	13.5	13.46	13.43
(MIMO)		9	13.67	13.61	13.6	13.58	13.54	13.52	13.47	13.55
		3	16.70	16.63	16.65	16.59	16.55	16.57	16.49	16.50
	Sum	6	16.65	16.63	16.56	16.54	16.56	16.51	16.48	16.45
		9	16.68	16.64	16.61	16.59	16.54	16.52	16.47	16.50

Report No. RXA1311-0186SAR01

Page 27 of 76

7.2. SAR Test Results

7.2.1. 802.11b/n Table 7: SAR Values

	Channel/			Maximum	Conducted	Drift ± 0.21dB	L	imit SAR	_{1g} 1.6 W/kg	
Test Position	Frequency (MHz)	Service	Duty Cycle		Power (dBm)	Drift (dB)	Measured SAR _{1g} (W/kg)	Scaling Factor	Reported SAR _{1g} (W/kg)	Graph Results
Test Position of Body with HD1, 802.11b (Distance 10mm, Antenna 1)										
Test Position 1	6\2437	DSSS	1:1	16	14.01	0.159	0.017	1.58	0.026	Figure 7
Test Position 2	6\2437	DSSS	1:1	16	14.01	-0.082	0.003	1.58	0.004	Figure 8
Test Position 3	6\2437	DSSS	1:1	16	14.01	0.028	0.002	1.58	0.003	Figure 9
Test Position 4	6\2437	DSSS	1:1	NA	NA	NA	NA	NA	NA	NA
Test Position 5	6\2437	DSSS	1:1	16	14.01	0.057	0.004	1.58	0.006	Figure 10
Test Position 6	6\2437	DSSS	1:1	NA	NA	NA	NA	NA	NA	NA
	Test Position of Body with HD1, 802.11b (Distance 10mm, Antenna 2)									
Test Position 1	6\2437	DSSS	1:1	16	14.01	0.055	0.026	1.59	0.040	Figure 11
Test Position 2	6\2437	DSSS	1:1	16	14.01	0.073	0.004	1.59	0.006	Figure 12
Test Position 3	6\2437	DSSS	1:1	NA	NA	NA	NA	NA	NA	NA
Test Position 4	6\2437	DSSS	1:1	16	14.01	0.061	0.009	1.59	0.015	Figure 13
Test Position 5	6\2437	DSSS	1:1	16	14.01	0.038	0.014	1.59	0.022	Figure 14
Test Position 6	6\2437	DSSS	1:1	NA	NA	NA	NA	NA	NA	NA
	Wor	st Case P	osition	of Body w	ith 802.11n H	IT20 (MIMO	, Distance 10ı	mm)		
Test Position 1	6\2437	DSSS	1:1	18	16.59	0.045	0.030	1.38	0.041	Figure 15
	Wor	st Case P	osition	of Body w	ith 802.11n H	T40 (MIMO	, Distance 10ı	mm)		
Test Position 1	6\2437	DSSS	1:1	18	16.65	0.043	0.023	1.36	0.031	Figure 16
	Worst (Case Pos	ition of	Body with	HD2, 802.11	n HT20 (MII	MO, Distance	10mm)		
Test Position 1	6\2437	DSSS	1:1	18	16.59	0.025	0.031	1.38	0.043	Figure 17
	Worst	Case Pos	ition of	Body with	HD3, 802.11	n HT20 (MII	MO, Distance	10mm)		
Test Position 1	6\2437	DSSS	1:1	18	16.59	0.070	0.033	1.38	0.046	Figure 18
	Worst	Case Pos	ition of	Body with	HD4, 802.11	n HT20 (MII	MO, Distance	10mm)		
Test Position 1	6\2437	DSSS	1:1	18	16.59	0.050	0.031	1.38	0.044	Figure 19

Note: 1. The value with blue color is the maximum SAR Value of each test band.

- 2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s).
- 3. KDB 248227-SAR is not required for 802.11g channels when the maximum average output power is less than ¼ dB higher than measured on the corresponding 802.11b channels.

Report No. RXA1311-0186SAR01

Page 28 of 76

8. Measurement Uncertainty

No.	source	Туре	Uncertainty Value (%)	Probability Distribution	k	Ci	Standard ncertainty $u_i^{'}(\%)$	Degree of freedom			
1	System repetivity	Α	0.5	N	1	1	0.5	9			
	Measurement system										
2	-probe calibration	В	6.0	N	1	1	6.0	8			
3	-axial isotropy of the probe	В	4.7	R	$\sqrt{3}$	$\sqrt{0.5}$	1.9	∞			
4	- Hemispherical isotropy of the probe	В	9.4	R	$\sqrt{3}$	$\sqrt{0.5}$	3.9	∞			
5	-boundary effect	В	1.9	R	$\sqrt{3}$	1	1.1	∞			
6	-probe linearity	В	4.7	R	$\sqrt{3}$	1	2.7	80			
7	- System detection limits	В	1.0	R	$\sqrt{3}$	1	0.6	∞			
8	-readout Electronics	В	1.0	N	1	1	1.0	∞			
9	-response time	В	0.8	R	$\sqrt{3}$	1	0.5	80			
10	-integration time	В	4.3	R	$\sqrt{3}$	1	2.5	∞			
11	-RF Ambient noise	В	3.0	R	$\sqrt{3}$	1	1.7	80			
12	-RF Ambient Conditions	В	3.0	R	$\sqrt{3}$	1	1.7	∞			
13	-Probe Positioner Mechanical Tolerance	В	0.4	R	$\sqrt{3}$	1	0.2	∞			
14	-Probe Positioning with respect to Phantom Shell	В	2.9	R	$\sqrt{3}$	1	1.7	8			
15	-Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation	В	3.9	R	$\sqrt{3}$	1	2.3	∞			
	Test sample Related										
16	-Test Sample Positioning	Α	2.9	N	1	1	2.9	71			
17	-Device Holder Uncertainty	Α	4.1	N	1	1	4.1	5			
18	- Power drift	В	5.0	R	$\sqrt{3}$	1	2.9	∞			
	Physical parameter										
19	-phantom Uncertainty	В	4.0	R	$\sqrt{3}$	1	2.3	80			
20	Algorithm for correcting SAR for deviations in permittivity and conductivity	В	1.9	N	1	0.84	0. 9	∞			

Report No. RXA1311-0186SAR01

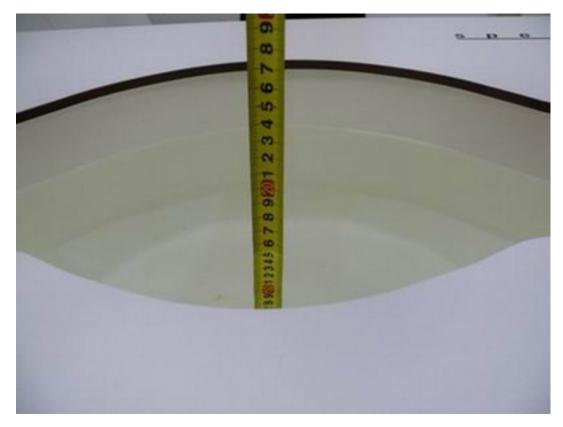
Page 29 of 76

21	-Liquid conductivity (measurement uncertainty)	В	2.5	N	1	0.71	1.8	9
22	-Liquid permittivity (measurement uncertainty)	В	2.5	N	1	0. 26	0. 7	9
23	-Liquid conductivity -temperature uncertainty	В	1.7	R	$\sqrt{3}$	0. 71	0.7	8
24	-Liquid permittivity -temperature uncertainty	В	0.3	R	$\sqrt{3}$	0. 26	0. 05	8
Comb	Combined standard uncertainty		$\sqrt{\sum_{i=1}^{24} c_i^2 u_i^2}$				11.34	
Expan	ded uncertainty (confidence interval of 95 %)	$u_e = 2u_c$		N k=2		22.68		

Report No. RXA1311-0186SAR01 Page 30 of 76

9. Main Test Instruments

Table 8: List of Main Instruments


	Table 0. List of Main instruments									
No.	Name	Туре	Serial Number	Calibration Date	Valid Period					
01	Network analyzer	Agilent 8753E	US37390326	September 10, 2013	One year					
02	Dielectric Probe Kit	Agilent 85070E	US44020115	No Calibration Re	equested					
03	Power meter	Agilent E4417A	GB41291714	March 10, 2013	One year					
04	Power sensor	Agilent N8481H	MY50350004	September 23, 2013	One year					
05	Power sensor	E9327A	US40441622	January 2, 2013	One year					
06	Signal Generator	HP 8341B	2730A00804	September 9, 2013	One year					
07	Dual directional coupler	777D	50146	March 25, 2013	One year					
08	Amplifier	IXA-020	0401	No Calibration Re	equested					
09	E-field Probe	EX3DV4	3753	January 17, 2013	One year					
10	DAE	DAE4	1317	January 25, 2013	One year					
11	Validation Kit 2450MHz	D2450V2	786	August 29, 2011	Three years					
12	Temperature Probe	JM222	AA1009129	March 14, 2013	One year					
13	Hygrothermograph	WS-1	64591	September 26, 2013	One year					

***END OF REPORT ***

ANNEX A: Test Layout

Picture 1: Specific Absorption Rate Test Layout

Picture 2: Liquid depth in the flat Phantom (2450 MHz, 15.3cm depth)

ANNEX B: System Check Results

System Performance Check at 2450 MHz Body TSL

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 786

Date/Time: 11/22/2013 5:15:59 PM

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; $\sigma = 1.994 \text{ mho/m}$; $\varepsilon_r = 52.14$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3753; ConvF(6.90, 6.90, 6.90); Calibrated: 1/17/2013

Electronics: DAE4 Sn1317; Calibrated: 1/25/2013 Phantom: SAM2; Type: SAM; Serial: TP-1524

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

d=10mm, Pin=250mW/Area Scan (41x71x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (interpolated) = 16 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 81.2 V/m; Power Drift = 0.003 dB

Peak SAR (extrapolated) = 25.4 W/kg

SAR(1 g) = 12.5 mW/g; SAR(10 g) = 6.20 mW/g Maximum value of SAR (measured) = 14.4 mW/g

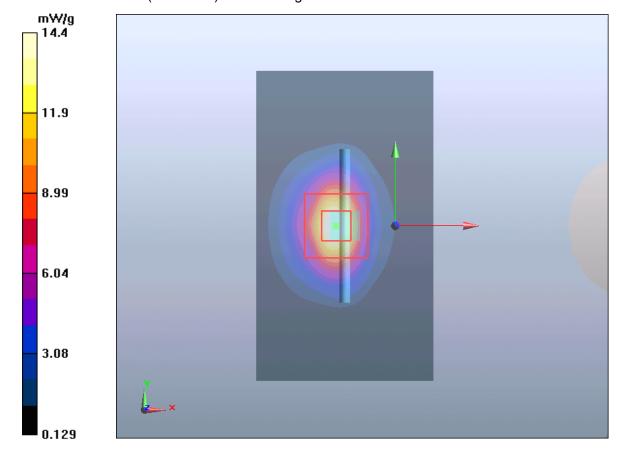


Figure 6 System Performance Check 2450MHz 250mW

Report No. RXA1311-0186SAR01 Page 33 of 76

ANNEX C: Graph Results

802.11b Test Position 1 Middle(Ant 1)

Date/Time: 11/22/2013 6:59:20 PM

Communication System: 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2437 MHz; σ = 1.977 mho/m; ε_r = 52.177; ρ = 1000 kg/m³

Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3753; ConvF(6.90, 6.90, 6.90); Calibrated: 1/17/2013

Electronics: DAE4 Sn1317; Calibrated: 1/25/2013

Phantom: SAM 2; Type: SAM;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Test Position 1 Middle /Area Scan (81x111x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 0.0291 W/kg

Test Position 1 Middle /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.079 V/m; Power Drift = 0.159 dB

Peak SAR (extrapolated) = 0.036 mW/g

SAR(1 g) = 0.017 mW/g; SAR(10 g) = 0.00838 mW/g

Maximum value of SAR (measured) = 0.0184 W/kg

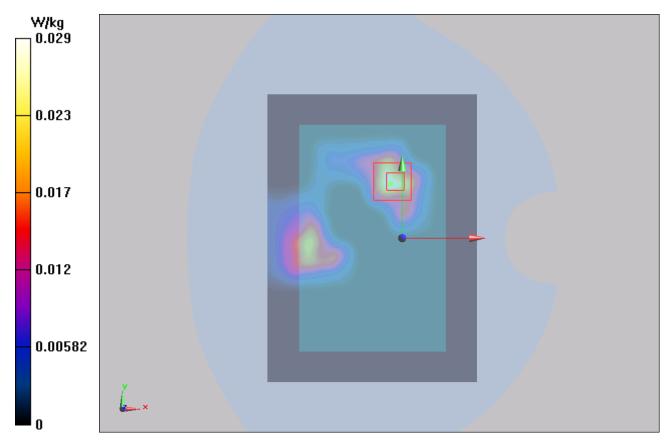


Figure 7 802.11b Test Position 1 Channel 6

Report No. RXA1311-0186SAR01 Page 34 of 76

802.11b Test Position 2 Middle(Ant 1)

Date/Time: 11/22/2013 8:34:31 PM

Communication System: 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2437 MHz; σ = 1.977 mho/m; ε_r = 52.177; ρ = 1000 kg/m³

Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3753; ConvF(6.90, 6.90, 6.90); Calibrated: 1/17/2013

Electronics: DAE4 Sn1317; Calibrated: 1/25/2013

Phantom: SAM 2; Type: SAM;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Test Position 2 Middle /Area Scan (81x111x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 0.00321 W/kg

Test Position 2 Middle /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.119 V/m; Power Drift = -0.082 dB

Peak SAR (extrapolated) = 0.00803 mW/g

SAR(1 g) = 0.003 mW/g; SAR(10 g) = 0.00102 mW/g

Maximum value of SAR (measured) = 0.00331 W/kg

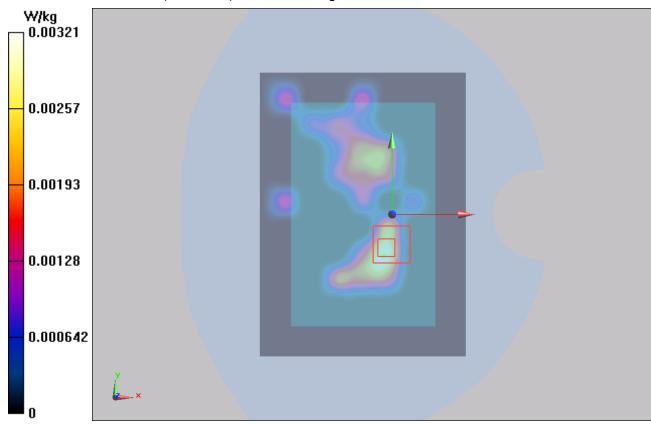


Figure 8 802.11b Test Position 2 Channel 6

Report No. RXA1311-0186SAR01 Page 35 of 76

802.11b Test Position 3 Middle(Ant 1)

Date/Time: 11/22/2013 7:26:07 PM

Communication System: 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2437 MHz; $\sigma = 1.977$ mho/m; $\varepsilon_r = 52.177$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3753; ConvF(6.90, 6.90, 6.90); Calibrated: 1/17/2013

Electronics: DAE4 Sn1317; Calibrated: 1/25/2013

Phantom: SAM 2; Type: SAM;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Test Position 3 Middle /Area Scan (41x111x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 0.00132 W/kg

Test Position 3 Middle /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 0.947 V/m; Power Drift = 0.028 dB

Peak SAR (extrapolated) = 0.00853 mW/g

SAR(1 g) = 0.002 mW/g; SAR(10 g) = 0.000665 mW/g

Maximum value of SAR (measured) = 0.00235 W/kg

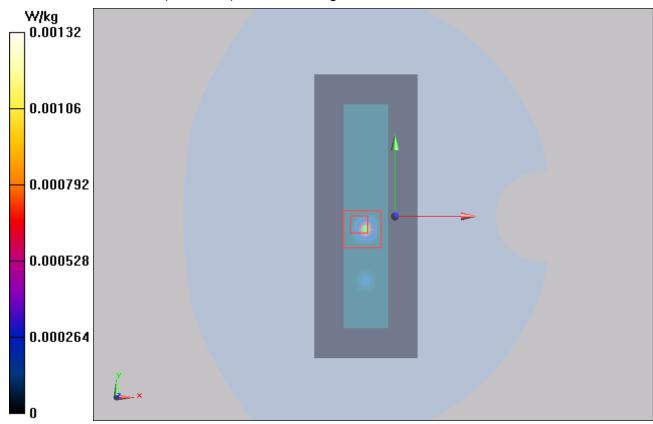


Figure 9 802.11b Test Position 3 Channel 6

Report No. RXA1311-0186SAR01 Page 36 of 76

802.11b Test Position 5 Middle(Ant 1)

Date/Time: 11/22/2013 7:46:56 PM

Communication System: 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2437 MHz; $\sigma = 1.977$ mho/m; $\varepsilon_r = 52.177$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3753; ConvF(6.90, 6.90, 6.90); Calibrated: 1/17/2013

Electronics: DAE4 Sn1317; Calibrated: 1/25/2013

Phantom: SAM 2; Type: SAM;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Test Position 5 Middle /Area Scan (41x81x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 0.00988 W/kg

Test Position 5 Middle /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.413 V/m; Power Drift = 0.057 dB

Peak SAR (extrapolated) = 0.015 mW/g

SAR(1 g) = 0.004 mW/g; SAR(10 g) = 0.00146 mW/g

Maximum value of SAR (measured) = 0.00396 W/kg

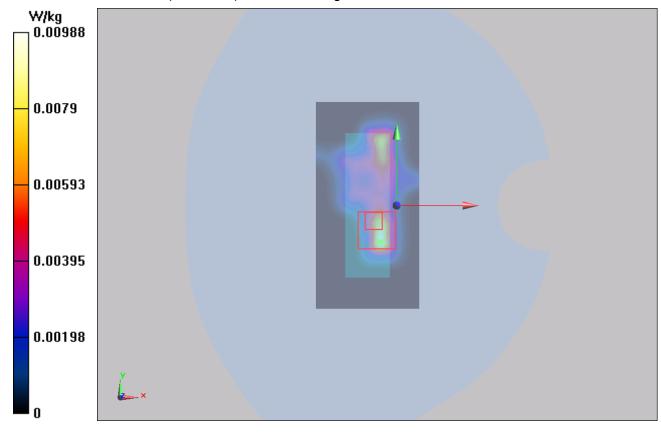


Figure 10 802.11b Test Position 5 Channel 6

Report No. RXA1311-0186SAR01 Page 37 of 76

802.11b Test Position 1 Middle(Ant 2)

Date/Time: 11/22/2013 9:21:33 PM

Communication System: 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2437 MHz; $\sigma = 1.977 \text{ mho/m}$; $\varepsilon_r = 52.177$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3753; ConvF(6.90, 6.90, 6.90); Calibrated: 1/17/2013

Electronics: DAE4 Sn1317; Calibrated: 1/25/2013

Phantom: SAM 2; Type: SAM;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Test Position 1 Middle /Area Scan (81x111x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 0.0394 W/kg

Test Position 1 Middle /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.419 V/m; Power Drift = 0.055 dB

Peak SAR (extrapolated) = 0.050 mW/g

SAR(1 g) = 0.026 mW/g; SAR(10 g) = 0.011 mW/g

Maximum value of SAR (measured) = 0.0296 W/kg

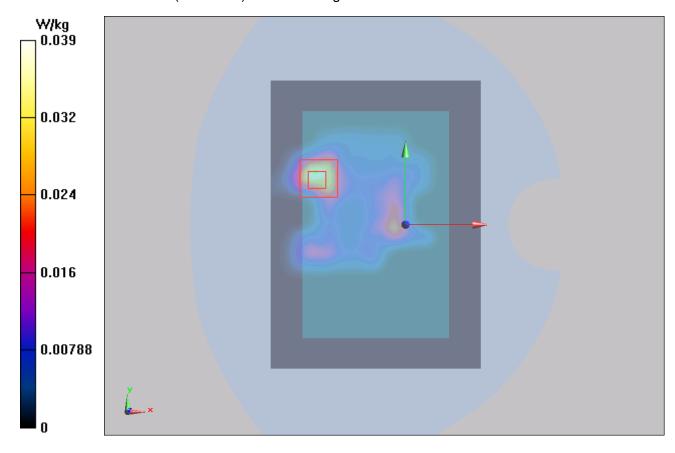


Figure 11 802.11b Test Position 1 Channel 6

Report No. RXA1311-0186SAR01 Page 38 of 76

802.11b Test Position 2 Middle(Ant 2)

Date/Time: 11/22/2013 8:58:55 PM

Communication System: 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2437 MHz; σ = 1.977 mho/m; ε_r = 52.177; ρ = 1000 kg/m³

Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3753; ConvF(6.90, 6.90, 6.90); Calibrated: 1/17/2013

Electronics: DAE4 Sn1317; Calibrated: 1/25/2013

Phantom: SAM 2; Type: SAM;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Test Position 2 Middle /Area Scan (81x111x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 0.0121 W/kg

Test Position 2 Middle /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 0.404 V/m; Power Drift = 0.073 dB

Peak SAR (extrapolated) = 0.014 mW/g

SAR(1 g) = 0.004 mW/g; SAR(10 g) = 0.00191 mW/g

Maximum value of SAR (measured) = 0.00470 W/kg

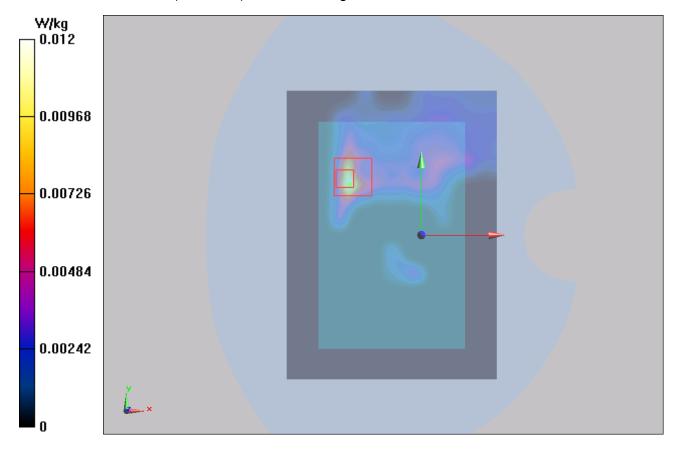


Figure 12 802.11b Test Position 2 Channel 6

Report No. RXA1311-0186SAR01 Page 39 of 76

802.11b Test Position 4 Middle(Ant 2)

Date/Time: 11/22/2013 9:45:55 PM

Communication System: 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2437 MHz; $\sigma = 1.977$ mho/m; $\varepsilon_r = 52.177$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3753; ConvF(6.90, 6.90, 6.90); Calibrated: 1/17/2013

Electronics: DAE4 Sn1317; Calibrated: 1/25/2013

Phantom: SAM 2; Type: SAM;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Test Position 4 Middle /Area Scan (41x111x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 0.0117 W/kg

Test Position 4 Middle /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.375 V/m; Power Drift = 0.061 dB

Peak SAR (extrapolated) = 0.018 mW/g

SAR(1 g) = 0.009 mW/g; SAR(10 g) = 0.00472 mW/g

Maximum value of SAR (measured) = 0.0103 W/kg

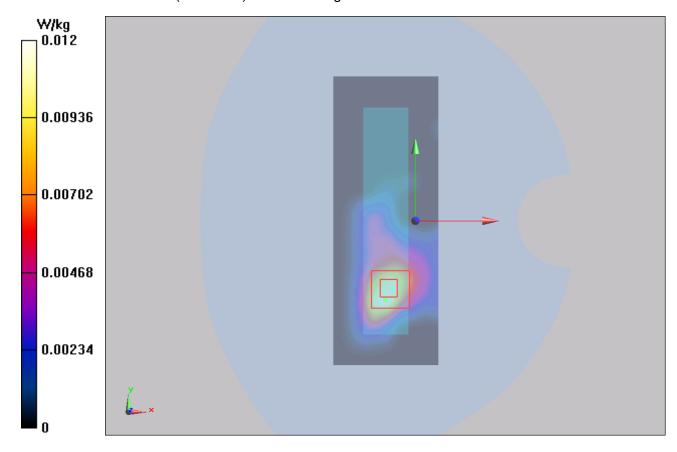


Figure 13 802.11b Test Position 4 Channel 6

Report No. RXA1311-0186SAR01 Page 40 of 76

802.11b Test Position 5 Middle(Ant 2)

Date/Time: 11/22/2013 10:04:29 PM

Communication System: 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2437 MHz; $\sigma = 1.977$ mho/m; $\epsilon_r = 52.177$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3753; ConvF(6.90, 6.90, 6.90); Calibrated: 1/17/2013

Electronics: DAE4 Sn1317; Calibrated: 1/25/2013

Phantom: SAM 2; Type: SAM;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Test Position 5 Middle /Area Scan (41x81x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 0.0153 W/kg

Test Position 5 Middle /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.682 V/m; Power Drift = 0.038 dB

Peak SAR (extrapolated) = 0.025 mW/g

SAR(1 g) = 0.014 mW/g; SAR(10 g) = 0.00681 mW/g

Maximum value of SAR (measured) = 0.0157 W/kg

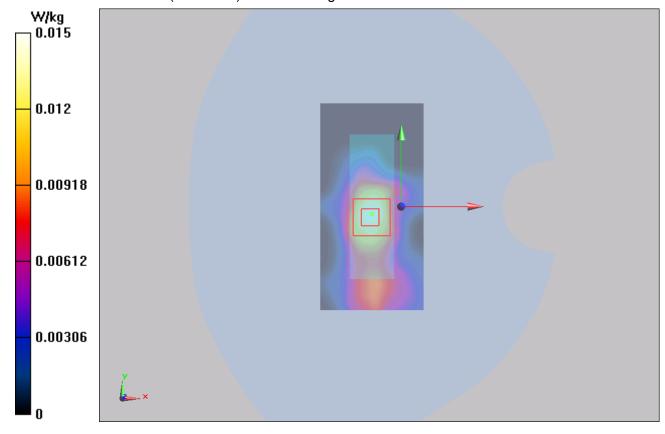


Figure 14 802.11b Test Position 5 Channel 6

Report No. RXA1311-0186SAR01 Page 41 of 76

802.11n HT20 Test Position 1 Middle(MIMO)

Date/Time: 11/22/2013 11:34:28 PM

Communication System: 802.11n HT20; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2437 MHz; $\sigma = 1.977$ mho/m; $\varepsilon_r = 52.177$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3753; ConvF(6.90, 6.90, 6.90); Calibrated: 1/17/2013

Electronics: DAE4 Sn1317; Calibrated: 1/25/2013

Phantom: SAM 2; Type: SAM;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Test Position 1 Middle /Area Scan (81x111x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 0.0349 W/kg

Test Position 1 Middle /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.731 V/m; Power Drift = 0.045 dB

Peak SAR (extrapolated) = 0.058 mW/g

SAR(1 g) = 0.030 mW/g; SAR(10 g) = 0.016 mW/g

Maximum value of SAR (measured) = 0.0318 W/kg

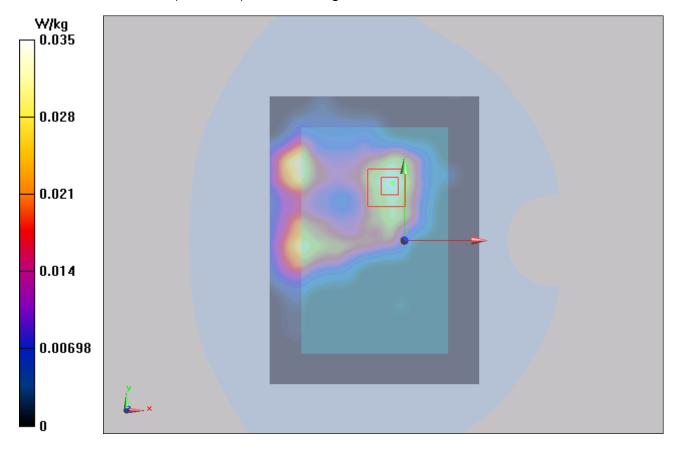


Figure 15 802.11n HT20 Test Position 1 Channel 6

802.11n HT40 Test Position 1 Middle(MIMO)

Date/Time: 11/22/2013 12:01:53 AM

Communication System: 802.11n HT40; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2437 MHz; $\sigma = 1.977$ mho/m; $\varepsilon_r = 52.177$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5°C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3753; ConvF(6.90, 6.90, 6.90); Calibrated: 1/17/2013

Electronics: DAE4 Sn1317; Calibrated: 1/25/2013

Phantom: SAM 2; Type: SAM;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Test Position 1 Middle /Area Scan (81x111x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 0.0320 W/kg

Test Position 1 Middle /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.425 V/m; Power Drift = 0.043 dB

Peak SAR (extrapolated) = 0.046 mW/g

SAR(1 g) = 0.023 mW/g; SAR(10 g) = 0.012 mW/g

Maximum value of SAR (measured) = 0.0247 W/kg

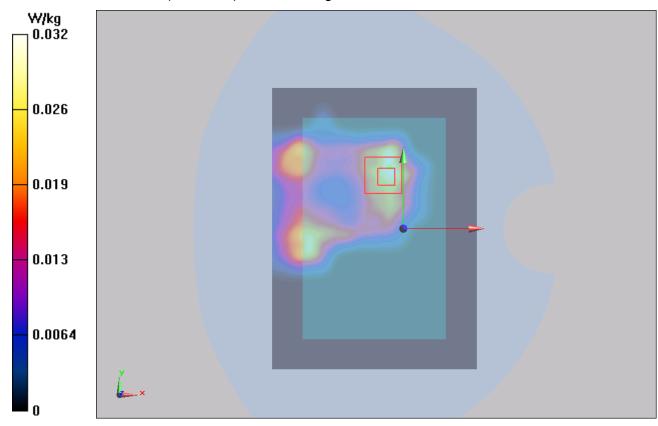


Figure 16 802.11n HT40 Test Position 1 Channel 6

Report No. RXA1311-0186SAR01 Page 43 of 76

802.11n HT20 Test Position 1 Middle(HD 2)

Date/Time: 11/22/2013 9:35:15 AM

Communication System: 802.11n HT20; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2437 MHz; $\sigma = 1.977$ mho/m; $\varepsilon_r = 52.177$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3753; ConvF(6.90, 6.90, 6.90); Calibrated: 1/17/2013

Electronics: DAE4 Sn1317; Calibrated: 1/25/2013

Phantom: SAM 2; Type: SAM;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Test Position 1 Middle / Area Scan (81x111x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 0.0445 W/kg

Test Position 1 Middle /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.145 V/m; Power Drift = 0.025 dB

Peak SAR (extrapolated) = 0.058 mW/g

SAR(1 g) = 0.031 mW/g; SAR(10 g) = 0.017 mW/g

Maximum value of SAR (measured) = 0.0323 W/kg

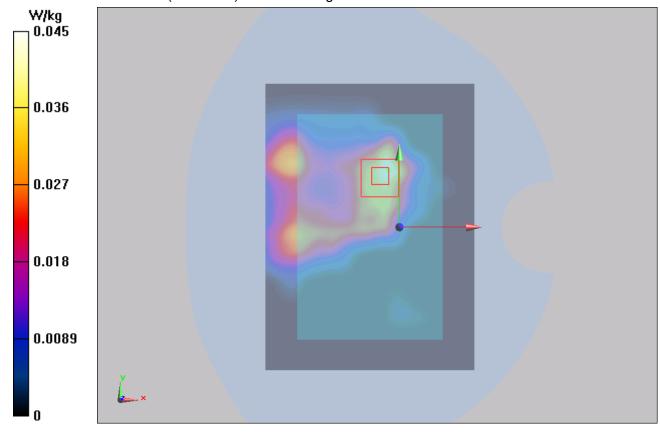


Figure 17 802.11 n HT20 with Test Position 1 Channel 6

TA Technology (Shanghai) Co., Ltd. Test Report

Report No. RXA1311-0186SAR01 Page 44 of 76

802.11 n HT20 Test Position 1 Middle(HD 3)

Date/Time: 11/22/2013 10:45:12 AM

Communication System: 802.11n HT20; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2437 MHz; $\sigma = 1.977$ mho/m; $\epsilon_r = 52.177$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3753; ConvF(6.90, 6.90, 6.90); Calibrated: 1/17/2013

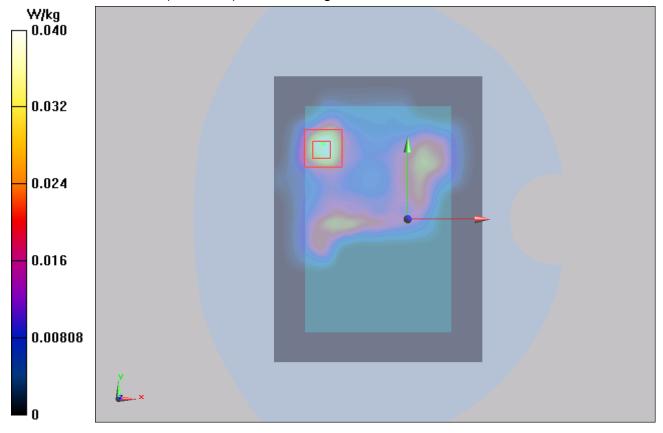
Electronics: DAE4 Sn1317; Calibrated: 1/25/2013

Phantom: SAM 2; Type: SAM;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Test Position 1 Middle /Area Scan (81x111x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 0.0404 W/kg


Test Position 1 Middle /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.767 V/m; Power Drift = 0.070 dB

Peak SAR (extrapolated) = 0.069 mW/g

SAR(1 g) = 0.033 mW/g; SAR(10 g) = 0.015 mW/g

Maximum value of SAR (measured) = 0.0376 W/kg

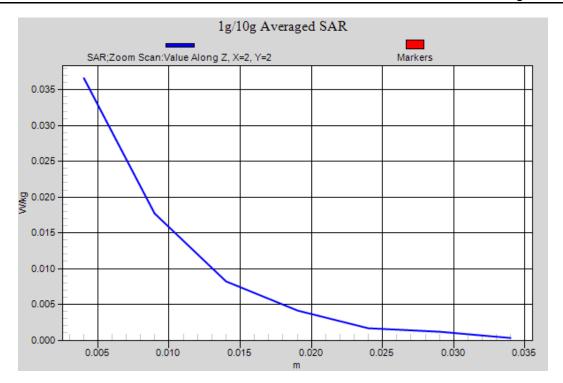


Figure 18 802.11 n HT20 with Test Position 1 Channel 6

Report No. RXA1311-0186SAR01 Page 46 of 76

802.11 n HT20 Test Position 1 Middle(HD 4)

Date/Time: 11/22/2013 11:44:42 AM

Communication System: 802.11n HT20; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2437 MHz; $\sigma = 1.977$ mho/m; $\varepsilon_r = 52.177$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3753; ConvF(6.90, 6.90, 6.90); Calibrated: 1/17/2013

Electronics: DAE4 Sn1317; Calibrated: 1/25/2013

Phantom: SAM 2; Type: SAM;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Test Position 1 Middle /Area Scan (81x111x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 0.0356 W/kg

Test Position 1 Middle /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.087 V/m; Power Drift = 0.050 dB

Peak SAR (extrapolated) = 0.060 mW/g

SAR(1 g) = 0.031 mW/g; SAR(10 g) = 0.017 mW/g

Maximum value of SAR (measured) = 0.0335 W/kg

Figure 19 802.11 n HT20 with Test Position 1 Channel 6

ANNEX D: Probe Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Auden

Certificate No: EX3-3753_Jan13

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:3753

Calibration procedure(s)

QA CAL-01.v8, QA CAL-14.v3, QA CAL-23.v4, QA CAL-25.v4

Calibration procedure for dosimetric E-field probes

Calibration date:

January 17, 2013

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	29-Mar-12 (No. 217-01508)	Apr-13
Power sensor E4412A	MY41498087	29-Mar-12 (No. 217-01508)	Apr-13
Reference 3 dB Attenuator	SN: S5054 (3c)	27-Mar-12 (No. 217-01531)	Apr-13
Reference 20 dB Attenuator	SN: S5086 (20b)	27-Mar-12 (No. 217-01529)	Apr-13
Reference 30 dB Attenuator	SN: S5129 (30b)	27-Mar-12 (No. 217-01532)	Apr-13
Reference Probe ES3DV2	SN: 3013	28-Dec-12 (No. ES3-3013_Dec12)	Dec-13
DAE4	SN: 660	20-Jun-12 (No. DAE4-660_Jun12)	Jun-13
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-11)	In house check: Apr-13
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-12)	In house check: Oct-13

	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	qu
Approved by:	Katja Pokovic	Technical Manager	selle.
			Issued: January 17, 2013
This calibration certificate	shall not be reproduced except in ful	Il without written approval of the labora	atory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters

Polarization ϕ ϕ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: EX3-3753_Jan13 Page 2 of 11

January 17, 2013

Probe EX3DV4

SN:3753

Manufactured: Calibrated:

March 16, 2010 January 17, 2013

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

January 17, 2013

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3753

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ^A	0.47	0.31	0.45	± 10.1 %
DCP (mV) ⁸	101.8	102.3	102.3	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc ^t (k=2)
0	CW	X	0.0	0.0	1.0	0.00	163.7	±3.5 %
		Y	0.0	0.0	1.0		168.5	
		Z	0.0	0.0	1.0		159.9	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

B Numerical linearization parameter: uncertainty not required.

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

January 17, 2013

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3753

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	41.9	0.89	9.46	9.46	9.46	0.45	0.83	± 12.0 %
835	41.5	0.90	8.95	8.95	8.95	0.26	1.19	± 12.0 %
1750	40.1	1.37	7.86	7.86	7.86	0.52	0.79	± 12.0 %
1900	40.0	1.40	7.63	7.63	7.63	0.54	0.73	± 12.0 %
2000	40.0	1.40	7.50	7.50	7.50	0.53	0.77	± 12.0 %
2450	39.2	1.80	6.86	6.86	6.86	0.44	0.80	± 12.0 %
5200	36.0	4.66	4.65	4.65	4.65	0.40	1.80	± 13.1 %
5300	35.9	4.76	4.48	4.48	4.48	0.40	1.80	± 13.1 %
5500	35.6	4.96	4.46	4.46	4.46	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.51	4.51	4.51	0.35	1.80	± 13.1 %
5800	35.3	5.27	4.36	4.36	4.36	0.45	1.80	± 13.1 %

^C Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

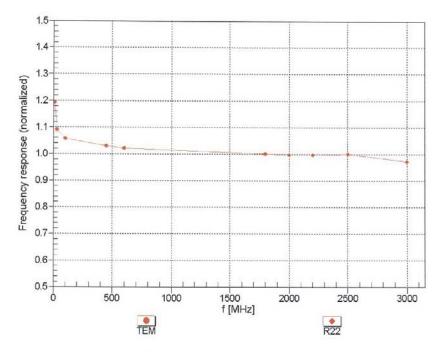
F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

January 17, 2013

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3753

Calibration Parameter Determined in Body Tissue Simulating Media

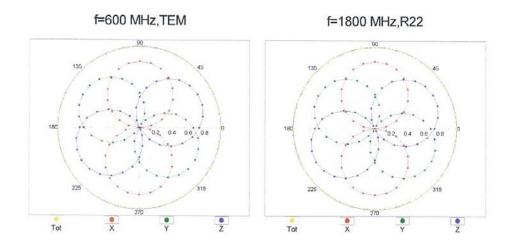
f (MHz) ^C	Relative Permittivity F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	55.5	0.96	9.25	9.25	9.25	0.54	0.75	± 12.0 %
835	55.2	0.97	9.05	9.05	9.05	0.68	0.68	± 12.0 %
1750	53.4	1.49	7.82	7.82	7.82	0.50	0.84	± 12.0 %
1900	53.3	1.52	7.33	7.33	7.33	0.31	1.01	± 12.0 %
2000	53.3	1.52	7.43	7.43	7.43	0.57	0.73	± 12.0 %
2300	52.9	1.81	7.07	7.07	7.07	0.74	0.64	± 12.0 %
2450	52.7	1.95	6.90	6.90	6.90	0.80	0.50	± 12.0 %
2600	52.5	2.16	6.66	6.66	6.66	0.80	0.50	± 12.0 %
3500	51.3	3.31	6.30	6.30	6.30	0.38	1.11	± 13.1 %
5200	49.0	5.30	4.38	4.38	4.38	0.50	1.90	± 13.1 %
5300	48.9	5.42	4.13	4.13	4.13	0.50	1.90	± 13.1 %
5500	48.6	5.65	4.09	4.09	4.09	0.50	1.90	± 13.1 %
5600	48.5	5.77	4.10	4.10	4.10	0.45	1.90	± 13.1 %
5800	48.2	6.00	4.02	4.02	4.02	0.55	1.90	± 13.1 9

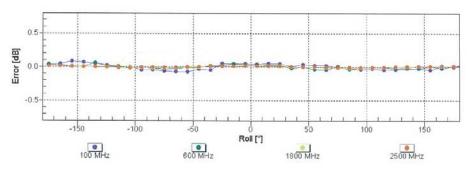

^C Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

January 17, 2013

Frequency Response of E-Field

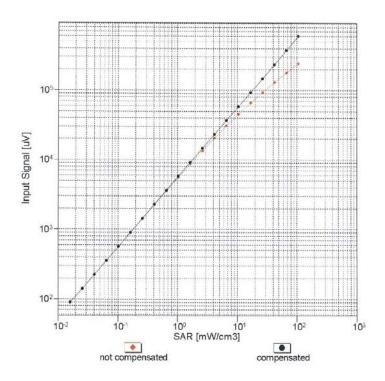

(TEM-Cell:ifi110 EXX, Waveguide: R22)

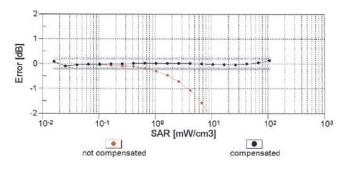


Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

January 17, 2013

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

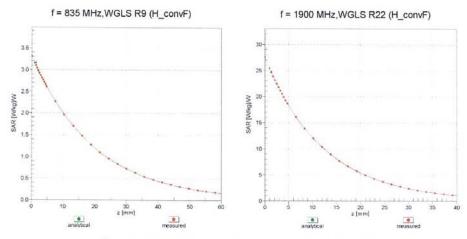


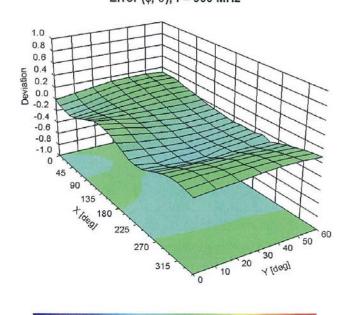


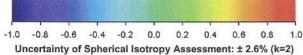
Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

January 17, 2013

Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)




Uncertainty of Linearity Assessment: ± 0.6% (k=2)


January 17, 2013

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz

TA Technology (Shanghai) Co., Ltd. Test Report

EX3DV4-SN:3753

January 17, 2013

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3753

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	55.2
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	2 mm

ANNEX E: D2450V2 Dipole Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

CALIBRATION	ERTIFICATE		
Object	D2450V2 - SN: 7	86	
Calibration procedure(s)	QA CAL-05.v8 Calibration proce	dure for dipole validation kits ab	ove 700 MHz
Calibration date:	August 29, 2011		
		1 TO THE RESERVE TO T	
Calibration Equipment used (M&)	E critical for calibration)		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	ID # GB37480704	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266)	Scheduled Calibration Oct-11
Power meter EPM-442A Power sensor HP 8481A			
Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator	GB37480704 US37292783 SN: S5086 (20b)	06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367)	Oct-11 Oct-11 Apr-12
Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination	GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327	06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371)	Oct-11 Oct-11 Apr-12 Apr-12
Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327 SN: 3205	06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11)	Oct-11 Oct-11 Apr-12 Apr-12 - Apr-12
Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327	06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371)	Oct-11 Oct-11 Apr-12 Apr-12
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards	GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327 SN: 3205	06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11)	Oct-11 Oct-11 Apr-12 Apr-12 - Apr-12
Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A	GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327 SN: 3205 SN: 601	06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11)	Oct-11 Oct-11 Apr-12 Apr-12 - Apr-12 Jul-12
Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327 SN: 3205 SN: 601 * ID # MY41092317 100005	06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-09) 04-Aug-99 (in house check Oct-09)	Oct-11 Oct-11 Apr-12 Apr-12 Apr-12 Jul-12 Scheduled Check In house check: Oct-11 In house check: Oct-11
Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards	GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327 SN: 3205 SN: 601	06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-09)	Oct-11 Oct-11 Apr-12 Apr-12 Apr-12 - Apr-12 Jul-12 Scheduled Check In house check: Oct-11
Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327 SN: 3205 SN: 601 * ID # MY41092317 100005	06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-09) 04-Aug-99 (in house check Oct-09)	Oct-11 Oct-11 Apr-12 Apr-12 Apr-12 Jul-12 Scheduled Check In house check: Oct-11 In house check: Oct-11
Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327 SN: 3205 SN: 601 ** ID # MY41092317 100005 US37390585 S4206	06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-09) 04-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-10)	Oct-11 Oct-11 Apr-12 Apr-12 Apr-12 Jul-12 Scheduled Check In house check: Oct-11 In house check: Oct-11
Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name	06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-09) 04-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-10)	Oct-11 Oct-11 Apr-12 Apr-12 Apr-12 Jul-12 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-11

Certificate No: D2450V2-786_Aug11

Page 1 of 8

TA Technology (Shanghai) Co., Ltd. Test Report

Report No. RXA1311-0186SAR01

Page 59 of 76

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

Accreditation No.: SCS 108

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	
0.000.000.000.000.000	THE STREET CONTROL OF THE PARTY OF	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.4 ± 6 %	1.85 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.7 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	53.8 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition		
SAR measured	250 mW input power	6.41 mW / g	
SAR for nominal Head TSL parameters	normalized to 1W	25.4 mW /g ± 16.5 % (k=2)	

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mhơ/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.8 ± 6 %	2.02 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.2 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	51.7 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.10 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	24.2 mW / g ± 16.5 % (k=2)

TA Technology (Shanghai) Co., Ltd. Test Report

Report No. RXA1311-0186SAR01

Page 61 of 76

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$55.0 \Omega + 2.4 j\Omega$	
Return Loss	- 25.5 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.4 Ω + 3.5 jΩ	
Return Loss	- 29.0 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.154 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	May 06, 2005	

DASY5 Validation Report for Head TSL

Date: 29.08.2011

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 786

Communication System: CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.85$ mho/m; $\varepsilon_r = 38.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

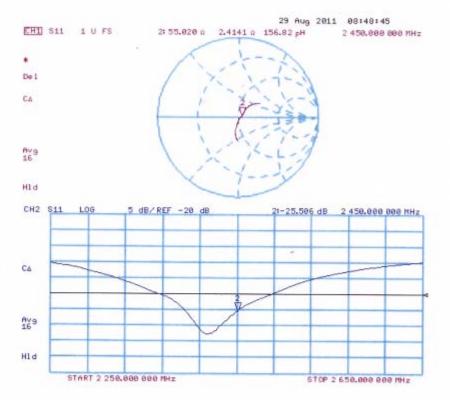
- Probe: ES3DV3 SN3205; ConvF(4.45, 4.45, 4.45); Calibrated: 29.04.2011
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 101.5 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 28.303 W/kg


SAR(1 g) = 13.7 mW/g; SAR(10 g) = 6.41 mW/g

Maximum value of SAR (measured) = 17.561 mW/g

0 dB = 17.560 mW/g

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 29.08.2011

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 786

Communication System: CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 2.02 \text{ mho/m}$; $\varepsilon_r = 51.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

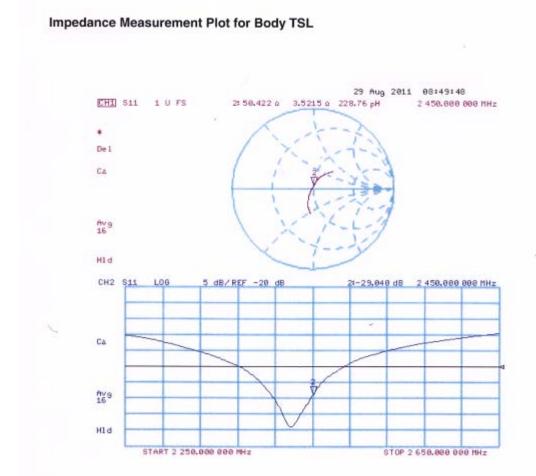
DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.26, 4.26, 4.26); Calibrated: 29.04.2011
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.118 V/m; Power Drift = 0.0072 dB


Peak SAR (extrapolated) = 27.129 W/kg

SAR(1 g) = 13.2 mW/g; SAR(10 g) = 6.1 mW/g

Maximum value of SAR (measured) = 17.387 mW/g

0 dB = 17.390 mW/g

ANNEX F: DAE4 Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

CALIBRATION C	ERTIFICATE		
Object	DAE4 - SD 000 D04 BJ - SN: 1317		
Calibration procedure(s)	QA CAL-06.v25 Calibration proced	ure for the data acquisition electr	onics (DAE)
Calibration date:	January 25, 2013		
Calibration Equipment used (M&	TE critical for calibration)	facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.)	
Calibration Equipment used (M& Primary Standards		facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 02-Oct-12 (No:12728)	Scheduled Calibration Oct-13
Calibration Equipment used (M& Primary Standards Ceithley Multimeter Type 2001	TE critical for calibration) ID # SN: 0810278	Cal Date (Certificate No.) 02-Oct-12 (No:12728)	Scheduled Calibration Oct-13
Calibration Equipment used (M& Primary Standards Ceithley Multimeter Type 2001 Secondary Standards	ID # SN: 0810278	Cal Date (Certificate No.)	Scheduled Calibration
Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit	ID # SN: 0810278 ID # SE UWS 053 AA 1001	Cal Date (Certificate No.) 02-Oct-12 (No:12728) Check Date (in house)	Scheduled Calibration Oct-13 Scheduled Check
Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit	ID # SN: 0810278 ID # SE UWS 053 AA 1001 SE UMS 006 AA 1002	Cal Date (Certificate No.) 02-Oct-12 (No:12728) Check Date (in house) 07-Jan-13 (in house check) 07-Jan-13 (in house check)	Scheduled Calibration Oct-13 Scheduled Check In house check: Jan-14 In house check: Jan-14
Calibration Equipment used (M&T Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit Calibrator Box V2.1	ID # SN: 0810278 ID # SE UWS 053 AA 1001 SE UMS 006 AA 1002 Name	Cal Date (Certificate No.) 02-Oct-12 (No:12728) Check Date (in house) 07-Jan-13 (in house check)	Scheduled Calibration Oct-13 Scheduled Check In house check: Jan-14 In house check: Jan-14
Calibration Equipment used (M&T Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit Calibrator Box V2.1	ID # SN: 0810278 ID # SE UWS 053 AA 1001 SE UMS 006 AA 1002	Cal Date (Certificate No.) 02-Oct-12 (No:12728) Check Date (in house) 07-Jan-13 (in house check) 07-Jan-13 (in house check)	Scheduled Calibration Oct-13 Scheduled Check In house check: Jan-14 In house check: Jan-14
All calibrations have been conducted to the calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit Calibrator Box V2.1 Calibrated by: Approved by:	ID # SN: 0810278 ID # SE UWS 053 AA 1001 SE UMS 006 AA 1002 Name	Cal Date (Certificate No.) 02-Oct-12 (No:12728) Check Date (in house) 07-Jan-13 (in house check) 07-Jan-13 (in house check)	Scheduled Calibration Oct-13 Scheduled Check In house check: Jan-14 In house check: Jan-14

Certificate No: DAE4-1317_Jan13

Page 1 of 5

TA Technology (Shanghai) Co., Ltd. Test Report

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE

data acquisition electronics

Connector angle

information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

TA Technology (Shanghai) Co., Ltd. Test Report

Report No. RXA1311-0186SAR01

Page 68 of 76

DC Voltage Measurement A/D - Converter Resolution nominal

full range = -100...+300 mV full range = -1......+3mV High Range: 1LSB = $6.1 \mu V$, 1LSB = Low Range: 61nV, DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	х .	Y	Z
High Range	404.011 ± 0.02% (k=2)	404.006 ± 0.02% (k=2)	403.901 ± 0.02% (k=2)
Low Range	3.98819 ± 1.55% (k=2)	3.99805 ± 1.55% (k=2)	3.98192 ± 1.55% (k=2)

Connector Angle

Connector Angle to be used in DASY system	117°±1°
---	---------

Certificate No: DAE4-1317_Jan13

Page 3 of 5

Appendix

1. DC Voltage Linearity

High Range	Reading (µV)	Difference (μV)	Error (%)
Channel X + Input	199994.16	-0.78	-0.00
Channel X + Input	20000.75	0.37	0.00
Channel X - Input	-19997.98	2.89	-0.01
Channel Y + Input	199995.20	0.02	0.00
Channel Y + Input	19999.08	-1.15	-0.01
Channel Y - Input	-20002.66	-1.68	0.01
Channel Z + Input	199994.67	-0.43	-0.00
Channel Z + Input	19997.92	-2.31	-0.01
Channel Z - Input	-20000.66	0.26	-0.00

Low Range	Reading (μV)	Difference (µV)	Error (%)
Channel X + Input	2001.23	0.59	0.03
Channel X + Input	201.53	0.55	0.28
Channel X - Input	-198.20	0.62	-0.31
Channel Y + Input	2000.33	-0.29	-0.01
Channel Y + Input	200.43	-0.68	-0.34
Channel Y - Input	-199.64	-0.69	0.35
Channel Z + Input	2000.78	0.22	0.01
Channel Z + Input	200.32	-0.69	-0.34
Channel Z - Input	-199.27	-0.35	0.18

Common mode sensitivity
 DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	-23.69	-25.75
	- 200	28.59	26.45
Channel Y	200	-1.44	-1.70
	- 200	-0.06	-0.16
Channel Z	200	-10.76	-11.18
	- 200	9.82	9.91

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (μV)
Channel X	200	70	1.52	-4.72
Channel Y	200	8.54	10	4.31
Channel Z	200	10.79	5.34	-

Certificate No: DAE4-1317_Jan13

Page 4 of 5

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16104	15986
Channel Y	16111	15993
Channel Z	16217	16069

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input $10 M\Omega$

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	1.28	0.53	2.45	0.33
Channel Y	-1.29	-2.89	0.51	0.58
Channel Z	-0.39	-1.47	1.06	0.37

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

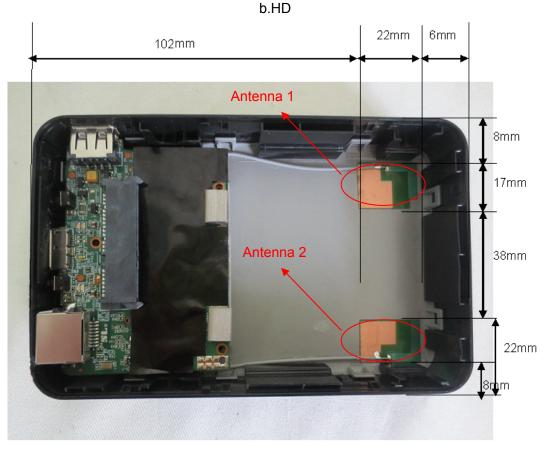
9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

ANNEX G: The EUT Appearances and Test Configuration

a.EUT

b-1: HD 1 (SN: WX51A9329534)


b-2 :HD 2 (SN: WX51A93E4872)

b-3: HD 3 (SN: W0VEASP2)

b-4 : HD 4 (SN :S2R8J9ED710825)

c.Antenna

Picture 3: Constituents of the EUT

Picture 4: Test position 1

Picture 5: Test position 2

Picture 6: Test Position 3

Picture 7: Test Position 4

Picture 8: Test Position 5