

FCCID: QSRKP1TA Report Number: HST201401-0049-FCC

Test Report

Applicant: Enping Karsect Electronics Co., Ltd.

Address of Applicant: F45-1, District F, Foreign and Private Capital Industrial Zone, Enping,

Guangdong, China

Equipment Under Test (EUT):

EUT Name: Monitor System

Model No.: KP1TA

Trade Mark: Karsect

Serial No.: Not supplied by client

Standards: FCC PART15 SUBPART C: 2013

Date of Receipt: Jan. 6, 2014

Date of Test: Jan. 6 to Mar. 8, 2014

Date of Issue: Mar. 9, 2014

Test Result : PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Tested by:

Sandy Yu / EMC Engineer

Authorized Signature:

Henly Xie / Manager, Representative of the Lab

This report refers to the General Conditions for Inspection and Testing Services, printed overleaf

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government.

All test results in this report can be traceable to National or International Standards.

The test report prepare by:

Guangdong Huesent Testing & Inspection Technology Co., Ltd.

Self-ordained 68# courtyard, No.91, Dongguanzhuang Road, Guangzhou, China.

Tel: 86-20-28263298 Fax: 86-20-28263237 http://www.hst.org.cn E-mail:hst@hst.org.cn

1 Test Summary

Test	Test Requirement	Test Method	Class / Severity	Result
Radiated Emission (9kHz to 25GHz)	FCC PART 15.249	ANSI C63.4:2003	In FCC PART 15.249	PASS
Occupied Bandwidth	FCC PART 15.215	ANSI C63.10:2009	In FCC PART 15.215	PASS
Conducted Emissions at Mains Terminals	FCC PART 15.207	ANSI C63.4:2003	In FCC PART 15.207	PASS

Remark:

*

Channel	Frequency/ MHz	Channel	Frequency/ MHz
01: Lowest	903.0	25	914.8
02	903.3	26	915.5
03	903.7	27	916.2
04	904.2	28	916.5
05	905.0	29	917.0
06	905.3	30	917.5
07	906	31	917.9
08	906.5	32	918.5
09	907.0	33	918.9
10	907.7	34	919.5
11	908.0	35	920.0
12	908.5	36	920.5
13	909.2	37	920.8
14	909.5	38	921.5
15	910.0	39	922.0
16	910.5	40	922.5
17	911.0	41	923.0
18	911.5	42	923.5
19	912.0	43	924.0
20	912.5	44	924.5
21	913.0	45	925.0
22	913.5	46	925.3
23	914.0	47	926.1
24: Mid	914.5	48: Highest	926.5

The tests were carried out on the 3 samples with the typical frequency of lowest/ middle/ highest channels listed above.

2 Contents

1	TES	T SUMMARY	2
2	CON	ITENTS	4
3	GEN	IERAL INFORMATION	5
	4.1. 4.2. 4.3. 4.4. 4.5. 4.6. 4.7. 4.8.	CLIENT INFORMATION GENERAL DESCRIPTION OF E.U.T DETAILS OF E.U.T. DESCRIPTION OF SUPPORT UNITS STANDARDS APPLICABLE FOR TESTING TEST LOCATION DEVIATION FROM STANDARDS ABNORMALITIES FROM STANDARD CONDITIONS	5 5 5 5 6
5.	_	IIPMENTS USED DURING TEST	
	6.1. 6.1.3 6.1.3 6.1.4 6.1.6 6.2. 6.2.3 6.2.3 6.2.3 6.3.3	RADIATION INTERFERENCE I E.U.T. Operation I Test Setup I Test Procedure I Measurement Data I Measurement Data for 15.249.d OCCUPIED BANDWIDTH I E.U.T. Operation I Test Setup I Test Setup I Test Procedure I Measurement Data I Test Operation I Test Configuration	99 99 99 99 99 99 99 99 99 99 99 99 99
7.	6.3.4 6.3.4	7 Test Procedure	32 33
	7.1. 7.2. 7.3. 7.4.	RADIATED EMISSION TEST SETUP CONDUCTED EMISSION TEST SETUP EUT CONSTRUCTIONAL DETAILS ANTENNA PHOTO	35 37

3 General Information

4.1. Client Information

Applicant: Enping Karsect Electronics Co., Ltd.

Address of F45-1, District F, Foreign and Private Capital Industrial Zone,

Applicant: Enping, Guangdong, China

4.2. General Description of E.U.T.

EUT Name: Monitor System

Item No.: KP1TA

Serial No.: Not supplied by client

4.3. Details of E.U.T.

Power Supply: 12V-18Vdc, by AC/DC adapter, model:HHD135-500, input: 120Vac,

60Hz, 18W, output: 13.5Vdc500mA

Main Function: Wireless monitor system with an associated receiver for

transmitting voice.

Oscillating Base's RF module IC (model: 15E03), crystal frequency: 10MHz,

Frequency: location: X1.

Frequency Range: 903.000 MHz to 926.500 MHz

Modulation: 8FSK.

Antenna Type: external dipole antenna; Gained: 6 dBi; Antenna length: 25cm of the base.

4.4. Description of Support Units

Test the EUT with audio signal generator.

4.5. Standards Applicable for Testing

The standard used was FCC PART 15, SUBPART C, PART 15.249.

The EUT belongs to low power communication device transmitter, and it's an unlicensed low power auxiliary device.

4.6. Test Location

Guangdong Huesent Testing & Inspection Technology Co., Ltd.

No.91, Dongguanzhuang Road, Guangzhou, China.

Tel: 86-20-87221905, Fax: 86-20-87223892

CNAS- Accreditation No.: L2885.

CMA- Authorisation Certificate No.: 2008191614Z

Radiated and conducted emission tests were subcontracted to the laboratory following-

Guangdong Environment Radiation Monitoring Center.

860, South Guangzhou Avenue, Guangzhou, P.R. China

Tel: 86-20-84281721 Fax: N/A Email: Kevin.ma@nemko.com

FCC- Registration No: 667318 on on Sep. 29, 2009

CNAS- Accreditation No: L5539.

4.7. Deviation from Standards

None.

4.8. Abnormalities from Standard Conditions

None.

5. Equipments Used during Test

Total Environment	· · · · · · · · · · · · · · · · · · ·		Serial No.	Serial No.		
Test Equipment	Manufactory	Model No.	Equipment No.	Cal Date	Cal Due to Dat	
3m Semi-anechoic	Albatross	0.4.0.014	/	2040 40 0	2014 10 0	
Chamber	Projecets Gm	SAC-3M	1.001	2012-10-9	2014-10-9	
Spectrum Analyzer	R&S	FSP30	101230	2013-7-30	2014-7-30	
opodiam / maryzor	1100	1 01 00	1.003	2010 7 00	20111 00	
Spectrum Analyzer	R&S	FSP30	100207 EMC0001	2013-3-30	2014-3-30	
5.44.5 ·	5.00	5001	100849	0040 = 00	0044 = 00	
EMI Receiver	R&S	ESCI	1.002	2013-7-30	2014-7-30	
EMI Receiver	R&S	ESCI	100336	2013-3-4	2014-3-4	
Livii Neceivei	K & S	Loci	EMC1002	2014-2-20	2015-2-20	
LICAL	۸۲۱	1.0460	16010643209	2013-2-28	2014-2-28	
LISN	AFJ	LS16C	EMC1003	2014-2-20	2015-2-20	
Two-Line	D 0 0	EN 1040	100101	0040 7.00	2014-7-30	
V-Network	R&S	ENV216	1.004	2013-7-30		
OL: LE D	DO 7 7	ZW-391	1	0044.5.05	2014-5-25	
Shielding Room	DG ZongZhou	7x3.9x3 m	EMC1001	2011-5-25		
RF Signal Generator	R&S	SMB100A-B106	118622	2013-3-22	2014-3-22	
Anechoic Chamber	ETS•Lindgren	RFSD-F-100	1.031	2012-4-10	2014-4-10	
Anconoic onamber	L 10 Lindgich	141 00-1 - 100	ITL-100	2012-4-10	2014-4-10	
Power Meter	R&S	NRP2	101859 1.033	2013-3-22	2014-3-22	
RF Power Amplifier	BONN	BLWA 0830-160/100/	118622	2012 2 22	2014 2 22	
RF Power Ampliller	BOININ	60D	1.032	2013-3-22	2014-3-22	
18G RF Pre-amplifier	MITEQ	AFS44	1381096 1.01.1	2013-6-8	2014-6-8	
·	Rohde &		100193			
Power Meter	Schwarz	URV35	EMC1506	2013-6-8	2014-6-8	
Audio Analyzer	Hewlett Packard	8903B	0467331	2013-2-27	2014-2-27	
			EMC0011	2014-2-20	2015-2-20	
Power Sensor	Rohde & Schwarz	URV5-Z7	100287 EMC1507	2013-6-8	2014-6-8	
Low Loss Coaxial			/ LIVIO 1307	0040 40 0	0044.40.5	
Cable	HST	2 m	EMC1008	2013-12-6	2014-12-6	
Noise Generator	Ningbo	DF1681	6006867	2013-5-30	2014-5-30	
	Zhongce	Dags 7 of 60	EMC0009			

Report Number: HST201401-0049-FCC

Monopole Antenna	HST	N/A	EMC6002	2013-6-8	2014-6-8	
1G-18GHz Double Ridged Guide	R&S	HF906	100685	2013-5-22	2014-5-22	
Antenna	Κάδ	111-900	1.01	2013-3-22	2014-5-22	
15G-26.5(40)GHz Double Ridged	Schwarzbeck	BBHA 9170	1	2013-6-8	2014-6-8	
Guide Antenna	oonwar25ook	221	EMC7001	201000	23.100	
9k-30MHz Loop	BJ 2nd Factory	ZN30900A	B2-005;	2013-9-24	2014-9-24	
Antenna	Do Zha i actory	Z1130300A	EMC6001	2013-9-24	2014-9-24	
Biconilog Antenna	Schwarzbeck	VULB9163	9163-378	2013-5-22	2015-5-22	
Dicorniog Artierna	Scriwarzbeck	VOLD9103	1.011	2013-5-22	2015-5-22	
Audio Signal Generator	HK LONGWEI	TAG-101	EMC0010	2013-11-12	2014-11-12	

6. Test Results

6.1. RADIATION INTERFERENCE

Test Requirement: FCC Part15.249, a) & FCC Part15.209

Test Method: ANSI C63.4:2003

Detector: Peak for pre-scan (The resolution bandwidth was 100kHz and the

video bandwidth was 300kHz up to 1.0GHz and 1.0MHz with a

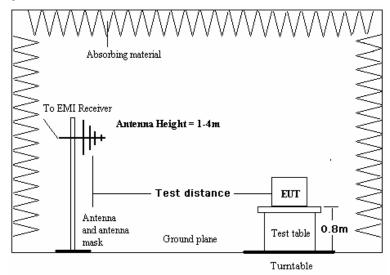
video BW of 3.0MHz above 1.0GHz.)

Average detector if maximised peak within 6dB of limit

Test Date: Jan. 22, 2014

6.1.1 E.U.T. Operation

Operating Environment:


Temperature: 18°C Humidity:52% RH Atmospheric Pressure: 1020mBar

EUT Operation:

In the fundamental test, an audio signal generator supplied a sinusoidal signal at 1 kHz as input in worst case (within 1kHz to 20kHz input for pre-testing), connecting with the EUT to peripheral devices.

Test the EUT work normally in on mode during the whole test.

6.1.2 Test Setup

6.1.3 Test Procedure

ANSI STANDARD C63.4-2003 10.1.7 MEASUREMENT PROCEDURES:

An initial pre-scan was performed in the 3m chamber using the spectrum analyser in peak detection mode. Average measurements were conducted based on the peak sweep graph. When an emission was found, the table was rotated to produce the maximum signal strength. At this point, the antenna was raised and lowered from 1m to 4m. The antenna was placed in both the horizontal and vertical polarities.

6.1.4 Measurement Data

Copy from FCC Part 15.249.a)

(a) Except as provided in paragraph (b) of this section, the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

to the first term and the first						
Fundamental	Field Strength					
Frequency	Fundamental	Harmonics				
MHz	millivolts/meter(mV/m)	microvolts/meter(uV/m)				
902 - 928	50	500				
2400 - 2483.5	50	500				
5725 - 5875	50	500				
24000 - 24250	250	2500				

Peak measurement of carrier						
Frequency	Le	vel	Transducer	Limit	Ма	rgin
MHz	dBuV/m		dB	dBuV/m	d	IB
	V	Н			V	Н
903.0 (L)	90.0	104.2	-14.8		24.0	9.8
914.5 (M)	98.5	104.0	-14.8	114	15.5	10.0
926.5 (H)	97.4	103.7	-14.7		16.6	10.3
Note: 50mV/m (94dBuV/m) for AVG limit, and Peak limit= AVG limit + 20dB.						

Average measurement of carrier							
Frequency	Level		Transducer	Limit	Ма	rgin	
MHz	dBuV/m		dB	dBuV/m	d	В	
	V	Н			V	Н	
903.0 (L)	73.3	79.3	-14.8		20.7	14.7	
914.5 (M)	73.5	79.5	-14.8	94	20.5	14.5	
926.5 (H)	73.7	79.8	-14.7		20.3	14.2	

Note:

50mV/m (94dBuV/m) for AVG limit, and Peak limit= AVG limit + 20dB.

The transducer factor = antenna factor + cable loss - preamplifier.

The Level = Read level + transducer factor.

H: Antenna polarization horizontal direction. V: Antenna polarization vertical direction.

	For Peak Value	For AV Value
Detector:	Peak	Average
Resolution bandwidth:	100 kHz	100 kHz
Video bandwidth:	300 kHz	300 kHz

Peak	Peak measurement of harmonics and spurious emission at lowest channel 903.0MHz						
Fre	quency	Le	vel	Transducer	Limit	Min. N	/largin
	MHz	dBu	V/m	dB	dBuV/m	d	В
		V	Н			V	Н
2 nd	1806.0	53.2	53.3	-12.8		20.8	20.7
3 rd	2709.0	56.2	56.5	-9.9		17.8	17.5
4 th	3612.0	56.5	57.2	-8.6		17.5	16.8
5 th	4515.0	56.6	57.1	-7.6		17.4	16.9
6 th	5418.0	57.1	57.5	-4.0	74dB	16.9	16.5
7 th	6321.0	57.2	57.5	-3.7		16.8	16.5
8 th	7224.0	57.0	57.8	-2.0		17.0	16.2
9 th	8127.0	57.6	58.2	-1.8		16.4	15.8
10 th	9030.0	57.7	58.3	-1.6		16.3	15.7

Average measurement of harmonics and spurious emission at lowest channel 903.0MHz

Fre	quency	Le	vel	Transducer	Limit	Min. N	<i>M</i> argin
	MHz	dBu	V/m	dB	dBuV/m	d	В
		V	Н			V	Н
2 nd	1806.0	45.2	46.3	-12.8		8.8	7.7
3 rd	2709.0	44.2	46.2	-9.9		9.8	7.8
4 th	3612.0	45.3	47.2	-8.6		8.7	6.8
5 th	4515.0	46.3	47.3	-7.6		7.7	6.7
6 th	5418.0	46.1	47.7	-4.0	54dB	7.9	6.3
7 th	6321.0	47.0	47.4	-3.7		7.0	6.6
8 th	7224.0	47.2	47.8	-2.0		6.8	6.2
9 th	8127.0	47.5	48.2	-1.8		6.5	5.8
10 th	9030.0	47.7	48.8	-1.6		6.3	5.2

Note:

 $500\mu V/m$ (54dBuV/m) for AVG limit, and Peak limit= AVG limit + 20dB.

The transducer factor = antenna factor + cable loss - preamplifier.

The Level = Read level + transducer factor.

H: Antenna polarization horizontal direction. V: Antenna polarization vertical direction.

	For Peak Value	For AV Value
Detector:	Peak	Average
Resolution bandwidth:	1 MHz	1 MHz
Video bandwidth:	3 MHz	3 MHz

Peak measurement of harmonics and spurious emission at middle channel 914.5MHz							
Fre	equency	Le	vel	Transducer	Limit	Min. Margin	
	MHz	dBu	V/m	dB	dBuV/m	d	В
		V	Н			V	Н
2 nd	1829.0	53.1	53.2	-12.8		20.9	20.8
3 rd	2743.5	56.3	56.4	-9.9		17.7	17.6
4 th	3658.0	56.3	56.7	-8.6		17.7	17.3
5 th	4572.5	56.5	57.2	-7.6		17.5	16.8
6 th	5487.0	56.8	57.7	-4.0	74dB	17.2	16.3
7 th	6401.5	57.4	57.2	-3.7		16.6	16.8
8 th	7316.0	57.1	57.5	-2.0		16.9	16.5
9 th	8230.5	57.2	58.6	-1.8		16.8	15.4
10 th	9145.0	57.7	58.4	-1.6		16.3	15.6

Average measurement of harmonics and spurious emission at middle channel 914.5MHz

	equency	Le	vel	Transducer	Limit	Min. N	/largin
	MHz	dBu	V/m	dB	dBuV/m	dB	
		V	Н			V	Н
2 nd	1829.0	45.3	46.4	-12.8		8.7	7.6
3 rd	2743.5	44.6	46.5	-9.9		9.4	7.5
4 th	3658.0	45.2	47.7	-8.6		8.8	6.3
5 th	4572.5	46.2	47.4	-7.6		7.8	6.6
6 th	5487.0	46.5	47.6	-4.0	54dB	7.5	6.4
7 th	6401.5	47.1	47.2	-3.7		6.9	6.8
8 th	7316.0	47.3	47.8	-2.0		6.7	6.2
9 th	8230.5	47.5	48.8	-1.8		6.5	5.2
10 th	9145.0	47.6	48.9	-1.6		6.4	5.1

Note:

 $500\mu V/m$ (54dBuV/m) for AVG limit, and Peak limit= AVG limit + 20dB.

The transducer factor = antenna factor + cable loss - preamplifier.

The Level = Read level + transducer factor.

H: Antenna polarization horizontal direction. V: Antenna polarization vertical direction.

	For Peak Value	For AV Value
Detector:	Peak	Average
Resolution bandwidth:	1 MHz	1 MHz
Video bandwidth:	3 MHz	3 MHz

Peak	Peak measurement of harmonics and spurious emission at highest channel 926.5MHz							
Fre	equency	Le	vel	Transducer	Limit	Min. N	/largin	
	MHz	dBu	V/m	dB	dBuV/m	d	В	
		V	Н			V	Н	
2 nd	1853.0	53.6	53.5	-12.8		20.4	20.5	
3 rd	2779.5	56.1	56.7	-9.9		17.9	17.3	
4 th	3706.0	56.4	57.8	-8.6		17.6	16.2	
5 th	4632.5	56.2	57.8	-7.6		17.8	16.2	
6 th	5559.0	57.3	57.7	-4.0	74dB	16.7	16.3	
7 th	6485.5	57.4	57.7	-3.7		16.6	16.3	
8 th	7412.0	57.1	57.6	-2.0		16.9	16.4	
9 th	8338.5	57.2	58.1	-1.8		16.8	15.9	
10 th	9265.0	57.7	58.8	-1.6		16.3	15.2	

Average measurement of harmonics and spurious emission at highest channel 926.5MHz

Fre	quency	Le	vel	Transducer	Limit	Min. N	Margin
	MHz	dBu	V/m	dB	dBuV/m	dB	
		V	Н			V	Н
2 nd	1853.0	45.3	46.6	-12.8		8.7	7.4
3 rd	2779.5	44.1	46.6	-9.9		9.9	7.4
4 th	3706.0	45.3	47.2	-8.6		8.7	6.8
5 th	4632.5	46.3	47.6	-7.6		7.7	6.4
6 th	5559.0	46.2	47.9	-4.0	54dB	7.8	6.1
7 th	6485.5	47.1	47.6	-3.7		6.9	6.4
8 th	7412.0	47.3	47.7	-2.0		6.7	6.3
9 th	8338.5	47.4	48.7	-1.8		6.6	5.3
10 th	9265.0	47.8	48.6	-1.6		6.2	5.4

Note:

 $500\mu V/m$ (54dBuV/m) for AVG limit, and Peak limit= AVG limit + 20dB.

The transducer factor = antenna factor + cable loss - preamplifier.

The Level = Read level + transducer factor.

H: Antenna polarization horizontal direction. V: Antenna polarization vertical direction.

	For Peak Value	For AV Value
Detector:	Peak	Average
Resolution bandwidth:	1 MHz	1 MHz
Video bandwidth:	3 MHz	3 MHz

Note:

The EUT's transmitting frequency range is 903 - 926.5MHz, and it is complied with the requirements of FCC Part 15.249.a).

6.1.5 Radiated outside of the specified frequency bands

Copy from FCC Part 15.249.d)

(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation.

Copy from FCC Part 15.209: Radiated emission limits, general requirements

(a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator

shall not exceed the field strength levels specified in the following table:

Frequency	Field Strength	Measurement Distance
MHz	microvolts/meter(uV/m)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200 **	3
Above 960	500	3

^{**} Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

(d) The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.

Note:

Since the fundamental emissions peak and average values are shown on section 6.1.4 of this report, the general radiated emission limits in Section 15.209 is the lesser attenuation.

Limits for the frequency bands of 903 M - 928 MHz

Frequency	15.209 General		
rrequericy	Radiate	ed limits	
	dBuV/r	m@3m	
MHz	QP	AVG	
30 - 88	40	1	
88 - 216	43.5	1	
216 - 960	46	1	
960 - 1000	54	1	
Above 1000	74(PK)	54	

Frequency	15.249.	d) limits	
	dBuV/m@3m		
MHz	QP	AVG	
30 - 88	40	1	
88 - 216	43.5	1	
216 - 903	46	1	
928-960	46	1	
960 - 1000	54	1	
1000-9280 & except	74/04	5 4	
for harmonics	74(PK)	54	

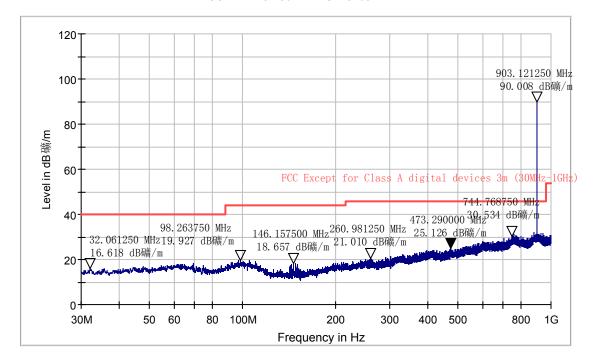
Remark:

- RF line voltage (dBuV)= 20 log RF line voltage (uV)
 In the above table, the tighter limit applies at the band edges.
- 3. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.

6.1.6 Measurement Data for 15.249.d

Test the EUT work normally in transmitting mode in mains.

1) 9kHz~30MHz Test result


The Low frequency, which started from 9kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not report.

2) 30 MHz~1 GHz Spurious Emissions .Quasi-Peak Measurement

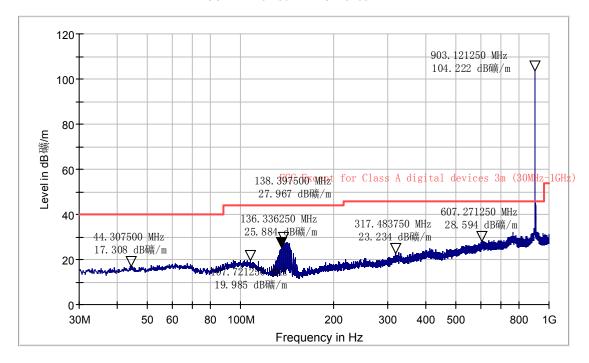
Test curves (with the Quasi-peak measurement and QP limit), 30M-1GHz, Horizontal & Vertical:

1#: lowest channel 903.0MHz, Horizontal

FCC PART15 Rad. EM VULB9163 PRE

Quasi-peak measurement

Quae pour me	Quasi peak measurement						
Frequency	Level	Transducer	Limit	Margin			
MHz	dBuV/m	dB	dBuV/m	dB			
32.1	16.6	16.5	40	23.4			
98.3	19.9	11.2	43.5	23.6			
146.2	18.7	11.7	43.5	24.8			
261.0	21.0	12.9	46	25.0			
473.3	25.1	20.0	46	20.9			
744.8	30.5	17.9	46	15.5			
902.0	31.2	17.8	46	14.8			


Note:

The transducer factor includes antenna factor and cable loss.

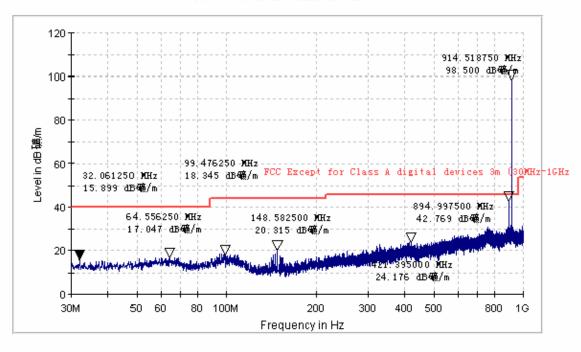
PK value 90.0dBuV/m at 903.1MHz is the fundamental.

1#: lowest channel 903.0MHz, Vertical

FCC PART15 Rad. EM VULB9163 PRE

Quasi-peak measurement

Frequency	Level	Transducer	Limit	Margin
MHz	dBuV/m	dB	dBuV/m	dB
44.3	17.3	12.6	40	22.7
107.7	20.0	11.3	43.5	23.5
136.3	25.9	11.5	43.5	17.6
138.4	28.0	11.5	43.5	15.5
317.5	23.2	15.9	46	22.8
607.3	28.6	19.2	46	17.4
902.0	33.4	14.2	46	12.6


Note:

The transducer factor includes antenna factor and cable loss.

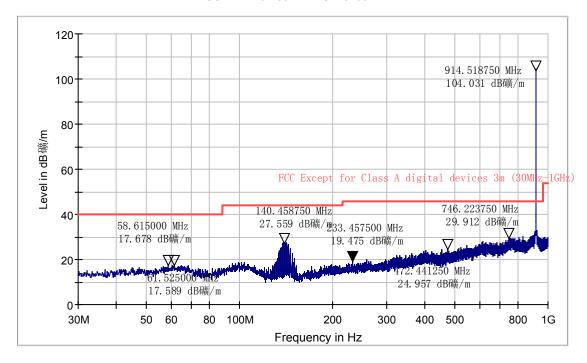
PK value 104.2dBuV/m at 903.1MHz is the fundamental.

2#: middle channel 914.5MHz, Horizontal

FCC PART15 Rad, EM VULB9163 PRE

Quasi-peak measurement

Quadi peak medearement					
Frequency	Level	Transducer	Limit	Margin	
MHz	dBuV/m	dB	dBuV/m	dB	
32.1	15.9	16.5	40	24.1	
64.6	17.0	12.3	40	23.0	
99.5	18.3	11.2	43.5	25.2	
148.6	20.3	11.9	43.5	23.2	
421.4	24.2	18.9	46	21.8	
895.0	42.8	15.2	46	3.2	


Note:

The transducer factor includes antenna factor and cable loss.

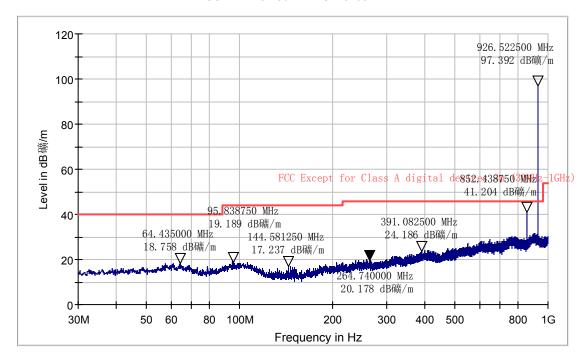
PK value 98.5dBuV/m at 914.5MHz is the fundamental.

2#: middle channel 914.5MHz, Vertical

FCC PART15 Rad. EM VULB9163 PRE

Quasi-peak measurement

Frequency	Level	Transducer	Limit	Margin
MHz	dBuV/m	dB	dBuV/m	dB
58.6	17.7	12.4	40	22.3
61.5	17.6	12.4	40	22.4
140.5	27.6	11.8	43.5	15.9
233.5	19.5	12.5	46	26.5
472.4	25.0	20.0	46	21.0
746.2	29.9	17.9	46	16.1


Note:

The transducer factor includes antenna factor and cable loss.

PK value 104.0dBuV/m at 914.5MHz is the fundamental.

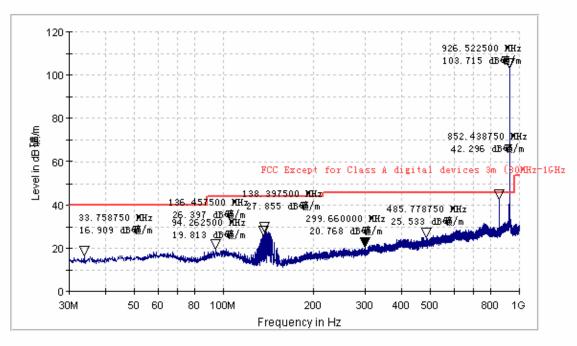
3#: highest channel 926.5MHz, Horizontal

FCC PART15 Rad. EM VULB9163 PRE

Quasi-peak measurement

Quadi pour mo	Quasi-peak measurement						
Frequency	Level	Transducer	Limit	Margin			
MHz	dBuV/m	dB	dBuV/m	dB			
64.4	18.8	12.3	40	21.2			
95.8	19.2	11.2	40	20.8			
144.6	17.2	11.8	43.5	26.3			
264.7	20.2	14.2	46	25.8			
391.1	24.2	18.2	46	21.8			
852.4	41.2	14.2	46	4.8			
928.0*	33.4	14.2	46	12.6			

Note:


The transducer factor includes antenna factor and cable loss.

PK value 97.4dBuV/m at 926.5MHz is the fundamental.

* means the max average value for band-edge (frequency range of 902MHz to 928MHz, except for harmonics) is the plot measurement at 928.0MHz.

3#: highest channel 926.5MHz, Vertical

Quasi-peak measurement

Quasi peak me	1			
Frequency	Level	Transducer	Limit	Margin
MHz	dBuV/m	dB	dBuV/m	dB
33.7	16.9	16.5	40	23.1
94.3	19.8	11.2	43.5	23.7
136.5	26.4	11.6	43.5	17.1
138.4	27.9	11.6	43.5	15.6
299.7	20.8	15.9	46	25.2
485.8	25.5	20.1	46	20.5
852.0	42.3	17.7	46	3.7
928.0*	34.2	14.2	46	11.8

Note:

The transducer factor includes antenna factor and cable loss.

PK value 103.7dBuV/m at 926.5MHz is the fundamental.

* means the max average value for band-edge (frequency range of 902MHz to 928MHz, except for harmonics) is the plot measurement at 928.0MHz.

3) 1 GHz~25 GHz Spurious Emissions .Average & PK Measurement

Average measurement at lowest channel 903.0MHz

Frequency	Level		Transducer	Limit	Mar	gin
	dBu\	//m	JD	JD Mar	dE	3
GHz	Horizontal	Vertical	dB	dBuV/m	Horizontal	Vertical
1.202	40.5	39.1	-12.8		13.5	14.9
2.394	42.3	40.9	-12.2		11.7	13.1
3.554	40.6	39.9	-12.1		13.4	14.1
5.264	40.2	39.7	-11.9	5 4	13.8	14.3
7.452	40.9	39.4	-8.0	54	13.1	14.6
10.252	40.6	40.5	-4.6		13.4	13.5
12.782	39.7	39.5	-3.6		14.3	14.5
22.657	39.4	39.8	-0.8		14.6	14.2

Note:

The transducer factor includes antenna factor and cable loss.

Peak measurement at lowest channel 903.0MHz

Frequency	Level		Transducer	Limit	Margin	
	dBu\	V/m	JD	JD M	dE	3
GHz	Horizontal	Vertical	dB	dBuV/m	Horizontal	Vertical
1.202	50.1	50.2	-12.8		23.9	23.8
2.394	51.0	50.3	-12.2		23.0	23.7
3.554	50.3	49.4	-12.1		23.7	24.6
5.264	50.2	49.9	-11.9		23.8	24.1
7.452	49.7	50.7	-8.0	74	24.3	23.3
10.252	50.4	50.2	-4.5		23.6	23.8
12.782	50.8	50.3	-3.6		23.2	23.7
22.657	49.8	50.6	-0.8		24.2	23.4

Note:

The transducer factor includes antenna factor and cable loss.

Average measurement at middle channel 914.5MHz

Frequency	Lev	⁄el	Transducer	Limit	Mar	gin
011	dBu\	V/m		ID 1//	dl	3
GHz	Horizontal	Vertical	dB	dBuV/m	Horizontal	Vertical
1.226	40.6	40.2	-12.8		13.4	13.8
2.385	40.7	40.4	-12.2		13.3	13.6
2.592	40.6	40.4	-12.1		13.4	13.6
5.342	40.2	39.8	-11.9		13.8	14.2
7.555	40.7	40.3	-8.0	54	13.3	13.7
10.374	40.3	39.8	-4.6		13.7	14.2
12.648	40.2	40.2	-3.6		13.8	13.8
23.420	40.3	40.9	-0.8		13.7	13.1

Note:

The transducer factor includes antenna factor and cable loss.

Peak measurement at middle channel 914.5MHz

Frequency	Level		Transducer	Limit	Mar	gin
011	dBu\	//m	J.D.	dD Mar	dE	3
GHz	Horizontal	Vertical	dB	dBuV/m	Horizontal	Vertical
1.226	50.2	50.3	-12.8		23.8	23.7
2.385	50.6	50.6	-12.2		23.4	23.4
2.592	50.2	50.6	-12.1		23.8	23.4
5.342	50.3	50.5	-11.9	- ,	23.7	23.5
7.555	50.6	50.2	-8.0	74	23.4	23.8
10.374	50.4	50.2	-4.5		23.6	23.8
12.648	50.2	50.4	-3.6		23.8	23.6
23.420	50.5	50.2	-0.8		23.5	23.8

Note:

The transducer factor includes antenna factor and cable loss.

Average measurement at highest channel 926.5MHz

Frequency	Level		Transducer	Limit	Mar	gin
011	dBu\	V/m	l.D.	ID	dE	3
GHz	Horizontal	Vertical	dB	dBuV/m	Horizontal	Vertical
1.240	40.7	40.2	-12.8		13.3	13.8
2.384	40.2	40.8	-12.2		13.8	13.2
3.489	50.9	47.8	-12.1		3.1	6.2
5.334	40.6	40.4	-11.9	_,	13.4	13.6
7.492	40.4	40.2	-8.0	54	13.6	13.8
10.322	40.3	39.7	-4.6		13.7	14.3
13.931	40.4	40.5	-3.5		13.6	13.5
23.423	40.4	40.2	-0.8		13.6	13.8

Note:

The transducer factor includes antenna factor and cable loss.

Peak measurement at highest channel 926.5MHz

Frequency	Level		Transducer	Limit	Mar	gin
	dBu\	V/m		ID 1//	dl	3
GHz	Horizontal	Vertical	dB	dBuV/m	Horizontal	Vertical
1.240	50.4	50.1	-12.8		23.6	23.9
2.384	50.4	50.2	-12.2		23.6	23.8
3.489	54.6	51.7	-12.1		19.4	22.3
5.334	50.5	50.1	-11.9	-	23.5	23.9
7.492	50.5	50.7	-8.0	74	23.5	23.3
10.322	50.5	50.3	-4.5		23.5	23.7
13.931	50.2	49.9	-3.6		23.8	24.1
23.423	49.8	50.2	-0.8		24.2	23.8

Note:

The transducer factor includes antenna factor and cable loss.

6.2. Occupied Bandwidth

Test Requirement: FCC Part15.215
Test Method: ANSI C63.10: 2009

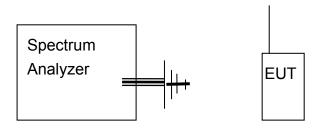
Detector: Peak for scan (The resolution bandwidth was 1kHz and the video

bandwidth was 1kHz, span was 2MHz)

maximised peak hold

Test Date: Jan. 22, 2014

6.2.1 E.U.T. Operation

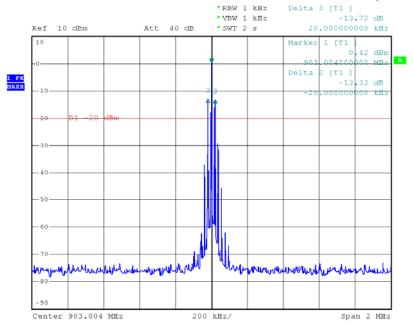

Operating Environment:

Temperature: 18°C Humidity:52% RH Atmospheric Pressure: 1020mBar

EUT Operation:

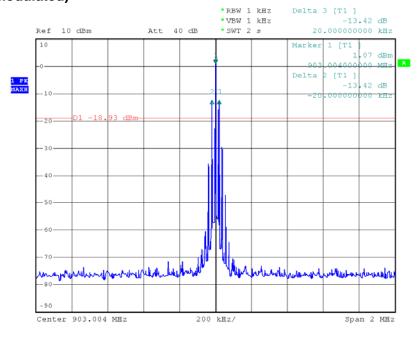
Test the EUT work normally in on mode during the whole test.

6.2.2 Test Setup

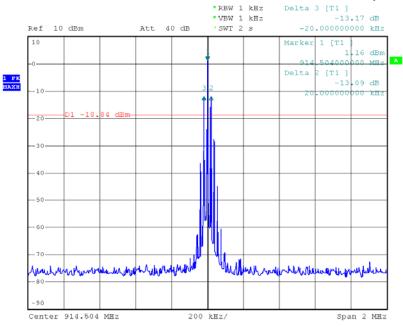

6.2.3 Test Procedure

ANSI STANDARD C63.4-2003 10.1.7 MEASUREMENT PROCEDURES:

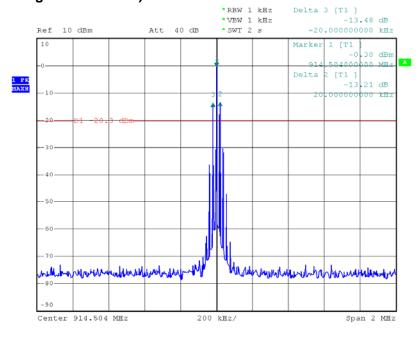
An initial pre-scan was performed in the 3m chamber using the spectrum analyzer in peak detection mode. Average measurements were conducted based on the peak sweep graph. When an emission was found, the table was rotated to produce the maximum signal strength. At this point, the antenna was raised and lowered from 1m to 4m. The antenna was placed in both the horizontal and vertical polarities.


6.2.4 Measurement Data

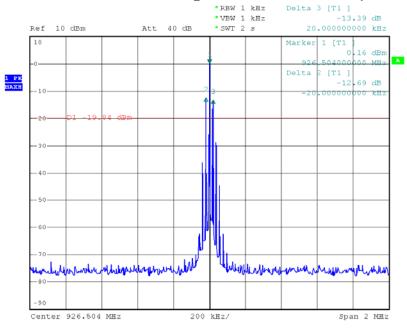
Maximum Peak hold measurement for lowest channel 903.0MHz (without modulated)


Date: 8.MAR.2014 05:59:49

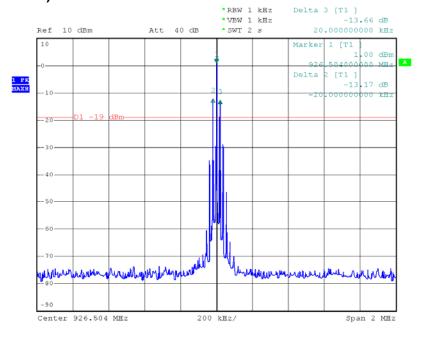
Maximum Peak hold measurement for lowest channel 903.0MHz (with 20kHz sinusoidal signal modulated)


Date: 8.MAR.2014 06:22:43

Maximum Peak hold measurement for middle channel 914.5MHz (without modulated)


Date: 8.MAR.2014 06:03:38

Maximum Peak hold measurement for middle channel 914.5MHz (with 20kHz sinusoidal signal modulated)


Date: 8.MAR.2014 06:21:10

Maximum Peak hold measurement for highest channel 926.5MHz (without modulated)

Date: 8.MAR.2014 05:57:44

Maximum Peak hold measurement for highest channel 926.5MHz (with 20kHz sinusoidal signal modulated)

Date: 8.MAR.2014 06:23:32

Note: An audio signal generator supplied a sinusoidal signal at 20 kHz as input in worst case (within 1kHz to 20kHz input for pre-testing).

The -20dB Bandwidth:

Without modulated	ΔFL- / kHz	ΔFL+ / kHz	-20dB Bandwidth/ kHz
Lowest Ch.: 903.0MHz	-20	20	40
Middle Ch.: 914.5MHz	-20	20	40
Highest Ch.: 926.5MHz	-20	20	40

With 20kHz sinusoidal signal	ΔFL- / kHz	ΔFL+ / kHz	-20dB Bandwidth/ kHz
Lowest Ch.: 903.0MHz	-20	20	40
Middle Ch.: 914.5MHz	-20	20	40
Highest Ch.: 926.5MHz	-20	20	40

6.3. Conducted Emissions at Mains Terminals 150 kHz to 30 MHz

Test Requirement: FCC Part 15 C section 15.207

Test Method: ANSI C63.4: 2003

Frequency Range: 150 kHz to 30 MHz

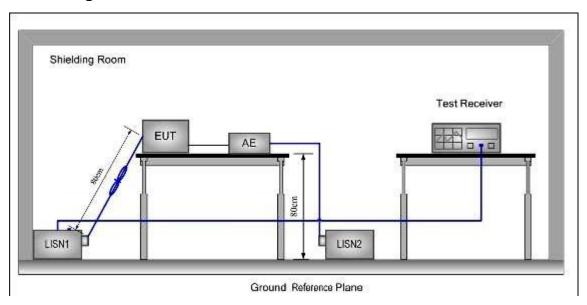
Detector: Peak for pre-scan (9 kHz Resolution Bandwidth)

Test Limit

Limits for conducted disturbance at the mains ports of class B

Eromueney Benge	Class B Limit dB(μV)		
Frequency Range	Quasi-peak	Average	
0.15 to 0.50	66 to 56	56 to 46	
0.50 to 5	56	46	
5 to 30	60	50	

NOTE 1 The limit decreases linearly with the logarithm of the frequency in the range 0,15 MHz to 0,50 MHz.


6.3.1 EUT Operation

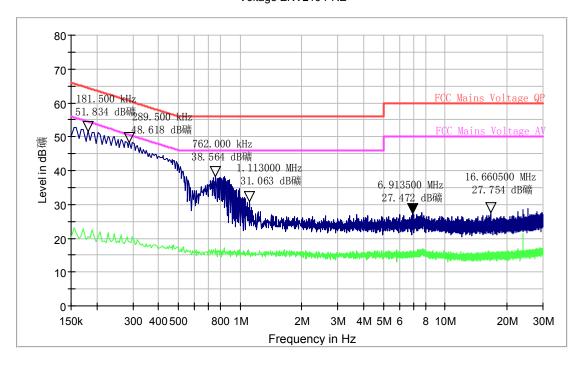
Test in normal operating mode. For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage.

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Test the EUT work normally in transmitting mode in mains.

6.3.2 Test Configuration

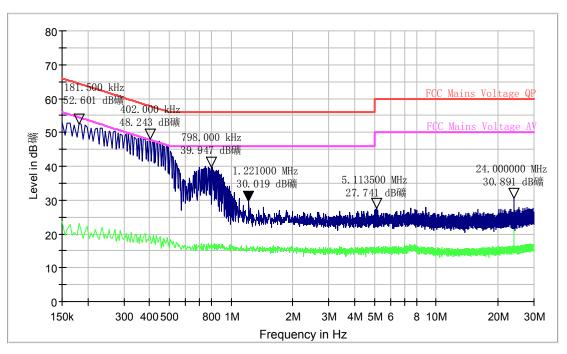
6.3.3 Test Procedure


- 1. The mains terminal disturbance voltage test was conducted in a shielded room.
- 2. The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu\text{H} + 5\Omega$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- 3. The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane, but separated from metallic contact with the ground reference plane by 0.1m of insulation.
- 4. The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0,4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0,8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0,8 m from the LISN 2.

6.3.4 Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

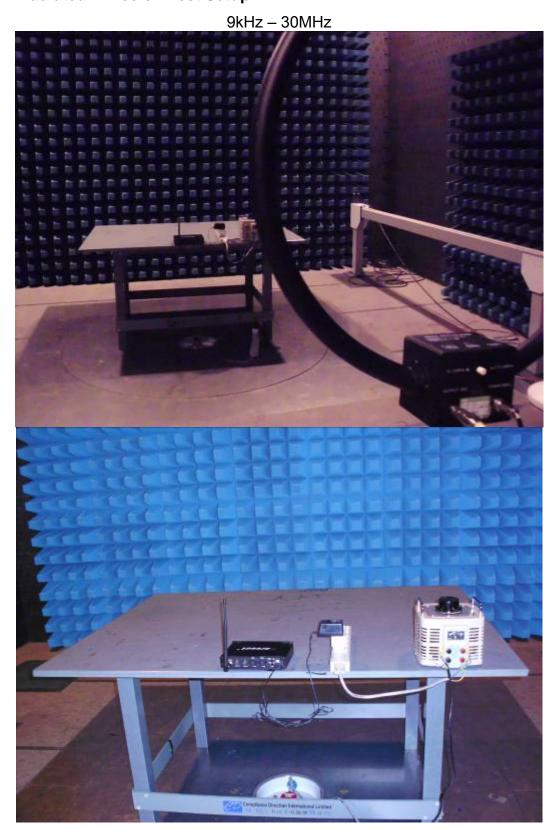
Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected. For EUT the communicating was worst case mode.


The following Quasi-Peak and Average measurements were performed on the EUT: Voltage ENV216 PRE

Fruency (MHz)	QP (dBuV)	AV (dBuV)	Meas. Time (ms)	Bandwidth (kHz)	Line	Corr. (dB)	QP Margin (dB)	AV Margin (dB)	QP Limit (dBuV)	AV Limit (dBuV)
0.182	51.8	23.2	1000	9	L1	19.9	12.6	31.2	64.4	54.4
0.290	48.6	21.0				19.9	11.9	29.5	60.5	50.5
0.762	38.6	16.2				20.0	17.4	29.8	56	46
1.113	31.0	16.3				20.0	25.0	29.7	56	46
6.914	27.5	15.8				20.1	32.5	34.2	60	50
16.66	27.8	15.9				20.3	32.2	34.1	60	50
Note: Filter: Off.										

Page 33 of 60

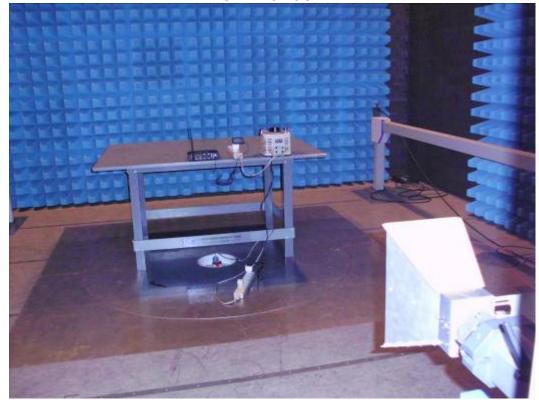
Voltage ENV216 PRE


Fruency (MHz)	QP (dBuV)	AV (dBuV)	Meas. Time (ms)	Bandwidth (kHz)	Line	Corr. (dB)	QP Margin (dB)	AV Margin (dB)	QP Limit (dBuV)	AV Limit (dBuV)
0.182	52.6	23.1	1000	9	N	19.9	11.8	31.3	64.4	54.4
0.402	48.2	20.5				19.9	9.6	27.3	57.8	47.8
0.798	39.9	16.5				20.0	16.1	29.5	56	46
1.221	30.0	16.3				20.0	26.0	29.7	56	46
5.114	27.7	16.3				20.1	32.3	33.7	60	50
24.00	30.9	21.9				20.3	29.1	28.1	60	50

Note:

Filter: Off.

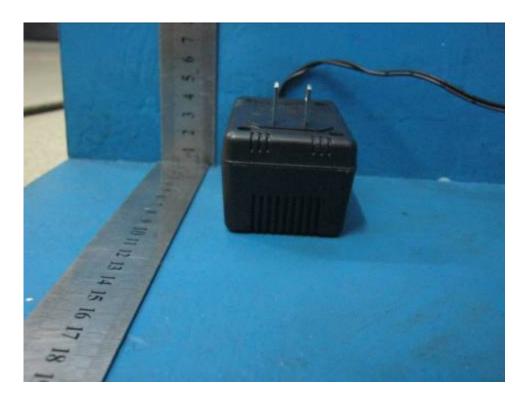
7. Photographs

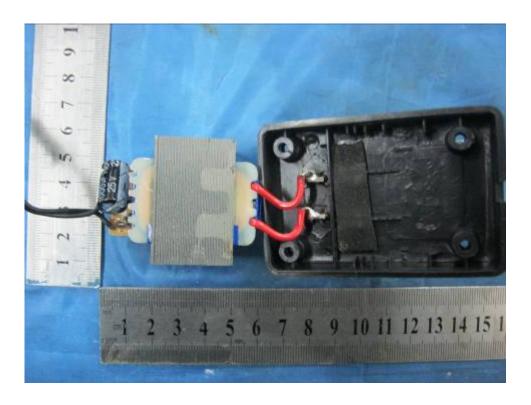

7.1. Radiated Emission Test Setup

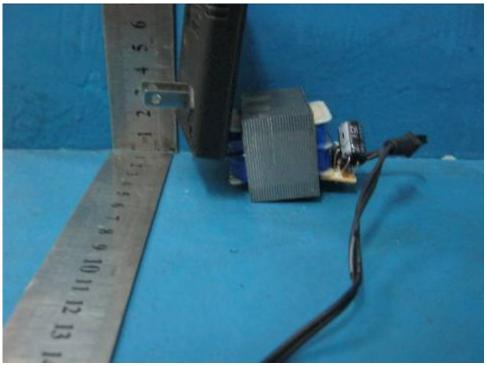
1GHz – 9.28GHz

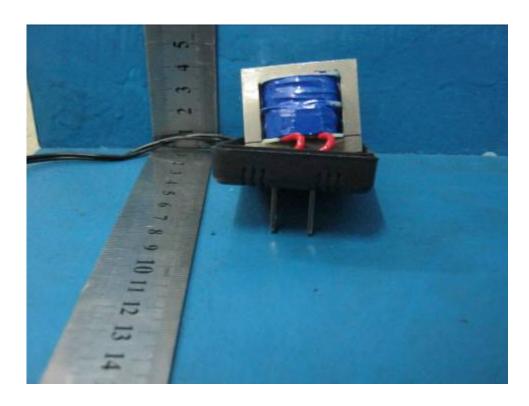
7.2. Conducted Emission Test Setup

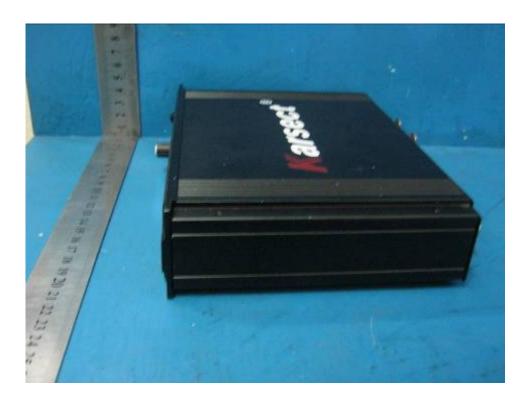


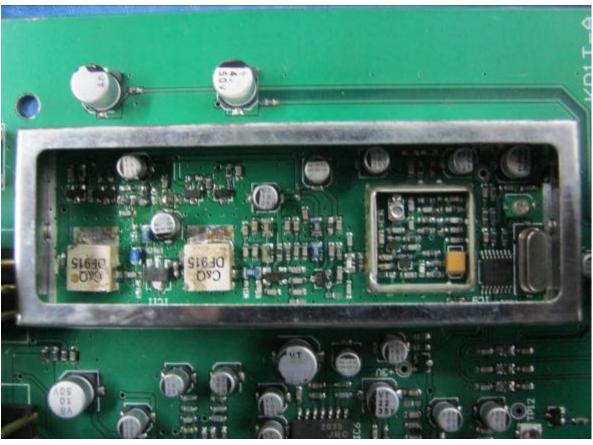

7.3. EUT Constructional Details

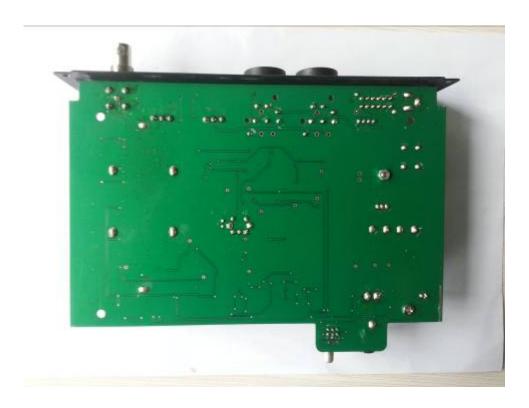


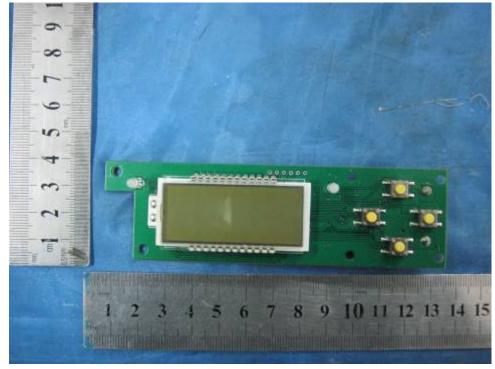


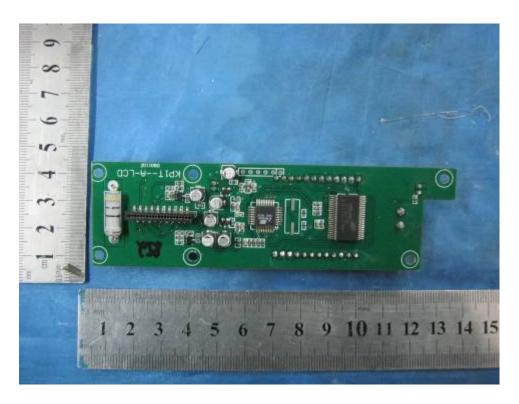


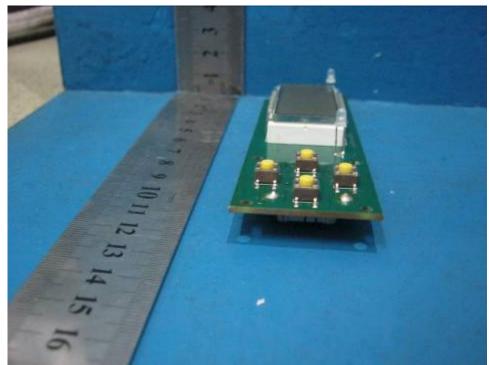


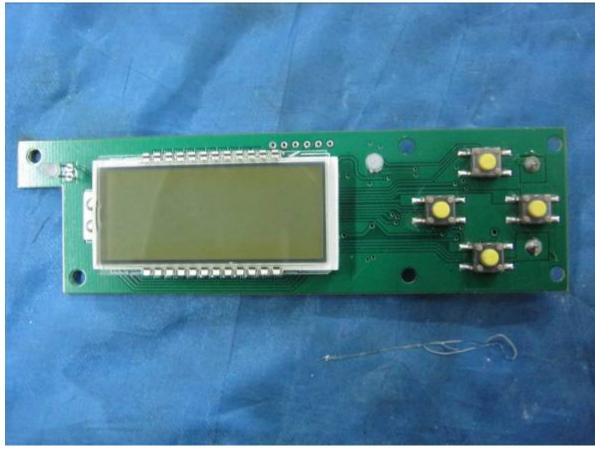


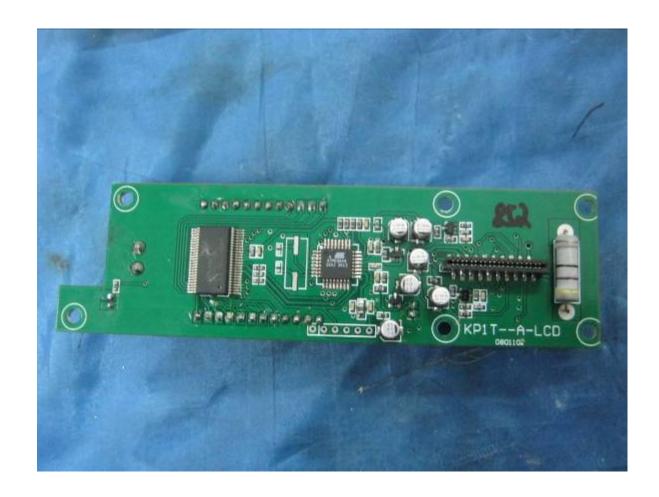


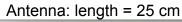












7.4. Antenna Photo

Note:

The transmitter was used a unique coupling with the antenna, and it's complied with the requirements of section 15.203: antenna requirement.

End of Report