

Shenzhen Huatongwei International Inspection Co., Ltd. 1/F,Bldg 3,Hongfa Hi-tech Industrial Park,Genyu Road,Tianliao,Gongming,Shenzhen,China Phone:86-755-26748019 Fax:86-755-26748089 http://www.szhtw.com.cn

FCC REPORT

Report Reference No:	CHTEW19060049	Report verification:
Project No:	SHT1905056701EW	
FCC ID:	QRP-SP-005	
Applicant's name:	Azumi S.A	
Address	Avenida Aquilino de la Guardia Piso 16 of. 16-01, Marbella, Ciu	
Manufacturer	AZUMI HK LTD	
Address	Flat 18; 14/F Block 1; Golden In Street; Kwai Chung; New Territe	dustrial Building;16-26 Kwai Tak ories; Hong Kong.
Test item description:	Mobile Phone	
Trade Mark	AZUMI	
Model/Type reference:	K55QL	
Listed Model(s)	-	
Standard:	FCC CFR Title 47 Part 2 FCC CFR Title 47 Part 22	
	FCC CFR Title 47 Part 24	
	FCC CFR Title 47 Part 27	
Date of receipt of test sample:	May 21, 2019	
Date of testing	May 22, 2019- Jun 06, 2019	
Date of issue	Jun 10, 2019	
Result:	Pass	
Compiled by (position+printedname+signature):	File administrators Silvia Li	Silvia Li
Supervised by (position+printedname+signature):	Project Engineer Xiaodong Zha	o Xiaodong Zheo Hoursty
Approved by (position+printedname+signature):	Manager Hans Hu	Homsty
Testing Laboratory Name: :	Shenzhen Huatongwei Interna	ational Inspection Co., Ltd.
Address	1/F, Bldg 3, Hongfa Hi-tech Indu Tianliao, Gongming, Shenzhen,	

Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

The test report merely correspond to the test sample.

Contents

<u>1.</u>	TEST STANDARDS AND REPORT VERSION	3
1.1. 1.2.	Applicable Standards	3 3
1.2.	Report version information	3
<u>2.</u>	TEST DESCRIPTION	4
<u>3.</u>	SUMMARY	5
3.1.	Client Information	5
3.2.	Product Description	5
3.3.	Operation state	6
3.4.	EUT operation mode	7
3.5.	EUT configuration Modifications	8
3.6.	Modifications	8
<u>4.</u>	TEST ENVIRONMENT	9
4.1.	Address of the test laboratory	9
4.2.	Test Facility	9
4.3.	Equipments Used during the Test	10
4.4.	Environmental conditions	11
4.5.	Statement of the measurement uncertainty	11
<u>5.</u>	TEST CONDITIONS AND RESULTS	12
5.1.	Conducted Output Power	12
5.2.	Peak-to-Average Ratio	13
5.3.	99% Occupied Bandwidth & 26 dB Bandwidth	14
5.4.	Band Edge	15
5.5.	Conducted Spurious Emissions	16
5.6.	Frequency stability VS Temperature measurement	17
5.7.	Frequency stability VS Voltage measurement	18
5.8.	ERP and EIRP	19
5.9.	Radiated Spurious Emission	27
<u>6.</u>	TEST SETUP PHOTOS OF THE EUT	39
<u>7.</u>	EXTERNAL AND INTERNAL PHOTOS OF THE EUT	39
8.	APPENDIX REPORT	39

1. TEST STANDARDS AND REPORT VERSION

1.1. Applicable Standards

The tests were performed according to following standards:

FCC Rules Part 2: FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS

FCC Rules Part 22: PUBLIC MOBILE SERVICES

FCC Rules Part 24: PERSONAL COMMUNICATIONS SERVICES

FCC Rules Part 27: MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES

ANSI C63.26: 2015: American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services

KDB 971168 D01 Power Meas License Digital Systems v03: MEASUREMENT GUIDANCE FOR CERTIFICATION OF LICENSED DIGITAL TRANSMITTERS

1.2. Report version information

Revision No.	Date of issue	Description
N/A	2019-06-10	Original

2. Test Description

Test Item	Section in CFR 47	Result	Test Engineer
Conducted Output Power	Part 2.1046 Part 22.913(a) Part 24.232(c) Part 27.50	Pass	Jiongsheng Feng
Peak-to-Average Ratio	Part 24.232 Part 27.50	Pass	Jiongsheng Feng
99% Occupied Bandwidth & 26 dB Bandwidth	Part 2.1049 Part 22.917(b) Part 24.238(b) Part 27.53	Pass	Jiongsheng Feng
Band Edge	Part 2.1051 Part 22.917 Part 24.238 Part 27.53	Pass	Jiongsheng Feng
Conducted Spurious Emissions	Part 2.1051 Part 22.917 Part 24.238 Part 27.53	Pass	Jiongsheng Feng
Frequency stability VS Temperature	Part 2.1055(a)(1)(b) Part 22.355 Part 24.235 Part 27.54	Pass	Jiongsheng Feng
Frequency stability VS Voltage	Part 2.1055(d)(1)(2) Part 22.355 Part 24.235 Part 27.54	Pass	Jiongsheng Feng
ERP and EIRP	Part 22.913(a) Part 24.232(b) Part 27.50	Pass	Shower Dai
Radiated Spurious Emissions	Part 2.1053 Part 22.917 Part 24.238 Part 27.53	Pass	Shower Dai

Note: The measurement uncertainty is not included in the test result.

3. SUMMARY

3.1. Client Information

Applicant:	Azumi S.A
Address:	Avenida Aquilino de la Guardia con Calle 47, PH Ocean Plaza, Piso 16 of. 16-01, Marbella, Ciudad de Panama, Panama.
Manufacturer:	AZUMI HK LTD
Address:	Flat 18; 14/F Block 1; Golden Industrial Building;16-26 Kwai Tak Street; Kwai Chung; New Territories; Hong Kong.

3.2. Product Description

Name of EUT:	Mobile Phone						
Trade Mark:	AZUMI						
Model No.:	K55QL						
Listed Model(s):	-						
IMEI Code:		Conducted: 352378094018888 Radiated: 352378094014440					
SIM Information:	Support One SIM Ca	Support One SIM Card					
Power supply:	DC 3.8V	DC 3.8V					
Adapter information:		Input:100-240Va.c., 50/60Hz, 0.2A Output:5.0Vd.c., 1000mA					
Hardware version:	V00	V00					
Software version:	AZUMI_K55QL_CEN	AZUMI_K55QL_CENAM_001					
4G							
Operation Band:	FDD Band 2	FDD Band 4	FDD Band 5				
	FDD Band 7	FDD Band 12	FDD Band 17				
	FDD Band 2:	1850.7 MHz – 1909.3	MHz				
	FDD Band 4:	1710.7 MHz – 1754.3	MHz				
Transmit frequency:	FDD Band 5:	824.7 MHz – 848.3 M	Hz				
	FDD Band 7:	2502.5 MHz – 2567.5	MHz				
	FDD Band 2:	1930.7 MHz – 1989.3	MHz				
	FDD Band 4:	2110.7 MHz – 2154.3	MHz				
Receive frequency:	FDD Band 5:	869.7 MHz – 893.3 M	Hz				
	FDD Band 7:	2622.5 MHz – 2687.5	MHz				
	FDD Band 2:	1.4MHz, 3MHz, 5MHz	z, 10MHz, 15MHz, 20MHz				
	FDD Band 4:	1.4MHz, 3MHz, 5MHz	z, 10MHz, 15MHz, 20MHz				
Channel bandwidth:	FDD Band 5:	1.4MHz, 3MHz, 5MHz	z, 10MHz				
	FDD Band 7:	5MHz, 10MHz, 15MHz	z, 20MHz				
Power Class:	Class 3						
Modulation type:	QPSK, 16QAM						

Shenzhen Huatongwei International Inspection Co., Ltd.

Antenna type	PIFA Antenna
Antenna Gain	Band2:0dBi Band4:0.5dBi Band5:-2.0dBi Band7:2.0dBi

3.3. Operation state

Test frequency list

FDD Band 2	Test Frequency ID	Bandwidth [MHz]	Nul	Frequency of Uplink [MHz]	NDL	Frequency of Downlink [MHz]
		1.4	18607	1850.7	607	1930.7
		3	18615	1851.5	615	1931.5
	Law Danas	5	18625	1852.5	625	1932.5
	Low Range	10	18650	1855	650	1935
		15 ^[1]	18675	1857.5	675	1937.5
		20 [1]	18700	1860	700	1940
	Mid Range	1.4/3/5/10 15 ^[1] /20 ^[1]	18900	1880	900	1960
	_	15 ¹¹ /20 ¹¹				
		1.4	19193	1909.3	1193	1989.3
		3	19185	1908.5	1185	1988.5
	High Range	5	19175	1907.5	1175	1987.5
	High Range	10	19150	1905	1150	1985
		15 ^{ru}	19125	1902.5	1125	1982.5
		20 [1]	19100	1900	1100	1980
	NOTE 1: Bandwidth 36.101 [2]	for which a relaxatio 7] Clause 7.3) is allo	n of the spe wed.	cified UE receiver s	ensitivity req	uirement (TS
FDD Band 4	Test Frequency ID	Bandwidth [MHz]	Nul	Frequency of Uplink [MHz]	NDL	Frequency of Downlink [MHz]
		1.4	19957	1710.7	1957	2110.7
	1	3	19965	1711.5	1965	2110.7
		5	19975	1712.5	1975	2112.5
	Low Range	10	20000	1712.5	2000	2112.5
	11 1	15	20025	1717.5	2025	2117.5
	11 1	20	20020	1720	2050	2120
	Mid Range	1.4/3/5/10/15/20	20175	1732.5	2175	2132.5
		1.4	20393	1754.3	2393	2154.3
	11 1	3	20385	1753.5	2385	2153.5
	15-1-5	5	20375	1752.5	2375	2152.5
	High Range	10	20350	1750	2350	2150
		15	20325	1747.5	2325	2147.5
		20	20300	1745	2300	2145
			T			-
FDD Band 5	Test Frequency ID	Bandwidth [MHz]	N _{UL}	Frequency of Uplink [MHz]	NDL	Frequency of Downlink [MHz]
		1.4	20407	824.7	2407	869.7
	Low Range	3	20415	825.5	2415	870.5
	Low Kange	5	20425	826.5	2425	871.5
		10 11	20450	829	2450	874
	Mid Range	1.4/3/5 10 ^[1]	20525	836.5	2525	881.5
	ivita i tango					
		1.4	20643	848.3	2643	893.3
	High Range	3	20635	847.5	2635	892.5
		5	20625	846.5	2625	891.5
				044	2600	889
		10 [1]	20600	844		1 (117 -
	NOTE 1: Bandwidth fi 36.101 [27		of the speci			rement (TS
		or which a relaxation	of the speci			rement (TS
FDD Band 7		or which a relaxation	of the speci			Frequency of Downlink
FDD Band 7	36.101 [27	or which a relaxation Clause 7.3) is allow Bandwidth [MHz]	of the speci /ed.	fied UE receiver ser Frequency of Uplink [MHz]	NDL	Frequency of Downlink [MHz]
FDD Band 7	36.101 [27	or which a relaxation Clause 7.3) is allow Bandwidth [MHz] 5	N _{UL}	fied UE receiver ser Frequency of Uplink [MHz] 2502.5	N _{DL}	Frequency of Downlink [MHz] 2622.5
FDD Band 7	36.101 [27	or which a relaxation Clause 7.3) is allow Bandwidth [MHz] 5 10	N _{UL}	Frequency of Uplink [MHz] 2502.5 2505	N _{DL}	Frequency of Downlink [MHz] 2622.5 2625
FDD Band 7	36.101 [27	or which a relaxation [Clause 7.3) is allow Bandwidth [MHz] 5 10 15	of the speci /ed. NuL 20775 20800 20825	Frequency of Uplink [MHz] 2502.5 2505 2507.5	N _{DL} 2775 2800 2825	Frequency of Downlink [MHz] 2622.5 2625 2625 2627.5
FDD Band 7	36.101 [27	Bandwidth [MHz] 5 10 15 20 ¹¹	N _{UL}	Frequency of Uplink [MHz] 2502.5 2505	N _{DL}	Frequency of Downlink [MHz] 2622.5 2625
FDD Band 7	36.101 [27	Dr which a relaxation Clause 7.3) is allow Bandwidth [MHz] 5 10 15 20 ^[11] 5/10/15 20 ^[11]	of the speci ved. NuL 20775 20800 20825 20850 21100	Frequency of Uplink [MHz] 2502.5 2505 2507.5 2510 2535	N _{DL} 2775 2800 2825 2850 3100	Frequency of Downlink [MHz] 2622.5 2625 2625 2630 2655
FDD Band 7	36.101 [27	or which a relaxation Clause 7.3) is allow Bandwidth [MHz] 5 10 15 20 10 5/10/15 20 10 5	of the speci ved. 20775 20800 20825 20850 21100 21425	Frequency of Uplink [MHz] 2502.5 2505 2507.5 2510 2535 2567.5	N _{DL} 2775 2800 2825 2850 3100 3425	Frequency of Downlink [MHz] 2622.5 2625 2627.5 2630 2655 2687.5
FDD Band 7	36.101 [27	br which a relaxation Clause 7.3) is allow Bandwidth [MHz] 5 10 15 20 ^[1] 5/10/15 20 ^[1] 5 10	of the speci red. NuL 20775 20800 20825 20850 21100 21425 21420	Frequency of Uplink [MHz] 2502.5 2505 2507.5 2510 2535 2565	N _{DL} 2775 2800 2825 2850 3100 3425 3400	Frequency of Downlink [MHz] 2622.5 2625 2627.5 2630 2655 2687.5 2685
FDD Band 7	36.101 [27	br which a relaxation Clause 7.3) is allow Bandwidth [MHz] 5 10 15 20 ^[11] 5/10/15 20 ^[12] 5 10 15	of the speci red. NuL 20775 20800 20825 20850 21100 21425 21400 21375	Frequency of Uplink [MHz] 2502.5 2505 2507.5 2510 2535 2567.5 2565 2565 2565 2565	NDL 2775 2800 2825 2850 3100 3425 3400 3375	Frequency of Downlink [MHz] 2622.5 2625 2627.5 2630 2655 2687.5 2687.5 2685 2685 2685
FDD Band 7	36.101 [27 Test Frequency ID Low Range Mid Range High Range	Dr which a relaxation Clause 7.3) is allow Bandwidth [MHz] 5 10 15 20 ^[11] 5/10/15 20 ^[11] 5 10 15 10 15 10 15	of the speci red. NuL 20775 20800 20825 20850 21100 21425 21400 21375 21350	Frequency of Uplink [MHz] 2502.5 2505 2507.5 2510 2535 2567.5 2565 2565 2565 2560	N _{DL} 2775 2800 2825 2850 3100 3425 3400 3375 3350	Frequency of Downlink [MHz] 2622.5 2627.5 2630 2655 26687.5 26685 26685 26682.5 26680
FDD Band 7	36.101 [27 Test Frequency ID Low Range Mid Range High Range NOTE 1: Bandwidth f	br which a relaxation Clause 7.3) is allow Bandwidth [MHz] 5 10 15 20 ^[1] 5 10/15 20 ^[1] 5 10 15 20 ^[1] 5 10 15 20 ^[1] 5 10 10 5 10 10 5 10 10 10 5 10 10 10 5 10 10 10 5 10 10 10 5 10 10 10 5 10 10 10 5 10 10 10 5 10 10 10 5 10 10 5 10 10 5 10 10 5 10 10 5 10 10 5 10 10 5 10 10 5 10 10 5 10 10 5 10 10 5 10 10 5 10 10 5 10 10 5 10 10 5 10 10 10 5 10 10 10 10 5 10 10 10 10 5 10 10 10 10 10 10 10 10 10 10	of the speci- red. NuL 20775 20800 20825 20850 21100 21425 21350 of the specif	Frequency of Uplink [MHz] 2502.5 2505 2507.5 2510 2535 2567.5 2565 2565 2565 2560	N _{DL} 2775 2800 2825 2850 3100 3425 3400 3375 3350	Frequency of Downlink [MHz] 2622.5 2627.5 2630 2655 26687.5 26685 26685 26682.5 26680
FDD Band 7	36.101 [27 Test Frequency ID Low Range Mid Range High Range NOTE 1: Bandwidth f	Dr which a relaxation Clause 7.3) is allow Bandwidth [MHz] 5 10 15 20 ^[11] 5/10/15 20 ^[11] 5 10 15 10 15 10 15	of the speci- red. NuL 20775 20800 20825 20850 21100 21425 21350 of the specif	Frequency of Uplink [MHz] 2502.5 2505 2507.5 2510 2535 2567.5 2565 2565 2565 2560	N _{DL} 2775 2800 2825 2850 3100 3425 3400 3375 3350	Frequency of Downlink [MHz] 2622.5 2627.5 2630 2655 26687.5 26685 26685 26682.5 26680

3.4. EUT operation mode

For RF test items

The EUT has been tested under typical operating condition. Testing was performed by configuring EUT to maximum output power status.

_				Bandwid	lth (MHz)			Modu	ulation	RB #		
Test Items	Band	1.4	3	5	10	15	20	QPSK	16QAM	1	Half	Full
	2	0	0	0	0	0	0	0	0	0	0	0
Conducted Output	4	0	0	0	0	0	0	0	0	0	0	0
Power	5	0	0	0	0	-	-	0	0	0	0	0
	7	-	-	0	0	0	0	0	0	0	0	0
	2	0	0	0	0	0	0	0	0	0	-	0
Peak-to-Average Ratio	4	0	0	0	0	0	0	0	0	0	-	0
	5	0	0	0	0	-	-	0	0	0	-	0
	7	-	-	0	0	0	0	0	0	0	-	0
	2	0	0	0	0	0	0	0	0	-	-	0
99% Occupied	4	0	0	0	0	0	0	0	0	-	-	0
Bandwidth & 26 dB Bandwidth	5	0	0	0	0	-	-	0	0	-	-	0
	7	-	-	0	0	0	0	0	0	-	-	0
	2	0	0	0	0	0	0	0	0	0	-	0
Dand Edge	4	0	0	0	0	0	0	0	0	0	-	0
Band Edge	5	0	0	0	0	-	-	0	0	0	-	0
	7	-	-	0	0	0	0	0	0	0	-	0
	2	0	0	0	0	0	0	0	0	0	-	-
Conducted	4	0	0	0	0	0	0	0	0	0	-	-
Spurious Emission	5	0	0	0	0	-	-	0	0	0	-	-
	7	-	-	0	0	0	0	0	0	0	-	-
	2	0	0	0	0	0	0	0	0	-	-	0
Frequency	4	0	0	0	0	0	0	0	0	-	-	0
Stability	5	0	0	0	0	-	-	0	0	-	-	0
	7	-	-	0	0	0	0	0	0	-	-	0
	2	0	0	0	0	0	0	0	0	0	-	-
ERP and EIRP	4	0	0	0	0	0	0	0	0	0	-	-
ERF allu EIRF	5	0	0	0	0	-	-	0	0	0	-	-
	7	-	-	0	0	0	0	0	0	0	-	-
	2	0	0	0	0	0	0	0	-	0	-	-
Radiated Spurious	4	0	0	0	0	0	0	0	-	0	-	-
Emission	5	0	0	0	0	-	-	0	-	0	-	-
	7	-	-	0	0	0	0	0	-	0	-	-
Remark	 7 o o o o - o 1. The mark "o"means that this configuration is chosenfor testing 2. The mark "-"means that this bandwidth is not test. 3. The device is investigatedfrom 30MHz to10 times offundamental signal for radiated spurious emission test under different RB size/offset and modulations in exploratory test. Subsequently, only the worst case emissions are reported. 											

3.5. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- - supplied by the manufacturer
- supplied by the lab

	1	Manufacturer:	/
0	7	Model No.:	/
		Manufacturer:	/
0	7	Model No.:	/

3.6. Modifications

No modifications were implemented to meet testing criteria.

4. TEST ENVIRONMENT

4.1. Address of the test laboratory

Laboratory: Shenzhen Huatongwei International Inspection Co., Ltd. Address: 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China

4.2. Test Facility

CNAS-Lab Code: L1225

Shenzhen Huatongwei International Inspection Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No.: 3902.01

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 762235

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files.

IC-Registration No.:5377B-1

Two 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No.: 5377B-1.

ACA

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our A2LA accreditation.

4.3. Equipments Used during the Test

Used	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Signal and spectrum Analyzer	R&S	FSV40	100048	2018/10/28	2019/10/27
•	Spectrum Analyzer	Agilent	N9020A	MY50510187	2018/09/29	2019/09/28
•	Radio communication tester	R&S	CMW500	137688-Lv	2018/09/29	2019/09/28
•	Test software	Tonscend	JS1120-1(LTE)	N/A	N/A	N/A
•	Test software	Tonscend	JS1120-2(WIFI)	N/A	N/A	N/A
•	Test software	Tonscend	JS1120-3(WCDMA)	N/A	N/A	N/A
•	Test software	Tonscend	JS1120-4(GSM)	N/A	N/A	N/A

•	Radiated Spurio	us Emission				
Used	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Semi-Anechoic Chamber	Albatross projects	SAC-3m-01	N/A	2018/09/30	2021/09/29
•	Spectrum Analyzer	R&S	FSP40	100597	2018/10/27	2019/10/26
•	Loop Antenna	R&S	HFH2-Z2	100020	2017/11/20	2020/11/19
•	Ultra-Broadband Antenna	SCHWARZBECK	VULB9163	538	2017/04/05	2020/04/04
•	Horn Antenna	SCHWARZBECK	9120D	1011	2017/04/01	2020/03/31
0	Horn Antenna	SCHWARZBECK	BBHA9170	25841	2017/03/27	2020/03/26
0	Pre-amplifier	BONN	BLWA0160-2M	1811887	2018/11/14	2019/11/13
•	Pre-amplifier	CD	PAP-0102	12004	2018/11/14	2019/11/13
٠	Broadband Preamplifier	SCHWARZBECK	BBV 9718	9718-248	2019/04/26	2020/04/25
•	RF Connection Cable	HUBER+SUHNER	RE-7-FH	N/A	2018/11/15	2019/11/14
•	RF Connection Cable	HUBER+SUHNER	RE-7-FL	N/A	2018/11/15	2019/11/14
•	EMI Test Software	Audix	E3	N/A	N/A	N/A
•	Turntable	MATURO	TT2.0	N/A	N/A	N/A
•	Antenna Mast	MATURO	TAM-4.0-P	N/A	N/A	N/A

4.4. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

	VN=Nominal Voltage	DC 3.80V		
Voltage	VL=Lower Voltage	DC 3.60V		
	VH=Higher Voltage	DC 4.35V		
Tomporatura	TN=Normal Temperature	25 °C		
Temperature	Extreme Temperature From -30° to + 50° centigrade			
Humidity	30~60 %			
Air Pressure	950-1050 hPa			

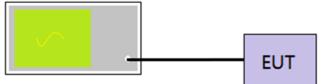
4.5. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01"Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics;Part 1"and TR-100028-02 "Electromagnetic compatibility Radio spectrum Matters (ERM);Uncertainties compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement characteristics;Part 2 " and is documented in the Shenzhen Huatongwei International Inspection Co., Ltd quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen Huatongweilaboratory is reported:

Test Items	Measurement Uncertainty	Notes	
Transmitter power conducted	0.51 dB	(1)	
Transmitter power Radiated	2.66dB for <1GHz 3.44dB for >1GHz	(1)	
Conducted spurious emissions 9kHz~40GHz	1.93 dB	(1)	
Radiated spurious emissions	4.90dB for <1GHz	(1)	
	4.96dB for >1GHz	(')	
Occupied Rendwidth	15Hz for <1GHz	(1)	
Occupied Bandwidth	70Hz for >1GHz	(1)	
Frequency error	15Hz for <1GHz	(1)	
Frequency error	70Hz for >1GHz	(1)	

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.


5. TEST CONDITIONS AND RESULTS

5.1. Conducted Output Power

<u>LIMIT</u>

N/A

TEST CONFIGURATION

Communication Tester

TEST PROCEDURE

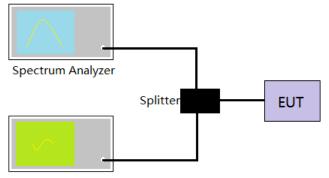
- 1. The EUT output port was connected to communication tester.
- 2. Set EUT at maximum power through communication tester.
- 3. Select lowest, middle, and highest channels for each band and different modulation.
- 4. Measure the maximum burst average power.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

☑ Passed □ Not Applicable


Refer to appendix A on the section 8 appendix report

5.2. Peak-to-Average Ratio

<u>LIMIT</u>

13dB

TEST CONFIGURATION

Communication Tester

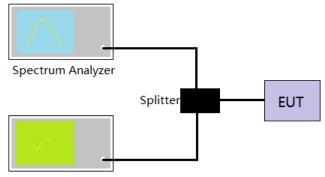
TEST PROCEDURE

- 1. The EUT was connected to the spectrum analyzer and communication tester via a power splitter
- 2. Set EUT in maximum power output.
- 3. Center Frequency = Carrier frequency, RBW > Emission bandwidth of signal
- 4. The signal analyzer was set to collect one million samples to generate the CCDF curve
- 5. The measurement interval was set depending on the type of signal analyzed.
 - i. For continuous signals (>98% duty cycle), the measurement interval was set to 1ms.
 - ii. For bursttransmissions, the spectrum analyzer is set to use an internal "RF Burst" trigger that issynced with an incoming pulse and the measurement interval is set to less than the duration of the "on time" of one burst to ensure that energy is only captured during a time in whichthetransmitter is operating at maximum power
- 6. Record the maximum PAPR level associated with a probability of 0.1%.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS


☑ Passed □ Not Applicable

Refer to appendix B on the section 8 appendix report

5.3. 99% Occupied Bandwidth & 26 dB Bandwidth

<u>LIMIT</u> N/A

TEST CONFIGURATION

Communication Tester

TEST PROCEDURE

- 1. The EUT was connected to the spectrum analyzer and communication tester via a power splitter
- 2. Set EUT in maximum power output.
- 3. Spectrum analyzer setting as follow:

Center Frequency= Carrier frequency, RBW=1% to 5% of the anticipated OBW, VBW= 3 * RBW, Detector=Peak,

Trace maximum hold.

4. Record the value of 99% Occupied bandwidth and 26dB bandwidth.

TEST MODE:

Please refer to the clause 3.3

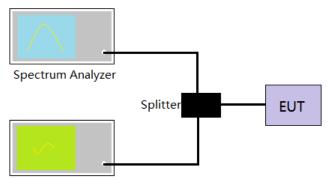
TEST RESULTS

☑ Passed □ Not Applicable

Refer to appendix C on the section 8 appendix report

5.4. Band Edge

<u>LIMIT</u>


Part 24.238 and Part 22.917 and Part 27.53 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

LTE Band 7

Part 27.53 m(4) For mobile digital stations, the attenuation factor shall be not less than 40 + 10 log (P) dB on all frequencies between the channel edge and 5 megahertz from the channel edge, 43 + 10 log (P) dB on all frequencies between 5 megahertz and X megahertz from the channel edge, and 55 + 10 log (P) dB on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section. In addition, the attenuation factor shall not be less that 43 + 10 log (P) dB on all frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees. Limit <-25 dBm

TEST CONFIGURATION

Communication Tester

TEST PROCEDURE

- 1. The EUT was connected to the spectrum analyzer and communication tester via a power splitter
- 2. Set EUT in maximum power output.
- 3. The band edges of low and high channels were measured.
- 4. Spectrum analyzer setting as follow:

RBW= no less than 1% of the OBW, VBW =3 * RBW, Sweep time= Auto

5. Record the test plot.

TEST MODE:

Please refer to the clause 3.3

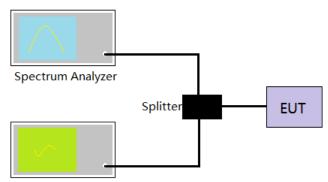
TEST RESULTS

☑ Passed □ Not Applicable

Refer to appendix D on the section 8 appendix report

5.5. Conducted Spurious Emissions

LIMIT


Part 24.238 and Part 22.917 and Part 27.53 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

LTE Band 7

Part 27.53 m(4) For mobile digital stations, the attenuation factor shall be not less than 40 + 10 log (P) dB on all frequencies between the channel edge and 5 megahertz from the channel edge, 43 + 10 log (P) dB on all frequencies between 5 megahertz and X megahertz from the channel edge, and 55 + 10 log (P) dB on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section. In addition, the attenuation factor shall not be less that 43 + 10 log (P) dB on all frequencies between 2490.5 MHz and 25 + 10 log (P) dB on all frequencies between 2490.5 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees. Limit <-25 dBm

TEST CONFIGURATION

Communication Tester

TEST PROCEDURE

- 1. The EUT was connected to the spectrum analyzer and communication tester via a power splitter
- 2. Set EUT in maximum power output.
- 3. Spectrum analyzer setting as follow:

Below 1GHz, RBW=100KHz, VBW = 300KHz, Detector=Peak, Sweep time= Auto Above 1GHz, RBW=1MHz, VBW=3MHz, Detector=Peak, Sweep time= Auto Scan frequency range up to 10th harmonic.

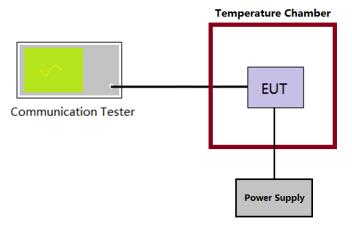
4. Record the test plot.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

☑ Passed □ Not Applicable


Refer to appendix E on the section 8 appendix report

5.6. Frequency stability VS Temperature measurement

<u>LIMIT</u>

2.5ppm

TEST CONFIGURATION

TEST PROCEDURE

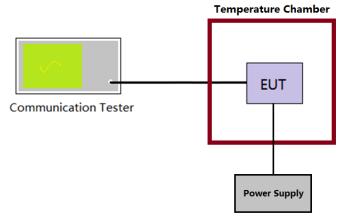
- 1. The equipment under test was connected to an external DC power supply and input rated voltage.
- 2. The EUT output port was connected to communication tester.
- 3. The EUT was placed inside the temperature chamber.
- 4. Turn EUT off and set the chamber temperature to –30°C. After the temperature stabilized for approximately 30 minutes recorded the frequency.
- 5. Repeat step 4 measure with 10°C increased per stage until the highest temperature of +50°C reached.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

☑ Passed □ Not Applicable


Refer to appendix F on the section 8 appendix report

5.7. Frequency stability VS Voltage measurement

<u>LIMIT</u>

2.5ppm

TEST CONFIGURATION

TEST PROCEDURE

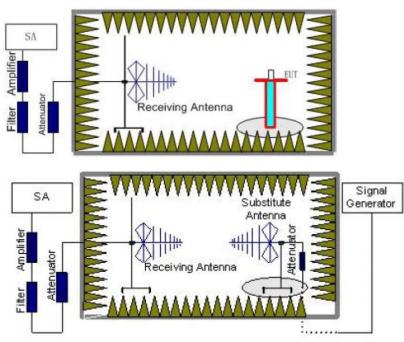
- 1. The equipment under test was connected to an external DC power supply and input rated voltage.
- 2. The EUT output port was connected to communication tester.
- 3. The EUT was placed inside the temperature chamber at 25°C
- The power supply voltage to the EUT was varied ±15% of the nominal value measured at the input to the EUT
- 5. Record the maximum frequency change.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

☑ Passed □ Not Applicable


Refer to appendix F on the section 8 appendix report

5.8. ERP and EIRP

<u>LIMIT</u>

LTE Band 2/7: 2W(33dBm) EIRP LTE Band 4: 1W(30dBm) EIRP LTE Band 5: 7W(38.50dBm) ERP

TEST CONFIGURATION

TEST PROCEDURE

- EUT was placed on a 0.8 meter for below 1GHz and 1.5 meter for above 1GHz high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.0m. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector.
- 2. A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.
- 3. The EUT is then put into continuously transmitting mode at its maximum power level during the test.Set Test Receiver or Spectrum RBW=1MHz,VBW=3MHz for above 1GHz and RBW=100kHz,VBW=300kHz for 30MHz to 1GHz,, And the maximum value of the receiver should be recorded as (Pr).
- 4. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest isconnected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (PMea) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (Pr). The power of signal source (PMea) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.
- A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (Pcl) ,the Substitution Antenna Gain (Ga) and the Amplifier Gain (PAg) should be recorded after test.
- 6. The measurement results are obtained as described below:

Power(EIRP)=PMea- PAg - Pcl + Ga

We used SMF100A micowave signal generator which signal level can up to 33dBm,so we not used power Amplifier for substituation test; The measurement results are amend as described below: Power(EIRP)=PMea- Pcl + Ga

7. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.

ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP-2.15dBi.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

☑ Passed □ Not Applicable

	LTE Band 2-1.4MHz						
Modulation	Channel	EIRP	(dBm)	Limit (dPm)	Popult		
Modulation	Channel	Vertical	Horizontal	Limit (dBm)	Result		
	Low	18.89	22.23				
QPSK	Mid	18.92	22.38		PASS		
	High	19.04	22.08				
	Low	18.78	22.20	- <33.00 - -			
16QAM	Mid	18.79	22.40		PASS		
	High	18.83	21.93				

LTE Band 2-3MHz							
Modulation	Channel	EIRP	(dBm)	Limit (dBm)	Result		
wouldtion	Channer	Vertical	Horizontal				
	Low	18.68	21.82	<33.00			
QPSK	Mid	18.78	22.37		PASS		
	High	18.82	21.92				
	Low	17.71	21.27				
16QAM	Mid	17.55	21.31		PASS		
	High	17.29	20.93				

LTE Band 2-5MHz						
Modulation	Channel	EIRP	(dBm)	Limit (dDm)	Decult	
wodulation	Channel	Vertical	Horizontal	Limit (dBm)	Result	
	Low	19.61	22.71			
QPSK	Mid	19.63	22.79		PASS	
	High	19.90	22.52	00.00		
16QAM	Low	19.59	22.66	<33.00		
	Mid	19.48	22.82		PASS	
	High	19.48	22.30			

	LTE Band 2-10MHz							
Modulation	Channel	EIRP	(dBm)	Limit (dDm)	Booult			
wooulation	Channel	Vertical	Horizontal	Limit (dBm)	Result			
	Low	19.58	22.80	- <33.00				
QPSK	Mid	19.59	22.87		PASS			
	High	19.86	22.69					
	Low	19.55	22.79					
16QAM	Mid	19.44	23.00		PASS			
	High	19.44	22.43					

LTE Band 2-15MHz							
Modulation	Channel	EIRP	(dBm)	Limit (dPm)	Booult		
Modulation	Channel	Vertical	Horizontal	Limit (dBm)	Result		
	Low	19.27	22.31				
QPSK	Mid	19.36	22.80		PASS		
	High	19.53	22.45				
	Low	18.37	21.77	- <33.00 - -			
16QAM	Mid	18.11	21.83		PASS		
	High	17.83	21.37				

LTE Band 2-20MHz							
Modulation	Channel	EIRP	(dBm)	Limit (dBm)	Result		
wouldton	Channel	Vertical	Horizontal				
	Low	19.43	22.46	<33.00	PASS		
QPSK	Mid	19.61	22.99				
	High	19.78	22.61				
	Low	18.36	21.87				
16QAM	Mid	18.26	21.95		PASS		
	High	18.05	21.48				

	LTE Band 4-1.4MHz							
Madulation	Channel	EIRP	(dBm)	Limit (dDm)	Decult			
Modulation	Channel	Vertical	Horizontal	Limit (dBm)	Result			
	Low	20.93	22.33					
QPSK	Mid	21.38	22.75		PASS			
	High	21.29	22.57					
	Low	18.62	20.62	- <30.00 				
16QAM	Mid	19.01	21.10		PASS			
	High	18.80	21.05					

LTE Band 4-3MHz						
Modulation	Channel	EIRP	(dBm)	Limit (dBm)	Desuit	
wodulation	Channel	Vertical	Horizontal		Result	
	Low	21.36	22.33	<30.00		
QPSK	Mid	21.30	22.51		PASS	
	High	20.97	22.42			
	Low	18.91	21.08			
16QAM	Mid	19.23	20.56		PASS	
	High	19.10	21.26			

	LTE Band 4-5MHz							
Modulation	Channel	EIRP	(dBm)	Limit (dPm)	Result			
wooulation	Channel	Vertical	Horizontal	Limit (dBm)	Result			
	Low	21.98	22.89	<30.00				
QPSK	Mid	22.24	23.28		PASS			
	High	22.12	23.14					
	Low	19.40	21.01					
16QAM	Mid	19.71	22.03		PASS			
	High	19.37	21.35					

	LTE Band 4-10MHz						
Modulation	Channel	EIRP	(dBm)	Limit (dDm)	Booult		
wouldtion	Channel	Vertical	Horizontal	Limit (dBm)	Result		
	Low	21.53	22.71				
QPSK	Mid	21.88	23.11		PASS		
	High	21.77	22.93				
	Low	19.06	20.92	<30.00			
16QAM	Mid	19.40	21.37	_	PASS		
	High	19.12	21.27				

LTE Band 4-15MHz								
Modulation	Channel	EIRP	(dBm)	Limit (dDm)	Dec. II			
Modulation	Channel	Vertical	Horizontal	Limit (dBm)	Result			
	Low	22.00	22.66					
QPSK	Mid	21.82	22.83		PASS			
	High	21.46	22.76					
	Low	19.38	21.31	<30.00	PASS			
16QAM	Mid	19.65	21.12					
	High	19.44	21.44					

LTE Band 4-20MHz									
Modulation	Channel	EIRP	(dBm)	Limit (dBm)	Result				
Wouldton	Channel	Vertical	Horizontal		Result				
	Low	22.06	22.71						
QPSK	Mid	22.06	22.94		PASS				
	High	21.68	22.82	<30.00					
	Low	19.36	21.39	<30.00					
16QAM	Mid	19.88	21.05						
	High	19.70	21.60						

	LTE Band 5-1.4MHz								
Modulation	Channel	ERP	(dBm)	Limit (dPm)	Booult				
wodulation	Channel	Vertical	Horizontal	Limit (dBm)	Result				
	Low	22.39	20.81						
QPSK	Mid	22.69	20.69		PASS				
	High	22.66	20.60						
	Low	20.78	19.19	- <38.50					
16QAM	Mid	20.85	19.26		PASS				
	High	20.89	18.97						

LTE Band 5-3MHz									
Modulation	Channel	ERP	(dBm)	Limit (dBm)	Result				
wodulation	Channel	Vertical	Horizontal		Result				
	Low	23.44	20.35						
QPSK	Mid	23.16	20.21		PASS				
	High	22.58	19.91	<38.50					
	Low	20.84	19.78						
16QAM	Mid	20.96	19.03		PASS				
	High	20.99	18.79						

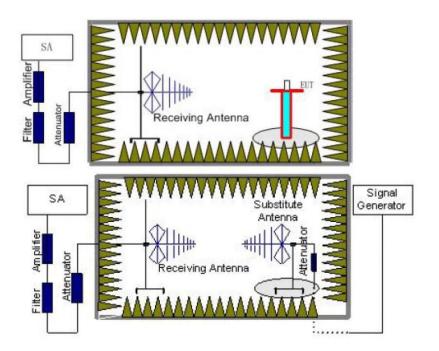
	LTE Band 5-5MHz								
Modulation	Channel	ERP	(dBm)	Limit (dPm)	Result				
wooulation	Channel	Vertical	Horizontal	Limit (dBm)	Result				
	Low	23.05	20.60						
QPSK	Mid	22.89	20.46	- - <38.50 -	PASS				
	High	22.36	20.05						
	Low	21.31	19.80						
16QAM	Mid	21.19	19.65		PASS				
	High	21.14	19.47						

	LTE Band 5-10MHz								
Modulation	Channel	ERP	(dBm)	Limit (dPm)	Booult				
Modulation	Channel	Vertical	Horizontal	Limit (dBm)	Result				
	Low	22.99	20.63						
QPSK	Mid	22.83	20.48	- <38.50	PASS				
	High	22.33	20.06						
	Low	21.17	19.40						
16QAM	Mid	21.29	19.49		PASS				
	High	21.36	19.23						

	LTE Band 7-5MHz								
Modulation	Channel	EIRP	(dBm)	Limit (dDm)	Booult				
Modulation	Channel	Vertical	Horizontal	Limit (dBm)	Result				
	Low	20.52	23.73						
QPSK	Mid	20.69	23.76		PASS				
	High	20.56	23.25	-22.00					
	Low	18.65	23.00	- <33.00					
16QAM	Mid	18.84	22.97		PASS				
	High	18.74	22.85						

LTE Band 7-10MHz								
Modulation	Channel	EIRP	(dBm)	Limit (dBm)	Result			
wodulation	Channel	Vertical	Horizontal		Result			
	Low	20.37	23.47					
QPSK	Mid	20.46	23.32		PASS			
	High	20.35	23.20	<33.00				
	Low	19.08	23.09	<33.00				
16QAM	Mid	19.05	22.86		PASS			
	High	19.00	22.62					

LTE Band 7-15MHz									
Modulation	Channel	EIRP	(dBm)	Limit (dRm)	Decult				
wodulation	Channel	Vertical	Horizontal	Limit (dBm)	Result				
	Low	20.38	23.55						
QPSK	Mid	20.54	23.75		PASS				
	High	20.39	23.48						
	Low	18.80	22.76						
16QAM	Mid	18.96	22.70		PASS				
	High	18.85	22.60						


	LTE Band 7-20MHz								
Modulation	Channel	EIRP	(dBm)	Limit (dPm)	D K				
wouldtion	Channel	Vertical	Horizontal	Limit (dBm)	Result				
	Low	20.34	23.65						
QPSK	Mid	20.42	23.49		PASS				
	High	20.30	23.38						
	Low	19.16	23.19	<33.00					
16QAM	Mid	19.42	23.33	1	PASS				
	High	19.23	23.18						

5.9. Radiated Spurious Emission

<u>LIMIT</u>

LTE Band 2/4/5: -13dBm; LTE Band 7: -25dBm

TEST CONFIGURATION

TEST PROCEDURE

- EUT was placed on a 0.8 meter for below 1GHz and 1.5 meter for above 1GHz high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.0m. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector.
- 2. A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.
- 3. The EUT is then put into continuously transmitting mode at its maximum power level during the test.Set Test Receiver or Spectrum RBW=1MHz,VBW=3MHz for above 1GHz and RBW=100kHz,VBW=300kHz for 30MHz to 1GHz, And the maximum value of the receiver should be recorded as (Pr).
- 4. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest isconnected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (PMea) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (Pr). The power of signal source (PMea) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.
- A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (Pcl) ,the Substitution Antenna Gain (Ga) and the Amplifier Gain (PAg) should be recorded after test.

- The measurement results are obtained as described below: Power(EIRP)=PMea- PAg - Pcl + Ga We used SMF100A micowave signal generator which signal level can up to 33dBm,so we not used power Amplifier for substituation test; The measurement results are amend as described below: Power(EIRP)=PMea- Pcl + Ga
- This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
 ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP-2.15dBi.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

☑ Passed □ Not Applicable

LTE Band 2-1.4MHz								
Channel	Frequency	Spurious	Emission	Limit (dBm)	Result			
Charmer	(MHz)	Polarization	Level (dBm)		Result			
	3701.40	Vertical	-35.73					
	5552.10	V	-39.43	<-13.00	Pass			
Low	7402.80	V	-40.45					
LOW	3701.40	Horizontal	-36.96					
	5552.10	Н	-40.60	<-13.00	Pass			
	7402.80	Н	-41.43					
	3760.00	Vertical	-34.80	<-13.00	Pass			
	5640.00	V	-38.55					
Mid	7520.00	V	-39.62					
IVIIG	3760.00	Horizontal	-35.83					
	5640.00	Н	-39.68	<-13.00	Pass			
	7520.00	Н	-40.56					
	3818.60	Vertical	-33.21					
	5727.90	V	-37.10	<-13.00	Pass			
High	7637.20	V	-38.24					
High	3818.60	Horizontal	-35.27					
	5727.90	Н	-39.16	<-13.00	Pass			
	7637.20	Н	-40.11					

Page: 29 of 39

Issued: 2019-06-10

LTE Band 2-3MHz								
Channel	Frequency	Spurious	Emission	Limit (dPm)	Result			
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result			
	3703.00	Vertical	-32.19					
	5554.50	V	-34.20	<-13.00	Pass			
Low	7406.00	V	-36.13					
LOW	3703.00	Horizontal	-32.75					
	5554.50	Н	-36.18	<-13.00	Pass			
	7406.00	Н	-38.55					
	3760.00	Vertical	-29.34	<-13.00	Pass			
	5640.00	V	-31.52					
Mid	7520.00	V	-33.20					
IVIIC	3760.00	Horizontal	-30.38					
	5640.00	Н	-34.52	<-13.00	Pass			
	7520.00	Н	-36.64					
	3817.00	Vertical	-26.74					
	5725.50	V	-29.63	<-13.00	Pass			
High	7634.00	V	-31.97					
High	3817.00	Horizontal	-27.89					
	5725.50	Н	-32.62	<-13.00	Pass			
	7634.00	Н	-33.30					

		LTE Bar	nd 2-5MHz		
Channel	Frequency	Spurious	Emission	Limit (dPm)	Result
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result
	3705.00	Vertical	-23.94		
	5557.50	V	-25.39	<-13.00	Pass
Low	7410.00	V	-28.78		
LOW	3705.00	Horizontal	-30.01		
	5557.50	Н	-36.42	<-13.00	Pass
	7410.00	Н	-35.16	1	
	3760.00	Vertical	-25.31	<-13.00	
	5640.00	V	-27.93		Pass
Mid	7520.00	V	-30.98		
iviid	3760.00	Horizontal	-33.17		
	5640.00	Н	-38.56	<-13.00	Pass
	7520.00	Н	-36.79		
	3815.00	Vertical	-28.76		
	5722.50	V	-30.38	<-13.00	Pass
Lliab	7630.00	V	-33.09		
High	3815.00	Horizontal	-35.65		
	5722.50	Н	-40.85	<-13.00	Pass
	7630.00	Н	-38.54		

Shenzhen Huatongwei International Inspection Co., Ltd.

Page: 30 of 39

Issued: 2019-06-10

		LTE Ban	d 2-10MHz		
Channel	Frequency	Spurious Emission		Limit (dDm)	Result
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result
	3710.00	Vertical	-26.47		
	5565.00	V	-29.14	<-13.00	Pass
Low	7420.00	V	-31.61		
LOW	3710.00	Horizontal	-39.15		
	5565.00	Н	-43.25	<-13.00	Pass
	7420.00	Н	-41.29]	
	3760.00	Vertical	-29.19		
	5640.00	V	-31.42	<-13.00	Pass
Mid	7520.00	V	-34.35		
IVIIG	3760.00	Horizontal	-40.94		
	5640.00	Н	-45.92	<-13.00	Pass
	7520.00	Н	-43.41		
	3810.00	Vertical	-30.20		
	5715.00	V	-33.69	<-13.00	Pass
High	7620.00	V	-36.98		
High	3810.00	Horizontal	-38.78		
	5715.00	Н	-44.67	<-13.00	Pass
	7620.00	Н	-41.73		

		LTE Ban	d 2-15MHz		
Channel	Frequency	Spurious	Emission	Limit (dPm)	Result
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result
	3715.00	Vertical	-28.35		
	5572.50	V	-32.03	<-13.00	Pass
Low	7430.00	V	-35.20		
LOW	3715.00	Horizontal	-40.53		
	5572.50	н	-46.31	<-13.00	Pass
	7430.00	н	-43.13	1	
	3760.00	Vertical	-29.67	<-13.00	
	5640.00	V	-33.26		Pass
Mid	7520.00	V	-36.36		
IVIIG	3760.00	Horizontal	-38.87		
	5640.00	н	-44.59	<-13.00	Pass
	7520.00	н	-42.15		
	3805.00	Vertical	-28.30		
	5707.50	V	-30.71	<-13.00	Pass
Lliab	7610.00	V	-33.82		
High	3805.00	Horizontal	-41.04		
	5707.50	н	-48.11	<-13.00	Pass
	7610.00	Н	-45.77		

Shenzhen Huatongwei International Inspection Co., Ltd.

31 of 39 Page:

		LTE Ban	d 2-20MHz		
Channel	Frequency	Spurious	Emission	Limit (dPm)	Result
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result
	3720.00	Vertical	-30.46		
	5580.00	V	-33.16	<-13.00	Pass
Low	7440.00	V	-35.67		
LOw	3720.00	Horizontal	-41.48		
	5580.00	н	-48.53	<-13.00	Pass
	7440.00	Н	-46.12		
	3760.00	Vertical	-30.79		
	5640.00	V	-33.47	<-13.00	Pass
Mid	7520.00	V	-35.96		
IVIIG	3760.00	Horizontal	-41.77		
	5640.00	н	-48.77	<-13.00	Pass
	7520.00	Н	-46.34		
	3800.00	Vertical	-29.22		
	5700.00	V	-31.37	<-13.00	Pass
High	7600.00	V	-34.44		
High	3800.00	Horizontal	-42.08		
	5700.00	н	-49.06	<-13.00	Pass
	7600.00	Н	-46.59		

Remark:

1.

Remark"---" means that the emission level is too low to be measured The emission levels of below 1 GHz are very lower than the limit and not show in test report. 2.

Page: 32 of 39

Issued: 2019-06-10

		LTE Band	d 4-1.4MHz		
Channel	Frequency	Spurious	Emission	Lingit (dDng)	Decult
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result
	3421.40	Vertical	-32.75		
	5132.10	V	-38.41	<-13.00	Pass
Low	6842.80	V	-38.34		
Low	3421.40	Horizontal	-34.40		
	5132.10	Н	-39.97	<-13.00	Pass
	6842.80	Н	-39.66		
	3465.00	Vertical	-31.52		
	5197.50	V	-37.24	<-13.00	Pass
	6930.00	V	-37.24		
Mid	3465.00	Horizontal	-32.88		
	5197.50	Н	-38.74	<-13.00	Pass
	6930.00	Н	-38.49		
	3508.60	Vertical	-29.40		
	5262.90	V	-35.32	<-13.00	Pass
	7017.20	V	-35.42		
High	3508.60	Horizontal	-31.15		
	5262.90	Н	-37.09	<-13.00	Pass
	7017.20	Н	-36.92		
		LTE Bar	nd 4-3MHz		
	Frequency	Spurious	Emission		
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result
	3423.00	Vertical	-32.06		
	5134.50	V	-37.68	<-13.00	Pass
	6846.00	V	-37.76		
Low	3423.00	Horizontal	-33.25		
	5134.50	Н	-40.43	<-13.00	Pass
	6846.00	Н	-39.46		
	3465.00	Vertical	-34.83		
	5197.50	V	-40.45	<-13.00	Pass
N.4	6930.00	V	-39.90		
Mid	3465.00	Horizontal	-38.56		
	5197.50	Н	-44.17	<-13.00	Pass
	6930.00	Н	-43.81		
	3507.00	Vertical	-36.69		
	5260.50	V	-42.14	<-13.00	Pass
	7014.00	V	-41.50		
High	3507.00	Horizontal	-41.13		
				<-13.00	Dooo
	5260.50	Н	-47.06		Pass

	Freesewart	Spurious	Emission		
Channel	Frequency (MHz)	Polarization	Level (dBm)	Limit (dBm)	Result
	3425.00	Vertical	-40.10		
	5137.50	V	-44.64	<-13.00	Pass
	6850.00	V	-44.89		
Low	3425.00	Horizontal	-42.49		
	5137.50	Н	-48.34	<-13.00	Pass
	6850.00	Н	-47.01		
	3465.00	Vertical	-41.11		
	5197.50	V	-45.59	<-13.00	Pass
	6930.00	V	-45.78		
Mid	3465.00	Horizontal	-43.69		
	5197.50	Н	-49.31	<-13.00	Pass
	6930.00	Н	-47.93		
	3505.00	Vertical	-42.58		
	5257.50	V	-46.93	<-13.00	Pass
	7010.00	V	-47.05		
High	3505.00	Horizontal	-44.65		
	5257.50	Н	-50.20	<-13.00	Pass
	7010.00	н	-48.70		
		LTE Ban	d 4-10MHz		
Channel	Frequency	Spurious Emission		Limit (dDra)	Decult
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result
	3430.00	Vertical	-45.18		
	5145.00	V	-48.52	<-13.00	Pass
Low	6860.00	V	-48.02		
Low	3430.00	Horizontal	-44.91		
	5145.00	Н	-50.44	<-13.00	Pass
	6860.00	Н	-48.91		
	3465.00	Vertical	-45.37		
	5197.50	V	-48.70	<-13.00	Pass
Mid	6930.00	V	-48.55		
IVIIU	3465.00	Horizontal	-45.12		
	5197.50	Н	-50.61	<-13.00	Pass
	6930.00	Н	-49.07		
	3500.00	Vertical	-45.63		
	5250.00	V	-48.94	<-13.00	Pass
Lliab	7000.00	V	-48.78		
High	3500.00	Horizontal	-45.31		
	5250.00	Н	-50.80	<-13.00	Pass
			1		Pass

34 of 39 Page:

2019-06-10 Issued:

		LTE Ban	d 4-15MHz		
Channel	Frequency Spurious Emission		Limit (dBm)	Result	
Channel	(MHz)	Polarization	Level (dBm)		Result
	3435.00	Vertical	-46.32		
	5152.50	V	-49.63	<-13.00	Pass
Low	6870.00	V	-49.33		
LOW	3435.00	Horizontal	-47.39		
	5152.50	Н	-52.75	<-13.00	Pass
	6870.00	Н	-52.83		
	3465.00	Vertical	-49.71		
	5197.50 V -52.82 <-13.00	<-13.00	Pass		
N 4: al	6930.00	V	-52.32		
Mid	3465.00	Horizontal	-50.02		
	5197.50	Н	-54.88	<-13.00	Pass
	6930.00	Н	-54.85		
	3495.00	Vertical	-52.21		
	5242.50	V	-55.08	<-13.00	Pass
High	6990.00	V	-54.47		
	3495.00	Horizontal	-52.24		
	5242.50	Н	-56.97	<-13.00	Pass
	6990.00	Н	-58.70		
		LTE Ban	d 4-20MHz		
<u> </u>	Frequency	Spurious	Emission		
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result
	3440.00	Vertical	-64.44	<-13.00	
	5160.00	V	-57.87		Pass
	6880.00	V	-56.84		
Low	3440.00	Horizontal	-54.60		
	5160.00	Н	-67.16	<-13.00	Pass
	6880.00	Н	-68.94		
	3465.00	Vertical	-75.41		
	5197.50	V	-63.09	<-13.00	Pass
	6930.00	V	-61.76		
Mid	3465.00	Horizontal	-61.55		
	5197.50	Н	-74.27	<-13.00	Pass
	6930.00	н	-72.76		
	3490.00	Vertical	-78.54		
	5235.00	V	-65.10	<-13.00	Pass
	6980.00	V	-63.58		
High	3490.00	Horizontal	-63.28		
riigii	0100100		1	~-13.00	Doco
riigii	5235.00	Н	-75.91	<-13.00	Pass

Remark:

1.

Remark"---" means that the emission level is too low to be measured The emission levels of below 1 GHz are very lower than the limit and not show in test report. 2.

Page: 35 of 39

Issued: 2019-06-10

		LTE Band	d 5-1.4MHz		
Channel	Frequency	Spurious	Emission	Lingit (dDng)	Decult
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result
	1649.40	Vertical	-35.64		
	2474.10	V	-43.19	<-13.00	Pass
1	3298.80	V	-43.74		
Low	1649.40	Horizontal	-38.01		
	2474.10	Н	-45.98	<-13.00	Pass
	3298.80	Н	-46.28		
	1673.00	Vertical	-34.93		
	2509.50	V	-42.53	<-13.00	Pass
	3346.00	V	-42.97		
Mid	1673.00	Horizontal	-37.29		
	2509.50	Н	-45.30	<-13.00	Pass
	3346.00	Н	-45.64		
	1696.60	Vertical	-34.12		
	2544.90	V	-41.88	<-13.00	Pass
	3393.20	V	-42.35		
High	1696.60	Horizontal	-34.49		
	2544.90	Н	-41.54	<-13.00	Pass
	3393.20	Н	-42.93		
		LTE Bar	nd 5-3MHz		
	Frequency	Spurious	Emission		
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result
	1651.00	Vertical	-32.65		
	2476.50	V	-40.51	<-13.00	Pass
	3302.00	V	-41.18	1	
Low	1651.00	Horizontal	-33.53		
	2476.50	Н	-40.64	<-13.00	Pass
	3302.00	Н	-42.16		
	1673.00	Vertical	-31.94		
	2509.50	V	-39.83	<-13.00	Pass
	3346.00	V	-40.55		
Mid	1673.00	Horizontal	-32.25		
	2509.50	Н	-39.59	<-13.00	Pass
		Н	-41.17		
	3346.00	1		<-13.00	
	1695.00	Vertical	-30.35		Daca
		Vertical V	-30.35 -38.39	<-13.00	Pass
	1695.00 2542.50		-38.39	<-13.00	Pass
High	1695.00 2542.50 3390.00	V V	-38.39 -39.18	<-13.00	Pass
High	1695.00 2542.50	V	-38.39	<-13.00	Pass

36 of 39 Page:

2019-06-10 Issued:

	F	Spurious	nd 5-5MHz Emission		
Channel	Frequency (MHz)	Polarization	Level (dBm)	Limit (dBm)	Result
	1653.00	Vertical	-27.42		
	2479.50	V	-36.56	<-13.00	Pass
	3306.00	V	-36.77		
Low	1653.00	Horizontal	-31.78		
	2479.50	Н	-39.14	<-13.00	Pass
	3306.00	Н	-40.80		
	1673.00	Vertical	-27.95		
	2509.50	V	-37.06	<-13.00	Pass
	3346.00	V	-37.24		
Mid	1673.00	Horizontal	-31.93		
	2509.50	Н	-39.26	<-13.00	Pass
	3346.00	Н	-40.91		
	1693.00	Vertical	-28.59		
	2539.50	V	-37.65	<-13.00	Pass
-	3386.00	V	-37.80		
High	1693.00	Horizontal	-30.71		
	2539.50	Н	-38.11	<-13.00	Pass
	3386.00	Н	-39.94		
		LTE Ban	d 5-10MHz		
Charter	Frequency	V Spurious Emission			Devil
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result
	1658.00	Vertical	-27.77		
	2487.00	V	-36.94	<-13.00	Pass
	3316.00	V	-37.20		
Low	1658.00	Horizontal	-31.66		
	2487.00	Н	-39.00	<-13.00	Pass
	3316.00	Н	-40.70		
	1673.00	Vertical	-28.47		
	2509.50	V	-37.61	<-13.00	Pass
Mid	3346.00	V	-37.83		
Mid	1673.00	Horizontal	-31.85		
	2509.50	Н	-39.15	<-13.00	Pass
	3346.00	Н	-40.85		
	1688.00	Vertical	-28.70		
	2532.00	V	-37.82	<-13.00	Pass
Lline	3376.00	V	-38.03		
High	1688.00	Horizontal	-32.03		
	2532.00	Н	-39.32	<-13.00	Pass
	LOOLIOU			<-13.00	Pass

Remark:

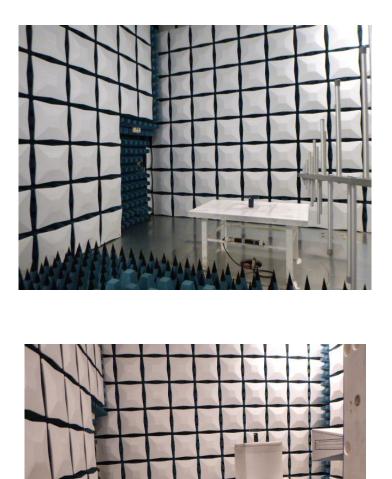
1.

Remark"---" means that the emission level is too low to be measured The emission levels of below 1 GHz are very lower than the limit and not show in test report. 2.

Page: 37 of 39

Issued: 2019-06-10

		LTE Bar	nd 7-5MHz		
Channel	Frequency	Spurious	Emission	Limit (dBm)	Result
Channel	(MHz)	Polarization	Level (dBm)	Linit (dBin)	Result
	5005.00	Vertical	-36.53		
	7507.50	V	-40.94	<-25.00	Pass
Low	10010.00	V	-41.34		
LOW	5005.00	Horizontal	-39.01		
	7507.50	Н	-44.00	<-25.00	Pass
	10010.00	Н	-43.14		
	5070.00	Vertical	-35.27		
	7605.00	V	-39.09	<-25.00	Pass
N 41 -1	10140.00	V	-39.79		
Mid	5070.00	Horizontal	-35.59		
	7605.00	Н	-41.09	<-25.00	Pass
	10140.00	Н	-41.19		
	5135.00	Vertical	-31.74		
	7702.50	V	-35.88	<-25.00	Pass
	10270.00	V	-36.73		
High	5135.00	Horizontal	-33.23		
	7702.50	Н	-38.89	<-25.00	Pass
	10270.00	Н	-39.32		
		LTE Ban	d 7-10MHz		
Ohannal	Frequency	Spurious Emission			Decult
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result
	5010.00	Vertical	-30.14	<-25.00	
	7515.00	V	-34.52		Pass
1	10020.00	V	-35.58		
Low	5010.00	Horizontal	-34.56		
	7515.00	Н	-40.14	<-25.00	Pass
	10020.00	Н	-40.38		
	5070.00	Vertical	-31.14		
	7605.00	V	-35.46	<-25.00	Pass
N 41 1	10140.00	V	-36.46		
Mid	5070.00	Horizontal	-36.17		
	7605.00	Н	-41.43	<-25.00	Pass
	10140.00	Н	-41.61		
	5130.00	Vertical	-32.77		
	7695.00	V	-36.94	<-25.00	Pass
1.1.1	10260.00	V	-37.87		
High	5130.00	Horizontal	-37.22		
	7695.00	Н	-42.43	<-25.00	Pass
				<-25.00	Pass


			d 7-15MHz		
Channel	Frequency Spurious Emission		Limit (dBm)	Result	
Charmon	(MHz)	Polarization	Level (dBm)		Roodin
	5015.00	Vertical	-31.34		
	7522.50	V	-35.72	<-25.00	Pass
Low	10030.00	V	-36.83		
LOW	5015.00	Horizontal	-39.45		
	7522.50	Н	-45.66	<-25.00	Pass
	10030.00	н	-45.62		
	5070.00	Vertical	-34.37		
	7605.00	V	-38.39	<-25.00	Pass
N 4: -1	10140.00	V	-38.79		
Mid	5070.00	Horizontal	-38.18		
	7605.00	Н	-44.64	<-25.00	Pass
	10140.00	Н	-44.65		
	5125.00	Vertical	-32.81		
	7687.50	V	-36.97	<-25.00	Pass
High	10250.00	V	-37.44		
	5125.00	Horizontal	-37.14		
	7687.50	Н	-43.66	<-25.00	Pass
	10250.00	Н	-43.82		
	<u> </u>	LTE Ban	d 7-20MHz	II	
	Frequency	Spurious	Emission		
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result
	5020.00	Vertical	-31.28		
	7530.00	V	-35.06	<-25.00	Pass
	10040.00	V	-35.82		
Low	5020.00	Horizontal	-35.67		
	7530.00	Н	-42.27	<-25.00	Pass
	10040.00	Н	-42.64		
	5070.00	Vertical	-30.17		
	7605.00	V	-34.02	<-25.00	Pass
	10140.00	V	-34.84		
Mid	5070.00	Horizontal	-33.74		
	7605.00	Н	-40.72	<-25.00	Pass
	10140.00	Н	-41.15		
	5120.00	Vertical	-28.80		
			-32.78	<-25.00	Pass
	7680.00	V		<-25.00	Pass
	7680.00	V	1		
High	10240.00	V	-33.66		
High			1	<-25.00	Pass

Remark:

1.

Remark"---" means that the emission level is too low to be measured The emission levels of below 1 GHz are very lower than the limit and not show in test report. 2.

6. <u>TEST SETUP PHOTOS OF THE EUT</u>

7. EXTERNAL AND INTERNAL PHOTOS OF THE EUT

Refere to the test report No.: CHTEW19060047

8. APPENDIX REPORT