

RADIO TEST REPORT FCC ID: QRP-FP-014

Product:	Mobile phone
Trade Mark:	AZUMI
Model No.:	VOLTE V2
Family Model:	N/A
Report No.:	S23030204601001
Issue Date:	04 May. 2023

Prepared for

Azumi S.A

Avenida Aquilino de la Guardia con Calle 47, PH Ocean Plaza, Piso 16 of. 16-01, Marbella, Ciudad de Panama, Panama

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website: http://www.ntek.org.cn

Report No.: S23030204601001

TABLE OF CONTENTS

1	TES	ST RESULT CERTIFICATION	3		
2	2 SUMMARY OF TEST RESULTS				
3	FAC	CILITIES AND ACCREDITATIONS	5		
	3.1 3.2 3.3	FACILITIES LABORATORY ACCREDITATIONS AND LISTINGS MEASUREMENT UNCERTAINTY	5		
4	GE	NERAL DESCRIPTION OF EUT	6		
5	DES	SCRIPTION OF TEST MODES	8		
6	SET	FUP OF EQUIPMENT UNDER TEST	9		
	6.1 6.2 6.3	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM SUPPORT EQUIPMENT EQUIPMENTS LIST FOR ALL TEST ITEMS			
7	TES	ST REQUIREMENTS			
	7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10 7.11	CONDUCTED EMISSIONS TEST RADIATED SPURIOUS EMISSION NUMBER OF HOPPING CHANNEL HOPPING CHANNEL SEPARATION MEASUREMENT AVERAGE TIME OF OCCUPANCY (DWELL TIME) 20DB BANDWIDTH TEST PEAK OUTPUT POWER CONDUCTED BAND EDGE MEASUREMENT. SPURIOUS RF CONDUCTED EMISSION ANTENNA APPLICATION FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS	16 25 26 27 29 30 31 31 32 33 33 34		
8	TES	ST RESULTS			
	8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8	DWELL TIME MAXIMUM CONDUCTED OUTPUT POWER			
	8.9	CONDUCTED RF SPURIOUS EMISSION			

1 TEST RESULT CERTIFICATION

Applicant's name:	Azumi S.A
Address	Avenida Aquilino de la Guardia con Calle 47, PH Ocean Plaza, Piso 16 of. 16-01, Marbella, Ciudad de Panama, Panama
Manufacturer's Name:	AZUMI HK LTD
Address:	FLAT/RM 18 BLK 1 14/F GOLDEN INDUSTRIAL BUILDING 16-26 KWAI TAK STREET KWAI CHUNG,HK
Product description	
Product name:	Mobile phone
Model and/or type reference:	VOLTE V2
Family Model:	N/A
Test sample number	S230302046003

Measurement Procedure Used:

APPLICABLE STANDARDS

STANDARD/ TEST PROCEDURE	TEST RESULT
FCC 47 CFR Part 2, Subpart J FCC 47 CFR Part 15, Subpart C ANSI C63.10-2013	Complied

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Date of Test	:	06 Mar. 2023 ~ 04 May. 2023
Testing Engineer	:	Jollen Lin
		(Allen Liu)
Authorized Signatory	:	Alex
0 ,		(Alex Li)

SUMMARY OF TEST RESULTS າ

FCC Part15 (15.247), Subpart C				
Standard Section Test Item Verdict Rema				
15.207	Conducted Emission	PASS		
15.209 (a) 15.205 (a)Radiated Spurious EmissionPASS				
15.247(a)(1)	Hopping Channel Separation	PASS		
15.247(b)(1)	Peak Output Power	PASS		
15.247(a)(iii)	Number of Hopping Frequency	PASS		
15.247(a)(iii)	Dwell Time	PASS		
15.247(a)(1) Bandwidth PASS				
15.247 (d)	Band Edge Emission	PASS		
15.247 (d)	Spurious RF Conducted Emission	PASS		
15.203	Antenna Requirement	PASS		

Remark:

 "N/A" denotes test is not applicable in this Test Report.
 All test items were verified and recorded according to the standards and without any deviation during the test.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
CNAS-Lab.	: The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A.
	CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
Name of Firm	: Shenzhen NTEK Testing Technology Co., Ltd.
	c c ,
Site Location	: 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang
	Street, Bao'an District, Shenzhen 518126 P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification			
Equipment Mobile phone			
Trade Mark	AZUMI		
FCC ID	QRP-FP-014		
Model No.	VOLTE V2		
Family Model	N/A		
Model Difference	N/A		
Operating Frequency 2402MHz~2480MHz			
Modulation GFSK, π/4-DQPSK, 8-DPSK			
Number of Channels 79 Channels			
Antenna Type PIFA Antenna			
Antenna Gain	1.35dBi		
Power supply DC 3.7V/1000mAh from battery or DC 5V from Adapter.			
Adapter INPUT: AC 100-240V~50-60Hz 0.15A OUTPUT: DC 5.0V500mA			
HW Version	AZUMI_VOLTE_V2_HW_V001		
SW Version AZUMI_VOLTE_V2_CLARO_V001			

Note 1: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Revision History

Report No.	Version	Description	Issued Date
S23030204601001	Rev.01	Initial issue of report	04 May. 2023

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for GFSK modulation; 2Mbps for π /4-DQPSK modulation; 3Mbps for 8-DPSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

Channel	Frequency(MHz)
0	2402
1	2403
	•••
39	2441
40	2442
77	2479
78	2480

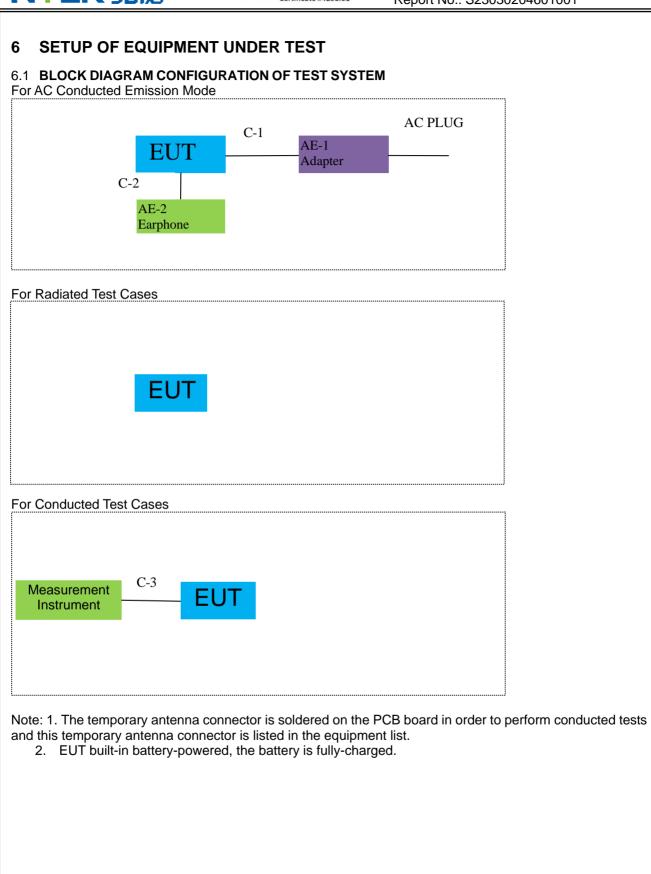
Note: fc=2402MHz+k×1MHz k=0 to 78

The following summary table is showing all test modes to demonstrate in compliance with the standard.

	For AC Conducted Emission	
Final Test Mode	Description	
Mode 1	normal link mode	
late. AC new on line Can dested Exclassion was to stad up day may insure autout a super-		

Note: AC power line Conducted Emission was tested under maximum output power.

For Radiated Test Cases			
Final Test Mode	Description		
Mode 1	normal link mode		
Mode 2	CH00(2402MHz)		
Mode 3	CH39(2441MHz)		
Mode 4	CH78(2480MHz)		


Note: For radiated test cases, the worst mode data rate 3Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

For Conducted Test Cases					
Final Test Mode Description					
Mode 2	CH00(2402MHz)				
Mode 3	CH39(2441MHz)				
Mode 4	CH78(2480MHz)				
Mode 5	Hopping mode				
· · · · · · · · · · · · · · · · · · ·					

Note: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Model/Type No.	Series No.	Note
AE-1	Adapter	N/A	N/A	Peripherals
AE-2	Earphone	N/A	N/A	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	USB Cable	YES	NO	1.0m
C-2	Earphone Cable	NO	NO	1.2m
C-3	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

NTEK 北测®

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

		lest equipment					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2022.04.06 2023.03.27	2023.04.05 2024.03.26	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2022.04.06 2023.03.27	2023.04.05 2024.03.26	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2022.04.06 2023.03.27	2023.04.05 2024.03.26	1 year
4	Test Receiver	R&S	ESPI7	101318	2022.04.06 2023.03.27	2023.04.05 2024.03.26	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2022.03.30 2023.03.27	2023.03.29 2024.03.26	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05.11	2023.05.10	3 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2022.03.31 2023.03.27	2023.03.30 2024.03.26	1 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2022.06.16	2023.06.15	1 year
9	Amplifier	EMC	EMC051835 SE	980246	2022.06.17	2023.06.16	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2022.06.16	2023.06.15	1 year
11	Power Meter	DARE	RPR3006W	15I00041SN 084	2022.06.16	2023.06.15	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2020.05.11	2023.05.10	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2020.05.11	2023.05.10	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2022.06.17	2025.06.16	3 year
15	Filter	TRILTHIC	2400MHz	29	2022.02.22 2022.11.08	2023.02.21 2023.11.07	1 year
16	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Conduction Test equipment							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2022.04.06 2023.03.27	2023.04.05 2024.03.26	1 year
2	LISN	R&S	ENV216	101313	2022.04.06 2023.03.27	2023.04.05 2024.03.26	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2022.04.06 2023.03.27	2023.04.05 2024.03.26	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2020.05.11	2023.05.10	3 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2020.05.11	2023.05.10	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2020.05.11	2023.05.10	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2020.05.11	2023.05.10	3 year

Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

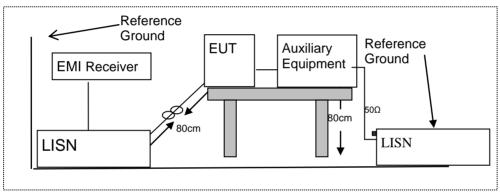
7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

7.1.1 Applicable Standard

According to FCC Part 15.207(a)

7.1.2 Conformance Limit


	Conducted Emission Limit		
Frequency(MHz)	Quasi-peak	Average	
0.15-0.5	66-56*	56-46*	
0.5-5.0	56	46	
5.0-30.0	60	50	

Note: 1. *Decreases with the logarithm of the frequency

2. The lower limit shall apply at the transition frequencies

3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Test Configuration

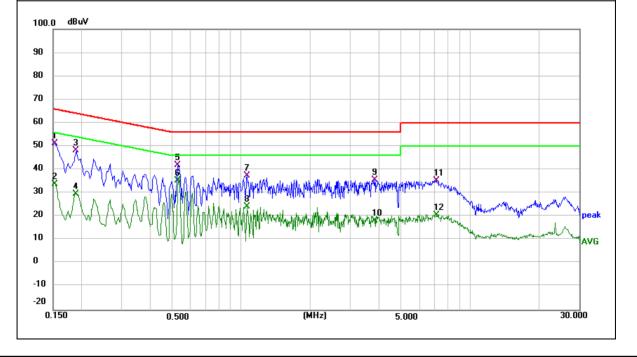
7.1.4 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item –EUT Test Photos.

7.1.5 Test Results

Pass

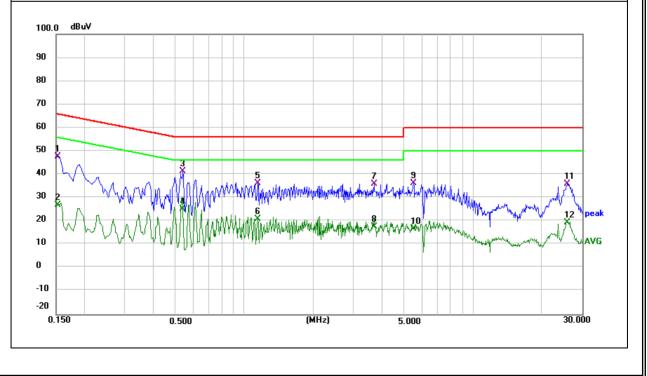

7.1.6 Test Results

EUT:	Mobile phone	Model Name :	VOLTE V2
Temperature:	24 ℃	Relative Humidity:	54%
Pressure:	1010hPa	Phase :	L
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Domork
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	- Remark
0.1539	41.44	9.90	51.34	65.79	-14.45	QP
0.1539	23.93	9.90	33.83	55.79	-21.96	AVG
0.1884	38.32	9.99	48.31	64.11	-15.80	QP
0.1884	19.70	9.99	29.69	54.11	-24.42	AVG
0.5299	31.21	10.72	41.93	56.00	-14.07	QP
0.5299	24.52	10.72	35.24	46.00	-10.76	AVG
1.0620	25.73	11.80	37.53	56.00	-18.47	QP
1.0620	12.31	11.80	24.11	46.00	-21.89	AVG
3.8300	26.04	9.75	35.79	56.00	-20.21	QP
3.8300	8.63	9.75	18.38	46.00	-27.62	AVG
7.1260	25.63	9.84	35.47	60.00	-24.53	QP
7.1260	10.86	9.84	20.70	50.00	-29.30	AVG

Remark:

All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.


EUT:	Mobile phone	Model Name :	VOLTE V2
Temperature:	24 ℃	Relative Humidity:	54%
Pressure:	1010hPa	Phase :	Ν
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1539	37.80	9.95	47.75	65.79	-18.04	QP
0.1539	17.03	9.95	26.98	55.79	-28.81	AVG
0.5380	30.74	10.74	41.48	56.00	-14.52	QP
0.5380	14.34	10.74	25.08	46.00	-20.92	AVG
1.1420	24.19	11.96	36.15	56.00	-19.85	QP
1.1420	8.97	11.96	20.93	46.00	-25.07	AVG
3.6820	26.32	9.71	36.03	56.00	-19.97	QP
3.6820	7.82	9.71	17.53	46.00	-28.47	AVG
5.4860	26.47	9.76	36.23	60.00	-23.77	QP
5.4860	7.03	9.76	16.79	50.00	-33.21	AVG
25.8100	25.74	10.22	35.96	60.00	-24.04	QP
25.8100	9.32	10.22	19.54	50.00	-30.46	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

According to 1 CC 1 art15.20	According to FCC Fart 15.205, Restricted barras						
MHz	MHz	MHz	GHz				
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15				
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46				
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75				
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5				
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2				
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5				
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7				
6.26775-6.26825	123-138	2200-2300	14.47-14.5				
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2				
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4				
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12				
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0				
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8				
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5				
12.57675-12.57725	322-335.4	3600-4400	(2)				
13.36-13.41							

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

Frequency(MHz)	Class B (dBuV/m) (at 3M)					
	PEAK	AVERAGE				
Above 1000	74	54				

Remark :1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

3. For Frequency 9kHz~30MHz:

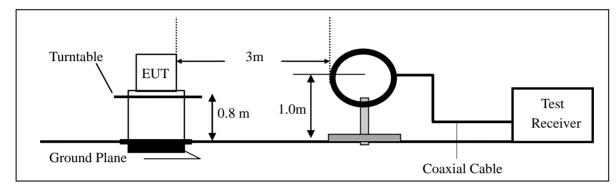
Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.

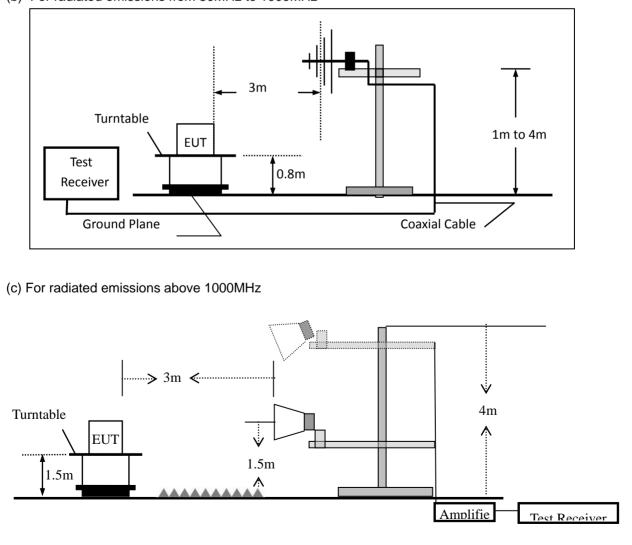
For Frequency above 30MHz:

Distance extrapolation factor =20log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.



7.2.3 Measuring Instruments


The Measuring equipment is listed in the section 6.3 of this test report.

7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

(b) For radiated emissions from 30MHz to 1000MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1 MHz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item -EUT Test Photos.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

Above 1000

Average

1 MHz

During the radiated emission t	During the radiated emission test, the Spectrum Analyzer was set with the following configurations:									
Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth							
30 to 1000	QP	120 kHz	300 kHz							
	Peak	1 MHz	1 MHz							

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

1 MHz

7.2.6 Test Results

EUT:	Mobile phone	Model No.:	VOLTE V2
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

Freq.	Ant.Pol.	Emission L	.evel(dBuV/m)	Limit 3	m(dBuV/m)	Over(dB)		
(MHz)	H/V	PK AV		PK	AV	PK	AV	

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

■ Spurious Emission below 1GHz (30MHz to 1GHz)

All the modulation modes have been tested, and the worst result was report as below:

EUT:	Mobile phone	Model Name :	VOLTE V2
Temperature:	24 ℃	Relative Humidity:	53%
Pressure:	1010hPa	Test Mode:	Mode 1
Test Voltage :	DC 3.7V		

Polar	Frequency	Meter Reading	FactorEmission LevelLimitsMargin		Limits		Remark
(H/V)	(MHz)	(dBuV)	(dB)	B) (dBuV/m) (dBu		(dB)	
V	31.5095	8.13	25.63	33.76	40.00	-6.24	QP
V	43.2017	12.23	19.18	31.41	40.00	-8.59	QP
V	94.4284	13.35	17.20	30.55	43.50	-12.95	QP
V	153.7385	13.85	18.39	32.24	43.50	-11.26	QP
V	196.5098	14.82	16.39	31.21	43.50	-12.29	QP
V	306.7537	13.58	20.31	33.89	46.00	-12.11	QP

Remark:

Polar	Frequ	ency		leter adin		Facto	or E	missic Level		Lim	its	Mar	gin	Re	mark
(H/V)	(MF	łz)	(d	BuV)	(dB)	(c	lBuV/r	n)	(dBu\	//m)	(dE	(dB)		
Н	45.2	166	-	5.77		18.02		23.79		40.0)0	-16.	21		QP
Н	96.4	362	7	7.78		17.38	3	25.16		43.5	50	-18.	34		QP
Н	189.0)743	1	2.49)	16.51	1	29.00		43.5	50	-14.	50		QP
Н	331.3	3546		8.86		20.89		29.75		46.0	00	-16.	25		QP
Н	550.9	9480		6.39		25.67	7	32.06		46.0	00	-13.	94		QP
Н	845.0	878	7	7.07		30.16	6	37.23		46.0	00	-8.7	77		QP
62															
52														F	
42														6 8	
32	Makandunan				z	Khuhmanahadhal	3	1	يال بالد	A Marthant	welgher wares	5	allow-Allow	NGV SAME.	
22	Maran der sin Monder	Carthen Warman and Martin	Manananad	Ma	p.M.R.Burr	hhuduni vaan daad dad	Marcard Williams	W-MMMMMMM	, water in	- 1-2-1-1-1					
12															
2															
-8					(1 1	1					

IT:	Mobile	phone		Model	No.:		VOLTE V2				
mperature:	20 ℃			Relativ	ve Humidit	y:	48%				
st Mode:	Mode2	/Mode3/	Mode4	Test B	By:		Allen Liu				
the modulatio	n modes l	have bee	en tested,	and the	worst resu	lt was	s repo	ort as bel	low:		
	Read Cable Antenna Preamp Emission										
Frequency	Level	loss	Factor	Factor	Level	Lim	nits	Margin	Remark	Comment	
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµ	V/m)	(dB)			
			Low Chan	nel (2402 N	/Hz)(GFSK)-	-Above	9 1 G				
4804.214	63.07	5.21	35.59	44.30	59.57	74.	00	-14.43	Pk	Vertical	
4804.214	40.76	5.21	35.59	44.30	37.26	54.	00	-16.74	AV	Vertical	
7206.265	61.70	6.48	36.27	44.60	59.85	74.	00	-14.15	Pk	Vertical	
7206.265	44.29	6.48	36.27	44.60	42.44	54.	00	-11.56	AV	Vertical	
4804.109	61.25	5.21	35.55	44.30	57.71	74.	00	-16.29	Pk	Horizontal	
4804.109	43.93	5.21	35.55	44.30	40.39	54.	54.00 -13.6		AV	Horizontal	
7206.224	64.02	6.48	36.27	44.52	62.25	74.	74.00 -11.75		Pk	Horizontal	
7206.224	47.14	6.48	36.27	44.52	45.37	54.	00	-8.63	AV	Horizontal	
			Mid Chan	nel (2441 N	1Hz)(GFSK)-	Above	1G				
4882.396	63.65	5.21	35.66	44.20	60.32	74.	00	-13.68	Pk	Vertical	
4882.396	43.46	5.21	35.66	44.20	40.13	54.	00	-13.87	AV	Vertical	
7323.241	60.44	7.10	36.50	44.43	59.61	74.	00	-14.39	Pk	Vertical	
7323.241	47.45	7.10	36.50	44.43	46.62	54.	00	-7.38	AV	Vertical	
4882.108	61.41	5.21	35.66	44.20	58.08	74.	00	-15.92	Pk	Horizontal	
4882.108	48.51	5.21	35.66	44.20	45.18	54.	00	-8.82	AV	Horizontal	
7323.132	60.73	7.10	36.50	44.43	59.90	74.	00	-14.10	Pk	Horizontal	
7323.132	42.83	7.10	36.50	44.43	42.00	54.	00	-12.00	AV	Horizontal	
		1	High Chan	nel (2480 N	/Hz)(GFSK)-	- Above	e 1G			1	
4960.397	66.19	5.21	35.52	44.21	62.71	74.	00	-11.29	Pk	Vertical	
4960.397	43.06	5.21	35.52	44.21	39.58	54.	00	-14.42	AV	Vertical	
7440.201	61.50	7.10	36.53	44.60	60.53	74.	00	-13.47	Pk	Vertical	
7440.201	45.51	7.10	36.53	44.60	44.54	54.	00	-9.46	AV	Vertical	
4960.225	68.68	5.21	35.52	44.21	65.20	74.	00	-8.80	Pk	Horizontal	
4960.225	48.06	5.21	35.52	44.21	44.58	54.	00	-9.42	AV	Horizontal	
7440.298	61.85	7.10	36.53	44.60	60.88	74.	00	-13.12	Pk	Horizontal	
7440.298	44.55	7.10	36.53	44.60	43.58	54.	00	-10.42	AV	Horizontal	

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor (2)All other emissions more than 20dB below the limit.

Report No.: S23030204601001

	Emission in									
EUT:	Mobile pho	ne		Model				EV2		
Temperature	: 20 ℃			Relativ	e Humidity	/: 4	48%			
Test Mode:	Mode2/ Mo	de4		Test B	y:	ŀ	Allen	Liu		
All the mode	ulation modes	s have be	en tested	, and the	worst resu	ult was	repo	ort as be	low:	
Frequen	cy Meter Reading	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Limi	ts	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV	//m)	(dB)	Туре	
1Mbps(GFSK)-Non-hopping										
2310.00	58.41	2.97	27.80	43.80	45.38	74		-28.62	Pk	Horizontal
2310.00	43.17	2.97	27.80	43.80	30.14	54		-23.86	AV	Horizontal
2310.00	59.57	2.97	27.80	43.80	46.54	74		-27.46	Pk	Vertical
2310.00	43.03	2.97	27.80	43.80	30.00	54		-24.00	AV	Vertical
2390.00	58.91	3.14	27.21	43.80	45.46	74		-28.54	Pk	Vertical
2390.00	42.96	3.14	27.21	43.80	29.51	54		-24.49	AV	Vertical
2390.00	56.22	3.14	27.21	43.80	42.77	74		-31.23	Pk	Horizontal
2390.00	43.32	3.14	27.21	43.80	29.87	54		-24.13	AV	Horizontal
2483.50	59.01	3.58	27.70	44.00	46.29	74		-27.71	Pk	Vertical
2483.50	43.01	3.58	27.70	44.00	30.29	54		-23.71	AV	Vertical
2483.50	59.77	3.58	27.70	44.00	47.05	74		-26.95	Pk	Horizontal
2483.50	41.78	3.58	27.70	44.00	29.06	54		-24.94	AV	Horizontal
				1Mbps(GF	SK)-hopping					
2310.00	50.46	2.97	27.80	43.80	37.43	74.0	00	-36.57	Pk	Vertical
2310.00	40.66	2.97	27.80	43.80	27.63	54.0	00	-26.37	AV	Vertical
2310.00	50.36	2.97	27.80	43.80	37.33	74.0	00	-36.67	Pk	Horizontal
2310.00	43.57	2.97	27.80	43.80	30.54	54.0	00	-23.46	AV	Horizontal
2390.00	53.42	3.14	27.21	43.80	39.97	74.0	00	-34.03	Pk	Vertical
2390.00	42.07	3.14	27.21	43.80	28.62	54.0	00	-25.38	AV	Vertical
2390.00	53.51	3.14	27.21	43.80	40.06	74.0	00	-33.94	Pk	Horizontal
2390.00	43.32	3.14	27.21	43.80	29.87	54.0	00	-24.13	AV	Horizontal
2483.50	50.79	3.58	27.70	44.00	38.07	74.0	00	-35.93	Pk	Vertical
2483.50) 42.49	3.58	27.70	44.00	29.77	54.0	00	-24.23	AV	Vertical
2483.50) 50.57	3.58	27.70	44.00	37.85	74.0	00	-36.15	Pk	Horizontal
2483.50	43.87	3.58	27.70	44.00	31.15	54.0	00	-22.85	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

UT	:	Mobile	phone		Model	No.:		VOLTE V2				
Tem	perature:	20 ℃			Relativ	Relative Humidity:			48%			
Test	Mode:	Mode2	/ Mode4		Test B	Test By: Allen Liu						
All t	he modulat	ion modes	have be	en tested	, and the	worst resu	ult wa	is rep	ort as be	low:		
	Frequency	Reading Level	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Lin	nits	Margin	Detector	Comment	
	(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµ	V/m)	(dB)	Туре		
	3260	60.35	4.04	29.57	44.70	49.26	7	4	-24.74	Pk	Vertical	
	3260	56.53	4.04	29.57	44.70	45.44	5	4	-8.56	AV	Vertical	
	3260	62.42	4.04	29.57	44.70	51.33	7	4	-22.67	Pk	Horizontal	
	3260	56.65	4.04	29.57	44.70	45.56	5	4	-8.44	AV	Horizontal	
	3332	65.75	4.26	29.87	44.40	55.48	7	4	-18.52	Pk	Vertical	
	3332	54.37	4.26	29.87	44.40	44.10	5	4	-9.90	AV	Vertical	
	3332	63.75	4.26	29.87	44.40	53.48	7	4	-20.52	Pk	Horizontal	
	3332	54.03	4.26	29.87	44.40	43.76	5	4	-10.24	AV	Horizontal	
	17797	43.60	10.99	43.95	43.50	55.04	7	4	-18.96	Pk	Vertical	
	17797	33.75	10.99	43.95	43.50	45.19	5	4	-8.81	AV	Vertical	
	17788	44.63	11.81	43.69	44.60	55.53	7	4	-18.47	Pk	Horizontal	
	17788	32.07	11.81	43.69	44.60	42.97	5	4	-11.03	AV	Horizontal	

Note: (1) All other emissions more than 20dB below the limit.

7.3 NUMBER OF HOPPING CHANNEL

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(1) (iii)and ANSI C63.10-2013

7.3.2 Conformance Limit

Frequency hopping systems in the 2400-2483.5MHz band shall use at least 15 channels.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.3 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = the frequency band of operation RBW : To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller. VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.3.6 Test Results

EUT:	Mobile phone	Model No.:	VOLTE V2
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode 5(1Mbps)	Test By:	Allen Liu

7.4 HOPPING CHANNEL SEPARATION MEASUREMENT

7.4.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.4.2 Conformance Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5MHz band shall have hopping channel carrier frequencies that are separated by 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.2 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = Measurement Bandwidth or Channel Separation RBW: Start with the RBW set to approximately 3% of the channel spacing; adjust as necessary to best identify the center of each individual channel. VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.4.6 Test Results

EUT:	Mobile phone	Model No.:	VOLTE V2
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.5 AVERAGE TIME OF OCCUPANCY (DWELL TIME)

7.5.1 Applicable Standard

According to FCC Part 15.247(a)(1)(iii) and ANSI C63.10-2013

7.5.2 Conformance Limit

The average time of occupancy on any channel shall not be greater than 0.4s within a period of 0.4s multiplied by the number of hopping channels employed.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.4 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel RBW \geq 1MHz VBW \geq RBW Sweep = as necessary to capture the entire dwell time per hopping channel Detector function = peak Trace = max hold Measure the maximum time duration of one single pulse. Set the EUT for DH5, DH3 and DH1 packet transmitting. Measure the maximum time duration of one single pulse.

7.5.6 Test Results

EUT:	Mobile phone	Model No.:	VOLTE V2
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

Test data reference attachment.

Note:

A Period Time = (channel number)*0.4 DH1 Dwell time: Reading * (1600/2)*31.6/(channel number) DH3 Dwell time: Reading * (1600/4)*31.6/(channel number) DH5 Dwell time: Reading * (1600/6)*31.6/(channel number)

For Example:

- 1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4×79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.
- In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4 x 20) (s), Hops Over Occupancy Time comes to (800 / 6 / 20) x (0.4 x 20) = 53.33 hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

7.6 20DB BANDWIDTH TEST

7.6.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.6.2 Conformance Limit

No limit requirement.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 6.9.2 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW \geq 1% of the 20 dB bandwidth VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.6.6 Test Results

EUT:	Mobile phone	Model No.:	VOLTE V2
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.7 PEAK OUTPUT POWER

7.7.1 Applicable Standard

According to FCC Part 15.247(b)(1) and ANSI C63.10-2013

7.7.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.5. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW \geq the 20 dB bandwidth of the emission being measured VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.7.6 Test Results

EUT:	Mobile phone	Model No.:	VOLTE V2
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.8 CONDUCTED BAND EDGE MEASUREMENT

7.8.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013

7.8.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

7.8.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.4 Test Setup

Please refer to Section 6.1 of this test report.

7.8.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.6.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

RBW = 100KHz

VBW = 300KHz

Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.8.6 Test Results

EUT:	Mobile phone	Model No.:	VOLTE V2
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	Mode2 /Mode4/ Mode 5	Test By:	Allen Liu

7.9 SPURIOUS RF CONDUCTED EMISSION

7.9.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013.

7.9.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

7.9.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.9.4 Test Setup

Please refer to Section 6.1 of this test report.

7.9.5 Test Procedure

Establish an emission level by using the following procedure:

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW \geq [3 × RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.

h) Use the peak marker function to determine the maximum amplitude level.

Then the limit shall be attenuated by at least 20 dB relative to the maximum amplitude level in 100 kHz.

7.9.6 Test Results

Remark: The measurement frequency range is from 30MHzHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

7.10 ANTENNA APPLICATION

7.10.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.10.2 Result

The EUT antenna is permanent attached PIFA antenna (Gain: 1.35dBi). It comply with the standard requirement.

7.11 FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS 7.11.1 Standard Applicable

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. (g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section. (h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

7.11.2 Frequency Hopping System

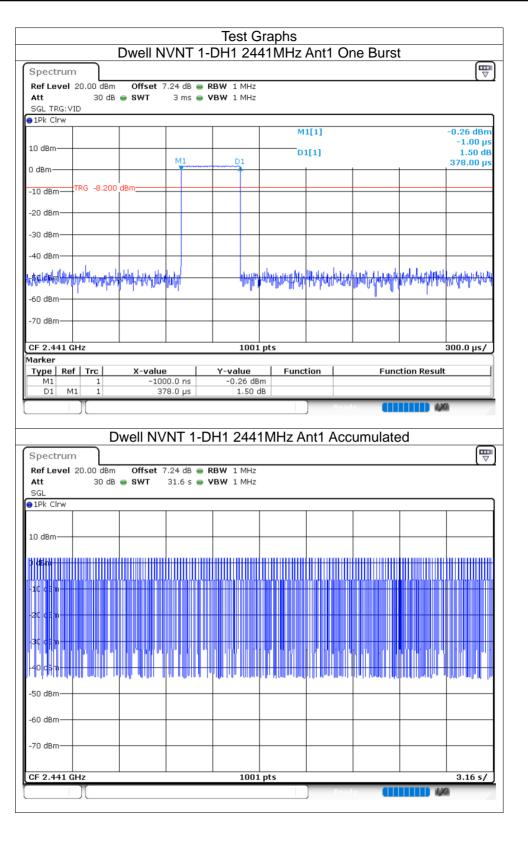
This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule. This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each; centred from 2402 to 2480 MHz) in the range 2,400-2,483.5 MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock. Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

This device was tested with an bluetooth system receiver to check that the device maintained hopping synchronization, and the device complied with these requirements for FCC Part 15.247 rule.

7.11.3 EUT Pseudorandom Frequency Hopping Sequence

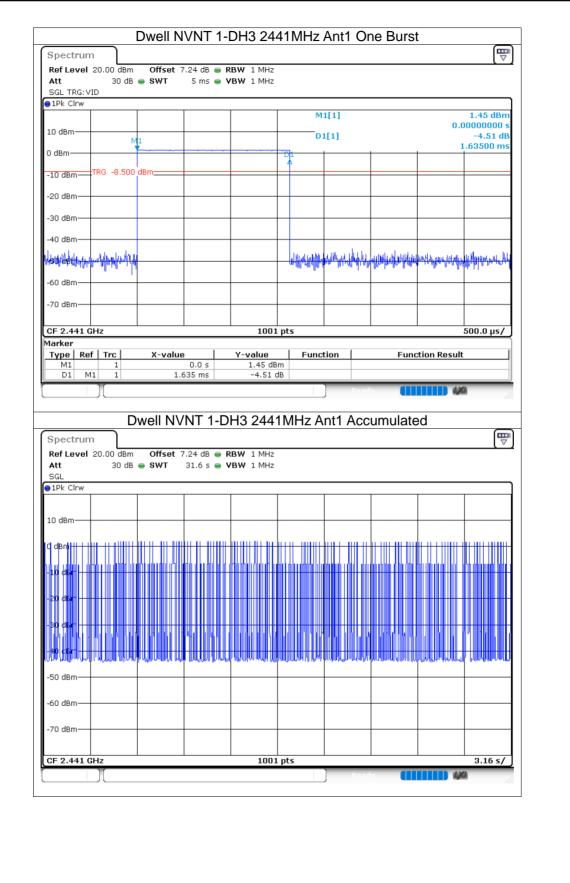
Pseudorandom Frequency Hopping Sequence Table as below: Channel: 08, 24, 40, 56, 40, 56, 72, 09, 01, 09, 33, 41, 33, 41, 65, 73, 53, 69, 06, 22, 04, 20, 36, 52, 38, 46, 70, 78, 68, 76, 21, 29, 10, 26, 42, 58, 44, 60, 76, 13, 03, 11, 35, 43, 37, 45, 69, 77, 55, 71, 08, 24, 08, 24, 40, 56, 40, 48, 72, 01, 72, 01, 25, 33, 12, 28, 44, 60, 42, 58, 74, 11, 05, 13, 37, 45 etc.

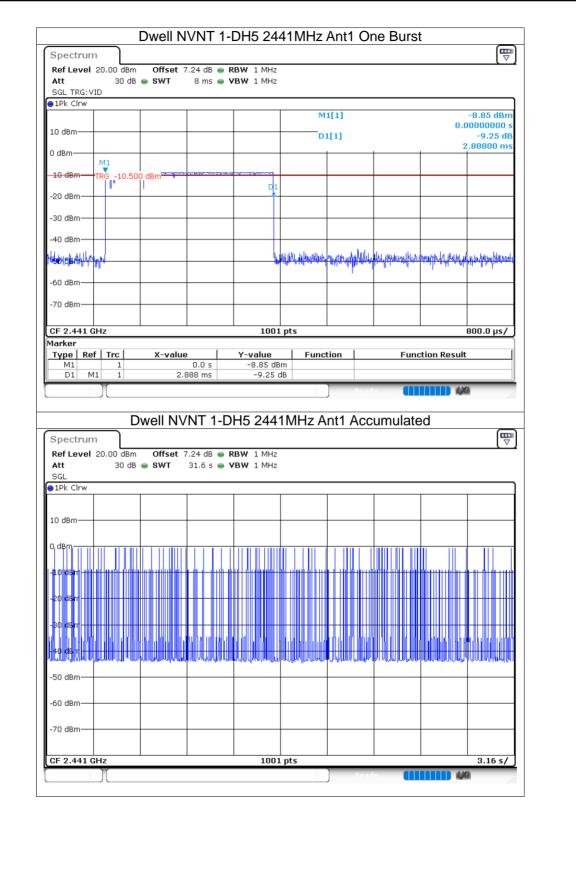
The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

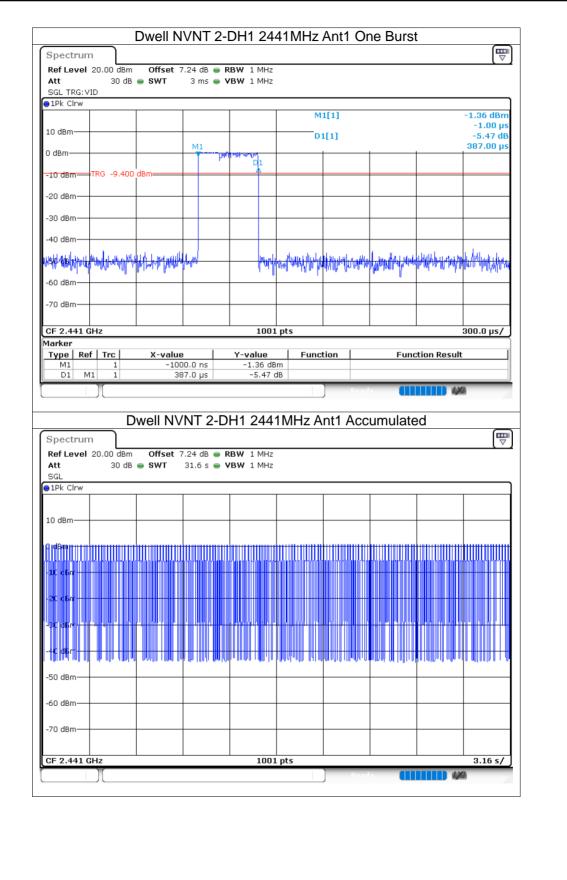

8 TEST RESULTS

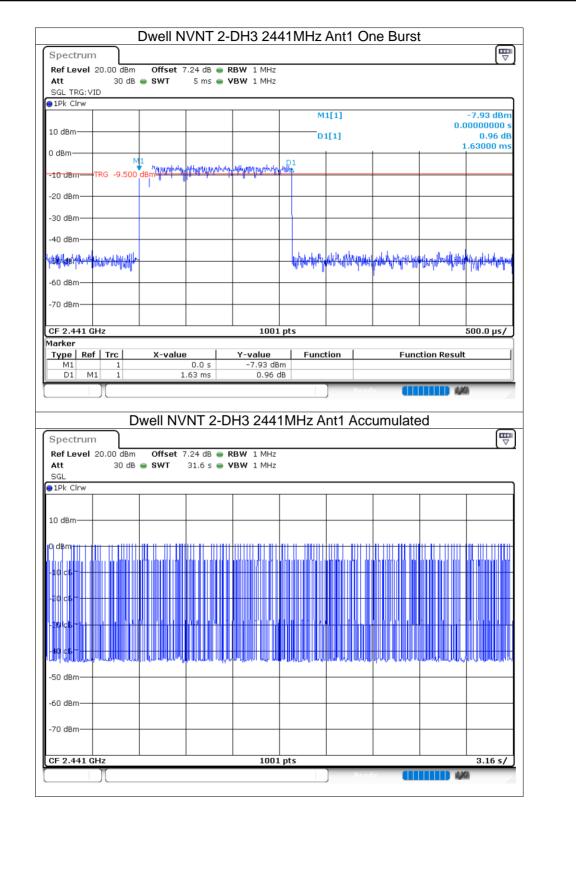
8.1 **DWELL TIME**

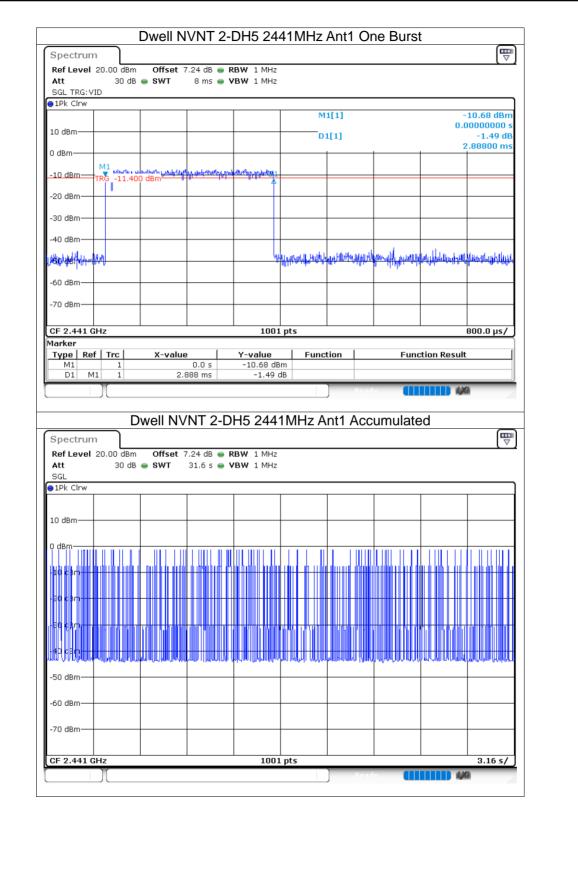
Condition	Mode	Frequency (MHz)	Antenna	Pulse Time (ms)	Total Dwell Time (ms)	Burst Count	Period Time (ms)	Limit (ms)	Verdict
NVNT	1-DH1	2441	Ant1	0.378	78.624	208	31600	400	Pass
NVNT	1-DH3	2441	Ant1	1.635	202.74	124	31600	400	Pass
NVNT	1-DH5	2441	Ant1	2.888	257.032	89	31600	400	Pass
NVNT	2-DH1	2441	Ant1	0.387	80.496	208	31600	400	Pass
NVNT	2-DH3	2441	Ant1	1.63	205.38	126	31600	400	Pass
NVNT	2-DH5	2441	Ant1	2.888	274.36	95	31600	400	Pass
NVNT	3-DH1	2441	Ant1	0.387	80.883	209	31600	400	Pass
NVNT	3-DH3	2441	Ant1	1.635	207.645	127	31600	400	Pass
NVNT	3-DH5	2441	Ant1	2.888	251.256	87	31600	400	Pass

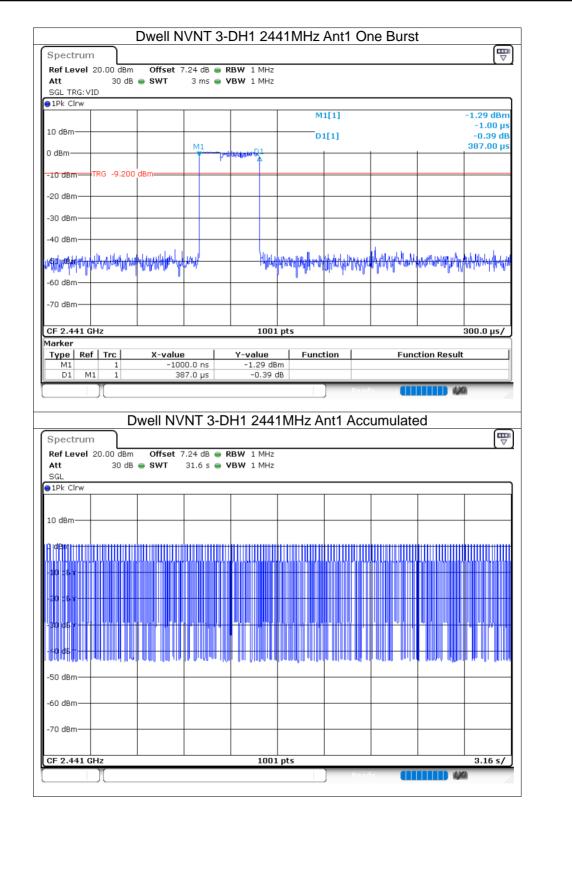


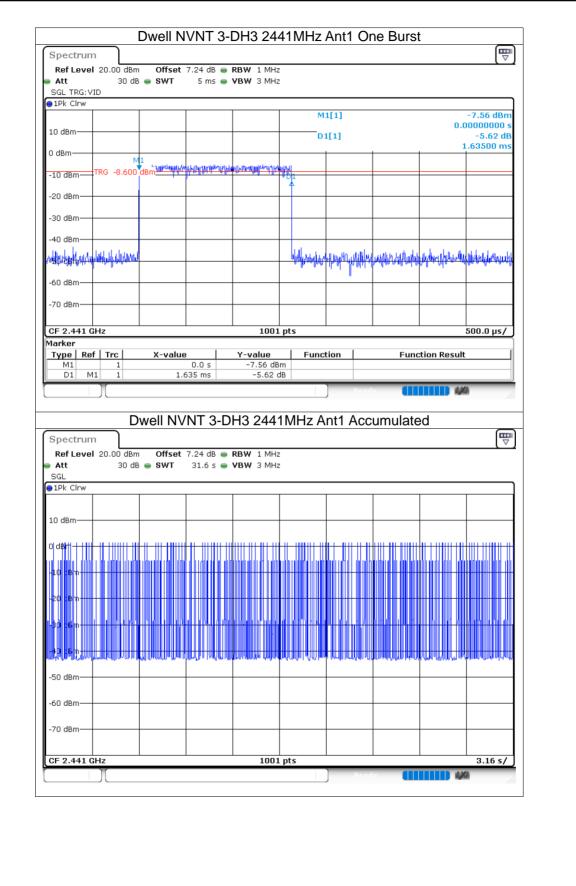


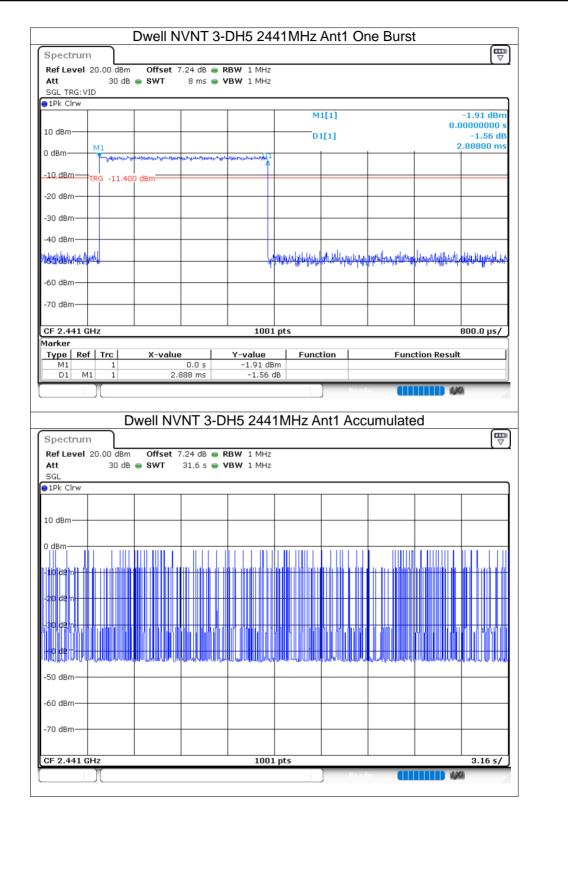












8.2 MAXIMUM CONDUCTED OUTPUT POWER

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	1-DH5	2402	Ant1	2.33	21	Pass
NVNT	1-DH5	2441	Ant1	2.4	21	Pass
NVNT	1-DH5	2480	Ant1	2.1	21	Pass
NVNT	2-DH5	2402	Ant1	1.25	21	Pass
NVNT	2-DH5	2441	Ant1	1.08	21	Pass
NVNT	2-DH5	2480	Ant1	2.23	21	Pass
NVNT	3-DH5	2402	Ant1	0.95	21	Pass
NVNT	3-DH5	2441	Ant1	2.2	21	Pass
NVNT	3-DH5	2480	Ant1	2.07	21	Pass

Report No.: S23030204601001

Spectrum						
Ref Level 20.00 dBm Att 30 dB SGL Count 100/100		07 dB ● RBW 2 MHz 1 ms ● VBW 2 MHz	Mode Auto Sweep			
1Pk Max	1		M1[1]		2	.33 dBm
10 dBm			mili	1	2.40201	
			M1			
) dBm						
-10 dBm						
-20 dBm						
20 0811						
-30 dBm						
-40 dBm]
-50 dBm						
-60 dBm						
-70 dBm						———————————————————————————————————————
	-					
Spectrum	Offset 7.	wer NVNT 1-D 24 dB • RBW 2 MHz	11 pts	nt1	Span 5	
Spectrum Ref Level 20.00 dBm Att 30 dB SGL Count 100/100	Offset 7.	wer NVNT 1-D	H5 2441MHz A	nt1		lin
Spectrum Ref Level 20.00 dBm Att 30 dB SGL Count 100/100 91Pk Max	Offset 7.	wer NVNT 1-D 24 dB • RBW 2 MHz	H5 2441MHz A	nt1	ana	.40 dBm
Spectrum Ref Level 20.00 dBm Att 30 dB SGL Count 100/100 91Pk Max	Offset 7.	wer NVNT 1-D 24 dB • RBW 2 MHz	Mode Auto Sweep	nt1	2	.40 dBm
Spectrum Ref Level 20.00 dBm Att 30 dB SGL Count 100/100 91Pk Max 10 dBm	Offset 7.	wer NVNT 1-D 24 dB • RBW 2 MHz	Prod PH5 2441MHz An Mode Auto Sweep	nt1	2	.40 dBm
Spectrum Ref Level 20.00 dBm Att 30 dB SGL Count 100/100 91Pk Max 10 dBm 0 dBm	Offset 7.	wer NVNT 1-D 24 dB • RBW 2 MHz	Mode Auto Sweep	nt1	2	.40 dBm
Spectrum Ref Level 20.00 dBm Att 30 dB SGL Count 100/100 1Pk Max 10 dBm 10 dBm 10 dBm	Offset 7.	wer NVNT 1-D 24 dB • RBW 2 MHz	Mode Auto Sweep	nt1	2	.40 dBm
Spectrum Ref Level 20.00 dBm Att 30 dB SGL Count 100/100 1Pk Max 10 dBm 10 dBm 20 dBm 20 dBm	Offset 7.	wer NVNT 1-D 24 dB • RBW 2 MHz	Mode Auto Sweep	nt1	2	.40 dBm
Spectrum Ref Level 20.00 dBm Att 30 dB SGL Count 100/100 1Pk Max 10 dBm 10 dBm 20 dBm 20 dBm	Offset 7.	wer NVNT 1-D 24 dB • RBW 2 MHz	Mode Auto Sweep	nt1	2	.40 dBm
Spectrum Ref Level 20.00 dBm Att 30 dB SGL Count 100/100 11Pk Max 10 dBm 10 dBm 20 dBm 20 dBm 30 dBm	Offset 7.	wer NVNT 1-D 24 dB • RBW 2 MHz	Mode Auto Sweep	nt1	2	.40 dBm
Spectrum Ref Level 20.00 dBm Att 30 dB SGL Count 100/100 1Pk Max 10 dBm 10 dBm 20 dBm 30 dBm 40 dBm 40 dBm	Offset 7.	wer NVNT 1-D 24 dB • RBW 2 MHz	Mode Auto Sweep	nt1	2	.40 dBm
Spectrum Ref Level 20.00 dBm Att 30 dB SGL Count 100/100 PPK Max 10 dBm 10 dBm 20 dBm 30 dBm 40 dBm 50 dBm	Offset 7.	wer NVNT 1-D 24 dB • RBW 2 MHz	Mode Auto Sweep	nt1	2	.40 dBm
Spectrum Ref Level 20.00 dBm Att 30 dB SGL Count 100/100 PPK Max 10 dBm 10 dBm 20 dBm 30 dBm 40 dBm 50 dBm	Offset 7.	wer NVNT 1-D 24 dB • RBW 2 MHz	Mode Auto Sweep	nt1	2	.40 dBm
Spectrum Ref Level 20.00 dBm Att 30 dB SGL Count 100/100 PPk Max 10 dBm 20 dBm 30 dBm 40 dBm 50 dBm 60 dBm	Offset 7.	wer NVNT 1-D 24 dB • RBW 2 MHz	Mode Auto Sweep	nt1	2	.40 dBm
Spectrum Ref Level 20.00 dBm Att 30 dB SGL Count 100/100 11Pk Max 10 dBm 10 dBm 20 dBm 30 dBm 40 dBm 50 dBm 50 dBm 70 dBm 70 dBm	Offset 7.	Wer NVNT 1-D	Mode Auto Sweep	nt1	2 2.44106	.40 dBm 990 GHz
CF 2.402 GHz Spectrum Ref Level 20.00 dBm Att 30 dB SGL Count 100/100 PIPK Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm	Offset 7.	Wer NVNT 1-D	Mode Auto Sweep	nt1	2 2.44106	.40 dBm

Spectrum							₩
Ref Level 20		t 7.07 dB 👄 RB					<u> </u>
Att SGL Count 10	30 dB SWT	1 ms 👄 VB	W 2 MHz Mod	e Auto Sweep			
∋1Pk Max	, 100						
				M1[1]		2.10 d 2.47997500	
10 dBm						2.47997300	
			M				
0 dBm							
-10 dBm							
-20 dBm							
-30 dBm							
-40 dBm							
-50 dBm							
-55 ubili							
-60 dBm							
70 45							
-70 dBm							
CF 2.48 GHz			1001 pts			Span 5.0 M	
GF 2.40 GH2			1001 pts			3pan 5.0 M	12
-				2402MHz An	t1	4,46	
Spectrum Ref Level 20 Att	0.00 dBm Offse 30 dB SWT	t 7.07 dB 😑 RB			t1	4)K)	
Ref Level 20 Att SGL Count 10	0.00 dBm Offse 30 dB SWT	t 7.07 dB 😑 RB	W 2 MHz		t1		
Ref Level 20 Att SGL Count 10	0.00 dBm Offse 30 dB SWT	t 7.07 dB 😑 RB	W 2 MHz		t1	1.25 c	iBm
Ref Level 20 Att	0.00 dBm Offse 30 dB SWT	t 7.07 dB 😑 RB	W 2 MHz	l e Auto Sweep	t1	1.25 c 2.40210390	iBm
Ref Level 20 Att SGL Count 10 1Pk Max	0.00 dBm Offse 30 dB SWT	t 7.07 dB 😑 RB	W 2 MHz W 2 MHz Mod	l e Auto Sweep	t1		iBm
Ref Level 20 Att SGL Count 10 1Pk Max	0.00 dBm Offse 30 dB SWT	t 7.07 dB 😑 RB	W 2 MHz W 2 MHz Mod	l e Auto Sweep	t1		iBm
Ref Level 20 Att SGL Count 10 1Pk Max	0.00 dBm Offse 30 dB SWT 00/100	t 7.07 dB 😑 RB	W 2 MHz W 2 MHz Mod	l e Auto Sweep	t1		iBm
Ref Level 20 Att SGL Count 10 1Pk Max 10 dBm -10 dBm	0.00 dBm Offse 30 dB SWT	t 7.07 dB 😑 RB	W 2 MHz W 2 MHz Mod	l e Auto Sweep	t1		iBm
Ref Level 20 Att SGL Count 10 1Pk Max 10 dBm	0.00 dBm Offse 30 dB SWT 00/100	t 7.07 dB 😑 RB	W 2 MHz W 2 MHz Mod	l e Auto Sweep	t1		iBm
Ref Level 20 Att SGL Count 10 1Pk Max 10 dBm -10 dBm -20 dBm	0.00 dBm Offse 30 dB SWT 00/100	t 7.07 dB 😑 RB	W 2 MHz W 2 MHz Mod	l e Auto Sweep	t1		iBm
Ref Level 20 Att SGL Count 10 1Pk Max 10 dBm -10 dBm -20 dBm	0.00 dBm Offse 30 dB SWT 00/100	t 7.07 dB 😑 RB	W 2 MHz W 2 MHz Mod	l e Auto Sweep	t1		iBm
Ref Level 20 Att SGL Count 10 1Pk Max 10 dBm -10 dBm -20 dBm	0.00 dBm Offse 30 dB SWT 00/100	t 7.07 dB 😑 RB	W 2 MHz W 2 MHz Mod	l e Auto Sweep	t1		iBm
Ref Level 20 Att SGL Count 10 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	0.00 dBm Offse 30 dB SWT 00/100	t 7.07 dB 😑 RB	W 2 MHz W 2 MHz Mod	l e Auto Sweep	t1		iBm
Ref Level 20 Att SGL Count 10 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm	0.00 dBm Offse 30 dB SWT 00/100	t 7.07 dB 😑 RB	W 2 MHz W 2 MHz Mod	l e Auto Sweep	t1		iBm
Ref Level 20 Att SGL Count 10 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	0.00 dBm Offse 30 dB SWT 00/100	t 7.07 dB 😑 RB	W 2 MHz W 2 MHz Mod	l e Auto Sweep			iBm
Ref Level 20 Att SGL Count 10 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	0.00 dBm Offse 30 dB SWT 00/100	t 7.07 dB 😑 RB	W 2 MHz W 2 MHz Mod	l e Auto Sweep			iBm
Ref Level 20 Att SGL Count 10 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	0.00 dBm Offse 30 dB SWT 00/100	t 7.07 dB 😑 RB	W 2 MHz W 2 MHz Mod	l e Auto Sweep			iBm
Ref Level 20 Att SGL Count 10 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	0.00 dBm Offse 30 dB SWT 00/100	t 7.07 dB 😑 RB	W 2 MHz Mod	l e Auto Sweep		2.40210390	IBM GHz
Ref Level 20 Att SGL Count 10 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	0.00 dBm Offse 30 dB SWT 00/100	t 7.07 dB 😑 RB	W 2 MHz W 2 MHz Mod	l e Auto Sweep			IBM GHz

Spectrum							
Att 30	dB SWT	7.24 dB 👄 RBW 1 ms 👄 VBW		Mode Auto Sv	veep		
SGL Count 100/100 1Pk Max							
				M1[1]			1.08 dBm
10 dBm						2.44	118180 GHz
				M1			
0 dBm					harring and the second s		
	And a					~	
-10 dBm							~
-20 dBm							Martin and a state of the state
and the second sec							and a second
-30 dBm							
-40 dBm							
-50 dBm	-						
-60 dBm	_	↓					
-70 dBm							
CF 2.441 GHz			1001	pts		Sp	an 6.5 MHz
Spectrum Ref Level 20.00 db Att 30	3m Offset	DWER NVN	T 2-DH				
Ref Level 20.00 dB Att 30 dB SGL Count 100/100	Bm Offset ⁻ dB SWT	7.07 dB 👄 RBW	T 2-DH	15 2480M			
Ref Level 20.00 dB Att 30 dB SGL Count 100/100	Bm Offset ⁻ dB SWT	7.07 dB 👄 RBW	T 2-DH	15 2480M	veep		.23 dBm
Ref Level 20.00 dE Att 30 d SGL Count 1Pk Max	Bm Offset ⁻ dB SWT	7.07 dB 👄 RBW	T 2-DH / 2 MHz / 2 MHz	15 2480M Mode Auto Sv M1[1]	veep		
Ref Level 20.00 dB Att 30 m SGL Count 100/100 1Pk Max 10 dBm	Bm Offset ⁻ dB SWT	7.07 dB 👄 RBW	T 2-DH	15 2480M Mode Auto Sv M1[1]	veep		.23 dBm
Ref Level 20.00 dE Att 30 d SGL Count 100/100 1Pk Max	Bm Offset ⁻ dB SWT	7.07 dB 👄 RBW	T 2-DH / 2 MHz / 2 MHz	15 2480M Mode Auto Sv M1[1]	veep		.23 dBm
Ref Level 20.00 dE Att 30 i SGL Count 100/100 1Pk Max 10 dBm 0 dBm 0 dBm	Bm Offset ⁻ dB SWT	7.07 dB 👄 RBW	T 2-DH / 2 MHz / 2 MHz	15 2480M Mode Auto Sv M1[1]	veep		.23 dBm
Ref Level 20.00 db Att 30 i SGL Count 100/100 IPk Max 10 dbm 10 dbm	Bm Offset ⁻ dB SWT	7.07 dB 👄 RBW	T 2-DH / 2 MHz / 2 MHz	15 2480M Mode Auto Sv M1[1]	veep		.23 dBm
Ref Level 20.00 dE Att 30 i SGL Count 100/100 IPk Max 10 dBm 0 dBm 0	Bm Offset ⁻ dB SWT	7.07 dB 👄 RBW	T 2-DH / 2 MHz / 2 MHz	15 2480M Mode Auto Sv M1[1]	veep		.23 dBm
Ref Level 20.00 db Att 30 i SGL Count 100/100 IPk Max 10 dbm 10 dbm	Bm Offset ⁻ dB SWT	7.07 dB 👄 RBW	T 2-DH / 2 MHz / 2 MHz	15 2480M Mode Auto Sv M1[1]	veep		2.23 dBm 001950 GHz
Ref Level 20.00 dB SGL Count 100/100 IPk Max 10 dBm 0 dBm	Bm Offset ⁻ dB SWT	7.07 dB 👄 RBW	T 2-DH / 2 MHz / 2 MHz	15 2480M Mode Auto Sv M1[1]	veep		2.23 dBm 001950 GHz
Ref Level 20.00 dB SGL Count 100/100 IPk Max 10 dBm 0 dBm	Bm Offset ⁻ dB SWT	7.07 dB 👄 RBW	T 2-DH / 2 MHz / 2 MHz	15 2480M Mode Auto Sv M1[1]	veep		2.23 dBm 001950 GHz
Ref Level 20.00 dB SGL Count 100/100 IPk Max 10 dBm 10 dBm	Bm Offset ⁻ dB SWT	7.07 dB 👄 RBW	T 2-DH / 2 MHz / 2 MHz	15 2480M Mode Auto Sv M1[1]	veep		2.23 dBm 001950 GHz
Ref Level 20.00 dB SGL Count 100/100 IPk Max 10 dBm 0 dBm	Bm Offset ⁻ dB SWT	7.07 dB 👄 RBW	T 2-DH / 2 MHz / 2 MHz	15 2480M Mode Auto Sv M1[1]	veep		2.23 dBm 001950 GHz
Ref Level 20.00 dB SGL Count 100/100 IPk Max 10 dBm 0 dBm	Bm Offset ⁻ dB SWT	7.07 dB 👄 RBW	T 2-DH / 2 MHz / 2 MHz	15 2480M Mode Auto Sv M1[1]	veep		2.23 dBm 001950 GHz
Ref Level 20.00 db Att 30 i SGL Count 100/100 IPk Max 10 dbm 0 dbm	Bm Offset ⁻ dB SWT	7.07 dB 👄 RBW	T 2-DH / 2 MHz / 2 MHz	15 2480M Mode Auto Sv M1[1]	veep		2.23 dBm 001950 GHz
Ref Level 20.00 db Att 30 i SGL Count 100/100 IPk Max 10 dbm 0 dbm	Bm Offset ⁻ dB SWT	7.07 dB 👄 RBW	T 2-DH / 2 MHz / 2 MHz	15 2480M Mode Auto Sv M1[1]	veep		2.23 dBm 001950 GHz
Ref Level 20.00 db Att 30 i SGL Count 100/100 IPk Max 10 dbm 10 dbm	Bm Offset ⁻ dB SWT	7.07 dB 👄 RBW	T 2-DH / 2 MHz / 2 MHz	H5 2480M	veep	2.48	2.23 dBm 001950 GHz
Ref Level 20.00 db Att 30 SGL Count 100/100 IPk Max 30 10 dBm 0 -10 dBm	Bm Offset ⁻ dB SWT	7.07 dB 👄 RBW	T 2-DH / 2 MHz / 2 MHz	H5 2480M	veep	2.48	2.23 dBm 001950 GHz

Spectrum					
Ref Level 20.00 de Att 30 d		5 ● RBW 2 MHz 5 ● VBW 2 MHz Mod	e Auto Sween		
SGL Count 100/100		• TBH E Mile Mile	e Auto Smoop		
1Pk Max					
			M1[1]	2.40	0.95 dBm 1198700 GHz
LO dBm					
		М			
) dBm			man and a second and		
10 dBm				and the second s	
20 dBm					
-30 dBm					
40 dBm					
50 dBm					
-60 dBm					
70 dBm					
CF 2.402 GHz		1001 pts		Sp	an 6.5 MHz
Ref Level 20.00 de	Bm Offset 7.24 dB	NVNT 3-DH5 2		1	
Ref Level 20.00 dB Att 30 SGL Count 100/100	3m Offset 7.24 dB dB SWT 1 ms			1	
Ref Level 20.00 dB Att 30 SGL Count 100/100	3m Offset 7.24 dB dB SWT 1 ms	6 👄 RBW 2 MHz			2.20 dBm
Ref Level 20.00 dE Att 30 SGL Count 100/100 1Pk Max	3m Offset 7.24 dB dB SWT 1 ms	6 👄 RBW 2 MHz	e Auto Sweep		
Ref Level 20.00 dE Att 30 SGL Count 100/100 1Pk Max	3m Offset 7.24 dB dB SWT 1 ms	6 👄 RBW 2 MHz	e Auto Sweep		2.20 dBm
Ref Level 20.00 df Att 30 (SGL Count 100/100 (1Pk Max	3m Offset 7.24 dB dB SWT 1 ms	8 ● RBW 2 MHz 8 ● VBW 2 MHz Mod	e Auto Sweep		2.20 dBm
Ref Level 20.00 d6 Att 30 SGL Count 100/100 11Pk Max 10 dBm	3m Offset 7.24 dB dB SWT 1 ms	8 ● RBW 2 MHz 8 ● VBW 2 MHz Mod	e Auto Sweep M1[1]		2.20 dBm
Ref Level 20.00 d6 Att 30 SGL Count 100/100 11Pk Max 10 dBm	3m Offset 7.24 dB dB SWT 1 ms	8 ● RBW 2 MHz 8 ● VBW 2 MHz Mod	e Auto Sweep M1[1]		2.20 dBm
Ref Level 20.00 df Att 30 SGL Count 100/100 PIPk Max 30 10 dBm 30 10 dBm 30	3m Offset 7.24 dB dB SWT 1 ms	8 ● RBW 2 MHz 8 ● VBW 2 MHz Mod	e Auto Sweep M1[1]		2.20 dBm
SGL Count 100/100 PIPk Max 10 dBm 0 dBm 10 dBm 20 dBm 20 dBm	3m Offset 7.24 dB dB SWT 1 ms	8 ● RBW 2 MHz 8 ● VBW 2 MHz Mod	e Auto Sweep M1[1]		2.20 dBm
Ref Level 20.00 df Att 30 SGL Count 100/100 11Pk Max 10 0 dBm 10 dBm 10 dBm 20 dBm 20 dBm 10 dBm	3m Offset 7.24 dB dB SWT 1 ms	8 ● RBW 2 MHz 8 ● VBW 2 MHz Mod	e Auto Sweep M1[1]		2.20 dBm
Ref Level 20.00 df Att 30 SGL Count 100/100 PIPk Max 30 10 dBm 30 10 dBm 30	3m Offset 7.24 dB dB SWT 1 ms	8 ● RBW 2 MHz 8 ● VBW 2 MHz Mod	e Auto Sweep M1[1]		2.20 dBm
Ref Level 20.00 df Att 30 SGL Count 100/100 PIPk Max 30 10 dBm 30 10 dBm 30 20 dBm 30 30 dBm 30 40 dBm 40	3m Offset 7.24 dB dB SWT 1 ms	8 ● RBW 2 MHz 8 ● VBW 2 MHz Mod	e Auto Sweep M1[1]		2.20 dBm
Ref Level 20.00 df Att 30 SGL Count 100/100 NIPk Max 10 0 dBm 0 0 10 dBm 0 0 20 dBm 0 30	3m Offset 7.24 dB dB SWT 1 ms	8 ● RBW 2 MHz 8 ● VBW 2 MHz Mod	e Auto Sweep M1[1]		2.20 dBm
Ref Level 20.00 df Att 30 SGL Count 100/100 NIPk Max 10 0 dBm 0 0 10 dBm 0 0 20 dBm 0 0 30 dBm 0 0 40 dBm 0 0 50 dBm 0 0	3m Offset 7.24 dB dB SWT 1 ms	8 ● RBW 2 MHz 8 ● VBW 2 MHz Mod	e Auto Sweep M1[1]		2.20 dBm
Ref Level 20.00 df Att 30 SGL Count 100/100 NIPk Max 10 0 dBm 0 0 10 dBm 0 0 20 dBm 0 0 30 dBm 0 0 40 dBm 0 0	3m Offset 7.24 dB dB SWT 1 ms	8 ● RBW 2 MHz 8 ● VBW 2 MHz Mod	e Auto Sweep M1[1]		2.20 dBm
Ref Level 20.00 db Att 30 SGL Count 100/100 1Pk Max 30 .0 dBm 30 10 dBm 30 20 dBm 30 30 dBm 30 40 dBm 50 dBm 60 dBm 60 dBm	3m Offset 7.24 dB dB SWT 1 ms	8 ● RBW 2 MHz 8 ● VBW 2 MHz Mod	e Auto Sweep M1[1]		2.20 dBm
Ref Level 20.00 df Att 30 SGL Count 100/100 NIPk Max 10 0 dBm 0 0 10 dBm 0 0 20 dBm 0 0 30 dBm 0 0 40 dBm 0 0 50 dBm 0 0	3m Offset 7.24 dB dB SWT 1 ms	8 ● RBW 2 MHz 8 ● VBW 2 MHz Mod	e Auto Sweep M1[1]		2.20 dBm
Ref Level 20.00 df Att 30 SGL Count 100/100 11Pk Max 10 10 dBm 10 10 10 dBm 10 10 10 dBm 30 10 10 dBm 10 10 20 dBm 10 10 30 dBm 10 10 40 dBm 10 10 50 dBm 10 10	3m Offset 7.24 dB dB SWT 1 ms	8 ● RBW 2 MHz 8 ● VBW 2 MHz Mod	e Auto Sweep M1[1]	2.44	2.20 dBm 097400 GHz
Ref Level 20.00 df Att 30 SGL Count 100/100 11Pk Max 10 10 dBm 10 10 10 dBm 10 10 10 dBm 30 10 10 dBm 10 10 10 dBm 10 10 20 dBm 10 10 40 dBm 10 10 40 dBm 10 10 40 dBm 10 10 40 dBm 10 10 50 dBm 10 10 60 dBm 10 10 70 dBm 10 10	3m Offset 7.24 dB dB SWT 1 ms	New 2 MHz VBW 2 MHz Mod	e Auto Sweep M1[1]	2.44	2.20 dBm 097400 GHz

	P	ower NV	NT 3-DI	15 2480MH	z Ant1		
Spectrum							
Ref Level 20.00 dBn Att 30 di SGL Count 100/100		7.07 dB 👄 RI 1 ms 👄 V	BW 2 MHz BW 2 MHz	Mode Auto Swee	эр		
1Pk Max							
				M1[1]			2.07 dBm 0910 GHz
10 dBm						2.4799	0910 012
			M1				
D dBm					hime		
-10 dBm	<i>r</i>					~~~	
and the second second							~
-20 dBm							and the second
-30 dBm							
oo abiii							
-40 dBm							
-50 dBm							
-60 dBm							
70 40							
-70 dBm							
CF 2.48 GHz			1001	pts		Span	6.5 MHz
					Ready		