SAR Test Report

Product Name	:	Mobile Phone
Model No.	:	LT40
FCC ID	:	QRP-AZUMILT40

Applicant: AZUMI S.A

Address : Avenida Aquilino de la Guardia con Calle 47, PH Ocean Plaza, Piso 16 of. 16-01, Marbella, Ciudad de Panamá City, Rep. Panamá

Date of Receipt	:	Jan. 16, 2015
Date of Test	:	Jan. 16, 2015
Issued Date	:	Feb. 27, 2015
Report No.	:	1510324R-HP-US-P03V01
Report Version	:	V1.2

Note: The report is only for LTE Band 7 SAR according to the requirement of the manufacturer, so the simultaneous transmissions are not taken into account.

The test results relate only to the samples tested.

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation.

Test Report Certification

Issued Date: Feb. 27, 2015 Report No.: 1510324R-HP-US-P03V01

Product Name	Mobile Phone
Applicant	AZUMI S.A
Address	Avenida Aquilino de la Guardia con Calle 47, PH Ocean Plaza,
	Piso 16 of. 16-01, Marbella, Ciudad de Panam ${tat}$ City, Rep. Panam
	á
Manufacturer	AZUMI (HK) LTD
Address	FLAT/RM 18 BLK 1 14/F GOLDEN INDUSTRIAL BUILDING 16-26
	KWAI TAK STREET KWAI CHUNG
Model No.	LT40
FCC ID	QRP-AZUMILT40
EUT Voltage	DC 3.7V
Applicable Standard	IEEE Std. 1528-2013, 47CFR § 2.1093
	FCC KDB Publication 447498 D01v05r02
	FCC KDB Publication 648474 D04v01r02
	FCC KDB Publication 865664 D01v01r03
	FCC KDB Publication 941225 D01,D05 and D06
Test Result	Max. SAR Measurement (1g)
	Head: 0.0561 W/kg; Body worn: 0.0658 W/kg
	Hotspot: 0.422 W/kg;
Performed Location	Suzhou EMC Laboratory
	No.99 Hongye Rd., Suzhou Industrial Park Loufeng Hi-Tech
	Development Zone., Suzhou, China
	TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098
	FCC Registration Number: 800392
Documented By	Min hi
	Alse Ni
Reviewed By	Preven Cas
Approved By	Jeff Chen

Laboratory Information

We, **QuieTek Corporation**, are an independent EMC and safety consultancy that was established the whole facility in our laboratories. The test facility has been accredited/accepted(audited or listed) by the following related bodies in compliance with ISO 17025, EN 45001 and specified testing scope:

Taiwan R.O.C.	: BSMI, NCC, TAF
Germany	: TUV Rheinland
Norway	: Nemko, DNV
USA	: FCC
Japan	: VCCI
China	: CNAS

The related certificate for our laboratories about the test site and management system can be downloaded from QuieTek Corporation's Web Site :<u>http://www.quietek.com/tw/ctg/cts/accreditations.htm</u> The address and introduction of QuieTek Corporation's laboratories can be founded in our Web site : <u>http://www.quietek.com/</u>

If you have any comments, Please don't hesitate to contact us. Our contact information is as below:

HsinChu Testing Laboratory :

No.75-2, 3rd Lin, Wangye Keng, Yonghxing Tsuen, Qionglin Shiang, Hsinchu County 307, Taiwan, R.O.C. TEL:+886-3-592-8858 / FAX:+886-3-592-8859 E-Mail : <u>service@quietek.com</u>

LinKou Testing Laboratory :

No.5-22, Ruishukeng, Linkou Dist., New Taipei City 24451, Taiwan, R.O.C. TEL: 886-2-8601-3788 / FAX: 886-2-8601-3789 E-Mail: <u>service@quietek.com</u>

Suzhou Testing Laboratory :

No.99 Hongye Rd., Suzhou Industrial Park Loufeng Hi-Tech Development Zone., SuZhou, China TEL : +86-512-6251-5088 / FAX : 86-512-6251-5098 E-Mail : <u>service@quietek.com</u>

TABLE OF CONTENTS

Description	Page
1. General Information	7
1.1. EUT Description	7
1.2. Test Environment	9
1.3. EUT Antenna Locations	9
1.4. Power Reduction for SAR	10
1.5. Max Power Reduction for SAR	10
1.6. Guidance Documents	10
2. SAR Measurement System	11
2.1. DASY5 System Description	11
2.1.1. Applications	12
2.1.2. Area Scans	12
2.1.3. Zoom Scan (Cube Scan Averaging)	12
2.1.4. Uncertainty of Inter-/Extrapolation and Averaging	12
2.2. DASY5 E-Field Probe	13
2.2.1. Isotropic E-Field Probe Specification	13
2.3. Boundary Detection Unit and Probe Mounting Device	14
2.4. DATA Acquisition Electronics (DAE) and Measurement Server	14
2.5. Robot	15
2.6. Light Beam Unit	15
2.7. Device Holder	16
2.8. SAM Twin Phantom	16
3. Tissue Simulating Liquid	17
3.1. The composition of the tissue simulating liquid	17
3.2. Tissue Calibration Result	18
3.3. Tissue Dielectric Parameters for Head and Body Phantoms	19
4. SAR Measurement Procedure	20
4.1. SAR System Validation	20
4.1.1. Validation Dipoles	20
4.1.2. Validation Result	21
4.2. SAR Measurement Procedure	22
4.3. Body-Worn Accessory Configurations	23
4.4. Wireless Router Configurations	24

4	I.5. SAR Measurement Conditions for UMTS	25
	4.5.1. Output Power Verification	25
	4.5.2. Head SAR Measurements for Handsets	25
	4.5.3. Body SAR Measurements	25
	4.5.4. SAR Measurements for Handsets with Rel 5 HSDPA	25
	4.5.5. SAR Measurements for Handsets with Rel 6 HSUPA	26
4	I.6. SAR Measurement Conditions for LTE	27
	4.6.1. Largest channel bandwidth standalone SAR test requirements	27
	4.6.1.1. QPSK with 1 RB allocation	27
	4.6.1.2. QPSK with 50% RB allocation	27
	4.6.1.3. QPSK with 100% RB allocation	27
	4.6.1.4. Higher order modulations	27
	4.6.2. Other channel bandwidth standalone SAR test requirements	27
	4.6.3. Simultaneous transmission SAR test considerations for LTE	28
5.	SAR Exposure Limits	29
•••	SAN Exposure Limits	
6.	Test Equipment List	
	-	30
6.	Test Equipment List	30 31
6. 7.	Test Equipment List	30 31 33
6. 7. 8. 9.	Test Equipment List Measurement Uncertainty Conducted Power Measurement Test Results	30 31 33 38
6. 7. 8. 9. 9	Test Equipment List Measurement Uncertainty Conducted Power Measurement Test Results 0.1. SAR Test Results Summary	30 31 33 38 38
6. 7. 8. 9. 9	Test Equipment List. Measurement Uncertainty. Conducted Power Measurement . Test Results. 0.1. SAR Test Results Summary . 0.2. SAR Test Notes .	30 31 33 38 38 41
6. 7. 8. 9. 9 Apj	Test Equipment List	30 31 33 38 38 41 42
6. 7. 8. 9. 9 Apj	Test Equipment List. Measurement Uncertainty. Conducted Power Measurement . Test Results. 0.1. SAR Test Results Summary . 0.2. SAR Test Notes .	30 31 33 38 38 41 42
6. 7. 8. 9. 9 9 Apj Apj	Test Equipment List	30 31 33 38 41 42 42 44
6. 7. 8. 9. 9 Api Api Api	Test Equipment List	30 31 33 38 41 42 44 63
6. 7. 8. 9. 9 Apı Apı Apı Apı	Test Equipment List Measurement Uncertainty Conducted Power Measurement	30 31 33 38 41 42 44 63 71

History of This Test Report

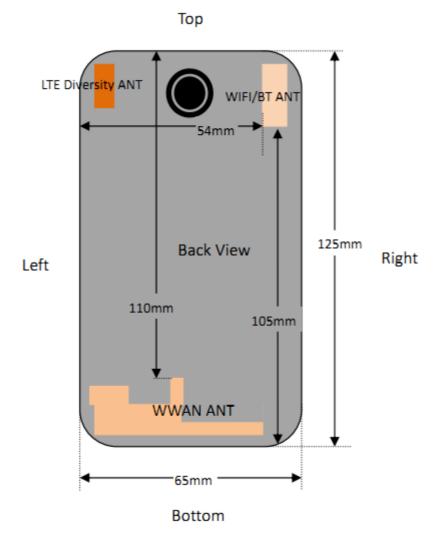
REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
1510324R-HP-US-P03V01	V1.0	Initial Issued Report	Feb. 04, 2015
1510324R-HP-US-P03V01	V1.1	Modified the conducted power	Feb. 04, 2015
1510324R-HP-US-P03V01	V1.2	Revised EUT information and	Feb. 27, 2015
		SAR test plots.	

1. General Information

1.1. EUT Description

Product Name	Mobile Phone
Model No.	LT40
IMEI	862240021000616
Device Category	Portable
EUT Category	Identical prototype
RF Exposure Environment	Uncontrolled
Antenna Type	Internal
GPS	
Class of SRD	Class 3
2G	
Support Band	GSM850/PCS1900
GPRS Class	Class 12
Uplink	GSM 850: 824~849MHz
	PCS 1900: 1850~1910MHz
Downlink	GSM 850: 869~894MHz
	PCS 1900: 1930~1990MHz
Release Version	R99
Type of modulation	GMSK for GSM/GPRS
	8PSK for EDGE
Antenna Gain	GSM 850: -2.0dBi
	PCS1900: -0.1dBi
3G	
Support Band	WCDMA Band II/ WCDMA Band V
Uplink	WCDMA Band II: 1852.4~1907.6MHz
	WCDMA Band V: 826.4~846.6MHz
Downlink	WCDMA Band II: 1932.4~1987.6MHz
	WCDMA Band V: 871.4~891.6MHz
Release Version	Rel-6
Type of modulation	QPSK for Uplink
Antenna Gain	WCDMA Band V: -2.0dBi
	WCDMA Band II: -0.1dBi
4G	
Support Band	Band II/IV/VII
Uplink	Band II: 1850~1910MHz

	Band IV: 1710~1755MHz
	Band VII: 2500~2570MHz
Downlink	Band II: 1930~1990MHz
	Band IV: 2110~2155MHz
	Band VII: 2620~2690MHz
Type of modulation	QPSK/16QAM
Antenna Gain	Band II: -0.1dBi
	Band IV: -0.7dBi
	Band VII: 0.5dBi
WIFI	
Frequency	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20))
	2422MHz~2452MHz (802.11n(H40))
Type of modulation	802.11b: DSSS; 802.11g/n: OFDM
	802.11b: 11 Mbps
Data Rate	802.11g: 54 Mbps
	802.11n: up to 150 Mbps
Antenna Gain	2.3dBi
Bluetooth	
Bluetooth Frequency	2402MHz~2480MHz
Bluetooth Version	4.0+HS
Type of modulation	V3.0+HS: GFSK, Pi/4 DQPSK, 8DPSK
	V4.0: GFSK
Data Rate	V3.0+HS: 1Mbps(GFSK), 2Mbps(Pi/4 DQPSK), 3Mbps
	(8DPSK)
	V4.0: 1Mbps(GFSK)
Antenna Gain	2.3dBi
Components	
Battery	Rated Voltage and Capacitance: 3.8V/1450mAh
,	



1.2. Test Environment

Ambient conditions in the laboratory:

Items	Required	Actual
Temperature (°C)	18-25	21.5± 2
Humidity (%RH)	30-70	52

1.3. EUT Antenna Locations

Mode	Back	Front	Тор	Bottom	Right	Left
LTE Band VII	Yes	Yes	No	Yes	Yes	Yes

Mobile Hotspot Sides for SAR Testing

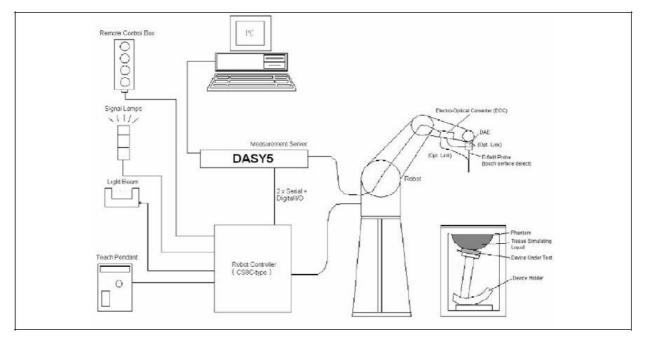
Note: Particular DUT edges were not required to be evaluated for Wireless Router SAR if the edges were greater than 2.5 cm from the transmitting antenna according to FCC KDB Publication 941225 D06v01r01 guidance, page 2. The antenna photo shows the distances between the transmit antennas and the edges of the device.

1.4. Power Reduction for SAR

There is no power reduction used for any band/mode implemented in this device for SAR purposes.

1.5. Max Power Reduction for SAR

MPR is not supported.


1.6. Guidance Documents

- 1) FCC KDB Publication 941225 D01, D05 and D06 (2G, 3G and Hotspot)
- 2) FCC KDB Publication 447498 D01v05r02(General SAR Guidance)
- 3) FCC KDB Publication 865664 D01v01r03(SAR measurement 100 MHz to 6 GHz)
- 4) FCC KDB Publication 648474 D04v01r02(SAR Evaluation Considerations for Wireless Handsets)

2. SAR Measurement System

2.1. DASY5 System Description

The DASY5 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software.
 An arm extension for accommodating the data acquisition electronics (DAE).
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- > A computer running WinXP and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

2.1.1. Applications

Predefined procedures and evaluations for automated compliance testing with all worldwide standards, e.g., IEEE 1528, IEC 62209-1, IEC 62209-2, EN 50360, EN 50383 and others.

2.1.2. Area Scans

Area scans are defined prior to the measurement process being executed with a user defined variable spacing between each measurement point (integral) allowing low uncertainty measurements to be conducted. Scans defined for FCC applications utilize a 10mm² step integral, with 1mm interpolation used to locate the peak SAR area used for zoom scan assessments.

When an Area Scan has measured all reachable points, it computes the field maxima found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE 1528-2013 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan).

2.1.3. Zoom Scan (Cube Scan Averaging)

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. A density of 1000 kg/m³ is used to represent the head and body tissue density and not the phantom liquid density, in order to be consistent with the definition of the liquid dielectric properties, i.e. the side length of the 1 g cube is 10mm, with the side length of the 10 g cube 21,5mm.

The zoom scan integer steps can be user defined so as to reduce uncertainty, but normal practice for typical test applications utilize a physical step of 7x7x7 (5mmx5mmx5mm) providing a volume of 30mm in the X & Y axis, and 30mm in the Z axis.

2.1.4. Uncertainty of Inter-/Extrapolation and Averaging

In order to evaluate the uncertainty of the interpolation, extrapolation and averaged SAR calculation algorithms of the Postprocessor, DASY5 allows the generation of measurement grids which are artificially predefined by analytically based test functions. Therefore, the grids of area scans and zoom scans can be filled with uncertainty test data, according to the SAR benchmark functions of IEEE 1528. The three analytical functions shown in equations as below are used to describe the possible range of the expected SAR distributions for the tested handsets. The field gradients are covered by the spatially flat distribution f1, the spatially steep distribution f3 and f2 accounts for H-field cancellation on the phantom/tissue surface.

$$f_1(x, y, z) = Ae^{-\frac{z}{2a}} \cos^2\left(\frac{\pi}{2}\frac{\sqrt{x'^2 + y'^2}}{5a}\right)$$
$$f_2(x, y, z) = Ae^{-\frac{z}{a}}\frac{a^2}{a^2 + x'^2} \left(3 - e^{-\frac{2z}{a}}\right)\cos^2\left(\frac{\pi}{2}\frac{y'}{3a}\right)$$
$$f_3(x, y, z) = A\frac{a^2}{\frac{a^2}{4} + x'^2 + y'^2} \left(e^{-\frac{2z}{a}} + \frac{a^2}{2(a+2z)^2}\right)$$

2.2. DASY5 E-Field Probe

The SAR measurement is conducted with the dosimetric probe manufactured by SPEAG. The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. SPEAG conducts the probe calibration in compliance with international and national standards (e.g. IEEE 1528, EN 62209-1, IEC 62209, etc.) under ISO 17025. The calibration data are in Appendix D.

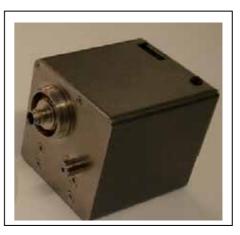
Model	EX3DV4			
Construction	Symmetrical design with triangular core Built-in sl charges PEEK enclosure material (resistant to or DGBE)	00		
Frequency	10 MHz to 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)			
Directivity	± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis)			
Dynamic Range	10 μW/g to 100 mW/g Linearity: ± 0.2 dB (noise: typically < 1 μW/g)			
Dimensions	Overall length: 330 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm			
Application	High precision dosimetric measurements in any e (e.g., very strong gradient fields). Only probe whic compliance testing for frequencies up to 6 GHz w 30%.	ch enables		

2.2.1. Isotropic E-Field Probe Specification

2.3. Boundary Detection Unit and Probe Mounting Device

The DASY5 probes use a precise connector and an additional holder for the probe, consisting of a plastic tube and a flexible silicon ring to center the probe. The connector at the DAE is flexibly mounted and held in the default position with magnets and springs. Two switching systems in the connector mount detect frontal and lateral probe collisions and trigger the necessary software response.

2.4. DATA Acquisition Electronics (DAE) and Measurement Server


The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit.

Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The input impedance of the DAE4 is 200M Ohm; the inputs are symmetrical and floating. Common mode rejection is above 80dB.

The DASY5 measurement server is based on a PC/104 CPU board with a 400MHz intel ULV Celeron, 128MB chipdisk and 128MB RAM. The necessary circuits for communication with the DAE electronics box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY5 I/O board, which is directly connected to the PC/104 bus of the CPU board.

2.5. Robot

The DASY5 system uses the high precision robots TX90 XL type out of the newer series from Stäubli SA (France). For the 6-axis controller DASY5 system, the CS8C robot controller version from Stäubli is used.

The XL robot series have many features that are important for our application:

- High precision (repeatability 0.02 mm)
- High reliability (industrial design)
- Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)
- 6-axis controller

2.6. Light Beam Unit

The light beam switch allows automatic "tooling" of the probe. During the process, the actual position of the probe tip with respect to the robot arm is measured, as well as the probe length and the horizontal probe offset. The software then corrects all movements, such that the robot coordinates are valid for the probe tip.

The repeatability of this process is better than 0.1 mm. If a position has been taught with an aligned probe, the same position will be reached with another aligned probe within 0.1 mm, even if the other probe has different dimensions. During probe rotations, the probe tip will keep its actual position.

2.7. Device Holder

The DASY5 device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (EPR).

Thus the device needs no repositioning when changing the angles.

The DASY5 device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity $\varepsilon r = 3$ and loss tangent $\delta = 0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

2.8. SAM Twin Phantom

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

- Left head
- Right head
- Flat phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

3. Tissue Simulating Liquid

3.1. The composition of the tissue simulating liquid

INGREDIENT	2600MHz	2600MHz
(% Weight)	Head	Body
Water	55.242	64.493
Salt	0.306	0.024
Sugar	0.00	0.00
HEC	0.00	0.00
Preventol	0.00	0.00
DGBE	44.452	32.252
Triton X-100	0.00	0.00

3.2. Tissue Calibration Result

The dielectric parameters of the liquids were verified prior to the SAR evaluation using DASY5 Dielectric Probe Kit and Agilent Vector Network Analyzer E5071C

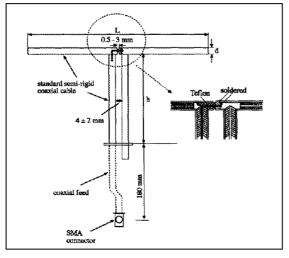
Head Tissue Simulant Measurement										
Frequency	Description	Dielectric P	Tissue Temp.							
[MHz]	Description	r 3	σ [s/m]	[°C]						
	Reference result	39.0	1.96	N/A						
2600 MHz	± 5% window	37.05 to 40.95	1.86 to 2.06	IN/A						
	01-16-2015	39.22	2.02	21.0						
	·									

Body Tissue Simulant Measurement										
Frequency	Description	Dielectric P	arameters	Tissue Temp.						
[MHz]	Description	۲ 3	σ [s/m]	[°C]						
	Reference result	52.5	2.16	N/A						
2600MHz	± 5% window	49.88 to 55.12	2.05 to 2.27	IN/A						
	01-16-2015	51.1	2.13	21.0						

3.3. Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528.

Target Frequency	He	ad	Во	dy
(MHz)	ε _r	σ (S/m)	٤r	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
2600	39.0	1.96	52.5	2.16
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00


(ε_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

4. SAR Measurement Procedure

4.1. SAR System Validation

4.1.1. Validation Dipoles

The dipoles used is based on the IEEE-1528 standard, and is complied with mechanical and electrical specifications in line with the requirements of both IEEE and FCC Supplement C. the table below provides details for the mechanical and electrical specifications for the dipoles.

Frequency	L (mm)	h (mm)	d (mm)
2600MHz	49.2	290.0	3.6

4.1.2. Validation Result

System Per	System Performance Check at 2600MHz for Head.											
Validation Dipole: D2600V2, SN: 1029												
Frequency [MHz]												
2600 MHz	Reference result ± 10% window	57.8 52.02 to 63.58	26.0 23.4 to 28.6	N/A								
	01-16-2015	56.0	23.80	21.0								
-	formance Check at Pipole: D2600V2, SN	-										
Frequency [MHz]	Description	SAR [w/kg] 1g	SAR [w/kg] 10g	Tissue Temp. [°C]								
2600 MHz	Reference result ± 10% window	56.5 50.85 to 62.15	25.0 22.5 to 27.5	N/A								
	01-16-2015 54.10 23.32 21.0											
Note: All SAR values are normalized to 1W forward power.												

Quielek

The DASY5 calculates SAR using the following equation,

$$SAR = \frac{\sigma |\mathbf{E}|^2}{\rho}$$

 σ : represents the simulated tissue conductivity ρ : represents the tissue density

The EUT is set to transmit at the required power in line with product specification, at each frequency relating to the LOW, MID, and HIGH channel settings.

Pre-scans are made on the device to establish the location for the transmitting antenna, using a large area scan in either air or tissue simulation fluid.

The EUT is placed against the Universal Phantom where the maximum area scan dimensions are larger than the physical size of the resonating antenna. When the scan size is not large enough to cover the peak SAR distribution, it is modified by either extending the area scan size in both the X and Y directions, or the device is shifted within the predefined area.

The area scan is then run to establish the peak SAR location (interpolated resolution set at 1mm²) which is then used to orient the center of the zoom scan. The zoom scan is then executed and the 1g and 10g averages are derived from the zoom scan volume (interpolated resolution set at 1mm³).

4.3. Body-Worn Accessory Configurations

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration. Per FCC KDB Publication 648474 D04 v01r02, Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB Publication 447498 D01 v05r02 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented. Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

4.4. Wireless Router Configurations

Some battery-operated handsets have the capability to transmit and receive user data through simultaneous transmission of Wi-Fi simultaneously with a separate licensed transmitter. The FCC has provided guidance in FCC KDB Publication 941225 D06 v01r01 where SAR test considerations for handsets (L x W \ge 9 cm x 5 cm) are based on a composite test separation distance of 10 mm from the front, back and edges of the device containing transmitting antennas within 2.5 cm of their edges, determined from general mixed use conditions for this type of devices. Since the hotspot SAR results may overlap with the body-worn accessory SAR requirements, the more conservative configurations can be considered, thus excluding some body-worn accessory SAR tests.

When the user enables the personal wireless router functions for the handset, actual operations include simultaneous transmission of both the Wi-Fi transmitter and another licensed transmitter. Both transmitters often do not transmit at the same transmitting frequency and thus cannot be evaluated for SAR under actual use conditions due to the limitations of the SAR assessment probes. Therefore, SAR must be evaluated for each frequency transmission and mode separately and spatially summed with the Wi-Fi transmitter according to FCC KDB Publication 447498 D01v05r02 publication procedures. The "Portable Hotspot" feature on the handset was NOT activated during SAR assessments, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal at a time.

4.5. SAR Measurement Conditions for UMTS

4.5.1. Output Power Verification

Maximum output power is measured on the High, Middle and Low channels for each applicable transmission band according to the general descriptions in section 5.2 of 3GPP TS 34.121, using the appropriate RMC or AMR with TPC (transmit power control) set to all "1s".

Maximum output power is verified on the High, Middle and Low channels according to the general descriptions in section 5.2 of 3GPP TS 34.121 (release 5), using the appropriate RMC with TPC (transmit power control) set to all "1s" or applying the required inner loop power control procedures to maintain maximum output power while HSUPA is active. Results for all applicable physical channel configurations (DPCCH, DPDCHn and spreading codes, HS-DPCCH etc) are tabulated in this test report. All configurations that are not supported by the DUT or cannot be measured due to technical or equipment limitations are identified.

4.5.2. Head SAR Measurements for Handsets

SAR for head exposure configurations is measured using the 12.2 kbps RMC with TPC bits configured to all "1s". SAR in AMR configurations is not required when the maximum average output of each RF channel for 12.2 kbps AMR is less than 0.25 dB higher than that measured in 12.2 kbps RMC. Otherwise, SAR is measured on the maximum output channel in 12.2 AMR with a 3.4 kbps SRB (signaling radio bearer) using the exposure configuration that resulted in the highest SAR for that RF channel in the 12.2 kbps RMC mode.

4.5.3. Body SAR Measurements

SAR for body exposure configurations is measured using the 12.2 kbps RMC with the TPC bits all "1s".

4.5.4. SAR Measurements for Handsets with Rel 5 HSDPA

Body SAR for HSDPA is not required for handsets with HSDPA capabilities when the maximum average output power of each RF channel with HSDPA active is less than 0.25 dB higher than that measured without HSDPA using 12.2 kbps RMC and the maximum SAR for 12.2 kbps RMC is \leq 75% of the SAR limit. Otherwise, SAR is measured for HSDPA, using an FRC with H-Set 1 in Sub-test 1 and a 12.2 kbps RMC configured in Test Loop Mode 1, using the highest body SAR configuration measured in 12.2 kbps RMC without HSDPA, on the maximum output channel with the body exposure configuration that resulted in the highest SAR in 12.2 kbps RMC mode for that RF channel.

The H-set used in FRC for HSDPA should be configured according to the UE category of a test device. The number of HS-DSCH/HSPDSCHs, HARQ processes, minimum inter-TTI interval, transport block sizes and RV coding sequence are defined by the applicable H-set. To maintain a consistent test configuration and stable transmission conditions, QPSK is used in the FRC for SAR testing. HS-DPCCH should be configured with a CQI feedback cycle of 2 ms to maintain a constant rate of active CQI slots. DPCCH and DPDCH gain factors of β c=9 and β d=15, and power offset parameters of Δ ACK= Δ NACK =5 and Δ CQI=2 is used. The CQI value is determined by the UE category, transport block size, number of HS-PDSCHs and modulation used in the FRC.

4.5.5. SAR Measurements for Handsets with Rel 6 HSUPA

Body SAR for HSUPA is not required when the maximum average output of each RF channel with HSUPA/HSDPA active is less than 0.25 dB higher than as measured without HSUPA/HSDPA using 12.2 kbps RMC and maximum SAR for 12.2 kbps RMC is \leq 75 % of the SAR limit. Otherwise SAR is measured on the maximum output channel for the body exposure configuration produced highest SAR in 12.2 kbps RMC for that RF channel, using the additional procedures under "Release 6 HSPA data devices"

Head SAR for VOIP operations under HSPA is not required when maximum average output of each RF channel with HSPA is less than 0.25 dB higher than as measured using 12.2 kbps RMC. Otherwise SAR is measured using same HSPA configuration as used for body SAR.

Sub- test	βe	βa	β ₄ (SF)	Be∕Ba	$\beta_{hs}^{(1)}$	Bee	Bed	β _{ed} (SF)	β _{ed} (codes)	CM ⁽²⁾ (dB)	MPR (dB)	AG ⁽⁴⁾ Index	E- TFCI
1	11/15 ⁽³⁾	15/15 ⁽³⁾	64	11/15(3)	22/15	209/225	1039/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	β _{ed1} : 47/15 β _{ed2} : 47/15	4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15(4)	15/15(4)	64	15/15(4)	30/15	24/15	134/15	4	1	1.0	0.0	21	81

Note 1: Δ_{ACK} , Δ_{NACK} and $\Delta_{CQI} = 8 \Leftrightarrow A_{he} = \beta_{he}/\beta_c = 30/15 \Leftrightarrow \beta_{he} = 30/15 * \beta_c$.

Note 2: CM = 1 for β_c/β_d =12/15, β_b/β_c=24/15. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.

Note 3: For subtest 1 the β_c/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 10/15$ and $\beta_d = 15/15$.

Note 4: For subtest 5 the β_c/β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 14/15$ and $\beta_d = 15/15$.

Note 5: Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Table 5.1g. Note 6: β_{ed} can not be set directly; it is set by Absolute Grant Value.

4.6. SAR Measurement Conditions for LTE

4.6.1. Largest channel bandwidth standalone SAR test requirements

4.6.1.1. QPSK with 1 RB allocation

Start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power among RB offsets at the upper edge, middle and lower edge of each required test channel. When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required for 1 RB allocation; otherwise, SAR is required for the remaining required test channels and only for the RB offset configuration with the highest output power for that channel.

When the reported SAR of a required test channel is > 1.45 W/kg, SAR is required for all three RB offset configurations for that required test channel.

4.6.1.2. QPSK with 50% RB allocation

The procedures required for 1 RB allocation in section 4.2.1 are applied to measure the SAR for QPSK with 50% RB allocation.

4.6.1.3. QPSK with 100% RB allocation

For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation in sections 4.2.1 and 4.2.2 are \leq 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.

4.6.1.4. Higher order modulations

For each modulation besides QPSK; e.g., 16-QAM, 64-QAM, apply the QPSK procedures in sections 4.2.1, 5.2.2 and 4.2.3 to determine the QAM configurations that may need SAR measurement. For each configuration identified as required for testing, SAR is required only when the highest maximum output power for the configuration in the higher order modulation is > $\frac{1}{2}$ dB higher than the same configuration in QPSK or when the reported SAR for the QPSK configuration is > 1.45 W/kg.

4.6.2. Other channel bandwidth standalone SAR test requirements

For the other channel bandwidths used by the device in a frequency band, apply all the procedures required for the largest channel bandwidth in section 4.2 to determine the channels and RB configurations that need SAR testing and only measure SAR when the highest maximum output power of a configuration requiring testing in the smaller channel bandwidth is > $\frac{1}{2}$ dB higher than the equivalent channel configurations in the

largest channel bandwidth configuration or the reported SAR of a configuration for the largest channel bandwidth is > 1.45 W/kg. The equivalent channel configuration for the RB allocation, RB offset and modulation etc. is determined for the smaller channel bandwidth

according to the same number of RB allocated in the largest channel bandwidth. For example, 50 RB in 10 MHz channel bandwidth does not apply to 5 MHz channel bandwidth; therefore, this cannot be tested in the smaller channel bandwidth. However, 50% RB allocation in 10 MHz channel bandwidth is equivalent to 100% RB allocation in 5 MHz channel bandwidth; therefore, these are the equivalent configurations to be compared to determine the specific channel and configuration in the smaller channel bandwidth that need SAR testing.

4.6.3. Simultaneous transmission SAR test considerations for LTE

Standalone SAR results of the individual transmitters and antennas for the frequency bands, operating modes, device operating configurations and exposure conditions are applied to determine simultaneous transmission SAR test requirements, with respect to the applicable published RF exposure KDB procedures; for example, voice and data modes in LTE, 1xRTT, WCDMA, GSM, EvDo, HSPA, GPRS/EDGE, WiMax, Wi-Fi, Bluetooth etc. The SAR test reduction and exclusion provisions in KDB 447498 should be applied separately for head, body-worn accessory and other use test conditions according to the channel bandwidths, modulations, RB offsets and allocations in each frequency band.

The conditions and configurations that qualify for test exclusion or reduction must be clearly described in the SAR report. When simultaneous transmission SAR measurement is required, the enlarged zoom scan measurement and volume scan post-processing procedures in KDB 865664 must be applied, in conjunction with the published RF exposure KDB procedures required for the product platform and wireless technologies, to each device operating configuration and exposure condition.

Depending on the different combinations of channel bandwidths, modulations, maximum output variations among RB configurations, when LTE devices transmit simultaneously with other wireless modes (for example, Wi-Fi, which has even more data rate, modulation and frequency band combinations), the simultaneous transmission configurations can become very complicated, to the extent that it would be very difficult to develop test procedures to cover all circumstances. When it is unclear, a KDB inquiry should be considered to clarify the test plan or any test concerns to avoid issues during equipment approval.

5. SAR Exposure Limits

SAR assessments have been made in line with the requirements of IEEE-1528, FCC Supplement C, and comply with ANSI/IEEE C95.1-1992 "Uncontrolled Environments" limits. These limits apply to a location which is deemed as "Uncontrolled Environment" which can be described as a situation where the general public may be exposed to an RF source with no prior knowledge or control over their exposure.

Type Exposure	Uncontrolled
	Environment Limit
Spatial Peak SAR (1g cube tissue for brain or body)	1.60 W/kg
Spatial Average SAR (whole body)	0.08 W/kg
Spatial Peak SAR (10g for hands, feet, ankles and wrist)	4.00 W/kg

Limits for General Population/Uncontrolled Exposure (W/kg)

6. Test Equipment List

Instrument	Manufacturer	Model No.	Serial No.	Cali. Due Date
Stäubli Robot TX60L	Stäubli	TX60L	F10/5C90A1/A/01	N/A
Controller	Stäubli	SP1	S-0034	N/A
Dipole Validation Kits	Speag	D2600V2	1029	2016.02.23
SAM Twin Phantom	Speag	SAM	TP-1561/1562	N/A
Device Holder	Speag	SD 000 H01 HA	N/A	N/A
Data	Speag	DAE4	914	2015.12.15
Acquisition Electronic				
E-Field Probe	Speag	EX3DV4	3710	2015.03.03
SAR Software	Speag	DASY5	V5.2 Build 162	N/A
Power Amplifier	Mini-Circuit	ZVA-183-S+	N657400950	N/A
Directional Coupler	Agilent	778D	20160	N/A
Universal Radio Communication Tester	Anritsu	MT8820C	6201181503	2015.08.12
Vector Network	Agilent	E5071C	MY48367267	2015.03.28
Signal Generator	Agilent	E4438C	MY49070163	2015.03.28
Power Meter	Anritsu	ML2495A	0905006	2015.11.01
Wide Bandwidth Sensor	Anritsu	MA2411B	0846014	2015.11.01

7. Measurement Uncertainty

		DASY	′5 Uno	certair	nty			
Measurement uncertainty	for 300 M	Hz to 3 G	GHz aver	aged ove	er 1 gram	/ 10 gram.		
Error Description	Uncert.	Prob.	Div.	(Ci)	(Ci)	Std.	Std.	(Vi)
	value	Dist.		1g	10g	Unc.	Unc.	Veff
						(1g)	(10g)	
Measurement System								
Probe Calibration	±6.0%	Ν	1	1	1	±6.0%	±6.0%	∞
Axial Isotropy	±4.7%	R	√3	0.7	0.7	±1.9%	±1.9%	∞
Hemispherical Isotropy	±9.6%	R	√3	0.7	0.7	±3.9%	±3.9%	8
Boundary Effects	±1.0%	R	√3	1	1	±0.6%	±0.6%	∞
Linearity	±4.7%	R	√3	1	1	±2.7%	±2.7%	∞
System Detection Limits	±1.0%	R	√3	1	1	±0.6%	±0.6%	∞
Readout Electronics	±0.3%	Ν	1	1	1	±0.3%	±0.3%	×
Response Time	±0.8%	R	√3	1	1	±0.5%	±0.5%	×
Integration Time	±2.6%	R	√3	1	1	±1.5%	±1.5%	∞
RF Ambient Noise	±3.0%	R	√3	1	1	±1.7%	±1.7%	∞
RF Ambient Reflections	±3.0%	R	√3	1	1	±1.7%	±1.7%	∞
Probe Positioner	±0.4%	R	√3	1	1	±0.2%	±0.2%	∞
Probe Positioning	±2.9%	R	√3	1	1	±1.7%	±1.7%	∞
Max. SAR Eval.	±1.0%	R	√3	1	1	±0.6%	±0.6%	∞
Test Sample Related								
Device Positioning	±2.9%	N	1	1	1	±2.9%	±2.9%	145
Device Holder	±3.6%	N	1	1	1	±3.6%	±3.6%	5
Power Drift	±5.0%	R	√3	1	1	±2.9%	±2.9%	∞
Phantom and Setup			1	•	1			•
Phantom Uncertainty	±4.0%	R	√3	1	1	±2.3%	±2.3%	∞
Liquid Conductivity (target)	±5.0%	R	√3	0.64	0.43	±1.8%	±1.2%	∞
Liquid Conductivity (meas.)	±2.5%	N	1	0.64	0.43	±1.6%	±1.1%	∞
Liquid Permittivity (target)	±5.0%	R	√3	0.6	0.49	±1.7%	±1.4%	×
Liquid Permittivity (meas.)	±2.5%	N	1	0.6	0.49	±1.5%	±1.2%	×
Combined Std. Uncertai	nty					±11.0%	±10.8%	387
Expanded STD Uncertai	nty					±22.0%	±21.5%	

		DASY	′5 Unc	ertain	tv			
Measurement uncertainty	/ for 3 GHz				•	gram.		
Error Description	Uncert.	Prob.	Div.	(Ci)	(Ci)	Std.	Std.	(Vi)
	value	Dist.		1g	10g	Unc.	Unc.	Veff
						(1g)	(10g)	
Measurement System								
Probe Calibration	±6.55%	Ν	1	1	1	±6.55%	±6.55%	8
Axial Isotropy	±4.7%	R	√3	0.7	0.7	±1.9%	±1.9%	8
Hemispherical Isotropy	±9.6%	R	√3	0.7	0.7	±3.9%	±3.9%	∞
Boundary Effects	±2.0%	R	√3	1	1	±1.2%	±1.2%	∞
Linearity	±4.7%	R	√3	1	1	±2.7%	±2.7%	∞
System Detection Limits	±1.0%	R	√3	1	1	±0.6%	±0.6%	∞
Readout Electronics	±0.3%	N	1	1	1	±0.3%	±0.3%	∞
Response Time	±0.8%	R	√3	1	1	±0.5%	±0.5%	∞
Integration Time	±2.6%	R	√3	1	1	±1.5%	±1.5%	∞
RF Ambient Noise	±3.0%	R	√3	1	1	±1.7%	±1.7%	∞
RF Ambient Reflections	±3.0%	R	√3	1	1	±1.7%	±1.7%	∞
Probe Positioner	±0.8%	R	√3	1	1	±0.5%	±0.5%	∞
Probe Positioning	±9.9%	R	√3	1	1	±5.7%	±5.7%	∞
Max. SAR Eval.	±4.0%	R	√3	1	1	±2.3%	±2.3%	∞
Test Sample Related		•						•
Device Positioning	±2.9%	N	1	1	1	±2.9%	±2.9%	145
Device Holder	±3.6%	N	1	1	1	±3.6%	±3.6%	5
Power Drift	±5.0%	R	√3	1	1	±2.9%	±2.9%	∞
Phantom and Setup								
Phantom Uncertainty	±4.0%	R	√3	1	1	±2.3%	±2.3%	∞
Liquid Conductivity	15.0%	R	G	0.64	0.42	11.00/	±1.2%	∞
(target)	±5.0%	ĸ	√3	0.04	0.43	±1.8%	±1.2%	~
Liquid Conductivity	±2.5%	N	1	0.64	0.43	±1.6%	±1.1%	∞
(meas.)	12.570	IN	I	0.04	0.43	1.0 %	±1.170	~
Liquid Permittivity	±5.0%	R	√3	0.6	0.49	±1.7%	±1.4%	8
(target)	10.070		v	0.0	0.70	±1.770	± 1.−T /0	
Liquid Permittivity	±2.5%	N	1	0.6	0.49	±1.5%	±1.2%	∞
(meas.)				0.0	0.10		/0	
Combined Std. Uncerta	inty					±12.8%	±12.6%	330
Expanded STD Uncerta	inty					±25.6%	±25.2%	

8. Conducted Power Measurement

LTE Band VII

Frequency [MHz]	Uplink Channel Number	BW [MHz]	RB Size	RB Offset	Mod	Maximum Average Power [dBm]	Max. Power (dBm)	Scaling Factor
2510	20850	20	1	0		23.67	24.0	1.079
2510	20850	20	1	49		23.63	24.0	1.089
2510	20850	20	1	99		23.43	24.0	1.140
2510	20850	20	50	0	QPSK	22.88	23.0	1.028
2510	20850	20	50	24		22.82	23.0	1.042
2510	20850	20	50	49		22.74	23.0	1.062
2510	20850	20	100	0		22.81	23.0	1.045
2510	20850	20	1	0		22.73	23.0	1.064
2510	20850	20	1	49		22.75	23.0	1.059
2510	20850	20	1	99		22.45	23.0	1.135
2510	20850	20	50	0	16-QAM	21.77	22.0	1.054
2510	20850	20	50	24		21.65	22.0	1.084
2510	20850	20	50	49		21.58	22.0	1.102
2510	20850	20	100	0		21.59	22.0	1.099
2507.5	20825	15	1	0		23.62	24.0	1.091
2507.5	20825	15	1	37		23.65	24.0	1.084
2507.5	20825	15	1	74		23.52	24.0	1.117
2507.5	20825	15	36	0	QPSK	22.87	23.0	1.030
2507.5	20825	15	36	18		22.78	23.0	1.052
2507.5	20825	15	36	37		22.68	23.0	1.076
2507.5	20825	15	75	0		22.80	23.0	1.047
2507.5	20825	15	1	0		22.55	23.0	1.109
2507.5	20825	15	1	37		22.83	23.0	1.040
2507.5	20825	15	1	74		22.55	23.0	1.109
2507.5	20825	15	36	0	16-QAM	21.67	22.0	1.079
2507.5	20825	15	36	18		21.59	22.0	1.099
2507.5	20825	15	36	37		21.52	22.0	1.117
2507.5	20825	15	75	0		21.62	22.0	1.091
2505	20800	10	1	0		23.48	24.0	1.127
2505	20800	10	1	24	QPSK	23.70	24.0	1.072
2505	20800	10	1	49		23.51	24.0	1.119

2000	21100	20	Page: 34			_1.07	22.5	
2535	21100	20	50	49		21.36	22.0	1.155
2535	21100	20	50	24	16-QAM	21.33	22.0	1.153
2535	21100	20	50	0		21.33	23.0	1.167
2535	21100	20	1	99		22.57	23.0	1.104
2535	21100	20	1	49		22.55	23.0	1.109
2535	21100	20	1	0		22.37	23.0	1.156
2535	21100	20	100	0		22.42	23.0	1.143
2535	21100	20	50	49	QPSK	22.50	23.0	1.122
2535	21100	20	50	24		22.49	23.0	1.125
2535	21100	20	50	0		22.50	23.0	1.122
2535	21100	20	1	99		23.30	24.0	1.175
2535	21100	20	1	49		23.33	24.0	1.167
2535	21100	20	1	0		23.29	24.0	1.178
2502.5	20775	5	25	0		21.51	22.0	1.119
2502.5	20775	5	12	11		22.53	23.0	1.114
2502.5	20775	5	12	6		22.67	23.0	1.079
2502.5	20775	5	12	0	16-QAM	21.52	23.0	1.406
2502.5	20775	5	1	24		22.38	23.0	1.153
2502.5	20775	5	1	12		22.42	23.0	1.143
2502.5	20775	5	1	0		22.34	23.0	1.164
2502.5	20775	5	25	0		22.69	23.0	1.074
2502.5	20775	5	12	11		22.62	23.0	1.091
2502.5	20775	5	12	6		22.65	23.0	1.084
2502.5	20775	5	12	0	QPSK	22.67	23.0	1.079
2502.5	20775	5	1	24		23.41	23.5	1.021
2502.5	20775	5	1	12		23.47	23.5	1.007
2502.5	20775	5	1	0		23.50	23.5	1.000
2505	20800	10	50	0		21.72	22.0	1.067
2505	20800	10	25	24		21.62	22.0	1.091
2505	20800	10	25	12		21.67	22.0	1.079
2505	20800	10	25	0	16-QAM	21.74	22.0	1.062
2505	20800	10	1	49		22.62	23.0	1.091
2505	20800	10	1	24		22.80	23.0	1.047
2505	20800	10	1	0		22.72	23.0	1.067
2505	20800	10	50	0		22.89	23.0	1.026
2505	20800	10	25	24		22.77	23.0	1.054
2505	20800	10	25	12		22.81	23.0	1.045
2505	20800	10	25	0		22.89	23.0	1.026

2535 21100 15 1 0 2535 21100 15 1 37 2535 21100 15 36 0 2535 21100 15 36 0 2535 21100 15 36 0 2535 21100 15 36 37 2535 21100 15 1 0 2535 21100 15 1 7 2535 21100 15 1 7 2535 21100 15 1 7 2535 21100 15 36 0 2535 21100 15 36 7 2535 21100 15 75 0 2535 21100 10 1 4 2535 21100 10 21.26 1.188 2535 21100 10 21.26 21.20 1.182 2535 2	2535	21100	20	100	0		21.28	22.0	1.180
2535 21100 15 1 74 2535 21100 15 36 0 2535 21100 15 36 18 2535 21100 15 36 37 2535 21100 15 75 0 2535 21100 15 1 37 2535 21100 15 1 37 2535 21100 15 1 37 2535 21100 15 36 0 2535 21100 15 36 0 2535 21100 15 36 37 2535 21100 15 36 37 2535 21100 10 1 0 2535 21100 10 1 0 2535 21100 10 25 0 2535 21100 10 25 0 2535 21100 10	2535	21100	15	1	0		23.19	24.0	1.205
2535 21100 15 36 0 2535 21100 15 36 18 2535 21100 15 36 37 2535 21100 15 75 0 22.38 23.0 1.151 2535 21100 15 1 0 22.38 23.0 1.163 2535 21100 15 1 37 22.51 23.0 1.119 2535 21100 15 36 0 1.163 21.26 22.0 1.163 2535 21100 15 36 0 1.119 21.26 22.0 1.163 2535 21100 15 75 0 21.26 22.0 1.168 2535 21100 10 1 0 21.26 22.0 1.178 2535 21100 10 25 0 23.16 24.0 1.178 2535 21100 10 25	2535	21100	15	1	37	QPSK	23.34	24.0	1.164
2533 21100 15 36 18 2534 21100 15 36 37 2535 21100 15 75 0 2535 21100 15 1 0 2535 21100 15 1 37 2535 21100 15 1 74 2535 21100 15 36 0 2535 21100 15 36 0 2535 21100 15 36 18 2535 21100 15 36 17 2535 21100 15 75 0 21.26 22.0 1.186 2535 21100 10 1 49 23.21 24.0 1.172 2535 21100 10 1 49 23.22 1.186 2535 21100 10 25 0 23.21 24.0 1.172 2535 21100 10<	2535	21100	15	1	74		23.30	24.0	1.175
2535 21100 15 36 37 2535 21100 15 75 0 22.41 23.0 1.146 2535 21100 15 1 0 22.38 23.0 1.153 2535 21100 15 1 37 22.51 23.0 1.183 2535 21100 15 36 0 21.26 22.0 1.186 2535 21100 15 36 07 21.26 22.0 1.186 2535 21100 15 75 0 21.26 22.0 1.186 2535 21100 10 1 0 23.29 24.0 1.179 2535 21100 10 25 0 23.29 24.0 1.148 2535 21100 10 25 0 23.29 24.0 1.178 2535 21100 10 25 0 23.40 23.11 23.16 24.0 <td>2535</td> <td>21100</td> <td>15</td> <td>36</td> <td>0</td> <td>22.39</td> <td>23.0</td> <td>1.151</td>	2535	21100	15	36	0		22.39	23.0	1.151
2535 21100 15 75 0 2535 21100 15 1 0 2535 21100 15 1 37 2535 21100 15 1 74 2535 21100 15 36 0 2535 21100 15 36 0 2535 21100 15 36 0 2535 21100 15 36 18 2535 21100 15 75 0 2535 21100 10 1 0 2535 21100 10 1 0 2535 21100 10 1 44 2535 21100 10 25 0 2535 21100 10 25 24 2535 21100 10 1 44 2535 21100 10 1 24 2535 21100 1	2535	21100	15	36	18		22.45	23.0	1.135
2535 21100 15 1 0 2535 21100 15 1 37 2535 21100 15 1 74 2535 21100 15 36 0 2535 21100 15 36 0 2535 21100 15 36 37 2535 21100 15 36 37 2535 21100 10 1 0 2535 21100 10 1 49 2535 21100 10 1 49 2535 21100 10 25 0 2535 21100 10 25 24 2535 21100 10 25 24 2535 21100 10 25 24 2535 21100 10 25 24 2535 21100 10 24 22.30 1.148 2535 21	2535	21100	15	36	37		22.41	23.0	1.146
2635 21100 15 1 37 2535 21100 15 1 74 2535 21100 15 36 0 2535 21100 15 36 0 2535 21100 15 36 0 2535 21100 16 75 0 2535 21100 10 1 0 2535 21100 10 1 24 2535 21100 10 1 49 2535 21100 10 25 0 2535 21100 10 25 24 2535 21100 10 25 24 2535 21100 10 25 24 2535 21100 10 25 24 2535 21100 10 1 22 23.0 1.148 2535 21100 10 24 2535 <td>2535</td> <td>21100</td> <td>15</td> <td>75</td> <td>0</td> <td></td> <td>22.38</td> <td>23.0</td> <td>1.153</td>	2535	21100	15	75	0		22.38	23.0	1.153
2535 21100 15 1 74 2535 21100 15 36 0 2535 21100 15 36 18 2535 21100 15 36 37 2535 21100 15 36 37 2535 21100 15 75 0 21.26 22.0 1.186 2535 21100 10 1 0 21.26 22.0 1.186 2535 21100 10 1 24 23.21 24.0 1.199 2535 21100 10 1 24 23.29 24.0 1.178 2535 21100 10 25 0 0PSK 22.30 1.148 2535 21100 10 25 1.148 22.30 1.153 2535 21100 10 1 24 2.3.0 1.161 2535 21100 10 25 0 1.162	2535	21100	15	1	0		22.27	23.0	1.183
2535 21100 15 36 0 2535 21100 15 36 18 2535 21100 15 36 37 2535 21100 15 75 0 21.26 22.0 1.130 2535 21100 10 1 0 21.26 22.0 1.140 2535 21100 10 1 24 23.21 24.0 1.199 2535 21100 10 1 24 23.29 24.0 1.178 2535 21100 10 25 0 0PSK 23.29 24.0 1.178 2535 21100 10 25 0 1.148 23.0 1.148 2535 21100 10 25 24 23.0 1.148 2535 21100 10 1 0 22.38 23.0 1.141 2535 21100 10 25 1 16-QAM <t< td=""><td>2535</td><td>21100</td><td>15</td><td>1</td><td>37</td><td></td><td>22.51</td><td>23.0</td><td>1.119</td></t<>	2535	21100	15	1	37		22.51	23.0	1.119
2535 21100 15 36 18 2535 21100 15 36 37 2535 21100 15 75 0 2128 22.0 1.180 2535 21100 10 1 0 2321 24.0 1.199 2535 21100 10 1 49 23.29 24.0 1.178 2535 21100 10 25 0 21.6 22.0 1.186 2535 21100 10 25 0 23.1 24.0 1.178 2535 21100 10 25 24 23.0 1.148 2535 21100 10 25 24 22.38 23.0 1.153 2535 21100 10 1 49 22.35 23.0 1.161 2535 21100 10 25 0 1.162 22.4 23.0 1.112 2535 21100 10	2535	21100	15	1	74		22.48	23.0	1.127
2535 21100 15 36 37 2535 21100 15 75 0 212.8 22.0 1.180 2535 21100 10 1 0 23.21 24.0 1.189 2535 21100 10 1 24 23.21 24.0 1.189 2535 21100 10 1 49 23.29 24.0 1.178 2535 21100 10 25 0 0 22.36 23.0 1.148 2535 21100 10 25 24 22.38 23.0 1.153 2535 21100 10 25 24 22.38 23.0 1.161 2535 21100 10 1 0 22.38 23.0 1.161 2535 21100 10 25 0 16-0AM 21.29 22.0 1.178 2535 21100 10 25 24 23.0 1.112	2535	21100	15	36	0	16-QAM	21.26	22.0	1.186
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2535	21100	15	36	18		21.31	22.0	1.172
2535 21100 10 1 0 2535 21100 10 1 24 2535 21100 10 1 49 2535 21100 10 25 0 2535 21100 10 25 0 2535 21100 10 25 0 2535 21100 10 25 24 2535 21100 10 25 24 2535 21100 10 25 24 2535 21100 10 1 0 2535 21100 10 1 0 2535 21100 10 1 49 2535 21100 10 25 0 2535 21100 10 25 12 2535 21100 10 25 24 21.29 22.0 1.178 2535 21100 5 1 0	2535	21100	15	36	37		21.28	22.0	1.180
2535 21100 10 1 24 2535 21100 10 1 49 23.29 24.0 1.178 2535 21100 10 25 0 23.16 24.0 1.213 2535 21100 10 25 12 23.16 24.0 1.178 2535 21100 10 25 12 23.8 23.0 1.148 2535 21100 10 25 24 22.38 23.0 1.153 2535 21100 10 1 0 22.41 23.0 1.146 2535 21100 10 1 24 22.41 23.0 1.146 2535 21100 10 1 24 22.41 23.0 1.117 2535 21100 10 25 0 1.12 22.43 23.0 1.140 2535 21100 10 25 24 21.29 22.0 1.178 <td>2535</td> <td>21100</td> <td>15</td> <td>75</td> <td>0</td> <td></td> <td>21.26</td> <td>22.0</td> <td>1.186</td>	2535	21100	15	75	0		21.26	22.0	1.186
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2535	21100	10	1	0		23.21	24.0	1.199
2535 21100 10 25 0 2535 21100 10 25 12 2535 21100 10 25 12 2535 21100 10 25 24 2535 21100 10 25 24 2535 21100 10 50 0 2535 21100 10 1 0 2535 21100 10 1 24 2535 21100 10 1 24 2535 21100 10 25 0 2535 21100 10 25 1 2535 21100 10 25 24 2535 21100 10 25 24 2535 21100 10 25 24 2535 21100 5 1 0 2535 21100 5 1 21 2535 21100 5	2535	21100	10	1	24		23.29	24.0	1.178
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2535	21100	10	1	49	QPSK	23.16	24.0	1.213
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2535	21100	10	25	0		22.40	23.0	1.148
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2535	21100	10	25	12		22.36	23.0	1.159
2535 21100 10 1 0 2535 21100 10 1 24 2535 21100 10 1 24 2535 21100 10 1 49 2535 21100 10 25 0 2535 21100 10 25 12 2535 21100 10 25 12 2535 21100 10 25 24 2535 21100 10 25 24 2535 21100 10 25 24 2535 21100 10 50 0 2535 21100 5 1 0 2535 21100 5 1 24 2535 21100 5 12 0 2535 21100 5 12 6 2535 21100 5 12 11 2535 21100 5	2535	21100	10	25	24		22.38	23.0	1.153
2535 21100 10 1 24 2535 21100 10 1 49 2535 21100 10 25 0 2535 21100 10 25 0 2535 21100 10 25 0 2535 21100 10 25 12 2535 21100 10 25 24 2535 21100 10 25 24 2535 21100 10 25 24 21.29 22.0 1.178 2535 21100 5 1 0 2535 21100 5 1 12 2535 21100 5 12 0 2535 21100 5 12 0 2535 21100 5 12 0 2535 21100 5 12 11 2535 21100 5 25 0	2535	21100	10	50	0		22.41	23.0	1.146
2535 21100 10 1 49 2535 21100 10 25 0 2535 21100 10 25 0 2535 21100 10 25 12 2535 21100 10 25 12 2535 21100 10 25 24 2535 21100 10 25 24 21.29 22.0 1.178 2535 21100 10 50 0 21.35 22.0 1.161 2535 21100 5 1 0 2535 21100 5 1 12 2535 21100 5 12 0 QPSK 23.02 23.0 1.102 2535 21100 5 12 6 2535 21100 5 12 1 2535 21100 5 12 1 2535 <td< td=""><td>2535</td><td>21100</td><td>10</td><td>1</td><td>0</td><td></td><td>22.35</td><td>23.0</td><td>1.161</td></td<>	2535	21100	10	1	0		22.35	23.0	1.161
2535 21100 10 25 0 16-QAM 21.29 22.0 1.178 2535 21100 10 25 12 21.29 22.0 1.180 2535 21100 10 25 24 21.29 22.0 1.178 2535 21100 10 25 24 21.29 22.0 1.178 2535 21100 10 50 0 21.35 22.0 1.161 2535 21100 5 1 0 23.09 23.5 1.099 2535 21100 5 1 12 0 23.02 23.5 1.102 2535 21100 5 12 0 0 22.20 23.0 1.202 2535 21100 5 12 11 0 22.20 23.0 1.202 2535 21100 5 12 01 0 22.23 23.0 1.202 2535	2535	21100	10	1	24		22.54	23.0	1.112
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2535	21100	10	1	49	16-QAM	22.43	23.0	1.140
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2535	21100	10	25	0		21.29	22.0	1.178
2535 21100 10 50 0 21.35 22.0 1.161 2535 21100 5 1 0 23.09 23.5 1.099 2535 21100 5 1 12 23.08 23.5 1.102 2535 21100 5 1 24 23.02 23.5 1.102 2535 21100 5 12 0 0 23.02 23.5 1.117 2535 21100 5 12 0 0 22.20 23.0 1.194 2535 21100 5 12 11 0 22.20 23.0 1.202 2535 21100 5 12 11 22.20 23.0 1.202 2535 21100 5 25 0 22.23 23.0 1.194 2535 21100 5 1 0 16-QAM 22.08 23.0 1.236	2535	21100	10	25	12		21.28	22.0	1.180
2535 21100 5 1 0 2535 21100 5 1 12 2535 21100 5 1 24 2535 21100 5 12 0 2535 21100 5 12 0 2535 21100 5 12 0 2535 21100 5 12 0 2535 21100 5 12 0 2535 21100 5 12 0 2535 21100 5 12 11 2535 21100 5 12 11 2535 21100 5 25 0 2535 21100 5 25 0 2535 21100 5 1 0 2535 21100 5 1 0 16-QAM 16-QAM 22.08 23.0 1.236	2535	21100	10	25	24		21.29	22.0	1.178
2535 21100 5 1 12 2535 21100 5 1 24 2535 21100 5 12 0 2535 21100 5 12 0 2535 21100 5 12 0 2535 21100 5 12 6 2535 21100 5 12 11 2535 21100 5 12 11 2535 21100 5 12 11 2535 21100 5 25 0 2535 21100 5 25 0 2535 21100 5 1 0 2535 21100 5 1 0 16-QAM 22.08 23.0 1.236	2535	21100	10	50	0		21.35	22.0	1.161
2535 21100 5 1 24 2535 21100 5 12 0 2535 21100 5 12 0 2535 21100 5 12 6 2535 21100 5 12 11 2535 21100 5 12 11 2535 21100 5 12 11 2535 21100 5 12 11 2535 21100 5 25 0 2535 21100 5 1 0 2535 21100 5 1 0 2535 21100 5 1 0 16-QAM 22.08 23.0 1.236	2535	21100	5	1	0		23.09	23.5	1.099
2535 21100 5 12 0 QPSK 22.23 23.0 1.194 2535 21100 5 12 6 22.20 23.0 1.202 2535 21100 5 12 11 22.20 23.0 1.202 2535 21100 5 25 0 22.23 23.0 1.202 2535 21100 5 25 0 22.23 23.0 1.194 2535 21100 5 1 0 22.23 23.0 1.202 2535 21100 5 1 0 16-QAM 22.08 23.0 1.236	2535	21100	5	1	12		23.08	23.5	1.102
2535 21100 5 12 6 22.20 23.0 1.202 2535 21100 5 12 11 22.20 23.0 1.202 2535 21100 5 25 0 22.23 23.0 1.202 2535 21100 5 25 0 22.23 23.0 1.194 2535 21100 5 1 0 16-QAM 22.08 23.0 1.236	2535	21100	5	1	24	QPSK	23.02	23.5	1.117
2535 21100 5 12 11 22.20 23.0 1.202 2535 21100 5 25 0 22.23 23.0 1.194 2535 21100 5 1 0 16-QAM 22.08 23.0 1.236	2535	21100	5	12	0		22.23	23.0	1.194
2535 21100 5 25 0 22.23 23.0 1.194 2535 21100 5 1 0 16-QAM 22.08 23.0 1.236	2535	21100	5	12	6		22.20	23.0	1.202
2535 21100 5 1 0 16-QAM 22.08 23.0 1.236	2535	21100	5	12	11		22.20	23.0	1.202
16-QAM	2535	21100	5	25	0		22.23	23.0	1.194
	2535	21100	5	1	0	16-OAM	22.08	23.0	1.236
	2535	21100	5	1	12		22.08	23.0	1.236

2535	21100	5	1	24		22.00	23.0	1.259
2535	21100	5	12	0		21.11	23.0	1.545
2535	21100	5	12	6		21.09	23.0	1.552
2535	21100	5	12	11		21.10	23.0	1.549
2535	21100	5	25	0		21.08	22.0	1.236
2560	21350	20	1	0		23.42	24.0	1.143
2560	21350	20	1	49		23.19	24.0	1.205
2560	21350	20	1	99		23.05	24.0	1.245
2560	21350	20	50	0	QPSK	22.53	23.0	1.114
2560	21350	20	50	24		22.42	23.0	1.143
2560	21350	20	50	49		22.42	23.0	1.143
2560	21350	20	100	0		22.47	23.0	1.130
2560	21350	20	1	0		22.65	23.0	1.084
2560	21350	20	1	49		22.64	23.0	1.086
2560	21350	20	1	99		22.39	23.0	1.151
2560	21350	20	50	0	16-QAM	21.58	22.0	1.102
2560	21350	20	50	24		21.52	22.0	1.117
2560	21350	20	50	49		21.51	22.0	1.119
2560	21350	20	100	0		21.56	22.0	1.107
2562.5	21375	15	1	0		23.29	24.0	1.178
2562.5	21375	15	1	37		23.07	24.0	1.239
2562.5	21375	15	1	74	QPSK	23.15	24.0	1.216
2562.5	21375	15	36	0		22.38	23.0	1.153
2562.5	21375	15	36	18		22.37	23.0	1.156
2562.5	21375	15	36	37		22.43	23.0	1.140
2562.5	21375	15	75	0		22.42	23.0	1.143
2562.5	21375	15	1	0		22.58	23.0	1.102
2562.5	21375	15	1	37	16-QAM	22.56	23.0	1.107
2562.5	21375	15	1	74		22.56	23.0	1.107
2562.5	21375	15	36	0		21.46	22.0	1.132
2562.5	21375	15	36	18		21.46	22.0	1.132
2562.5	21375	15	36	37		21.52	22.0	1.117
2562.5	21375	15	75	0		21.51	22.0	1.119
2565	21400	10	1	0		23.00	24.0	1.259
2565	21400	10	1	24	QPSK	23.19	24.0	1.205
2565	21400	10	1	49		22.85	24.0	1.303
2565	21400	10	25	0		22.33	23.0	1.167
2565	21400	10	25	12		22.38	23.0	1.153
			Page: 36	of 04				

QuieTek

2565	21400	10	25	24		22.42	23.0	1.143
2565	21400	10	50	0		22.38	23.0	1.153
2565	21400	10	1	0		22.33	23.0	1.167
2565	21400	10	1	24		22.63	23.0	1.089
2565	21400	10	1	49		22.30	23.0	1.175
2565	21400	10	25	0	16-QAM	21.38	22.0	1.153
2565	21400	10	25	12		21.45	22.0	1.135
2565	21400	10	25	24		21.50	22.0	1.122
2565	21400	10	50	0		21.47	22.0	1.130
2567.5	21425	5	1	0		23.43	23.5	1.016
2567.5	21425	5	1	12		23.32	23.5	1.042
2567.5	21425	5	1	24		23.39	23.5	1.026
2567.5	21425	5	12	0	QPSK	22.61	23.0	1.094
2567.5	21425	5	12	6		22.55	23.0	1.109
2567.5	21425	5	12	11		22.60	23.0	1.096
2567.5	21425	5	25	0		22.55	23.0	1.109
2567.5	21425	5	1	0		22.60	23.0	1.096
2567.5	21425	5	1	12		22.47	23.0	1.130
2567.5	21425	5	1	24		22.52	23.0	1.117
2567.5	21425	5	12	0	16-QAM	21.52	23.0	1.406
2567.5	21425	5	12	6		21.49	23.0	1.416
2567.5	21425	5	12	11		21.56	23.0	1.393
2567.5	21425	5	25	0		21.55	22.0	1.109

9. Test Results

9.1. SAR Test Results Summary

SAR MEASUREMENT									
Ambient Tem	Ambient Temperature (°C) : 21.5 ± 2Relative Humidity (%): 52								
Liquid Temperature (°C) : 21.0 ± 2Depth of Liquid (cm):>15									
Product: Mobile Phone									
Test Mode: LTE Band VII 20MHz Bandwidth QPSK 1RB 0RB Offset									
	A (Frequ	ency	Frame Power (dBm)	Power Drift (<±0.2)	SAR 1g (W/kg)	Scaling Factor	Scaled SAR 1g (W/kg)	Limit (W/kg)
Head	Test Position Antenna Head Position	Channel	MHz						
Left-Cheek	Fixed	20850	2510	23.67	0.11	0.021	1.079	0.0227	1.6
Left-Tilted	Fixed	20850	2510	23.67	0.06	0.012	1.079	0.0129	1.6
Right-Cheek	Fixed	20850	2510	23.67	-0.09	0.052	1.079	0.0561	1.6
Right-Tilted	Fixed	20850	2510	23.67	0.07	0.024	1.079	0.0259	1.6
Test Mode: LT	Test Mode: LTE Band IV 20MHz Bandwidth QPSK 50%RB 0RB Offset								
Left-Cheek	Fixed	20850	2510	22.88	0.04	0.020	1.028	0.0206	1.6
Left-Tilted	Fixed	20850	2510	22.88	0.12	0.0045 1	1.028	0.0046	1.6
Right-Cheek	Fixed	20850	2510	22.88	-0.15	0.042	1.028	0.0432	1.6
Right-Tilted	Fixed	20850	2510	22.88	-0.01	0.019	1.028	0.0195	1.6
Note1: when the 1-g SAR is \leq 0.8 W/kg, testing for low and high channel is optional, refer to KDB 447498 D01 v05r02.									

SAR MEASUREN	JENT									
Ambient Temperatu	ure (°C) : 2	21.5 ± 2		Relative Humidity (%): 52						
Liquid Temperature	e (°C) : 21.	0 ± 2		Depth of Liquid (cm):>15						
Product: Mobile Ph	ione									
Body-worn Acces										
Test Mode: LTE Ban	d VII 20MH	z Bandwidt	h QPSK 1	RB 0RB 0	Offset				1	
Test Position Body (10mm gap)	Antenna Position	Frequ Channel	ency MHz	Frame Power (dBm)	Power Drift (<±0.2)	SAR 1g (W/kg)	Scaling Factor	Scaled SAR 1g (W/kg)	Limit (W/kg)	
Body-worn	Fixed	20850	2510	23.67	-0.05	0.056	1.079	0.0604	1.6	
Body-worn	Fixed	21100	2535	23.29		-	1.178		1.6	
Body-worn	Fixed	21350	2560	23.42			1.143		1.6	
Test Mode: LTE Ban	d VII 20MH	z Bandwidt	h QPSK 5	50%RB 0R	B Offset					
Body-worn	Fixed	20850	2510	22.88	-0.04	0.064	1.028	0.0658	1.6	
Body-worn	Fixed	21100	2535	22.50			1.122		1.6	
Body-worn	Fixed	21350	2560	22.53			1.114		1.6	
Hotspot SAR Con	figuratior	IS								
Test Mode: LTE Ban	d VII 20MH	z Bandwidt	h QPSK 1	RB 0RB 0	Offset					
Back	Fixed	20850	2510	23.67	-0.05	0.056	1.079	0.0604	1.6	
Back	Fixed	21100	2535	23.29			1.178		1.6	
Back	Fixed	21350	2560	23.42			1.143		1.6	
Front	Fixed	20850	2510	23.67	0.12	0.048	1.079	0.0518	1.6	
Left side	Fixed	20850	2510	23.67	-0.15	0.013	1.079	0.014	1.6	
Right side	Fixed	20850	2510	23.67	0.01	0.033	1.079	0.0356	1.6	
Bottom	Fixed	20850	2510	23.67	0.20	0.391	1.079	0.422	1.6	
Test Mode: LTE Ban	d VII 20MH	z Bandwidt	h QPSK 5	50%RB 0R	B Offset					
Back	Fixed	20850	2510	22.88	-0.04	0.064	1.028	0.0658	1.6	
Back	Fixed	21100	2535	22.50			1.122		1.6	
Back	Fixed	21350	2560	22.53			1.114		1.6	
Front	Fixed	20850	2510	22.88	0.15	0.039	1.028	0.040	1.6	
Left side	Fixed	20850	2510	22.88	-0.18	0.00889	1.028	0.0091	1.6	
Right side	Fixed	20850	2510	22.88	-0.15	0.021	1.028	0.0216	1.6	

Bottom	Fixed	20850	2510	22.88	0.13	0.341	1.028	0.351	1.6
Note: when the 1-g S	SAR is ≤ 0.8	W/kg, test	ing for lov	v and high	channel i	s optional,	refer to KD	B 447498	D01
v05r02.									

9.2. SAR Test Notes

9.2.1. Test position and configuration

Head SAR was performed with the device configured in the positions according to IEEE1528. Device was tested using a fixed spacing for body-worn accessory testing. A separation distance of 10 mm was considered because the manufacturer has determined that there will be body-worn accessories available in the marketplace for users to support this separation distance.

9.2.2. Body SAR with Headset

Per FCC KDB Publication 648474 D04v01r02, SAR was evaluated without a headset connected to the device. Since the standalone reported SAR was \leq 1.2 W/kg, no additional SAR evaluations using a headset cable were required.

9.2.3. Hotspot Operation Mode

During SAR Testing for the Wireless Router conditions per FCC KDB Publication 941225 D06v01r01, the actual Portable Hotspot operation (with actual simultaneous transmission of a transmitter with Wi-Fi) was not activated.

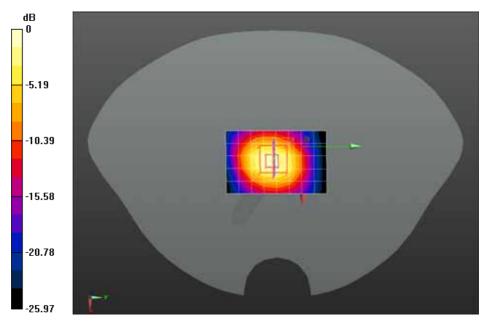
Appendix A. SAR System Validation Data

Date/Time: 01-16-2015

Test Laboratory: QuieTek Lab System Check Head 2600MHz **DUT: Dipole 2600 MHz D2600V2; Type: D2600V2** Communication System: UID 0, CW (0); Communication System Band: D2600(2600.0MHz); Duty Cycle: 1:1; Frequency: 2600 MHz; Medium parameters used: f = 2600 MHz; σ = 2.02 S/m; ϵ r = 39.22; ρ = 1000 kg/m3; Phantom section: Flat Section ; Input Power=250mW Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0 DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(6.87, 6.87, 6.87); Calibrated: 04/03/2014;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn914; Calibrated: 15/12/2014
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Configuration/System Check Head 2600MHz/Area Scan (6x9x1): Measurement grid: dx=10mm,


dy=10mm Maximum value of SAR (measured) = 12.6 W/kg

Configuration/System Check Head 2600MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm, Reference Value = 86.260 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 33.0 W/kg

SAR(1 g) = 14 W/kg; SAR(10 g) = 5.95 W/kg Maximum value of SAR (measured) = 15.9 W/kg

0 dB = 15.9 W/kg = 12.01 dBW/kg

Test Laboratory: QuieTek Lab

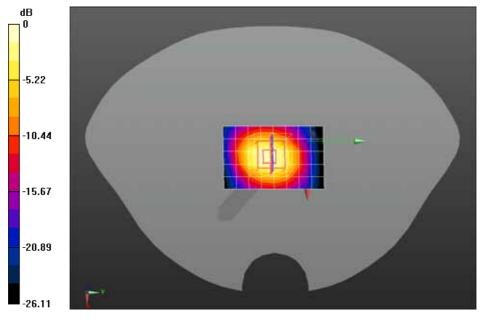
System Check Body 2600MHz

DUT: Dipole 2600 MHz D2600V2; Type: D2600V2

Communication System: UID 0, CW (0); Communication System Band: D2600(2600.0MHz); Duty Cycle: 1:1; Frequency: 2600 MHz; Medium parameters used: f = 2600 MHz; σ = 2.13 S/m; ϵ r = 51.1; ρ = 1000 kg/m3; Phantom section: Flat Section ; Input Power=250mW Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0 DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(6.67, 6.67, 6.67); Calibrated: 04/03/2014;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn914; Calibrated: 15/12/2014
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Configuration/System Check Body 2600MHz/Area Scan (6x9x1): Measurement grid: dx=10mm,


dy=10mm

Maximum value of SAR (measured) = 12.3 W/kg

Configuration/System Check Body 2600MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 82.796 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 32.6 W/kg

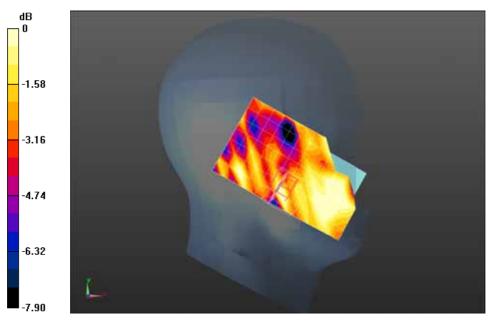
SAR(1 g) = 13.7 W/kg; SAR(10 g) = 5.83 W/kg Maximum value of SAR (measured) = 15.6 W/kg

0 dB = 15.6 W/kg = 11.93 dBW/kg

Appendix B. SAR measurement Data

Date/Time: 01-16-2015

Test Laboratory: QuieTek Lab LTE Band VII 20M QPSK 1RB#0 Low Channel Touch-Left **DUT: Mobile Phone; Type: LT40** Communication System: UID 0, LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK) (0); Communication System Band: Band VII; Duty Cycle: 1:1.0; Frequency: 2510 MHz; Medium parameters used: f = 2510 MHz; σ = 1.95 S/m; ϵr = 39.62; ρ = 1000 kg/m3 ; Phantom section: Left Section Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0


DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(6.87, 6.87, 6.87); Calibrated: 04/03/2014;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn914; Calibrated: 15/12/2014
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Configuration/LTE Band VII 20M QPSK 1RB#0 Low Touch-Left/Area Scan (8x13x1): Measurement grid: dx=12mm, dy=12mm, Maximum value of SAR (measured) = 0.0379 W/kg

Configuration/LTE Band VII 20M QPSK 1RB#0 Low Touch-Left/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 1.128 V/m; Power Drift = 8.31 dB Peak SAR (extrapolated) = 0.0410 W/kg

SAR(1 g) = 0.021 W/kg; SAR(10 g) = 0.015 W/kg Maximum value of SAR (measured) = 0.0272 W/kg

0 dB = 0.0272 W/kg = -15.65 dBW/kg

Test Laboratory: QuieTek Lab

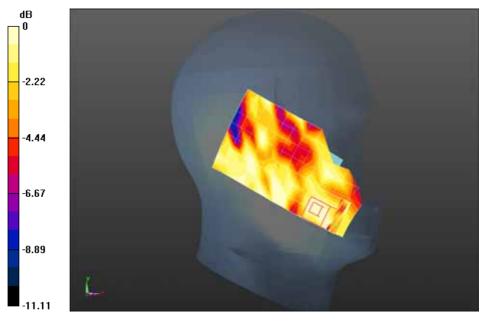
LTE Band VII 20M QPSK 1RB#0 Low Channel Tilt-Left

DUT: Mobile Phone; Type: LT40

Communication System: UID 0, LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK) (0); Communication System Band: Band VII; Duty Cycle: 1:1.0; Frequency: 2510 MHz; Medium parameters used: f = 2510 MHz; σ = 1.95 S/m; ϵ r = 39.62; ρ = 1000 kg/m3; Phantom section: Left Section Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0 DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(6.87, 6.87, 6.87); Calibrated: 04/03/2014;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn914; Calibrated: 15/12/2014
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Configuration/LTE Band VII 20M QPSK 1RB#0 Low Tilt-Left/Area Scan (8x13x1): Measurement grid:


dx=12mm, dy=12mm

Maximum value of SAR (measured) = 0.0211 W/kg

Configuration/LTE Band VII 20M QPSK 1RB#0 Low Tilt-Left/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 2.212 V/m; Power Drift = 1.86 dB

Peak SAR (extrapolated) = 0.0460 W/kg

SAR(1 g) = 0.012 W/kg; SAR(10 g) = 0.00415 W/kg Maximum value of SAR (measured) = 0.0146 W/kg

0 dB = 0.0146 W/kg = -18.36 dBW/kg

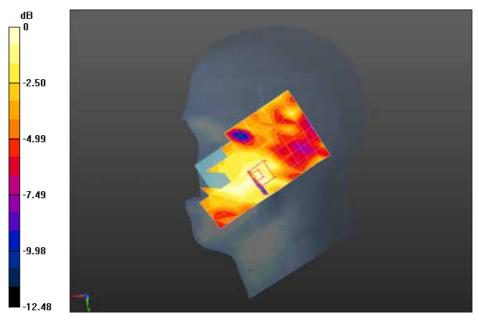
Test Laboratory: QuieTek Lab

LTE Band VII 20M QPSK 1RB#0 Low Channel Touch-Right

DUT: Mobile Phone; Type: LT40

Communication System: UID 0, LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK) (0); Communication System Band: Band VII; Duty Cycle: 1:1.0; Frequency: 2510 MHz; Medium parameters used: f = 2510 MHz; σ = 1.95 S/m; εr = 39.62; ρ = 1000 kg/m3; Phantom section: Right Section Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0 DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(6.87, 6.87, 6.87); Calibrated: 04/03/2014;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn914; Calibrated: 15/12/2014
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)


Configuration/LTE Band VII 20M QPSK 1RB#0 Low Touch-Right/Area Scan (8x13x1): Measurement

grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 0.0607 W/kg

Configuration/LTE Band VII 20M QPSK 1RB#0 Low Touch-Right/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 3.882 V/m; Power Drift = -6.29 dB Peak SAR (extrapolated) = 0.0730 W/kg

SAR(1 g) = 0.052 W/kg; SAR(10 g) = 0.032 W/kg Maximum value of SAR (measured) = 0.0561 W/kg

0 dB = 0.0561 W/kg = -12.51 dBW/kg

Test Laboratory: QuieTek Lab

LTE Band VII 20M QPSK 1RB#0 Low Channel Tilt-Right

DUT: Mobile Phone; Type: LT40

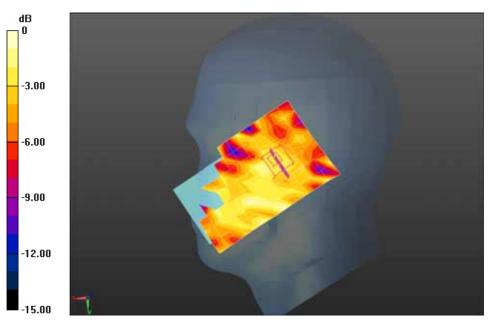
Communication System: UID 0, LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK) (0); Communication System Band: Band VII; Duty Cycle: 1:1.0; Frequency: 2510 MHz; Medium parameters used: f = 2510 MHz; σ = 1.95 S/m; ϵ r = 39.62; ρ = 1000 kg/m3; Phantom section: Right Section Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0 DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(6.87, 6.87, 6.87); Calibrated: 04/03/2014;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn914; Calibrated: 15/12/2014
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Configuration/LTE Band VII 20M QPSK 1RB#0 Low Tilt-Right/Area Scan (8x13x1): Measurement grid:

dx=12mm, dy=12mm

Maximum value of SAR (measured) = 0.0300 W/kg


Configuration/LTE Band VII 20M QPSK 1RB#0 Low Tilt-Right/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 2.255 V/m; Power Drift = 0.27 dB

Peak SAR (extrapolated) = 0.0480 W/kg

SAR(1 g) = 0.024 W/kg; SAR(10 g) = 0.012 W/kg

Maximum value of SAR (measured) = 0.0335 W/kg

0 dB = 0.0335 W/kg = -14.75 dBW/kg

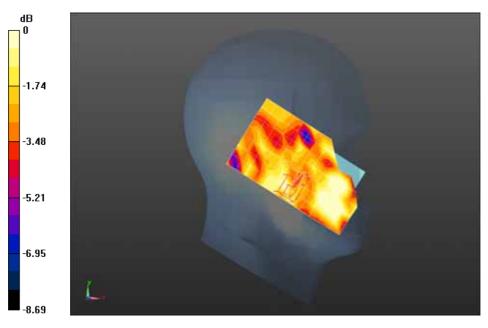
Test Laboratory: QuieTek Lab

LTE Band VII 20M QPSK 50RB#0 Low Channel Touch-Left

DUT: Mobile Phone; Type: LT40

Communication System: UID 0, LTE-FDD (SC-FDMA, 50 RB, 20 MHz, QPSK) (0); Communication System Band: Band VII; Duty Cycle: 1:1.0; Frequency: 2510 MHz; Medium parameters used: f = 2510 MHz; σ = 1.95 S/m; ϵ r = 39.62; ρ = 1000 kg/m3; Phantom section: Left Section Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0 DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(6.87, 6.87, 6.87); Calibrated: 04/03/2014;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn914; Calibrated: 15/12/2014
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)


Configuration/LTE Band VII 20M QPSK 50RB#0 Low Touch-Left/Area Scan (8x13x1): Measurement

grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 0.0320 W/kg

Configuration/LTE Band VII 20M QPSK 50RB#0 Low Touch-Left/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 3.176 V/m; Power Drift = 1.24 dB Peak SAR (extrapolated) = 0.0510 W/kg

0 dB = 0.0244 W/kg = -16.13 dBW/kg

Test Laboratory: QuieTek Lab

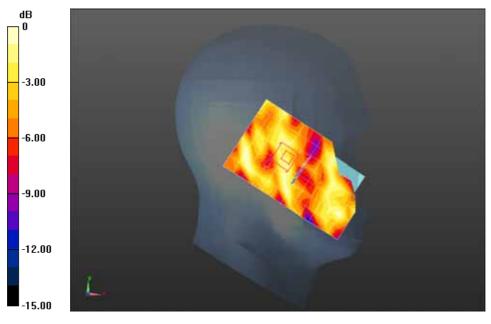
LTE Band VII 20M QPSK 50RB#0 Low Channel Tilt-Left

DUT: Mobile Phone; Type: LT40

Communication System: UID 0, LTE-FDD (SC-FDMA, 50 RB, 20 MHz, QPSK) (0); Communication System Band: Band VII; Duty Cycle: 1:1.0; Frequency: 2510 MHz; Medium parameters used: f = 2510 MHz; σ = 1.95 S/m; ϵ r = 39.62; ρ = 1000 kg/m3; Phantom section: Left Section Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0 DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(6.87, 6.87, 6.87); Calibrated: 04/03/2014;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn914; Calibrated: 15/12/2014
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Configuration/LTE Band VII 20M QPSK 50RB#0 Low Tilt-Left/Area Scan (8x13x1): Measurement grid:


dx=12mm, dy=12mm

Maximum value of SAR (measured) = 0.0214 W/kg

Configuration/LTE Band VII 20M QPSK 50RB#0 Low Tilt-Left/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 1.650 V/m; Power Drift = 5.32 dB Peak SAR (extrapolated) = 0.0370 W/kg

SAR(1 g) = 0.00451 W/kg; SAR(10 g) = 0.00091 W/kg Maximum value of SAR (measured) = 0.0186 W/kg

0 dB = 0.0186 W/kg = -17.30 dBW/kg

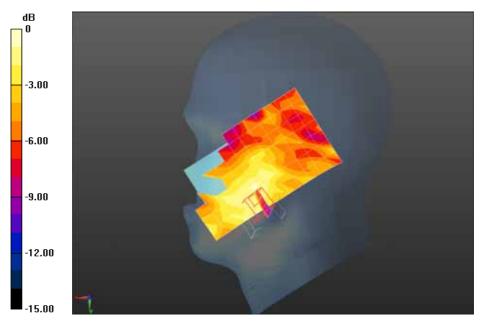
Test Laboratory: QuieTek Lab

LTE Band VII 20M QPSK 50RB#0 Low Touch-Right

DUT: Mobile Phone; Type: LT40

Communication System: UID 0, LTE-FDD (SC-FDMA, 50 RB, 20 MHz, QPSK) (0); Communication System Band: Band VII; Duty Cycle: 1:1.0; Frequency: 2510 MHz; Medium parameters used: f = 2510 MHz; σ = 1.95 S/m; ϵ r = 39.62; ρ = 1000 kg/m3; Phantom section: Right Section Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0 DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(6.87, 6.87, 6.87); Calibrated: 04/03/2014;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn914; Calibrated: 15/12/2014
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)


Configuration/LTE Band VII 20M QPSK 50RB#0 Low Touch-Right/Area Scan (8x13x1): Measurement

grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 0.0495 W/kg

Configuration/LTE Band VII 20M QPSK 50RB#0 Low Touch-Right/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 3.343 V/m; Power Drift = -0.15 dB Peak SAR (extrapolated) = 0.0870 W/kg

SAR(1 g) = 0.042 W/kg; SAR(10 g) = 0.023 W/kg Maximum value of SAR (measured) = 0.0589 W/kg

0 dB = 0.0589 W/kg = -12.30 dBW/kg

Test Laboratory: QuieTek Lab

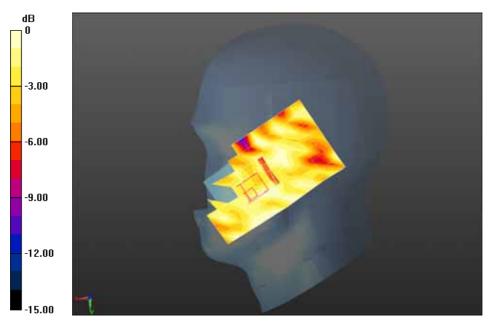
LTE Band VII 20M QPSK 50RB#0 Low Tilt-Right

DUT: Mobile Phone; Type: LT40

Communication System: UID 0, LTE-FDD (SC-FDMA, 50 RB, 20 MHz, QPSK) (0); Communication System Band: Band VII; Duty Cycle: 1:1.0; Frequency: 2510 MHz; Medium parameters used: f = 2510 MHz; σ = 1.95 S/m; ϵ r = 39.62; ρ = 1000 kg/m3; Phantom section: Right Section Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0 DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(6.87, 6.87, 6.87); Calibrated: 04/03/2014;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn914; Calibrated: 15/12/2014
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Configuration/LTE Band VII 20M QPSK 50RB#0 Low Tilt-Right/Area Scan (8x13x1): Measurement grid:


dx=12mm, dy=12mm

Maximum value of SAR (measured) = 0.0314 W/kg

Configuration/LTE Band VII 20M QPSK 50RB#0 Low Tilt-Right/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 2.446 V/m; Power Drift = -0.41 dB

Peak SAR (extrapolated) = 0.0840 W/kg

SAR(1 g) = 0.019 W/kg; SAR(10 g) = 0.00709 W/kg Maximum value of SAR (measured) = 0.0227 W/kg

0 dB = 0.0227 W/kg = -16.44 dBW/kg

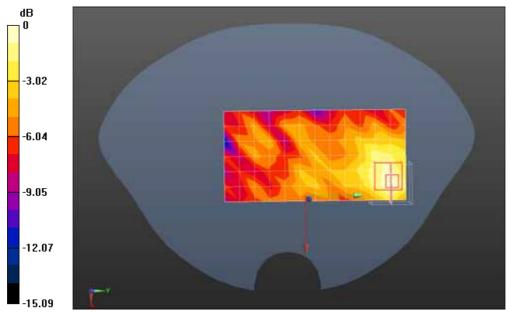
Test Laboratory: QuieTek Lab

LTE Band VII 20M QPSK 1RB#0 Low Body-Back

DUT: Mobile Phone; Type: LT40

Communication System: UID 0, LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK) (0); Communication System Band: Band VII; Duty Cycle: 1:1.0; Frequency: 2510 MHz; Medium parameters used: f = 2510 MHz; σ = 2.06 S/m; εr = 51.82; ρ = 1000 kg/m3; Phantom section: Flat Section Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0 DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(6.67, 6.67, 6.67); Calibrated: 04/03/2014;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn914; Calibrated: 15/12/2014
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)


Configuration/LTE Band VII 20M QPSK 1RB#0 Low Body-Back/Area Scan (7x13x1): Measurement grid:

dx=12mm, dy=12mm

Maximum value of SAR (measured) = 0.0625 W/kg

Configuration/LTE Band VII 20M QPSK 1RB#0 Low Body-Back/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 3.080 V/m; Power Drift = -2.25 dB Peak SAR (extrapolated) = 0.108 W/kg

0 dB = 0.0628 W/kg = -12.02 dBW/kg

Test Laboratory: QuieTek Lab

LTE Band VII 20M QPSK 1RB#0 Low Body-Front

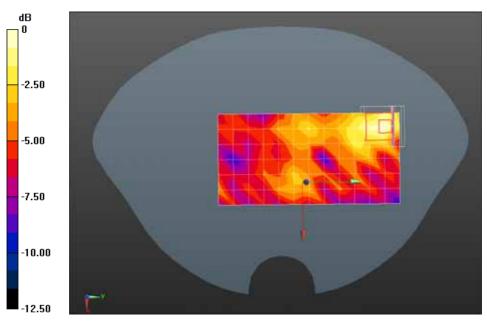
DUT: Mobile Phone; Type: LT40

Communication System: UID 0, LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK) (0); Communication System Band: Band VII; Duty Cycle: 1:1.0; Frequency: 2510 MHz; Medium parameters used: f = 2510 MHz; σ = 2.06 S/m; ϵ r = 51.82; ρ = 1000 kg/m3; Phantom section: Flat Section Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0 DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(6.67, 6.67, 6.67); Calibrated: 04/03/2014;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn914; Calibrated: 15/12/2014
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Configuration/LTE Band VII 20M QPSK 1RB#0 Low Body-Front/Area Scan (7x13x1): Measurement

grid: dx=12mm, dy=12mm


Maximum value of SAR (measured) = 0.0557 W/kg

Configuration/LTE Band VII 20M QPSK 1RB#0 Low Body-Front/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 2.198 V/m; Power Drift = 1.92 dB Peak SAR (extrapolated) = 0.0860 W/kg

SAR(1 g) = 0.048 W/kg; SAR(10 g) = 0.026 W/kg

Maximum value of SAR (measured) = 0.0560 W/kg

0 dB = 0.0560 W/kg = -12.52 dBW/kg

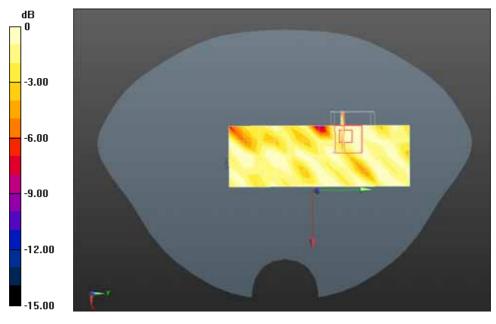
Test Laboratory: QuieTek Lab

LTE Band VII 20M QPSK 1RB#0 Low Body-Left side

DUT: Mobile Phone; Type: LT40

Communication System: UID 0, LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK) (0); Communication System Band: Band VII; Duty Cycle: 1:1.0; Frequency: 2510 MHz; Medium parameters used: f = 2510 MHz; σ = 2.06 S/m; εr = 51.82; ρ = 1000 kg/m3; Phantom section: Flat Section Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0 DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(6.67, 6.67, 6.67); Calibrated: 04/03/2014;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn914; Calibrated: 15/12/2014
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)


Configuration/LTE Band VII 20M QPSK 1RB#0 Low Body-Left side/Area Scan (5x13x1): Measurement

grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 0.0184 W/kg

Configuration/LTE Band VII 20M QPSK 1RB#0 Low Body-Left side/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 2.322 V/m; Power Drift = -1.55 dB Peak SAR (extrapolated) = 0.0610 W/kg

SAR(1 g) = 0.013 W/kg; SAR(10 g) = 0.00453 W/kg Maximum value of SAR (measured) = 0.0148 W/kg

0 dB = 0.0148 W/kg = -18.30 dBW/kg

Test Laboratory: QuieTek Lab

LTE Band VII 20M QPSK 1RB#0 Low Body-Right side

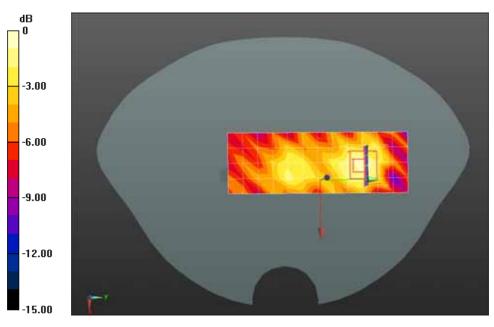
DUT: Mobile Phone; Type: LT40

Communication System: UID 0, LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK) (0); Communication System Band: Band VII; Duty Cycle: 1:1.0; Frequency: 2510 MHz; Medium parameters used: f = 2510 MHz; σ = 2.06 S/m; εr = 51.82; ρ = 1000 kg/m3; Phantom section: Flat Section Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0 DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(6.67, 6.67, 6.67); Calibrated: 04/03/2014;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn914; Calibrated: 15/12/2014
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Configuration/LTE Band VII 20M QPSK 1RB#0 Low Body-Right side/Area Scan (5x13x1):

Measurement grid: dx=12mm, dy=12mm


Maximum value of SAR (measured) = 0.0421 W/kg

Configuration/LTE Band VII 20M QPSK 1RB#0 Low Body-Right side/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 3.268 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 0.0580 W/kg

SAR(1 g) = 0.033 W/kg; SAR(10 g) = 0.016 W/kg

Maximum value of SAR (measured) = 0.0410 W/kg

0 dB = 0.0410 W/kg = -13.87 dBW/kg

Test Laboratory: QuieTek Lab

LTE Band VII 20M QPSK 1RB#0 Low Body-Bottom

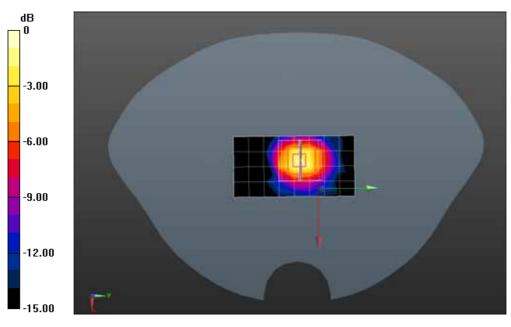
DUT: Mobile Phone; Type: LT40

Communication System: UID 0, LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK) (0); Communication System Band: Band VII; Duty Cycle: 1:1.0; Frequency: 2510 MHz; Medium parameters used: f = 2510 MHz; σ = 2.06 S/m; ϵ r = 51.82; ρ = 1000 kg/m3; Phantom section: Flat Section Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0 DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(6.67, 6.67, 6.67); Calibrated: 04/03/2014;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn914; Calibrated: 15/12/2014
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Configuration/LTE Band VII 20M QPSK 1RB#0 Low Body-Bottom/Area Scan (5x9x1): Measurement

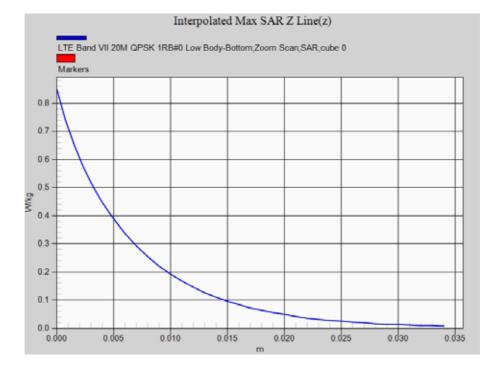
grid: dx=12mm, dy=12mm


Maximum value of SAR (measured) = 0.352 W/kg

Configuration/LTE Band VII 20M QPSK 1RB#0 Low Body-Bottom/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 13.249 V/m; Power Drift = 0.20 dB Peak SAR (extrapolated) = 0.851 W/kg

SAR(1 g) = 0.391 W/kg; SAR(10 g) = 0.172 W/kg


Maximum value of SAR (measured) = 0.450 W/kg

0 dB = 0.450 W/kg = -3.47 dBW/kg

Z-Axis Plot

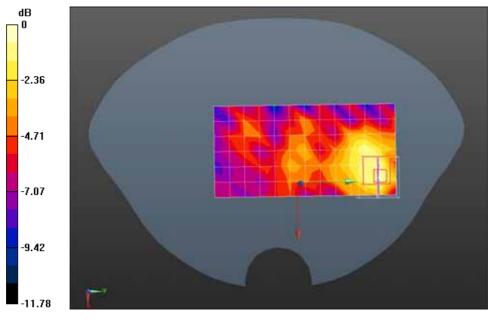
Test Laboratory: QuieTek Lab

LTE Band VII 20M QPSK 50RB#0 Low Body-Back

DUT: Mobile Phone; Type: LT40

Communication System: UID 0, LTE-FDD (SC-FDMA, 50 RB, 20 MHz, QPSK) (0); Communication System Band: Band VII; Duty Cycle: 1:1.0; Frequency: 2510 MHz; Medium parameters used: f = 2510 MHz; σ = 2.06 S/m; ϵr = 51.82; ρ = 1000 kg/m3; Phantom section: Flat Section Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0 DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(6.67, 6.67, 6.67); Calibrated: 04/03/2014;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn914; Calibrated: 15/12/2014
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)


Configuration/LTE Band VII 20M QPSK 50RB#0 Low Body-Back/Area Scan (7x13x1): Measurement

grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 0.0616 W/kg

Configuration/LTE Band VII 20M QPSK 50RB#0 Low Body-Back/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 2.664 V/m; Power Drift = -1.64 dB Peak SAR (extrapolated) = 0.151 W/kg

0 dB = 0.0691 W/kg = -11.61 dBW/kg

Test Laboratory: QuieTek Lab

LTE Band VII 20M QPSK 50RB#0 Low Body-Front

DUT: Mobile Phone; Type: LT40

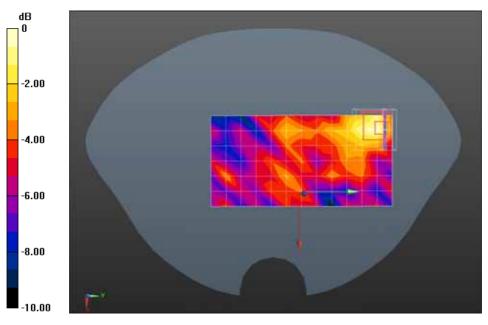
Communication System: UID 0, LTE-FDD (SC-FDMA, 50 RB, 20 MHz, QPSK) (0); Communication System Band: Band VII; Duty Cycle: 1:1.0; Frequency: 2510 MHz; Medium parameters used: f = 2510 MHz; σ = 2.06 S/m; ϵ r = 51.82; ρ = 1000 kg/m3; Phantom section: Flat Section Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0 DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(6.67, 6.67, 6.67); Calibrated: 04/03/2014;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn914; Calibrated: 15/12/2014
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Configuration/LTE Band VII 20M QPSK 50RB#0 Low Body-Front/Area Scan (7x13x1): Measurement

grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 0.0486 W/kg


Configuration/LTE Band VII 20M QPSK 50RB#0 Low Body-Front/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 2.551 V/m; Power Drift = 0.55 dB

Peak SAR (extrapolated) = 0.0730 W/kg

SAR(1 g) = 0.039 W/kg; SAR(10 g) = 0.022 W/kg

Maximum value of SAR (measured) = 0.0500 W/kg

0 dB = 0.0500 W/kg = -13.01 dBW/kg

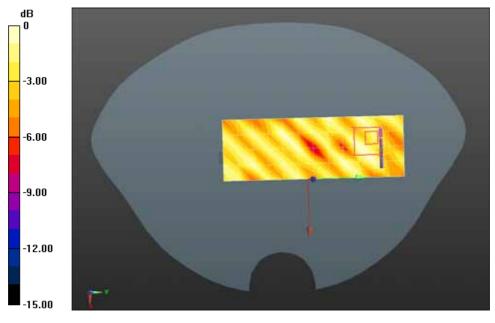
Test Laboratory: QuieTek Lab

LTE Band VII 20M QPSK 50RB#0 Low Body-Left side

DUT: Mobile Phone; Type: LT40

Communication System: UID 0, LTE-FDD (SC-FDMA, 50 RB, 20 MHz, QPSK) (0); Communication System Band: Band VII; Duty Cycle: 1:1.0; Frequency: 2510 MHz; Medium parameters used: f = 2510 MHz; σ = 2.06 S/m; ϵr = 51.82; ρ = 1000 kg/m3; Phantom section: Flat Section Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0 DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(6.67, 6.67, 6.67); Calibrated: 04/03/2014;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn914; Calibrated: 15/12/2014
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)


Configuration/LTE Band VII 20M QPSK 50RB#0 Low Body-Left side/Area Scan (5x13x1):

Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 0.0125 W/kg

Configuration/LTE Band VII 20M QPSK 50RB#0 Low Body-Left side/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 1.472 V/m; Power Drift = -2.18 dB Peak SAR (extrapolated) = 0.0380 W/kg

SAR(1 g) = 0.00889 W/kg; SAR(10 g) = 0.00256 W/kg Maximum value of SAR (measured) = 0.0114 W/kg

0 dB = 0.0114 W/kg = -19.43 dBW/kg

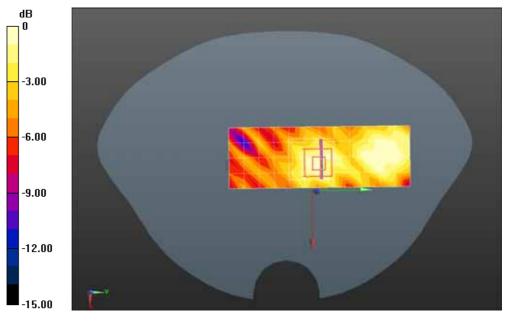
Test Laboratory: QuieTek Lab

LTE Band VII 20M QPSK 50RB#0 Low Body-Right side

DUT: Mobile Phone; Type: LT40

Communication System: UID 0, LTE-FDD (SC-FDMA, 50 RB, 20 MHz, QPSK) (0); Communication System Band: Band VII; Duty Cycle: 1:1.0; Frequency: 2510 MHz; Medium parameters used: f = 2510 MHz; σ = 2.06 S/m; εr = 51.82; ρ = 1000 kg/m3 ; Phantom section: Flat Section Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0 DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(6.67, 6.67, 6.67); Calibrated: 04/03/2014;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn914; Calibrated: 15/12/2014
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)


Configuration/LTE Band VII 20M QPSK 50RB#0 Low Body-Right side/Area Scan (5x13x1):

Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 0.0285 W/kg

Configuration/LTE Band VII 20M QPSK 50RB#0 Low Body-Right side/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 2.014 V/m; Power Drift = -0.95 dB Peak SAR (extrapolated) = 0.0490 W/kg

0 dB = 0.0250 W/kg = -16.02 dBW/kg

Test Laboratory: QuieTek Lab

LTE Band VII 20M QPSK 50RB#0 Low Body-Bottom

DUT: Mobile Phone; Type: LT40

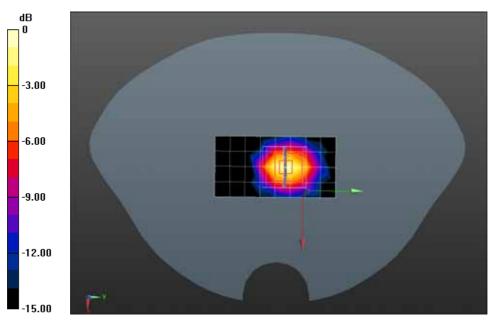
Communication System: UID 0, LTE-FDD (SC-FDMA, 50 RB, 20 MHz, QPSK) (0); Communication System Band: Band VII; Duty Cycle: 1:1.0; Frequency: 2510 MHz; Medium parameters used: f = 2510 MHz; σ = 2.06 S/m; εr = 51.82; ρ = 1000 kg/m3 ; Phantom section: Flat Section Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0 DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(6.67, 6.67, 6.67); Calibrated: 04/03/2014;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn914; Calibrated: 15/12/2014
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Configuration/LTE Band VII 20M QPSK 50RB#0 Low Body-Bottom/Area Scan (5x9x1): Measurement

grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 0.364 W/kg

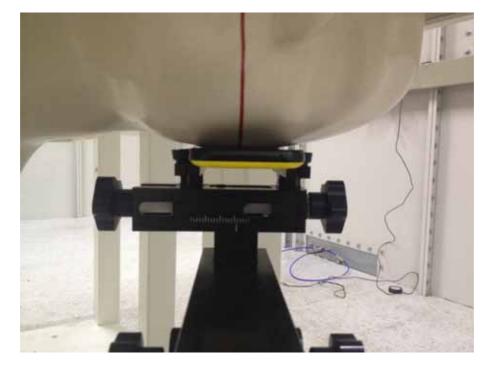

Configuration/LTE Band VII 20M QPSK 50RB#0 Low Body-Bottom/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 12.686 V/m; Power Drift = 0.13 dB

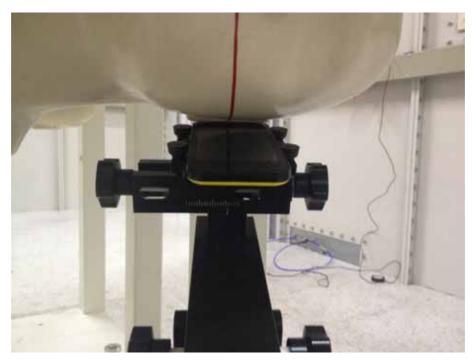
Peak SAR (extrapolated) = 0.743 W/kg

SAR(1 g) = 0.341 W/kg; SAR(10 g) = 0.148 W/kg

Maximum value of SAR (measured) = 0.390 W/kg

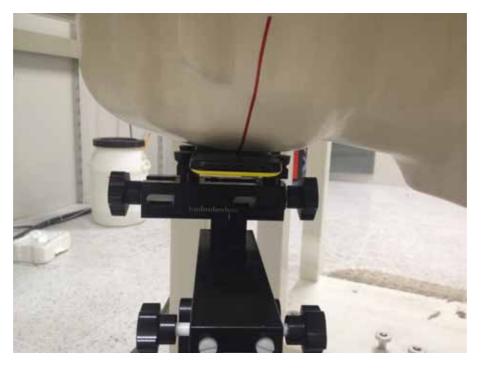


0 dB = 0.390 W/kg = -4.09 dBW/kg

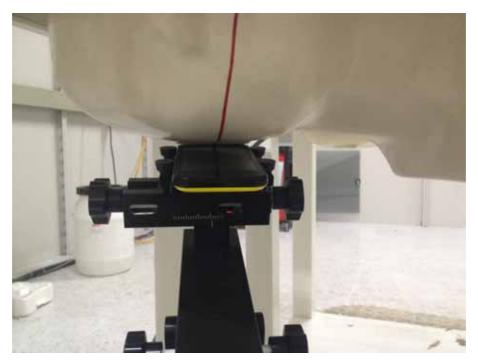


Appendix C. Test Setup Photographs & EUT Photographs

Test Setup Photographs Left Head (EUT Cheek)



Left Head (EUT Tilted)



Right Head (EUT Cheek)

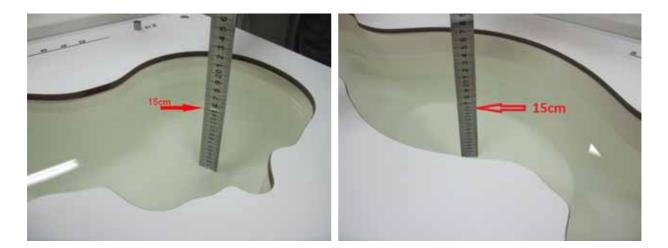
Right Head (EUT Tilted)

LTE Body Back at 10mm

LTE Body Front at 10mm

LTE Body Left side at 10mm

LTE Body Right side at 10mm



LTE Body Bottom at 10mm

Depth of the liquid in the phantom – Zoom in

Note: The position used in the measurements were according to IEEE 1528 - 2003

EUT Photographs

(1) EUT Photo

(2) EUT Photo

(3) EUT Photo

(4) EUT Photo

Appendix D. Probe Calibration Data

annetited by the Owine Arrest	tation Convice (CAC)	A	No.: SCS 108
Accredited by the Swiss Accredi the Swiss Accreditation Servi			10. 303 100
lultilateral Agreement for the	성별 귀엽 방송이 한 것은 것이 물건 귀엽 입니다.		
our de la composition			
lient Quietek (Aud	en)	Certificate No:	EX3-3710_Mar14
CALIBRATION	CERTIFICATI	E	
Object	EX3DV4 - SN:37	10	
	01 011 01 0 0		041 00 5
Calibration procedure(s)		QA CAL-12.v9, QA CAL-14.v4, QA	CAL-23.V5,
	QA CAL-25.v6	dura fan daaimakin E fald werken	
	Calibration proce	dure for dosimetric E-field probes	
Calibration date:	March 4, 2014		
NET REPAIRS AND THE SECOND	- 14 N - 44123 - 44	onal standards, which realize the physical units	N
		robability are given on the following pages and	
All calibrations have been cond	ucted in the closed laborator	ry facility: environment temperature (22 ± 3)*C a	
All calibrations have been cond Calibration Equipment used (Mi	ucted in the closed laborator	ry facility: environment temperature (22 \pm 3)*C a	and humidity < 70%,
All calibrations have been cond Calibration Equipment used (Mi Primary Standards	ucted in the closed laborator STE critical for calibration)	ry facility: environment temperature (22 ± 3)*C a Cal Date (Certificate No.)	and humidity < 70%,
All calibrations have been cond Calibration Equipment used (Mi Primary Standards Power meter E4419B	ucted in the closed laborator	ry facility: environment temperature (22 ± 3)*C a Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733)	and humidity < 70%, Scheduled Calibration Apr-14
All calibrations have been cond Calibration Equipment used (Mi Primary Standards Power meter E4419B	ucted in the closed laborator STE critical for calibration) ID GB41293874	ry facility: environment temperature (22 ± 3)*C a Cal Date (Certificate No.)	and humidity < 70%,
All calibrations have been cond Calibration Equipment used (Mi Primary Standards Power meter E4419B Power sensor E4412A	ucted in the closed laborator STE critical for calibration) ID GB41293874 MY41498087	v facility: environment temperature (22 ± 3)*C a Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733)	Apr-14 Apr-14
All calibrations have been cond Calibration Equipment used (Mi Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator	ID GB41293874 MY41498087 SN: S5054 (3c)	Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737)	Apr-14 Apr-14 Apr-14
All calibrations have been cond Calibration Equipment used (Mi Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator	ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5277 (20x)	Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01737)	Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14
All calibrations have been cond Calibration Equipment used (Mi Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2	ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5277 (20x) SN: S5129 (30b)	v facility: environment temperature (22 ± 3)*C a Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01738)	Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14
All calibrations have been cond Calibration Equipment used (Mi Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4	ucted in the closed laborator STE critical for calibration) ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5577 (20x) SN: S5129 (30b) SN: 3013 SN: 660	v facility: environment temperature (22 ± 3)*C a Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01738) 30-Dec-13 (No. ES3-3013_Dec13) 13-Dec-13 (No. DAE4-660_Dec13)	Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Dec-14 Dec-14
All calibrations have been cond Calibration Equipment used (Mi Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards	ucted in the closed laborator STE critical for calibration) ID GB41293874 MY41498087 SN: S5054 (3c) SN: S55054 (3c) SN: S55129 (30b) SN: S5129 (30b) SN: 3013 SN: 660 ID	v facility: environment temperature (22 ± 3)*C a Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01738) 30-Dec-13 (No. ES3-3013_Dec13) 13-Dec-13 (No. DAE4-660_Dec13) Check Date (in house)	Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Dec-14 Dec-14 Dec-14 Scheduled Check
All calibrations have been cond Calibration Equipment used (Mi Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	ucted in the closed laborator STE critical for calibration) ID GB41293874 MY41498087 SN: S5054 (3c) SN: S55277 (20x) SN: S5129 (30b) SN: 3013 SN: 660 ID US3642U01700	v facility: environment temperature (22 ± 3)*C a Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01738) 30-Dec-13 (No. ES3-3013_Dec13) 13-Dec-13 (No. DAE4-660_Dec13) Check Date (in house) 4-Aug-99 (in house check Apr-13)	Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Dec-14 Dec-14 Dec-14 Dec-14 Dec-14 Dec-14 Dec-14 Dec-14
All calibrations have been cond Calibration Equipment used (Mi Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards	ucted in the closed laborator STE critical for calibration) ID GB41293874 MY41498087 SN: S5054 (3c) SN: S55054 (3c) SN: S55129 (30b) SN: S5129 (30b) SN: 3013 SN: 660 ID	v facility: environment temperature (22 ± 3)*C a Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01738) 30-Dec-13 (No. ES3-3013_Dec13) 13-Dec-13 (No. DAE4-660_Dec13) Check Date (in house)	Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Dec-14 Dec-14 Dec-14 Scheduled Check
All calibrations have been cond Calibration Equipment used (Mi Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	ucted in the closed laborator STE critical for calibration) ID GB41293874 MY41498087 SN: S5054 (3c) SN: S55277 (20x) SN: S5129 (30b) SN: 3013 SN: 660 ID US3642U01700	v facility: environment temperature (22 ± 3)*C a Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01738) 30-Dec-13 (No. ES3-3013_Dec13) 13-Dec-13 (No. DAE4-660_Dec13) Check Date (in house) 4-Aug-99 (in house check Apr-13)	Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Dec-14 Dec-14 Dec-14 Dec-14 Dec-14 Dec-14 Dec-14 Dec-14
All calibrations have been cond Calibration Equipment used (Mi Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	ucted in the closed laborator &TE critical for calibration) ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5129 (30b) SN: 3013 SN: 660 ID US3642U01700 US37390585	Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01738) 30-Dec-13 (No. 21	Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Dec-14 De
All calibrations have been cond Calibration Equipment used (Mi Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	ucted in the closed laborator &TE critical for calibration) ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5129 (30b) SN: 3013 SN: 660 ID US3842U01700 US37390585 Name	Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01738) 30-Dec-13 (No. ES3-3013_Dec13) 13-Dec-13 (No. DAE4-660_Dec13) Check Date (in house) 4-Aug-99 (in house check Apr-13) 18-Oct-01 (in house check Oct-13) Function	Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Dec-14 De
All calibrations have been cond Calibration Equipment used (Mi Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E Calibrated by:	Ucted in the closed laborator &TE critical for calibration) ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5129 (30b) SN: 3013 SN: 660 ID US3642U01700 US3642U01700 US37390585 Name Jeton Kastrati	y facility: environment temperature (22 ± 3)*C a	Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Dec-14 De
All calibrations have been cond Calibration Equipment used (Mi Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E Calibrated by:	ucted in the closed laborator &TE critical for calibration) ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5129 (30b) SN: 3013 SN: 660 ID US3842U01700 US37390585 Name	Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01738) 30-Dec-13 (No. ES3-3013_Dec13) 13-Dec-13 (No. DAE4-660_Dec13) Check Date (in house) 4-Aug-99 (in house check Apr-13) 18-Oct-01 (in house check Oct-13) Function	Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Dec-14 De
All calibrations have been cond Calibration Equipment used (Mi Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E Calibrated by:	Ucted in the closed laborator &TE critical for calibration) ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5129 (30b) SN: 3013 SN: 660 ID US3642U01700 US3642U01700 US37390585 Name Jeton Kastrati	y facility: environment temperature (22 ± 3)*C a	Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Dec-14 De
All calibrations have been cond Calibration Equipment used (Mi Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	Ucted in the closed laborator &TE critical for calibration) ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5129 (30b) SN: 3013 SN: 660 ID US3642U01700 US3642U01700 US37390585 Name Jeton Kastrati	y facility: environment temperature (22 ± 3)*C a	Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Dec-14 De

Certificate No: EX3-3710_Mar14

Page 1 of 11

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

SWIS С 18RP

s

s

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

01------

Glossary:	
TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization ϕ	φ rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at measurement center),
	i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement
- Techniques", June 2013 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX3-3710 Mar14

Page 2 of 11

EX3DV4 - SN:3710

March 4, 2014

Probe EX3DV4

SN:3710

Manufactured: Calibrated:

July 21, 2009 March 4, 2014

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: EX3-3710_Mar14

Page 3 of 11

EX3DV4-SN:3710

March 4, 2014

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3710

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ^A	0.51	0.56	0.44	± 10.1 %
DCP (mV) ^B	100.3	97.6	101.3	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	137.9	±3.5 %
		Y	0.0	0.0	1.0		136.7	
		Z	0.0	0.0	1.0		139.8	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required. ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the

Certificate No: EX3-3710_Mar14

Page 4 of 11

EX3DV4- SN:3710

March 4, 2014

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3710

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
450	43.5	0.87	10.42	10.42	10.42	0.17	2.22	± 13.3 %
750	41.9	0.89	9.76	9.76	9.76	0.62	0.69	± 12.0 %
835	41.5	0.90	9.56	9.56	9.56	0.57	0.69	± 12.0 %
900	41.5	0.97	9.42	9.42	9.42	0.53	0.72	± 12.0 %
1810	40.0	1.40	7.74	7.74	7.74	0.41	0.94	± 12.0 %
1900	40.0	1.40	7.72	7.72	7.72	0.49	0.85	± 12.0 %
2450	39.2	1.80	7.04	7.04	7.04	0.39	1.03	± 12.0 %
2600	39.0	1.96	6.87	6.87	6.87	0.60	0.80	± 12.0 %
3500	37.9	2.91	6.82	6.82	6.82	0.55	0.88	± 13.1 %
5200	36.0	4.66	4.91	4.91	4.91	0.40	1.80	± 13.1 %
5500	35.6	4.96	4.63	4.63	4.63	0.40	1.80	± 13.1 %
5800	35.3	5.27	4.43	4.43	4.43	0.40	1.80	± 13.1 %

Calibration Parameter Determined in Head Tissue Simulating Media

^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F At frequencies below 3 GHz, the validity of tissue parameters (s and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (s and σ) is restricted to ± 5%. The uncertainty is the RSS of

the ConvF uncertainty for indicated target tissue parameters. ⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: EX3-3710_Mar14

Page 5 of 11

EX3DV4- SN:3710

March 4, 2014

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3710

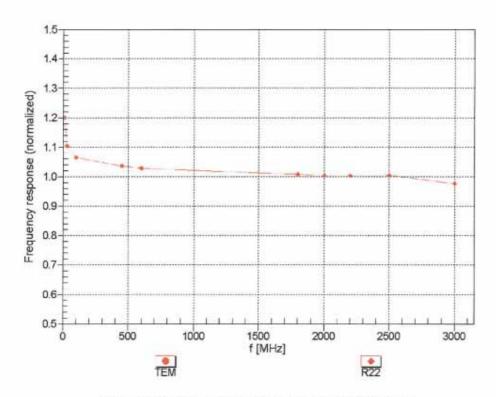
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
450	56.7	0.94	10.53	10.53	10.53	0.10	1.00	± 13.3 %
750	55.5	0.96	9.28	9.28	9.28	0.39	0.93	± 12.0 %
835	55.2	0.97	9.22	9.22	9.22	0.65	0.72	± 12.0 %
900	55.0	1.05	9.04	9.04	9.04	0.75	0.67	± 12.0 %
1810	53.3	1.52	7.36	7.36	7.36	0.80	0.62	± 12.0 %
1900	53.3	1.52	7.25	7.25	7.25	0.55	0.76	± 12.0 %
2450	52.7	1.95	6.88	6.88	6.88	0.80	0.58	± 12.0 %
2600	52.5	2.16	6.67	6.67	6.67	0.80	0.50	± 12.0 %
3500	51.3	3.31	6.29	6.29	6.29	0.44	1.02	± 13.1 %
5200	49.0	5.30	4.22	4.22	4.22	0.50	1.90	± 13.1 %
5500	48.6	5.65	3.91	3.91	3.91	0.50	1.90	± 13.1 %
5800	48.2	6.00	4.00	4.00	4.00	0.50	1.90	± 13.1 %

Calibration Parameter Determined in Body Tissue Simulating Media

^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: EX3-3710_Mar14

Page 6 of 11



Report No.: 1510324R-HP-US-P03V01

EX3DV4-SN:3710

March 4, 2014

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: EX3-3710_Mar14

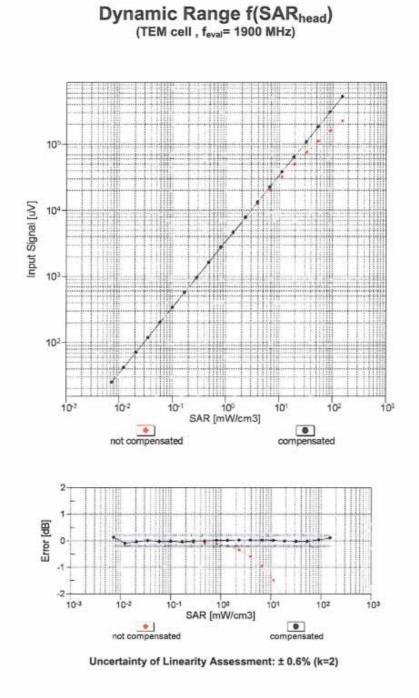
Page 7 of 11

EX3DV4-SN:3710

March 4, 2014

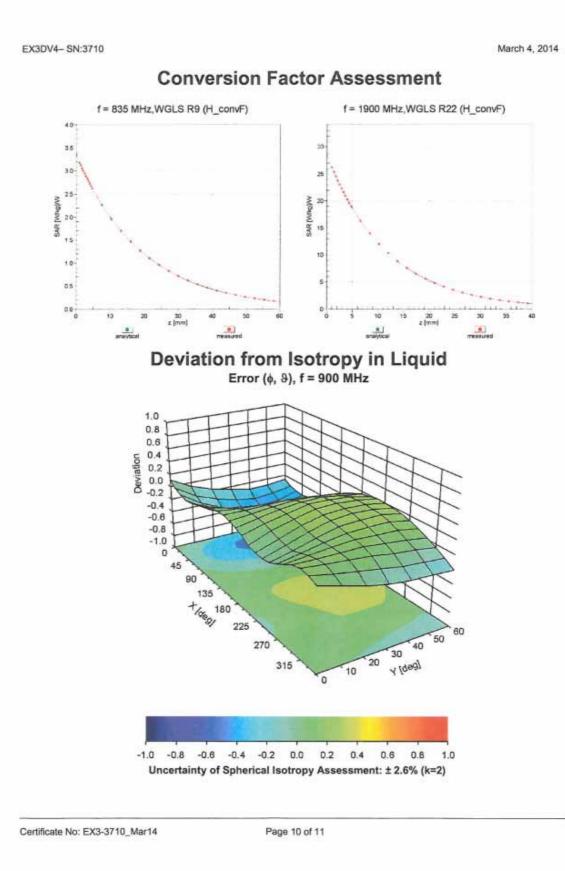
Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: EX3-3710_Mar14


Page 8 of 11

Report No.: 1510324R-HP-US-P03V01

EX3DV4- SN:3710


March 4, 2014

Certificate No: EX3-3710_Mar14

Page 9 of 11

EX3DV4-SN:3710

March 4, 2014

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3710

Other Probe Parameters Sensor Arrangement Triangular Connector Angle (°) -19.6 Mechanical Surface Detection Mode enabled Optical Surface Detection Mode disabled Probe Overall Length 337 mm Probe Body Diameter 10 mm Tip Length 9 mm Tip Diameter 2.5 mm Probe Tip to Sensor X Calibration Point 1 mm Probe Tip to Sensor Y Calibration Point 1 mm Probe Tip to Sensor Z Calibration Point 1 mm Recommended Measurement Distance from Surface 2 mm

Certificate No: EX3-3710_Mar14

Page 11 of 11

Appendix E. Dipole Calibration Data

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

SWISS S Schweizerischer Kalibrierdienst С s BRP

Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Quitek-CN (Auden) Client

Certificate No: D2600V2-1029_Feb14

Object	D2600V2 - SN: 1	029	
Calibration procedure(s)	QA CAL-05.v9 Calibration proce	dure for dipole validation kits ab	ove 700 MHz
Calibration date:	February 24, 201	4	
The measurements and the unce	rtainties with confidence p	ional standards, which realize the physical u robability are given on the following pages a ry facility: environment temperature (22 ± 3) ⁴	nd are part of the certificate.
rimary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
and the second	ID # GB37480704	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827)	Scheduled Calibration Oct-14
ower meter EPM-442A		and the state of the second	and the second se
ower meter EPM-442A ower sensor HP 8481A ower sensor HP 8481A	GB37480704 US37292783 MY41092317	09-Oct-13 (No. 217-01827)	Oct-14
ower meter EPM-442A ower sensor HP 8481A ower sensor HP 8481A eference 20 dB Attenuator	GB37480704 US37292783 MY41092317 SN: 5058 (20k)	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 04-Apr-13 (No. 217-01736)	Oct-14 Oct-14 Oct-14 Apr-14
ower meter EPM-442A ower sensor HP 8481A ower sensor HP 8481A eference 20 dB Attenuator ype-N mismatch combination	GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.3 / 06327	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739)	Oct-14 Oct-14 Oct-14 Apr-14 Apr-14
rimary Standards ower meter EPM-442A ower sensor HP 8481A ower sensor HP 8481A eference 20 dB Attenuator ype-N mismatch combination eference Probe ES3DV3 AE4	GB37480704 US37292783 MY41092317 SN: 5058 (20k)	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 04-Apr-13 (No. 217-01736)	Oct-14 Oct-14 Oct-14 Apr-14
ower meter EPM-442A ower sensor HP 8481A ower sensor HP 8481A eference 20 dB Attenuator ype-N mismatch combination eference Probe ES3DV3 AE4	GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 30-Dec-13 (No. ES3-3205_Dec13) 25-Apr-13 (No. DAE4-601_Apr13)	Oct-14 Oct-14 Oct-14 Apr-14 Apr-14 Dec-14 Apr-14
ower meter EPM-442A ower sensor HP 8481A ower sensor HP 8481A eference 20 dB Attenuator ype-N mismatch combination eference Probe ES3DV3 AE4 econdary Standards	GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601 ID #	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 30-Dec-13 (No. ES3-3205_Dec13) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house)	Oct-14 Oct-14 Oct-14 Apr-14 Apr-14 Dec-14 Apr-14 Scheduled Check
ower meter EPM-442A ower sensor HP 8481A ower sensor HP 8481A eference 20 dB Attenuator ype-N mismatch combination eference Probe ES3DV3 AE4 econdary Standards F generator R&S SMT-06	GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 30-Dec-13 (No. ES3-3205_Dec13) 25-Apr-13 (No. DAE4-601_Apr13)	Oct-14 Oct-14 Oct-14 Apr-14 Apr-14 Dec-14 Apr-14
ower meter EPM-442A ower sensor HP 8481A ower sensor HP 8481A eference 20 dB Attenuator ype-N mismatch combination eference Probe ES3DV3 AE4 econdary Standards F generator R&S SMT-06	GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601 ID # 100005	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 30-Dec-13 (No. ES3-3205_Dec13) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-13)	Oct-14 Oct-14 Oct-14 Apr-14 Dec-14 Apr-14 Scheduled Check In house check: Oct-16 In house check: Oct-14
ower meter EPM-442A ower sensor HP 8481A ower sensor HP 8481A eference 20 dB Attenuator ype-N mismatch combination eference Probe ES3DV3 AE4 econdary Standards F generator R&S SMT-06 etwork Analyzer HP 8753E	GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601 ID # 100005 US37390585 S4206	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 30-Dec-13 (No. ES3-3205_Dec13) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 04-Aug-99 (in house check Oct-13)	Oct-14 Oct-14 Oct-14 Apr-14 Dec-14 Apr-14 Scheduled Check In house check: Oct-16 In house check: Oct-14
ower meter EPM-442A ower sensor HP 8481A ower sensor HP 8481A eference 20 dB Attenuator ype-N mismatch combination eference Probe ES3DV3	GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601 ID # 100005 US37390585 S4206 Name	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 30-Dec-13 (No. ES3-3205_Dec13) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-13) Function	Oct-14 Oct-14 Oct-14 Apr-14 Apr-14 Dec-14 Apr-14 Scheduled Check In house check: Oct-16 In house check: Oct-14

Certificate No: D2600V2-1029_Feb14

Page 1 of 8

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

SWISS CP D Z PRIBRATI

S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2600V2-1029_Feb14

Page 2 of 8

Accreditation No.: SCS 108

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2600 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.0	1.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.6 ± 6 %	2.03 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	14.8 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	57.8 W/kg ± 17.0 % (k=2)
9		
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	6.60 W/kg

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.5	2.16 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	50.2 ± 6 %	2.20 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	14.4 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	56.5 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.33 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	25.0 W/kg ± 16.5 % (k=2)

Certificate No: D2600V2-1029_Feb14

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.4 Ω - 1.6 jΩ
Return Loss	- 33.7 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.9 Ω - 0.8 jΩ
Return Loss	- 29.7 dB

General Antenna Parameters and Design

Electrical Delay (and direction)	1.450
Electrical Delay (one direction)	1.153 hs

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	March 03, 2009

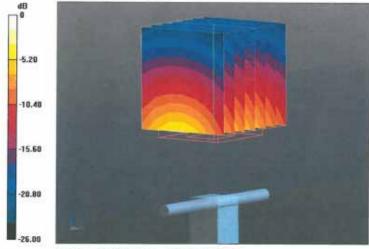
Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 24.02.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1029

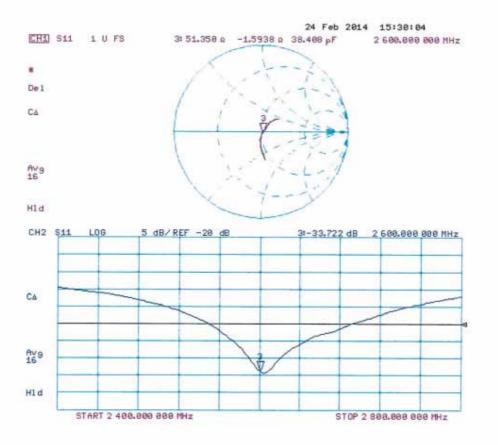

Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; σ = 2.03 S/m; ϵ_r = 37.6; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.46, 4.46, 4.46); Calibrated: 30.12.2013;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 102.1 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 31.9 W/kg SAR(1 g) = 14.8 W/kg; SAR(10 g) = 6.6 W/kg Maximum value of SAR (measured) = 19.2 W/kg


0 dB = 19.2 W/kg = 12.83 dBW/kg

Certificate No: D2600V2-1029_Feb14

Page 5 of 8

Impedance Measurement Plot for Head TSL

Certificate No: D2600V2-1029_Feb14

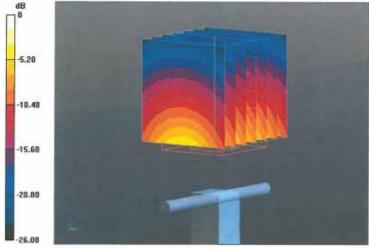
Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 24.02.2014

Test Laboratory: SPEAG, Zurich, Switzerland

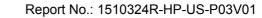
DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1029


Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; $\sigma = 2.2$ S/m; $\varepsilon_r = 50.2$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.24, 4.24, 4.24); Calibrated: 30.12.2013;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 97.131 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 31.4 W/kg SAR(1 g) = 14.4 W/kg; SAR(10 g) = 6.33 W/kg Maximum value of SAR (measured) = 19.3 W/kg

0 dB = 19.3 W/kg = 12.86 dBW/kg


Certificate No: D2600V2-1029_Feb14

Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: D2600V2-1029_Feb14

Page 8 of 8

Appendix F. DAE Calibration Data

Schmid & Partner Engineering AG ^{Zeughausstrasse} 43, 8004 Zuri	ory of	BC MRA	 S Schweizerischer Kallbrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service
Accredited by the Swiss Accredi The Swiss Accreditation Servi Multilateral Agreement for the	ce is one of the signatorie	s to the EA	ation No.: SCS 108
Client Auden			te No: DAE4-914_Dec14
CALIBRATION	CERTIFICATE		
Object	DAE4 - SD 000 D	004 BK - SN: 914	
Calibration procedure(s)	QA CAL-06.v28 Calibration proces	dure for the data acquisition e	electronics (DAE)
Calibration date:	December 15, 20	14	
The measurements and the unc	ertainties with confidence pr	mal standards, which realize the physica obability are given on the following page y facility: environment temperature (22 ±	s and are part of the certificate.
The measurements and the unco All calibrations have been condu Calibration Equipment used (M&	ertainties with confidence pr icted in the closed laboratory TE critical for calibration)	obability are given on the following page v facility: environment temperature (22 ±	is and are part of the certificate. 3)°C and humidity < 70%.
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards	ertainties with confidence pr	obability are given on the following page / facility: environment temperature (22 ± Cal Date (Certificate No.)	is and are part of the certificate. 3)°C and humidity < 70%. Scheduled Calibration
The measurements and the unco All calibrations have been condu Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001	ertainties with confidence pr inted in the closed laboratory TE critical for calibration) ID # SN: 0810278	obability are given on the following page / facility: environment temperature (22 ± <u>Cal Date (Certificate No.)</u> 03-Oct-14 (No:15573)	is and are part of the certificate. 3)°C and humidity < 70%.
The measurements and the unco All calibrations have been condu Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Secondary Standards	ertainties with confidence pr inteed in the closed laboratory TE critical for calibration) ID # SN: 0810278 ID #	obability are given on the following page y facility: environment temperature (22 ± Cal Date (Certificate No.) 03-Oct-14 (No:15573) Check Date (in house)	is and are part of the certificate. 3)*C and humidity < 70%. Scheduled Calibration Oct-15 Scheduled Check
The measurements and the unco All calibrations have been condu Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit	ertainties with confidence pr incted in the closed laboratory TE critical for calibration) ID # SN: 0810278 ID # SE UWS 053 AA 1001	obability are given on the following page / facility: environment temperature (22 ± Cal Date (Certificate No.) 03-Oct-14 (No:15573) Check Date (in house)	is and are part of the certificate. 3)°C and humidity < 70%. Scheduled Calibration Oct-15
The measurements and the unc	ertainties with confidence pr incted in the closed laboratory TE critical for calibration) ID # SN: 0810278 ID # SE UWS 053 AA 1001	obability are given on the following page / facility: environment temperature (22 ± Cal Date (Certificate No.) 03-Oct-14 (No:15573) Check Date (in house) 07-Jan-14 (in house check)	s and are part of the certificate. 3)°C and humidity < 70%. Scheduled Calibration Oct-15 Scheduled Check In house check: Jan-15 In house check: Jan-15
The measurements and the unco All calibrations have been condu Calibration Equipment used (M& <u>Primary Standards</u> Keithley Multimeter Type 2001 <u>Secondary Standards</u> Auto DAE Calibration Unit Calibrator Box V2.1	ertainties with confidence pr incted in the closed laboratory TE critical for calibration) ID # SN: 0810278 ID # SE UWS 053 AA 1001 SE UMS 006 AA 1002	obability are given on the following page (facility: environment temperature (22 ± Cal Date (Certificate No.) 03-Oct-14 (No:15573) Check Date (in house) 07-Jan-14 (in house check) 07-Jan-14 (in house check)	is and are part of the certificate. 3)*C and humidity < 70%. Scheduled Calibration Oct-15 Scheduled Check In house check: Jan-15
The measurements and the unco All calibrations have been condu Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit	ertainties with confidence pr incted in the closed laboratory TE critical for calibration) ID # SN: 0810278 ID # SE UWS 053 AA 1001 SE UMS 006 AA 1002	obability are given on the following page (facility: environment temperature (22 ± Cal Date (Certificate No.) 03-Oct-14 (No:15573) Check Date (in house) 07-Jan-14 (in house check) 07-Jan-14 (in house check) 07-Jan-14 (in house check)	s and are part of the certificate. 3)°C and humidity < 70%. Scheduled Calibration Oct-15 Scheduled Check In house check: Jan-15 In house check: Jan-15 Signature

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

CHISS CP Z Z

S

Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Glossary

DAE Connector angle data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a
 result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement. Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-914_Dec14

Page 2 of 5

DC Voltage Measurement

A/D -	Converter	Resolution	nominal
100	Controlitor	1000000000	nonniai

High Range:	1LSB =	6.1μV,	full range =	-100+300 mV
Low Range:	1LSB =	61nV,	full range =	-1+3mV
DASY measurement	parameters: Aut	o Zero Time: 3	sec; Measuring	time: 3 sec

Calibration Factors	x	Y	Z
High Range	405.057 ± 0.02% (k=2)	404.250 ± 0.02% (k=2)	403.832 ± 0.02% (k=2)
Low Range	3.99012 ± 1.50% (k=2)	3.98633 ± 1.50% (k=2)	3.98979 ± 1.50% (k=2)

Connector Angle

Connector Angle to be used in DASY system	64.0 ° ± 1 °
---	--------------

Certificate No: DAE4-914_Dec14

Page 3 of 5

QuieTek

Appendix (Additional assessments outside the scope of SCS108)

1. DC Voltage Linearity

High Range		Reading (µV)	Difference (µV)	Error (%)
Channel X	+ Input	200032.55	-3.32	-0.00
Channel X	+ Input	20003.75	-0.54	-0.00
Channel X	- Input	-20004.74	1.15	-0.01
Channel Y	+ Input	200033.47	-2.28	-0.00
Channel Y	+ Input	20001.72	-2.40	-0.01
Channel Y	- Input	-20005.85	0.20	-0.00
Channel Z	+ Input	200035.63	-0.57	-0.00
Channel Z	+ Input	20001.09	-3.05	-0.02
Channel Z	- Input	-20007.62	-1.52	0.01

Low Range	Reading (µV)	Difference (µV)	Error (%)	
Channel X + Input	2000.60	0.19	0.01	
Channel X + Input	200.64	0.08	0.04	
Channel X - Input	-199.22	0.23	-0.12	
Channel Y + Input	2000.43	0.16	0.01	
Channel Y + Input	200.07	-0.25	-0.13	
Channel Y - Input	-200.01	-0.38	0.19	
Channel Z + Input	2000.13	-0.16	-0.01	
Channel Z + Input	199.27	-1.16	-0.58	
Channel Z - Input	-200.87	-1.33	0.67	

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (µV)		
200	-12.29	-13.91		
- 200	15.52	13.97		
200	-5.10	-5.08		
- 200	4.28	4.17		
Channel Z 200	4.95	5.07		
- 200	-7.69	-7.90		
	Input Voltage (mV) 200 - 200 200 - 200 200 200	Input Voltage (mV) Average Reading (μV) 200 -12.29 - 200 15.52 200 -5.10 - 200 4.28 200 4.95		

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (µV)
Channel X	200	-	2.49	-4.55
Channel Y	200	7.79	-	2.18
Channel Z	200	10.06	5.72	-

Certificate No: DAE4-914_Dec14

Page 4 of 5

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16131	14753
Channel Y	16145	15519
Channel Z	16029	16244

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10M Ω

	Average (µV)	min. Offset (μV)	max. Offset (µV)	Std. Deviation (µV)
Channel X	0.69	-0.11	1.50	0.31
Channel Y	0.18	-1.37	2.08	0.61
Channel Z	0.71	-0.56	2.15	0.47

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9