

ТІ	EST REPORT
Report Reference No	TRE18050167 R/C: 63540
FCC ID:	QRP-AZUMIKA5QP
Applicant's name:	Azumi S.A
Address	Avenida Aquilino de la Guardia con Calle 47, PH Ocean Plaza, Piso 16 of. 16-01, Marbella, Ciudad de Panama, Panama
Manufacturer	AZUMI HK LTD
Address	FLAT/RM 18 BLK 1 14/F GOLDEN INDUSTRIAL BUILDING 16- 26 KWAI TAK STREET KWAI CHUNG,HK
Test item description:	Mobile Phone
Trade Mark:	AZUMI
Model/Type reference:	KIREI A5Q PLUS
Listed Model(s):	
Standard:	FCC 47 CFR Part2.1093 IEEE 1528: 2013 ANSI/IEEE C95.1: 1999
Date of receipt of test sample	May.18,2018
Date of testing	May.21,2018- May.28,2018
Date of issue	May.29,2018
Result	PASS
Compiled by (position+printedname+signature):	File administrators:Xiaodong Zhao
Supervised by (position+printedname+signature):	Test Engineer: Xiaodong Zhao Mouss Mu
Approved by	House My
(position+printedname+signature):	Manager: Hans Hu
Testing Laboratory Name	Shenzhen Huatongwei International Inspection Co., Ltd
Address:	1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China
Shenzhen Huatongwei International I	Inspection Co., Ltd. All rights reserved.
Shenzhen Huatongwei International Ins the material. Shenzhen Huatongwei Inter	whole or in part for non-commercial purposes as long as the spection Co., Ltd is acknowledged as copyright owner and source of ernational Inspection Co., Ltd takes no responsibility for and will not rom the reader's interpretation of the reproduced material due to its

Page: 1 of 60

The test report merely correspond to the test sample.

placement and context.

Contents

2.1. Client Information 4 2.2. Product Description 4 3. Test Environment 6 3.1. Test laboratory 6 3.2. Test Facility 6 4. Equipments Used during the Test 7 5. Measurement Uncertainty 8 6. SAR Measurement System Configuration 10 6.1. SAR Measurement Set-up 10 6.2. DASY5 E-field Probe System 11 6.3. Phantoms 12 6.4. Device Holder 12 7. SAR Test Procedure 13 7.1. Scanning Procedure 13 7.2. Data Storage and Evaluation 15 8. Position of the wireless device in relation to the phantom 17 8.1. Head Position 17 8.2. Body Position 18 8.3. Hotspot Mode Exposure conditions 18 9. System Check 19 9.1. Tissue Dielectric Parameters 19 9.2. SAR System Check 20 10. SAR Exposure Limits 28 11. Conducted Power Measurement Results 29 12. Maximum Tune-up Limit 33 13. Anten	<u>1.</u>	Test Standards and Report version	3
2. Summary 4 2.1. Client Information 4 2.2. Product Description 4 3. Test Environment 6 3.1. Test laboratory 6 3.2. Test Receiver and the Test 7 5. Measurement Uncertainty 8 6. SAR Measurement Saystem Configuration 10 6.1. SAR Measurement Set-up 10 6.2. DASY5 E-field Probe System 11 6.3. Phantoms 12 6.4. Device Holder 12 7. SAR Measurement Set-up 10 6.2. DASY5 E-field Probe System 11 6.3. Phantoms 12 7.4. Scaning Procedure 13 7.1. Scaning Procedure 13 7.2. Data Storage and Evaluation 17 8.3. Hotspot Mode Exposure conditions 18 9. System Check 19 9.1. Tissue Dielectric Parameters 19<	1.1.	Test Standards	3
2.1.Client Information42.2.Product Description43.Test Environment63.1.Test laboratory63.2.Test Facility64.Equipments Used during the Test75.Measurement Uncertainty86.SAR Measurement Setup106.1.SAR Measurement Set-up106.2.DASY5 E-field Probe System116.3.Phantoms126.4.Device Holder127.5.SAR Test Procedure137.1.Scanning Procedure137.2.Data Storage and Evaluation158.Position of the wireless device in relation to the phantom178.1.Head Position178.2.Body Position188.3.Hotspot Mode Exposure conditions189.System Check199.1.Tissue Dielectric Parameters199.2.SAR Exposure Limits2811.Conducted Power Measurement Results2912.Maximum Tune-up Limit3313.Antenna Location3514.SAR Measurement Results3615.Simultaneous Transmission analysis5416.TestSetup Photos58	1.2.	Report version	3
2.2. Product Description 4 3. Test Environment 6 3.1. Test laboratory 6 3.2. Test Facility 6 4. Equipments Used during the Test 7 5. Measurement Uncertainty 8 6. SAR Measurement System Configuration 10 6.1. SAR Measurement Set-up 10 6.2. DASY5 E-field Probe System 11 6.3. Phantoms 12 6.4. Device Holder 12 7. SAR Test Procedure 13 7.1. Scanning Procedure 13 7.2. Data Storage and Evaluation 15 8. Position of the wireless device in relation to the phantom 17 8.1. Head Position 17 8.2. Body Position 18 8.3. Hotspot Mode Exposure conditions 18 9. System Check 19 9.1. Tissue Dielectric Parameters 19 9.2. SAR System Check 20 10. SAR Exposure Limits	<u>2.</u>	Summary	4
3. Test Environment 6 3.1. Test laboratory 6 3.2. Test Facility 6 4. Equipments Used during the Test 7 5. Measurement Uncertainty 8 6. SAR Measurement System Configuration 10 6.1. SAR Measurement Set-up 10 6.2. DASYS E-field Probe System 11 6.3. Phantoms 12 6.4. Device Holder 12 7.4. SAR Test Procedure 13 7.1. Scanning Procedure 13 7.2. Data Storage and Evaluation 15 8. Position of the wireless device in relation to the phantom 17 8.1. Head Position 17 8.2. Body Position 18 9. System Check 19 9.1. Tissue Dielectric Parameters 19 9.2. SAR Exposure Limits 28 11. Conducted Power Measurement Results 29 12. Maximum Tune-up Limit 33 13. Antenna Location<	2.1.	Client Information	4
3.1. Test laboratory 6 3.2. Test Facility 6 4. Equipments Used during the Test 7 5. Measurement Uncertainty 8 6. SAR Measurement System Configuration 10 6.1. SAR Measurement Set-up 10 6.2. DASY5 E-field Probe System 11 6.3. Phantoms 12 6.4. Device Holder 12 7. SAR Test Procedure 13 7.1. Scanning Procedure 13 7.2. Data Storage and Evaluation 15 8. Position of the wireless device in relation to the phantom 17 8.1. Head Position 17 8.2. Body Position 18 8.3. Hotspot Mode Exposure conditions 18 9. System Check 19 9.1. Tissue Dielectric Parameters 19 9.2. SAR System Check 20 10. SAR Exposure Limits 28 11. Conducted Power Measurement Results 29 12. Maximum Tune-up Limit 33 13. Antenna Location 35 14. SAR Measurement Results 36 15. Simultaneous Transmission analysis 54 16	2.2.	Product Description	4
3.2. Test Facility 6 4. Equipments Used during the Test 7 5. Measurement Uncertainty 8 6. SAR Measurement System Configuration 10 6.1. SAR Measurement Set-up 10 6.2. DASY5 E-field Probe System 11 6.3. Phantoms 12 6.4. Device Holder 12 7. SAR Test Procedure 13 7.1. Scanning Procedure 13 7.2. Data Storage and Evaluation 15 8. Position of the wireless device in relation to the phantom 17 8.1. Head Position 17 8.2. Body Position 18 8.3. Hotspot Mode Exposure conditions 18 9. System Check 19 9.1. Tissue Dielectric Parameters 19 9.2. SAR System Check 20 10. SAR Exposure Limits 28 11. Conducted Power Measurement Results 29 12. Maximum Tune-up Limit 33 13. Antenna Location 35 14. SAR Measurement Results 36 15. Simultaneous Transmission analysis	<u>3.</u>	Test Environment	6
4. Equipments Used during the Test 7 5. Measurement Uncertainty 8 6. SAR Measurements System Configuration 10 6.1. SAR Measurement Set-up 10 6.2. DASY5 E-field Probe System 11 6.3. Phantoms 12 6.4. Device Holder 12 7. SAR Test Procedure 13 7.1. Scanning Procedure 13 7.2. Data Storage and Evaluation 15 8. Position of the wireless device in relation to the phantom 17 8.1. Head Position 17 8.2. Body Position 18 8.3. Hotspot Mode Exposure conditions 18 8.3. Hotspot Mode Exposure conditions 19 9.1. Tissue Dielectric Parameters 19 9.2. SAR Exposure Limits 28 11. Conducted Power Measurement Results 29 12. Maximum Tune-up Limit 33 13. Antenna Location 35 14. SAR Measurement Results 36		Test laboratory	6
5.Measurement Uncertainty86.SAR Measurements System Configuration106.1.SAR Measurement Set-up106.2.DASY5 E-field Probe System116.3.Phantoms126.4.Device Holder127.SAR Test Procedure137.1.Scanning Procedure137.2.Data Storage and Evaluation158.Position of the wireless device in relation to the phantom178.1.Head Position178.2.Body Position188.3.Hotspot Mode Exposure conditions189.System Check199.1.Tissue Dielectric Parameters199.2.SAR System Check2010.SAR Exposure Limits2811.Conducted Power Measurement Results2912.Maximum Tune-up Limit3313.Antenna Location3514.SAR Measurement Results3615.Simultaneous Transmission analysis5416.TestSetup Photos58	3.2.	Test Facility	6
6. SAR Measurements System Configuration 10 6.1. SAR Measurement Set-up 10 6.2. DASY5 E-field Probe System 11 6.3. Phantoms 12 6.4. Device Holder 12 7. SAR Test Procedure 13 7.1. Scanning Procedure 13 7.2. Data Storage and Evaluation 15 8. Position of the wireless device in relation to the phantom 17 8.1. Head Position 17 8.2. Body Position 18 8.3. Hotspot Mode Exposure conditions 18 9. System Check 19 9.1. Tissue Dielectric Parameters 19 9.2. SAR System Check 20 10. SAR Exposure Limits 28 11. Conducted Power Measurement Results 29 12. Maximum Tune-up Limit 33 13. Antenna Location 35 14. SAR Measurement Results 36 15. Simultaneous Transmission analysis 54 16. <td><u>4.</u></td> <td>Equipments Used during the Test</td> <td>7</td>	<u>4.</u>	Equipments Used during the Test	7
6.1. SAR Measurement Set-up 10 6.2. DASY5 E-field Probe System 11 6.3. Phantoms 12 6.4. Device Holder 12 7. SAR Test Procedure 13 7.1. Scanning Procedure 13 7.2. Data Storage and Evaluation 15 8. Position of the wireless device in relation to the phantom 17 8.1. Head Position 17 8.2. Body Position 18 8.3. Hotspot Mode Exposure conditions 18 9. System Check 19 9.1. Tissue Dielectric Parameters 19 9.2. SAR System Check 20 10. SAR Exposure Limits 28 11. Conducted Power Measurement Results 29 12. Maximum Tune-up Limit 33 13. Antenna Location 35 14. SAR Measurement Results 36 15. Simultaneous Transmission analysis 54 16. TestSetup Photos 58	<u>5.</u>	Measurement Uncertainty	8
6.2.DASY5 E-field Probe System116.3.Phantoms126.4.Device Holder127.SAR Test Procedure137.1.Scanning Procedure137.2.Data Storage and Evaluation158.Position of the wireless device in relation to the phantom178.1.Head Position178.2.Body Position188.3.Hotspot Mode Exposure conditions189.System Check199.1.Tissue Dielectric Parameters199.2.SAR System Check2010.SAR Exposure Limits2811.Conducted Power Measurement Results2912.Maximum Tune-up Limit3313.Antenna Location3514.SAR Measurement Results3615.Simultaneous Transmission analysis5416.TestSetup Photos58	<u>6.</u>	SAR Measurements System Configuration	10
6.3.Phantoms126.4.Device Holder12Z.SAR Test Procedure137.1.Scanning Procedure137.2.Data Storage and Evaluation158.Position of the wireless device in relation to the phantom178.1.Head Position178.2.Body Position188.3.Hotspot Mode Exposure conditions189.System Check199.1.Tissue Dielectric Parameters199.2.SAR System Check2010.SAR Exposure Limits2811.Conducted Power Measurement Results2912.Maximum Tune-up Limit3313.Antenna Location3514.SAR Measurement Results3615.Simultaneous Transmission analysis5416.TestSetup Photos58	6.1.	SAR Measurement Set-up	10
6.4.Device Holder127.SAR Test Procedure137.1.Scanning Procedure137.2.Data Storage and Evaluation158.Position of the wireless device in relation to the phantom178.1.Head Position178.2.Body Position188.3.Hotspot Mode Exposure conditions189.System Check199.1.Tissue Dielectric Parameters199.2.SAR Exposure Limits2811.Conducted Power Measurement Results2912.Maximum Tune-up Limit3313.Antenna Location3514.SAR Measurement Results3615.Simultaneous Transmission analysis5416.TestSetup Photos58	6.2.	DASY5 E-field Probe System	11
7.SAR Test Procedure137.1.Scanning Procedure137.2.Data Storage and Evaluation158.Position of the wireless device in relation to the phantom178.1.Head Position178.2.Body Position188.3.Hotspot Mode Exposure conditions189.System Check199.1.Tissue Dielectric Parameters199.2.SAR System Check2010.SAR Exposure Limits2811.Conducted Power Measurement Results2912.Maximum Tune-up Limit3313.Antenna Location3514.SAR Measurement Results3615.Simultaneous Transmission analysis5416.TestSetup Photos58			
7.1.Scanning Procedure137.2.Data Storage and Evaluation158.Position of the wireless device in relation to the phantom178.1.Head Position178.2.Body Position188.3.Hotspot Mode Exposure conditions189.System Check199.1.Tissue Dielectric Parameters199.2.SAR System Check2010.SAR Exposure Limits2811.Conducted Power Measurement Results2912.Maximum Tune-up Limit3313.Antenna Location3514.SAR Measurement Results3615.Simultaneous Transmission analysis5416.TestSetup Photos58			
7.2.Data Storage and Evaluation158.Position of the wireless device in relation to the phantom178.1.Head Position178.2.Body Position188.3.Hotspot Mode Exposure conditions189.System Check199.1.Tissue Dielectric Parameters199.2.SAR System Check2010.SAR Exposure Limits2811.Conducted Power Measurement Results2912.Maximum Tune-up Limit3313.Antenna Location3514.SAR Measurement Results3615.Simultaneous Transmission analysis5416.TestSetup Photos58		SAR Test Procedure	
8.Position of the wireless device in relation to the phantom178.1.Head Position178.2.Body Position188.3.Hotspot Mode Exposure conditions189.System Check199.1.Tissue Dielectric Parameters199.2.SAR System Check2010.SAR Exposure Limits2811.Conducted Power Measurement Results2912.Maximum Tune-up Limit3313.Antenna Location3514.SAR Measurement Results3615.Simultaneous Transmission analysis5416.TestSetup Photos58		-	
8.1.Head Position178.2.Body Position188.3.Hotspot Mode Exposure conditions189.System Check199.1.Tissue Dielectric Parameters199.2.SAR System Check2010.SAR Exposure Limits2811.Conducted Power Measurement Results2912.Maximum Tune-up Limit3313.Antenna Location3514.SAR Measurement Results3615.Simultaneous Transmission analysis5416.TestSetup Photos58		-	
8.2.Body Position188.3.Hotspot Mode Exposure conditions189.System Check199.1.Tissue Dielectric Parameters199.2.SAR System Check2010.SAR Exposure Limits2811.Conducted Power Measurement Results2912.Maximum Tune-up Limit3313.Antenna Location3514.SAR Measurement Results3615.Simultaneous Transmission analysis5416.TestSetup Photos58	<u>8.</u>		17
8.3.Hotspot Mode Exposure conditions189.System Check199.1.Tissue Dielectric Parameters199.2.SAR System Check2010.SAR Exposure Limits2811.Conducted Power Measurement Results2912.Maximum Tune-up Limit3313.Antenna Location3514.SAR Measurement Results3615.Simultaneous Transmission analysis5416.TestSetup Photos58			
9.System Check199.1.Tissue Dielectric Parameters199.2.SAR System Check2010.SAR Exposure Limits2811.Conducted Power Measurement Results2912.Maximum Tune-up Limit3313.Antenna Location3514.SAR Measurement Results3615.Simultaneous Transmission analysis5416.TestSetup Photos58		•	
9.1.Tissue Dielectric Parameters199.2.SAR System Check2010.SAR Exposure Limits2811.Conducted Power Measurement Results2912.Maximum Tune-up Limit3313.Antenna Location3514.SAR Measurement Results3615.Simultaneous Transmission analysis5416.TestSetup Photos58			
9.2.SAR System Check2010.SAR Exposure Limits2811.Conducted Power Measurement Results2912.Maximum Tune-up Limit3313.Antenna Location3514.SAR Measurement Results3615.Simultaneous Transmission analysis5416.TestSetup Photos58			
10.SAR Exposure Limits2811.Conducted Power Measurement Results2912.Maximum Tune-up Limit3313.Antenna Location3514.SAR Measurement Results3615.Simultaneous Transmission analysis5416.TestSetup Photos58			
11.Conducted Power Measurement Results2912.Maximum Tune-up Limit3313.Antenna Location3514.SAR Measurement Results3615.Simultaneous Transmission analysis5416.TestSetup Photos58			
12.Maximum Tune-up Limit3313.Antenna Location3514.SAR Measurement Results3615.Simultaneous Transmission analysis5416.TestSetup Photos58			
13.Antenna Location3514.SAR Measurement Results3615.Simultaneous Transmission analysis5416.TestSetup Photos58			
14.SAR Measurement Results3615.Simultaneous Transmission analysis5416.TestSetup Photos58			
15.Simultaneous Transmission analysis5416.TestSetup Photos58			
16. TestSetup Photos 58			
		-	58
			60

1. Test Standards and Report version

1.1. Test Standards

The tests were performed according to following standards:

FCC 47 Part 2.1093: Radiofrequency Radiation Exposure Evaluation: Portable Devices

<u>IEEE Std C95.1,1999</u>: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 KHz to 300 GHz.

<u>IEEE Std 1528™-2013</u>: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.

KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04: SAR Measurement Requirements for 100 MHz to 6 GHz

<u>KDB 865664 D02 RF Exposure Reporting v01r02:</u> RF Exposure Compliance Reporting and Documentation Considerations

KDB 447498 D01 General RF Exposure Guidance v06: Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies

<u>KDB 248227 D01 802 11 Wi-Fi SAR v02r02:</u> SAR Measurement Proceduresfor802.11 a/b/g Transmitters <u>KDB 941225 D01 3G SAR Procedures v03r01:</u> SAR Measurement Procedures for 3G Devices

KDB 648474 D04 Handset SAR v01r03: SAR Evaluation Considerations for Wireless Handsets KDB 941225 D06 Hotspot Mode v02r01: SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities

1.2. Report version

Revision No.	Date of issue	Description
N/A	2018-05-29	Original

2. <u>Summary</u>

2.1. Client Information

Applicant:	Azumi S.A
Address:	Avenida Aquilino de la Guardia con Calle 47, PH Ocean Plaza, Piso 16 of. 16-01, Marbella, Ciudad de Panama, Panama
Manufacturer:	AZUMI HK LTD
Address:	FLAT/RM 18 BLK 1 14/F GOLDEN INDUSTRIAL BUILDING 16-26 KWAI TAK STREET KWAI CHUNG,HK

2.2. Product Description

Name of EUT:	Mobile Phone					
Trade Mark:	AZUMI					
Model No.:	KIREI A5Q PLUS	KIREI A5Q PLUS				
Listed Model(s):	-					
Power supply:	DC 3.7V					
Device Category:	Portable					
Product stage:	Production unit					
RF Exposure Environment:	General Populatio	n / Uncontrolled				
IMEI:	353018030000116	6				
Hardware version:	S511_MB_V1.3					
Software version:	Azumi_s5015_bas	se_v001(2018041	6)			
Maximum SAR Value						
Separation Distance:	Head: 0mm Body: 10mm					
	Test location:	PCE	DTS	Simultaneous TX		
	Head:	0.245 W/Kg	0.370 W/Kg	0.615 W/Kg		
Max Report SAR Value (1g):	Body:	0.651 W/Kg	0.170 W/Kg	0.821 W/Kg		
	Hotsopt:	0.651 W/Kg	0.170 W/Kg	0.821 W/Kg		
GSM						
Support Network:	GSM,GPRS,EGPI	RS				
Support Band:	GSM850,PCS190	0				
Modulation:	GSM/GPRS/EGPI	RS:GMSK				
	EGPRS:8PSK					
GPRS Class:	12					
EGPRS Class:	12					
Antenna type:	PIFA Antenna					

WCDMA	
Operation Band:	WCDMA Band II, WCDMA Band V
Power Class:	Power Class 3
Modilation Type:	QPSK/16QAM/64QAM/HSUPA/HSDPA
DC-HSUPA Release Version:	Not Supported
Antenna type:	PIFA Antenna
WIFI 2.4G	
Supported type:	802.11b/802.11g/802.11n(HT20)
Modulation:	DSSS for 802.11b
	OFDM for 802.11g/802.11n(HT20)
Operation frequency:	2412MHz~2462MHz
Channel number:	11
Channel separation:	5MHz
Antenna type:	PIFA Antenna
Bluetooth	
Version:	Supported BT4.0+EDR
Modulation:	GFSK, π/4DQPSK, 8DPSK
Operation frequency:	2402MHz~2480MHz
Channel number:	79
Channel separation:	1MHz
Antenna type:	PIFA Antenna
Bluetooth-BLE	
Version:	Supported BT4.0+BLE
Modulation:	GFSK
Operation frequency:	2402MHz~2480MHz
Channel number:	40
Channel separation:	2MHz
Antenna type:	PIFA Antenna
Remark: 1. The EUT battery mus power	t be fully charged and checked periodically during the test to ascertain uniform

3. Test Environment

3.1. Test laboratory

Laboratory: Shenzhen Huatongwei International Inspection Co., Ltd. Address: 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China

3.2. Test Facility

CNAS-Lab Code: L1225

Shenzhen Huatongwei International Inspection Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No.: 3902.01

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 762235

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 762235.

IC-Registration No.: 5377B-1

Two 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 5377B-1.

ACA

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our A2LA accreditation.

4. Equipments Used during the Test

				Calibration		
Test Equipment	uipment Manufacturer Type/Model		Serial Number	Last Cal.	Due Date	
Data Acquisition Electronics DAEx	SPEAG	DAE4	1549	2018/04/25	2019/04/24	
E-field Probe	SPEAG	EX3DV4	7494	2018/02/26	2019/02/25	
System Validation Dipole	SPEAG	D835V2	4d238	2018/02/19	2021/02/18	
System Validation Dipole	SPEAG	D1900V2	5d226	2018/02/22	2021/02/21	
System Validation Dipole	SPEAG	D2450V2	1009	2018/02/05	2021/02/04	
Dielectric Assessment Kit	SPEAG	DAK-3.5	1267	2018/03/01	2019/02/28	
Network analyzer	Agilent	N9923A	MY51491493	2017/09/05	2018/09/04	
Power meter	Agilent	N1914A	MY52090010	2018/03/22	2019/03/21	
Power sensor	Agilent	E9304A	MY52140008	2018/03/22	2019/03/21	
Power sensor	Agilent	E9301H	MY54470001	2017/06/02	2018/06/01	
Signal Generator	ROHDE & SCHWARZ	SMB100A	175248	2017/09/02	2018/09/01	
Universal Radio Communication Tester	ROHDE & SCHWARZ	CMU200	112012	2017/11/11	2018/11/10	
Dual Directional Coupler	Agilent	772D	MY46151257	2018/03/22	2019/03/21	
Dual Directional Coupler	Agilent	778D	MY48220612	2018/03/22	2019/03/21	
Power Amplifier	Mini-Circuits	ZHL-42W	QA1202003	2017/11/27	2018/11/26	

Note:

1. The Probe, Dipole and DAE calibration reference to the Appendix A and B.

2. Referring to KDB865664 D01, the dipole calibration interval can be extended to 3 years with justificatio. The dipole are also not physically damaged or repaired during the interval.

5. <u>Measurement Uncertainty</u>

			Measu	rement U	ncerta	ainty				
No.	Error Description	Туре	Uncertainty Value	Probably Distribution	Div.	(Ci) 1g	(Ci) 10g	Std. Unc. (1g)	Std. Unc. (10g)	Degree of freedom
Measureme		-								
1	Probe calibration	В	6.0%	N	1	1	1	6.0%	6.0%	8
2	Axial isotropy	В	4.70%	R	$\sqrt{3}$	0.7	0.7	1.90%	1.90%	8
3	Hemispherical isotropy	В	9.60%	R	$\sqrt{3}$	0.7	0.7	3.90%	3.90%	8
4	Boundary Effects	В	1.00%	R	$\sqrt{3}$	1	1	0.60%	0.60%	8
5	Probe Linearity	В	4.70%	R	$\sqrt{3}$	1	1	2.70%	2.70%	8
6	Detection limit	В	1.00%	R	$\sqrt{3}$	1	1	0.60%	0.60%	∞
7	RF ambient conditions-noise	В	0.00%	R	$\sqrt{3}$	1	1	0.00%	0.00%	8
8	RF ambient conditions- reflection	В	0.00%	R	√3	1	1	0.00%	0.00%	8
9	Response time	В	0.80%	R	$\sqrt{3}$	1	1	0.50%	0.50%	8
10	Integration time	В	5.00%	R	$\sqrt{3}$	1	1	2.90%	2.90%	8
11	RF ambient	В	3.00%	R	$\sqrt{3}$	1	1	1.70%	1.70%	8
12	Probe positioned mech. restrictions	В	0.40%	R	$\sqrt{3}$	1	1	0.20%	0.20%	8
13	Probe positioning with respect to phantom shell	В	2.90%	R	√3	1	1	1.70%	1.70%	8
14	Max.SAR evalation	В	3.90%	R	$\sqrt{3}$	1	1	2.30%	2.30%	8
Test Sampl										
15	Test sample positioning	A	1.86%	N	1	1	1	1.86%	1.86%	8
16	Device holder uncertainty	A	1.70%	N	1	1	1	1.70%	1.70%	8
17	Drift of output power	В	5.00%	R	$\sqrt{3}$	1	1	2.90%	2.90%	8
Phantom a		-				1			•	
18	Phantom uncertainty	В	4.00%	R	$\sqrt{3}$	1	1	2.30%	2.30%	8
19	Liquid conductivity (target)	В	5.00%	R	√3	0.64	0.43	1.80%	1.20%	8
20	Liquid conductivity (meas.)	А	0.50%	N	1	0.64	0.43	0.32%	0.26%	8
21	Liquid permittivity (target)	В	5.00%	R	$\sqrt{3}$	0.64	0.43	1.80%	1.20%	8
22	Liquid cpermittivity (meas.)	А	0.16%	N	1	0.64	0.43	0.10%	0.07%	8
Combined s	standard uncertainty	<i>u_c</i> = 1	$\sum_{i=1}^{22} c_i^2 u_i^2$	/	/	/	/	9.79%	9.67%	∞
	ded uncertainty ce interval of 95 %)	u,	$u_c = 2u_c$	R	K=2	/	/	19.57%	19.34%	8

			System	n Check U	ncert	ainty				
No.	Error Description	Туре	Uncertainty Value	Probably Distribution	Div.	(Ci) 1g	(Ci) 10g	Std. Unc. (1g)	Std. Unc. (10g)	Degree of freedom
	ent System	1			I	1	1	1	I	I
1	Probe calibration	В	6.0%	N	1	1	1	6.0%	6.0%	∞
2	Axial isotropy	В	4.70%	R	$\sqrt{3}$	0.7	0.7	1.90%	1.90%	∞
3	Hemispherical isotropy	В	9.60%	R	$\sqrt{3}$	0.7	0.7	3.90%	3.90%	∞
4	Boundary Effects	В	1.00%	R	$\sqrt{3}$	1	1	0.60%	0.60%	∞
5	Probe Linearity	В	4.70%	R	$\sqrt{3}$	1	1	2.70%	2.70%	∞
6	Detection limit	В	1.00%	R	$\sqrt{3}$	1	1	0.60%	0.60%	∞
7	RF ambient conditions-noise	В	0.00%	R	$\sqrt{3}$	1	1	0.00%	0.00%	∞
8	RF ambient conditions- reflection	В	0.00%	R	√3	1	1	0.00%	0.00%	∞
9	Response time	В	0.80%	R	√3	1	1	0.50%	0.50%	∞
10	Integration time	В	5.00%	R	$\sqrt{3}$	1	1	2.90%	2.90%	∞
11	RF ambient	В	3.00%	R	$\sqrt{3}$	1	1	1.70%	1.70%	∞
12	Probe positioned mech. restrictions	В	0.40%	R	$\sqrt{3}$	1	1	0.20%	0.20%	8
13	Probe positioning with respect to phantom shell	В	2.90%	R	√3	1	1	1.70%	1.70%	œ
14	Max.SAR evalation	В	3.90%	R	$\sqrt{3}$	1	1	2.30%	2.30%	∞
System va	lidation source-dipole	1	0	0			1		1	I
15	Deviation of experimental dipole from numerical dipole	A	1.58%	Ν	1	1	1	1.58%	1.58%	×
16	Dipole axis to liquid distance	А	1.35%	N	1	1	1	1.35%	1.35%	∞
17	Input power and SAR drift	В	4.00%	R	$\sqrt{3}$	1	1	2.30%	2.30%	∞
Phantom a		r	1	1	r	1	1	1		r
18	Phantom uncertainty	В	4.00%	R	$\sqrt{3}$	1	1	2.30%	2.30%	∞
20	Liquid conductivity (meas.)	А	0.50%	N	1	0.64	0.43	0.32%	0.26%	∞
22	Liquid cpermittivity (meas.)	А	0.16%	N	1	0.64	0.43	0.10%	0.07%	∞
	standard uncertainty	<i>u_c</i> = 1	$\sum_{i=1}^{22} c_i^2 u_i^2$	/	/	/	/	8.80%	8.79%	∞
	nded uncertainty ice interval of 95 %)	u,	$u_c = 2u_c$	R	K=2	/	/	17.59%	17.58%	∞

6. SAR Measurements System Configuration

6.1. SAR Measurement Set-up

The DASY5 system for performing compliance tests consists of the following items:

A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).

A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.

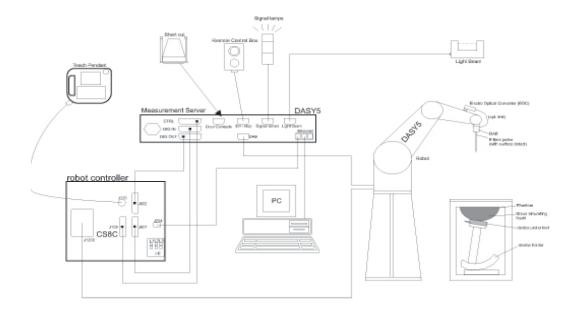
A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, ADconversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

A unit to operate the optical surface detector which is connected to the EOC.

The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY5 measurement server.

The DASY5 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows 2003.

DASY5 software and SEMCAD data evaluation software.


Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.

The generic twin phantom enabling the testing of left-hand and right-hand usage.

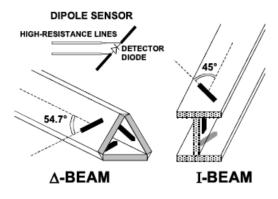
The device holder for handheld Mobile Phones.

Tissue simulating liquid mixed according to the given recipes.

System validation dipoles allowing to validate the proper functioning of the system.

6.2. DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe EX3DV4 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.


• Probe Specification

Construction	Symmetrical design with triangular core Interleaved sensors Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)	
Calibration	ISO/IEC 17025 calibration service available.	
Frequency	10 MHz to 6 GHz; Linearity: ± 0.2 dB (30 MHz to 6 GHz)	
Directivity	± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis)	
Dynamic Range	10 μW/g to > 100 W/kg; Linearity: ± 0.2 dB	
Dimensions	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Distance from probe tip to dipole centers: 1.0 mm	A
Application	General dosimetry up to 6 GHz Dosimetry in strong gradient fields Compliance tests of Mobile Phones	
Compatibility	DASY3, DASY4, DASY52 SAR and higher, EASY4/MRI	

• Isotropic E-Field Probe

The isotropic E-Field probe has been fully calibrated and assessed for isotropicity, and boundary effect within a controlled environment. Depending on the frequency for which the probe is calibrated the method utilized for calibration will change.

The E-Field probe utilizes a triangular sensor arrangement as detailed in the diagram below:

6.3. Phantoms

The phantom used for all tests i.e. for both system checks and device testing, was the twin-headed "SAM Phantom", manufactured by SPEAG. The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region, where shell thickness increases to 6mm).

System checking was performed using the flat section, whilst Head SAR tests used the left and right head profile sections. Body SAR testing also used the flat section between the head profiles.

SAM Twin Phantom

6.4. Device Holder

The device was placed in the device holder (illustrated below) that is supplied by SPEAG as an integral part of the DASY system.

The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

Device holder supplied by SPEAG

7. SAR Test Procedure

7.1. Scanning Procedure

The DASY5 installation includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT's output power and should vary max. ± 5 %.

The "surface check" measurement tests the optical surface detection system of the DASY5 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above ± 0.1 mm). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe (It does not depend on the surface reflectivity or the probe angle to the surface within $\pm 30^{\circ}$.)

Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values before running a detailed measurement around the hot spot.Before starting the area scan a grid spacing of 15 mm x 15 mm is set. During the scan the distance of the probe to the phantom remains unchanged. After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

Zoom Scan

After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm.

Spatial Peak Detection

The procedure for spatial peak SAR evaluation has been implemented and can determine values of masses of 1g and 10g, as well as for user-specific masses. The DASY5 system allows evaluations that combine measured data and robot positions, such as:

- maximum search
- extrapolation
- boundary correction
- peak search for averaged SAR

During a maximum search, global and local maxima searches are automatically performed in 2-D after each Area Scan measurement with at least 6 measurement points. It is based on the evaluation of the local SAR gradient calculated by the Quadratic Shepard's method. The algorithm will find the global maximum and all local maxima within -2 dB of the global maxima for all SAR distributions.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation. Extrapolation routines require at least 10 measurement points in 3-D space.

They are used in the Zoom Scan to obtain SAR values between the lowest measurement points and the inner phantom surface. The routine uses the modified Quadratic Shepard's method for extrapolation.

A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 5mm steps.

able 1: Area and Zo				
			\leq 3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface			$5 \text{ mm} \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \text{ mm} \pm 0.5 \text{ mm}$
Maximum probe angle surface normal at the r			$30^{\circ} \pm 1^{\circ}$	$20^{\circ} \pm 1^{\circ}$
			$\leq 2 \text{ GHz:} \leq 15 \text{ mm}$ 2 – 3 GHz: $\leq 12 \text{ mm}$	$\begin{array}{l} 3-4 \ \mathrm{GHz:} \leq 12 \ \mathrm{mm} \\ 4-6 \ \mathrm{GHz:} \leq 10 \ \mathrm{mm} \end{array}$
Maximum area scan sp	patial resol	ution: Δx_{Area} , Δy_{Area}	When the x or y dimension measurement plane orientat above, the measurement res corresponding x or y dimen at least one measurement po	ion, is smaller than the olution must be \leq the sion of the test device with
Maximum zoom scan	Maximum zoom scan spatial resolution: Δx_{Zoom} , Δy_{Zoom}		$\leq 2 \text{ GHz:} \leq 8 \text{ mm}$ 2 - 3 GHz: $\leq 5 \text{ mm}^*$	$3 - 4 \text{ GHz:} \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz:} \le 4 \text{ mm}^*$
	uniform	grid: $\Delta z_{\text{Zoom}}(n)$	\leq 5 mm	$3 - 4 \text{ GHz:} \le 4 \text{ mm}$ $4 - 5 \text{ GHz:} \le 3 \text{ mm}$ $5 - 6 \text{ GHz:} \le 2 \text{ mm}$
Maximum zoom scan spatial resolution, normal to phantom surface	an spatial solution, normal to nantom surfacegraded grid $\Delta z_{Zoom}(1)$: between 1st two points closest to phantom surface $\Delta z_{Zoom}(n>1)$: between subsequent points		\leq 4 mm	$3-4 \text{ GHz:} \le 3 \text{ mm}$ $4-5 \text{ GHz:} \le 2.5 \text{ mm}$ $5-6 \text{ GHz:} \le 2 \text{ mm}$
			$\leq 1.5 \cdot \Delta z_{Zoc}$	om(n-1) mm
Minimum zoom scan volume			≥ 30 mm	$3 - 4 \text{ GHz} \ge 28 \text{ mm}$ $4 - 5 \text{ GHz} \ge 25 \text{ mm}$ $5 - 6 \text{ GHz} \ge 22 \text{ mm}$

Table 1: Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v04

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see IEEE Std 1528-2013 for details.

* When zoom scan is required and the <u>reported</u> SAR from the *area scan based 1-g SAR estimation* procedures of KDB Publication 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

7.2. Data Storage and Evaluation

Data Storage

The DASY5 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), s together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DA4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [W/kg], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters:	Sensitivity:	Normi, ai0, ai1, ai2
	Conversion factor:	ConvFi
	Diode compression point:	Dcpi
Device parameters:	Frequency:	f
	Crest factor:	cf
Media parameters:	Conductivity:	σ
-	Density:	ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY5 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

 $V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$

Vi: compensated signal of channel (i = x, y, z)

Ui: input signal of channel (i = x, y, z)

crest factor of exciting field (DASY parameter) cf:

dcpi: diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E – fieldprobes :
$$E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$$

– fieldprobes : $H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$

$$\mathbf{H} - \text{fieldprobes}: \qquad H_i = \mathbf{H}_i = \mathbf{H}_i$$

Vi: compensated signal of channel (i = x, y, z) Normi: sensor sensitivity of channel (i = x, y, z), [mV/(V/m)2] for E-field Probes ConvF: sensitivity enhancement in solution sensor sensitivity factors for H-field probes aij: f: carrier frequency [GHz] Ei: electric field strength of channel i in V/m Hi: magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

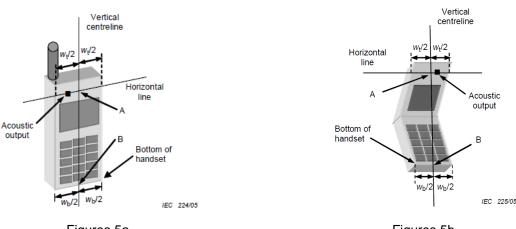
$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1'000}$$

- SAR: local specific absorption rate in W/kg
- Etot: total field strength in V/m
- σ: conductivity in [mho/m] or [Siemens/m]
- ρ: equivalent tissue density in g/cm3

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid.

8. Position of the wireless device in relation to the phantom

8.1. Head Position

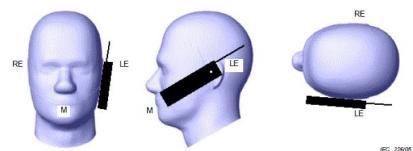

The wireless device define two imaginary lines on the handset, the vertical centreline and the horizontal line, for the handset in vertical orientation as shown in Figures 5a and 5b.

The vertical centreline passes through two points on the front side of the handset: the midpoint of the width W_t of the handset at the level of the acoustic output (point A in Figures 5a and 5b), and the midpoint of the width W_b of the bottom of the handset (point B).

The horizontal line is perpendicular to the vertical centreline and passes through the centre of the acoustic output (see Figures 5a and 5b). The two lines intersect at point A.

Note that for many handsets, point A coincides with the centre of the acoustic output. However, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centreline is not necessarily parallel to the front face of the handset (see Figure 5b), especially for clam-shell handsets,

handsets with flip cover pieces, and other irregularly shaped handsets.

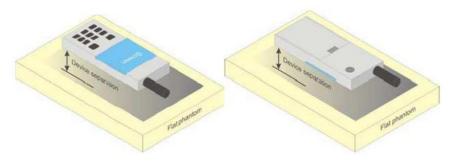

Figures 5a

- Wt Width of the handset at the level of the acoustic
- W_b Width of the bottom of the handset
- A Midpoint of the widthwt of the handset at the level of the acoustic output
- B Midpoint of the width wb of the bottom of the handset

Cheek position

Tilt position

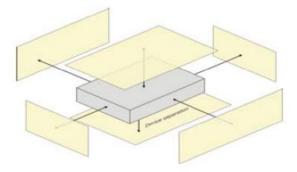
Picture 2 Cheek position of the wireless device on the left side of SAM


RE ME LE

Picture 3 Tilt position of the wireless device on the left side of SAM

8.2. Body Position

Devices that support transmission while used with body-worn accessories must be tested for body-worn accessory SAR compliance, typically according to the smallest test separation distance required for the group of body-worn accessories with similar operating and exposure characteristics.


Devices that are designed to operate on the body of users using lanyards and straps or without requiring additional body-worn accessories must be tested for SAR compliance using a conservative minimum test separation distance \leq 10 mm to support compliance.

Picture 4 Test positions for body-worn devices

8.3. Hotspot Mode Exposure conditions

The hotspot mode and body-worn accessory SAR test configurations may overlap for handsets. When the same wireless mode transmission configurations for voice and data are required for SAR measurements, the more conservative configuration with a smaller separation distance should be tested for the overlapping SAR configurations. This typically applies to the back and front surfaces of a handset when SAR is required for both hotspot mode and body-worn accessory exposure conditions. Depending on the form factor and dimensions of a device, the test separation distance used for hotspot mode SAR measurement is either **10 mm** or that used in the body-worn accessory configuration, whichever is less for devices with dimension > 9 cm x 5 cm. For smaller devices with dimensions ≤ 9 cm x 5 cm because of a greater potential for next to body use a test separation of ≤ 5 mm must be used.

Picture 5 Test positions for Hotspot Mode

9. System Check

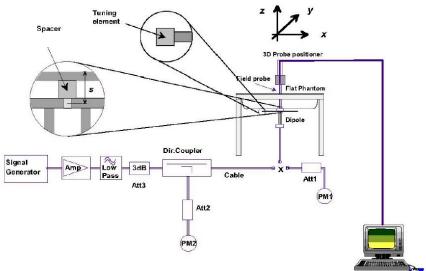
9.1. Tissue Dielectric Parameters

It's satisfying the latest tissue dielectric parameters requirements proposed by the KDB865664.

Tissue dielectric parameters for head and body phantoms									
Target Frequency	He	ad	E	Body					
(MHz)	٤r	σ(s/m)	٤r	σ(s/m)					
835	41.5	0.90	55.2	0.97					
1800-2000	40.0	1.40	53.3	1.52					
2450	39.2	1.80	52.7	1.95					

Check Result:

	Dielectric performance of Head tissue simulating liquid									
Frequency		٤r		σ(s/m)		Delta	Linsit	Temp	5.4	
(MHz)	Target	Measured	Target	Measured	(ɛr)	(σ)	Limit	(°C)	Date	
835	41.50	42.50	0.90	0.93	2.41%	3.56%	±10%	22	2018-05-21	
1900	40.00	41.67	1.40	1.47	4.16%	4.71%	±10%	22	2018-05-23	
2450	39.20	40.96	1.80	1.84	4.48%	2.11%	±10%	22	2018-05-25	


	Dielectric performance of Body tissue simulating liquid										
Frequency		εr σ(s/m)		Delta	Delta	1.1.1.11	Temp	Data			
(MHz)	Target	Measured	Target	Measured	(ɛr)	(σ)	Limit	(°C)	Date		
835	55.20	55.40	0.97	0.97	0.36%	-0.41%	±10%	22	2018-05-22		
1900	53.30	53.72	1.52	1.55	0.79%	1.97%	±10%	22	2018-05-24		
2450	52.70	53.03	1.95	2.00	0.63%	2.56%	±10%	22	2018-05-25		

9.2. SAR System Check

The purpose of the system check is to verify that the system operates within its specifications at the decice test frequency. The system check is simple check of repeatability to make sure that the system works correctly at the time of the compliance test;

System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system $(\pm 10\%)$.

System check is performed regularly on all frequency bands where tests are performed with the DASY5 system.



Photo of Dipole Setup

Check Result:

	Head										
Frequency	1g S	AR(1W)	10g S	SAR(1W) Delta		Delta Delta		Delta		Temp	
(MHz)	Target	Measured	Target	Measured	(1a)		Limit	(°C)	Date		
835	9.51	9.92	6.15	6.52	4.31%	6.02%	±10%	22	2018-05-21		
1900	40.30	41.60	21.10	21.68	3.23%	2.75%	±10%	22	2018-05-23		
2450	51.50	50.40	24.10	23.44	-2.14%	-2.74%	±10%	22	2018-05-25		

	Body										
Frequency	1g S	AR(1W)	10g S	SAR(1W)	AR(1W) Delta			Temp			
(MHz)	Target	Measured	Target	Measured (1g)		(10g)	Limit	(°C)	Date		
835	9.64	10.08	6.32	6.64	4.56%	5.06%	±10%	22	2018-05-22		
1900	39.80	41.60	20.90	21.68	4.52%	3.73%	±10%	22	2018-05-24		
2450	49.40	50.00	23.30	23.32	1.21%	0.09%	±10%	22	2018-05-25		

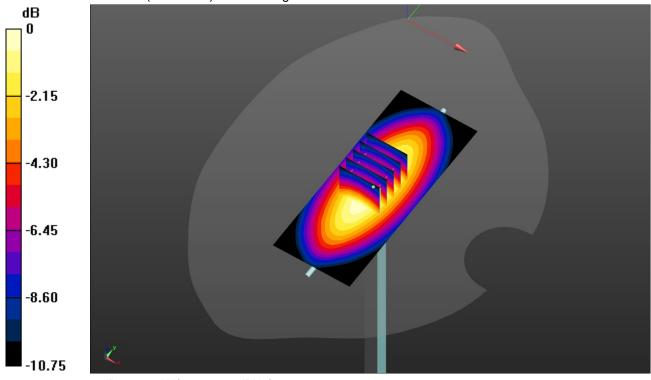
Plots of System Performance Check

System Performance Check-Head 835MHz

DUT: D835V2; Type: D835V2; Serial: 4d238 Date: 2018-05-21 Communication System: UID 0, CW (0); Frequency: 835 MHz Medium parameters used: f = 835 MHz; σ = 0.932 S/m; ϵ_r = 42.5; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7494; ConvF(10.73, 10.73, 10.73); Calibrated: 2/26/2018;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1549; Calibrated: 4/25/2018
- Phantom: Twin-SAM V8.0; Type: QD 000 P41 AA; Serial: 1947
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)


Head/d=15mm, Pin=250mW/Area Scan (41x101x1): Interpolated grid: dx=1.500 mm,

dy=1.500 mm

Maximum value of SAR (interpolated) = 3.51 W/kg

Head/d=15mm, Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm Reference Value = 66.38 V/m; Power Drift = -0.19 dB Peak SAR (extrapolated) = 3.78 W/kg SAR(1 g) = 2.48 W/kg; SAR(10 g) = 1.63 W/kg Maximum value of SAR (measured) = 3.34 W/kg

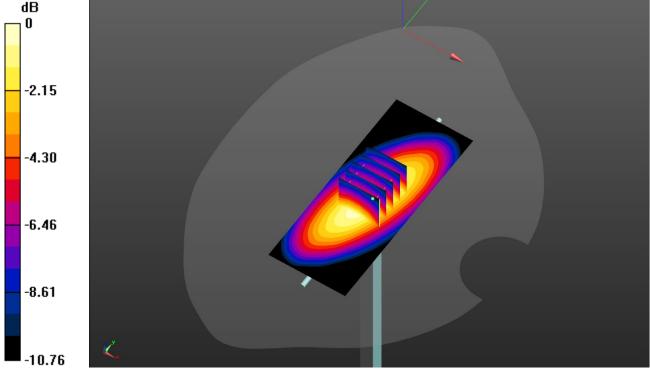
0 dB = 3.34 W/kg = 5.24 dBW/kg

System Performance Check-Body 835MHz

DUT: D835V2; Type: D835V2; Serial: 4d238 Date: 2018-05-22 Communication System: UID 0, CW (0); Frequency: 835 MHz Medium parameters used: f = 835 MHz; σ = 0.966 S/m; ϵ_r = 55.403; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7494; ConvF(10.5, 10.5, 10.5); Calibrated: 2/26/2018;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1549; Calibrated: 4/25/2018
- Phantom: Twin-SAM V8.0; Type: QD 000 P41 AA; Serial: 1947
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)


Body/d=15mm,Pin=250mW/Area Scan (41x101x1): Interpolated grid: dx=1.500 mm,

dy=1.500 mm Maximum value of SAR (interpolated) = 3.40 W/kg

Body/d=15mm,Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 61.67 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 3.97 W/kg SAR(1 g) = 2.52 W/kg; SAR(10 g) = 1.66 W/kg

Maximum value of SAR (measured) = 3.44 W/kg

0 dB = 3.44 W/kg = 5.37 dBW/kg

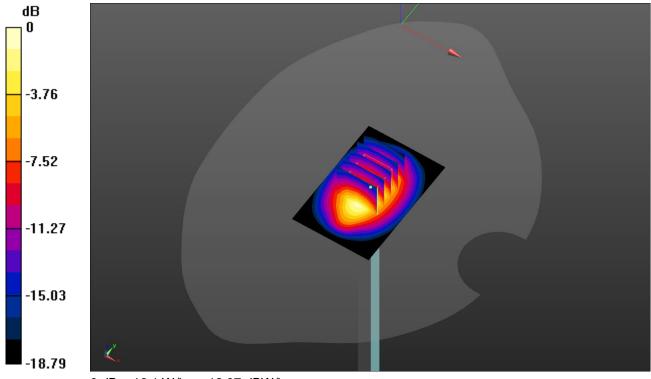
System Performance Check-Head 1900MHz

DUT: D1900V2; Type: D1900V2; Serial: 5d226 Date:2018-05-23 Communication System: UID 0, CW (0); Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; σ = 1.466 S/m; ϵ_r = 41.665; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7494; ConvF(8.83, 8.83, 8.83); Calibrated: 2/26/2018;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1549; Calibrated: 4/25/2018
- Phantom: Twin-SAM V8.0; Type: QD 000 P41 AA; Serial: 1947
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Head/d=10mm,Pin=250mW/Area Scan (41x61x1): Interpolated grid: dx=1.500 mm,


dy=1.500 mm

Maximum value of SAR (interpolated) = 17.1 W/kg

Head/d=10mm,Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 112.4 V/m; Power Drift = -0.17 dB Peak SAR (extrapolated) = 19.5 W/kg SAR(1 g) = 10.4 W/kg; SAR(10 g) = 5.42 W/kg

Maximum value of SAR (measured) = 16.1 W/kg

0 dB = 16.1 W/kg = 12.07 dBW/kg

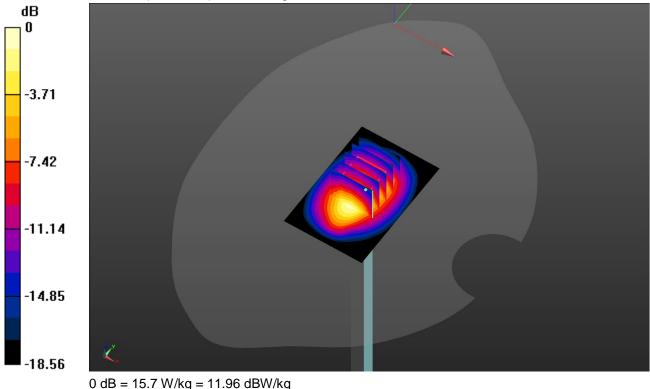
System Performance Check-Body 1900MHz

DUT: D1900V2; Type: D1900V2; Serial: 5d226 Date:2018-05-24 Communication System: UID 0, CW (0); Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; σ = 1.553 S/m; ϵ_r = 53.719; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7494; ConvF(8.42, 8.42, 8.42); Calibrated: 2/26/2018;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1549; Calibrated: 4/25/2018
- Phantom: Twin-SAM V8.0; Type: QD 000 P41 AA; Serial: 1947
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Body/d=10mm,Pin=250mW/Area Scan (41x61x1): Interpolated grid: dx=1.500 mm,


dy=1.500 mm

Maximum value of SAR (interpolated) = 16.4 W/kg

Body/d=10mm,Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

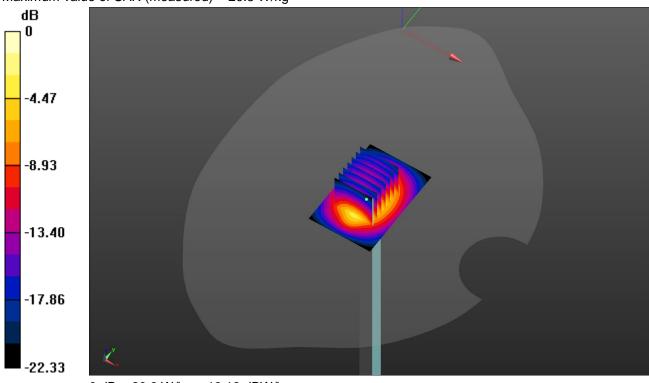
dy=8mm, dz=5mm Reference Value = 105.9 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 18.9 W/kg SAR(1 g) = 10.4 W/kg; SAR(10 g) = 5.42 W/kg

Maximum value of SAR (measured) = 15.7 W/kg

SystemPerformanceCheck-Head 2450MHz

DUT: D2450V2; Type: D2450V2; Serial: 1009 Date:2018-05-25 Communication System: UID 0, CW (0); Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; σ = 1.838 S/m; ϵ_r = 40.956; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:


- Probe: EX3DV4 SN7494; ConvF(8.27, 8.27, 8.27); Calibrated: 2/26/2018;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1549; Calibrated: 4/25/2018
- Phantom: Twin-SAM V8.0; Type: QD 000 P41 AA; Serial: 1947
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Head/d=10mm,Pin=250mW/Area Scan (41x61x1): Interpolated grid: dx=1.200 mm,

dy=1.200 mm Maximum value of SAR (interpolated) = 21.1 W/kg

Head/d=10mm,Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

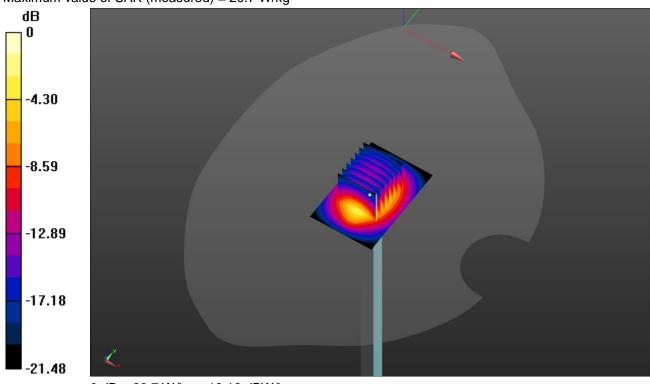
dy=5mm, dz=5mm Reference Value = 110.0 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 26.2 W/kg **SAR(1 g) = 12.6 W/kg; SAR(10 g) = 5.86 W/kg** Maximum value of SAR (measured) = 20.8 W/kg

0 dB = 20.8 W/kg = 13.18 dBW/kg

SystemPerformanceCheck-Body 2450MHz

DUT: D2450V2; Type: D2450V2; Serial: 1009 Date:2018-05-25 Communication System: UID 0, CW (0); Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; σ = 2.001 S/m; ϵ_r = 53.03; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:


- Probe: EX3DV4 SN7494; ConvF(8.08, 8.08, 8.08); Calibrated: 2/26/2018;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1549; Calibrated: 4/25/2018
- Phantom: Twin-SAM V8.0; Type: QD 000 P41 AA; Serial: 1947
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Body/d=10mm,Pin=250mW/Area Scan (41x61x1): Interpolated grid: dx=1.200 mm,

dy=1.200 mm Maximum value of SAR (interpolated) = 21.1 W/kg

Body/d=10mm,Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm Reference Value = 105.6 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 25.7 W/kg SAR(1 g) = 12.5 W/kg; SAR(10 g) = 5.83 W/kg Maximum value of SAR (measured) = 20.7 W/kg

0 dB = 20.7 W/kg = 13.16 dBW/kg

10. SAR Exposure Limits

SAR assessments have been made in line with the requirements of ANSI/IEEE C95.1-1992

	Limit (W/kg)						
Type Exposure	General Population / Uncontrolled Exposure Environment	Occupational / Controlled Exposure Environment					
Spatial Average SAR (whole body)	0.08	0.4					
Spatial Peak SAR (1g cube tissue for head and trunk)	1.6	8.0					
Spatial Peak SAR (10g for limb)	4.0	20.0					

Population/Uncontrolled Environments: are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure.

Occupational/Controlled Environments: are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation).

11. Conducted Power Measurement Results

GSM Conducted Power

- 1. Per KDB 447498 D01, the maximum output power channel is used for SAR testing and further SAR test reduction
- 2. Per KDB 941225 D01, considering the possibility of e.g. 3rd party VoIP operation for Head and Bodyworn SAR test reduction for GSM and GPRS modes is determined by the source-base time-averaged output power including tune-up tolerance. The mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested. Therefore, the EUT was set in GPRS (3Tx slots) for GSM850 and GPRS (3Tx slots) for PCS1900.
- 3. Per KDB941225 D01, for hotspot SAR test reduction for GPRS modes is determined by the sourcebased time-averaged output power including tune-up tolerance, For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested. Therefore, the EUT was set in GPRS (3Tx slots) for GSM850 and GPRS (3Tx slots) for PCS1900.

		Condu	icted Power	(dBm)	Division	Avera	ager Power (dBm)
Mode:	GSM850	CH128	CH190	CH251	Division Factors	CH128	CH190	CH251
		824.2MHz	836.6MHz	848.8MHz	1 001010	824.2MHz	836.6MHz	848.8MHz
G	SM	33.10	33.14	33.03	-9.03	24.07	24.11	24.00
	1TXslot	32.88	32.91	32.81	-9.03	23.85	23.88	23.78
GPRS	2TXslots	32.78	32.77	32.67	-6.02	26.76	26.75	26.65
(GMSK)	3TXslots	31.99	32.03	31.93	-4.26	27.73	27.77	27.67
	4TXslots	30.39	30.41	30.34	-3.01	27.38	27.40	27.33
	1TXslot	28.23	28.14	28.17	-9.03	19.20	19.11	19.14
EGPRS	2TXslots	27.46	27.38	27.27	-6.02	21.44	21.36	21.25
(8PSK)	3TXslots	25.73	25.83	25.51	-4.26	21.47	21.57	21.25
	4TXslots	25.32	24.96	25.09	-3.01	22.31	21.95	22.08
		Condu	icted Power	(dBm)	<u></u>	Avera	ager Power (dBm)
Mode: F	PCS1900	CH512	CH661	CH810	Division Factors	CH512	CH661	CH810
		1850.2MHz	1880.0MHz	1909.8MHz	1 001013	1850.2MHz	1880.0MHz	1909.8MHz
G	SM	29.22	29.32	29.11	-9.03	20.19	20.29	20.08
	1TXslot	29.08	29.20	28.97	-9.03	20.05	20.17	19.94
GPRS	2TXslots	29.02	29.12	28.85	-6.02	23.00	23.10	22.83
(GMSK)	3TXslots	28.21	28.04	28.11	-4.26	23.95	23.78	23.85
	4TXslots	26.57	26.63	26.51	-3.01	23.56	23.62	23.50
	1TXslot	24.72	24.84	24.89	-9.03	15.69	15.81	15.86
1	OTValata	23.81	24.00	24.31	-6.02	17.79	17.98	18.29
EGPRS	2TXslots	23.01	24.00	24.01	0.0-			
EGPRS (8PSK)	3TXslots	23.81	22.84	22.99	-4.26	18.46	18.58	18.73

Note:

1) Division Factors

To average the power, the division factor is as follows:

1TX-slot = 1 transmit time slot out of 8 time slots=> conducted power divided by (8/1) => -9.03dB 2TX-slots = 2 transmit time slots out of 8 time slots=> conducted power divided by (8/2) => -6.02dB 3TX-slots = 3 transmit time slots out of 8 time slots=> conducted power divided by (8/3) => -4.26dB 4TX-slots = 4 transmit time slots out of 8 time slots=> conducted power divided by (8/4) => -3.01dB

WCDMA Conducted Power

- 1. The following tests were conducted according to the test requirements outlines in 3GPP TS34.121 specification.
- 2. The procedures in KDB 941225 D01 are applied for 3GPP Rel. 6 HSPA to configure the device in the required sub-test mode to determine SAR test exclusion

A summary of thest setting are illustrated belowe:

HSDPA Setup Configureation:

- a) The EUT was connected to base station RS CMU200 referred to the setup configuration
- b) The RF path losses were compensated into the measurements
- c) A call was established between EUT and base station with following setting:
 - i. Set Gain Factors (βc and βd) and parameters were set according to each specific sub-test in the following table, C10.1.4, Quoted from the TS 34.121
 - ii. Set RMC 12.2Kbps + HSDPA mode
 - iii. Set Cell Power=-86dBm
 - iv. Set HS-DSCH Configuration Type to FRC (H-set 1, QPSK)
 - v. Select HSDPA uplink parameters
 - vi. Set Delta ACK, Delta NACK and Delta CQI=8
 - vii. Set Ack-Nack repetition Factor to 3
 - viii. Set CQI Feedback Cycle (K) to 4ms
 - ix. Set CQI repetition factor to 2
 - x. Power ctrl mode= all up bits
- d) The transmitter maximum output power waw recorded.

Table C.10.1.4: β values for transmitter characteristics tests with HS-DPCCH

Sub-test	βο	βa	βd (SF)	β₀/βd	βнs (Note1, Note 2)	CM (dB) (Note 3)	MPR (dB) (Note 3)
1	2/15	15/15	64	2/15	4/15	0.0	0.0
2	12/15 (Note 4)	15/15 (Note 4)	64	12/15 (Note 4)	24/15	1.0	0.0
3	15/15	8/15	64	15/8	30/15	1.5	0.5
4	15/15	4/15	64	15/4	30/15	1.5	0.5
	with $\beta_{hr} = 2$		3.1AA, ∆ack	and ANACK = 30/	15 with $p_{hs} = 3$	$30/15 p_c$, and	a Acai = 24/15
Note 3:	$CM = 1$ for β DPCCH the I	/βd =12/15, β	on the relation	For all other con tive CM difference			

Setup Configuration

HSUPA Setup Configureation:

- a) The EUT was connected to base station RS CMU200 referred to the setup configuration
- b) The RF path losses were compensated into the measurements
- c) A call was established between EUT and base station with following setting:
 - i. Call configs = 5.2b, 5.9b, 5.10b, and 5.13.2B with QPSK
 - ii. Set Gain Factors (βc and βd) and parameters (AG index) were set according to each specific subtest in the following table, C11.1.3, Quoted from the TS 34.121
 - iii. Set Cell Power=-86dBm
 - iv. Set channel type= 12.2Kbps + HSPA mode
 - v. Set UE Target power
 - vi. Set Ctrl mode=Alternating bits
 - vii. Set and observe the E-TFCI
- viii. Confirm that E-TFCI is equal the target E-TFCI of 75 for Sub-test 1, and other subtest's E-TFCI
- d) The transmitter maximum output power waw recorded.

Table C.11.1.3:	β values for transmitter characteristics tests with HS-DPCCH and E-DCH
-----------------	--

Sub- test	βα	βd	βd (SF)	β _c /β _d	βнs (Note1)	β _{ec}	β _{ed} (Note 5) (Note 6)	β _{ed} (SF)	β _{ed} (Codes)	CM (dB) (Note 2)	MPR (dB) (Note 2)	AG Index (Note 6)	E- TFCI
1	11/15 (Note 3)	15/15 (Note 3)	64	11/15 (Note 3)	22/15	209/2 25	1309/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	β _{ed} 1: 47/15 β _{ed} 2: 47/15	4 4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 (Note 4)	15/15 (Note 4)	64	15/15 (Note 4)	30/15	24/15	134/15	4	1	1.0	0.0	21	81
Note 1: Δ_{ACK} , Δ_{NACK} and Δ_{CQI} = 30/15 with β_{kc} = 30/15 * β_c .													
Note 2							her combinatio CM difference		DPDCH, I	OPCCH,	HS- DPC	CH, E-E	PDCH

Note 3: For subtest 1 the β_c/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 10/15$ and $\beta_d = 15/15$.

Note 4: For subtest 5 the β_c/β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 14/15$ and $\beta_d = 15/15$. Note 5: In case of testing by UE using E-DPDCH Physical Layer category 1, Sub-test 3 is omitted according to TS25,306 Table 5.1g.

Note 6: β_{ed} can not be set directly, it is set by Absolute Grant Value.

Setup Configuration

General Note:

- 1. Per KDB 941225 D01, SAR for Head / Hotsport / Body-worn Exposure is measured using a 12.2Kbps RMC with TPC bit ocnfigured to all 1s
- Per KDB 941225 D01 RMC12.2Kbps setting is used to evaluate SAR. If the maximum output power and Tune-up tolerance specified for production units in HSDPA/HSUPA is ≤ 1/4dB higher than RMC 12.2Kbps or when the highest reported SAR of the RMC12.2Kbps is scaled by the ratio fo specified maximum output power and tune-up tolerance of HSDPA / HSUPA to RMC 12.2Kbps and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for HSDPA / HSUPA.

		N	CDMA Band	II	W	CDMA Band	V	
			ucted Power	(dBm)	Conducted Power (dBm)			
Mo	de	CH9262	CH9400	CH9538	CH4132	CH4183	CH4233	
		1852.4	1880.0	1907.6	826.4	836.6	846.6	
AMR 1	2.2K	22.27	22.49	22.04	23.16	23.39	23.38	
RMC 1	2.2K	22.29	22.52	22.05	23.19	23.42	23.39	
	Subtest-1	21.39	21.08	21.00	22.42	22.11	22.46	
HSDPA	Subtest-2	20.84	20.62	20.40	21.86	21.62	21.92	
HODFA	Subtest-3	20.88	20.60	20.42	21.91	21.60	21.92	
	Subtest-4	20.82	20.58	20.37	21.85	21.58	21.90	
	Subtest-1	18.35	18.27	17.99	19.17	19.24	19.46	
	Subtest-2	19.35	19.25	18.89	20.17	20.19	20.44	
HSUPA	Subtest-3	19.33	19.31	18.98	20.22	20.18	20.44	
	Subtest-4	18.38	18.20	17.99	19.21	19.25	19.39	
	Subtest-5	19.33	19.20	18.98	20.16	20.18	20.40	

WLAN Conducted Power

For 2.4GHz WLAN SAR testing, highest average RF output power channel for the lowest data rate for 802.11b were for SAR evaluation. 802.11g/n were not investigated since the average putput powers over all channels and data rates were not more than 0.25dB higher than the tested channel in the lowest data rate of 802.11b mode.

The maximum output power specified for production units are determined for all applicable 802.11 transmission modes in each standalone and aggregated frequency band. Maximum output power is measured for the highest maximum output power configuration(s) in each frequency band according to the default power measurement procedures

		WIFI 2.4G	
Mode	Channel	Frequency (MHz)	Conducted Average Power (dBm)
	01	2412	15.56
802.11b	06	2437	15.35
	11	2462	14.72
	01	2412	12.10
802.11g	06	2437	12.17
	11	2462	11.44
	01	2412	11.29
802.11n(HT20)	06	2437	11.14
	11	2462	10.06

Bluetooth Conducted Power

	Bluetooth								
Mode	Channel	Frequency (MHz)	Conducted power (dBm)						
	0	2402	4.35						
GFSK	39	2441	3.98						
	78	2480	3.85						
	0	2402	4.20						
π/4QPSK	39	2441	3.85						
	78	2480	3.70						
	0	2402	4.33						
8DPSK	39	2441	3.99						
	78	2480	3.57						
	0	2402	4.16						
BLE	19	2440	3.92						
	39	2480	3.77						

12. Maximum Tune-up Limit

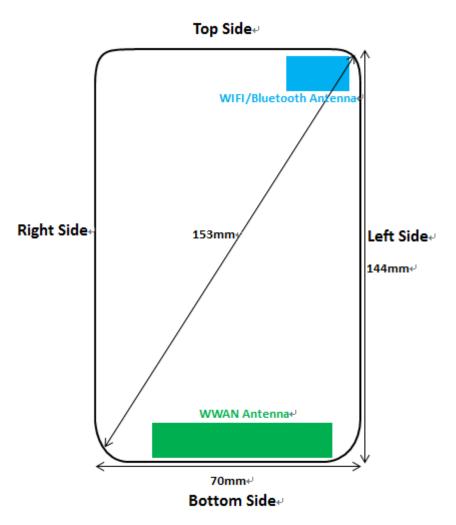
GSM						
Mode	Maximum Tune-up (dBm)					
Mode	GSM850	PCS1900				
GSM (GMSK, 1Tx Slot)	33.50	29.50				
GPRS (GMSK, 1Tx Slot)	33.00	29.50				
GPRS (GMSK, 2Tx Slot)	33.00	29.50				
GPRS (GMSK, 3Tx Slot)	32.50	28.50				
GPRS (GMSK, 4Tx Slot)	30.50	27.00				
EGPRS (8PSK, 1Tx Slot)	28.50	25.00				
EGPRS (8PSK, 2Tx Slot)	27.50	24.50				
EGPRS (8PSK, 3Tx Slot)	26.00	23.00				
EGPRS (8PSK, 4Tx Slot)	25.50	22.50				

WCDMA							
Mode	Maximum Tune-up (dBm)						
Mode	WCDMA Band II	WCDMA Band V					
AMR 12.2Kbps	23.00	23.50					
RMC 12.2Kbps	23.00	23.50					
HSDPA Subtest-1	21.50	22.50					
HSDPA Subtest-2	21.00	22.00					
HSDPA Subtest-3	21.00	22.00					
HSDPA Subtest-4	21.00	22.00					
HSUPA Subtest-1	18.50	20.00					
HSUPA Subtest-2	19.50	20.50					
HSUPA Subtest-3	20.00	20.50					
HSUPA Subtest-4	18.50	19.50					
HSUPA Subtest-5	19.50	20.50					

WLAN 2.4G					
Mode	Maximum Tune-up (dBm)				
Mode	Burst Average Power				
802.11b	16.00				
802.11g	12.50				
802.11n(HT20)	11.50				

Bluetooth						
Mode	Maximum Tune-up (dBm)					
GFSK	4.50					
π/4QPSK	4.50					
8DPSK	4.50					
BLE	4.50					

Per KDB 447498 D01, the 1-g and 10-g SAR test exclusion thresholds for 100MHz to 6GHz at test separation distances ≦50mm are determined by:


[(max. Power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] * $[\sqrt{f(GHz)}] \leq 3.0$ for 1-g SAR

Band/Mode	F(GHz)	Position	SAR test exclusion	RF outpu	t power	SAR test exclusion
	. ,		threshold (mW)	dBm	mW	
Blueteeth	2.45	Head	10	4.50	2.82	Yes
Bluetooth	2.45	Body	19	4.50	2.82	Yes

Per KDB 447498 D01, when the minimum test separation distance is <5mm, a distance of 5mm is applied to determine SAR test exclusion.

The test exclusion thereshold is \leq 3, SAR testing is not required.

13. Antenna Location

Back View

Distance of the Antenna to the EUT surface/edge(mm)							
Antenna Rear Front Top side Bottom side Right side Left side							
WWAN	2	3	130	3	14	6	
WIFI/BT	2	3	3	131	52	2	

Positions for SAR tests; Hotspot mode								
Antenna Back Front Top side Bottom side Right side Left side								
WWAN	Yes	Yes	No	Yes	Yes	Yes		
WIFI/BT	WIFI/BT Yes Yes		Yes	No	No	Yes		
O an anal materi								

General note:

Referring to KDB941225 D06, when the overall device length and width are >9cm*5cm, the test distance is 10mm. SAR must be measured for all sides and surfaces with a transmitting antenna located within 25mm from that surface or edge.

14. SAR Measurement Results

Head SAR

					GSM850					
	Test	Frequency		Conducted	Tune	Tune	Power	Measured	Report	Test
Mode Position		СН	MHz	Power (dBm)	up limit (dBm)	up scaling factor	Drift(dB)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Plot
		128	824.2	31.99	32.50	1.12	-	-	-	-
	Left- Cheek	190	836.6	32.03	32.50	1.11	-0.09	0.220	0.245	H1
Chook	251	848.8	31.93	32.50	1.14	-	-	-	-	
		128	824.2	31.99	32.50	1.12	-	-	-	-
	Left-Tilt	190	836.6	32.03	32.50	1.11	0.10	0.168	0.188	-
GPRS		251	848.8	31.93	32.50	1.14	-	-	-	-
(3Tx slot)		128	824.2	31.99	32.50	1.12	-	-	-	-
,	Right- Cheek	190	836.6	32.03	32.50	1.11	0.04	0.204	0.227	-
	Chiech	251	848.8	31.93	32.50	1.14	-	-	-	-
		128	824.2	31.99	32.50	1.12	-	-	-	-
	Right-Tilt	190	836.6	32.03	32.50	1.11	-0.05	0.154	0.172	-
		251	848.8	31.93	32.50	1.14	-	-	-	-

	PCS1900									
	Test	Frequency		Conducted	Tune	Tune	Power	Measured	Report	Test
Mode	Position	СН	MHz	Power (dBm)	up limit (dBm)	up scaling factor	Drift(dB)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Plot
		512	1850.2	28.21	28.50	1.07	-	-	-	-
	Left- Cheek	661	1880.0	28.04	28.50	1.11	0.11	0.167	0.186	H2
Chook	Check	810	1909.8	28.11	28.50	1.09	-	-	-	-
		512	1850.2	28.21	28.50	1.07	-	-	-	-
	Left-Tilt	661	1880.0	28.04	28.50	1.11	0.08	0.134	0.149	-
GPRS		810	1909.8	28.11	28.50	1.09	-	-	-	-
(3Tx slot)		512	1850.2	28.21	28.50	1.07	-	-	-	-
,	Right- Cheek	661	1880.0	28.04	28.50	1.11	-0.06	0.161	0.178	-
	onook	810	1909.8	28.11	28.50	1.09	-	-	-	-
F		512	1850.2	28.21	28.50	1.07	-	-	-	-
	Right-Tilt	661	1880.0	28.04	28.50	1.11	-0.07	0.126	0.140	-
		810	1909.8	28.11	28.50	1.09	-	-	-	-

Note:

Per KDB865664 D01v01r04, Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg

				WC	DMA Ba	nd II				
	Test	Free	quency	Conducted	Tune	Tune	Power	Measured	Report	Test
Mode	Position	СН	MHz	Power (dBm)	up limit (dBm)	up scaling factor	Drift(dB)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Plot
		9262	1852.4	22.29	23.00	1.18	-	-	-	-
	Left- Cheek	9400	1880.0	22.52	23.00	1.12	-0.15	0.148	0.165	H3
	0.100.1	9538	1907.6	22.05	23.00	1.24	-	-	-	-
		9262	1852.4	22.29	23.00	1.18	-	-	-	-
	Left-Tilt	9400	1880.0	22.52	23.00	1.12	-0.13	0.122	0.136	-
RMC 12.2K		9538	1907.6	22.05	23.00	1.24	-	-	-	-
bps		9262	1852.4	22.29	23.00	1.18	-	-	-	-
	Right- Cheek	9400	1880.0	22.52	23.00	1.12	-0.20	0.141	0.158	-
		9538	1907.6	22.05	23.00	1.24	-	-	-	-
		9262	1852.4	22.29	23.00	1.18	-	-	-	-
	Right-Tilt	9400	1880.0	22.52	23.00	1.12	0.06	0.113	0.126	-
		9538	1907.6	22.05	23.00	1.24	-	-	-	-

				WC	DMA Bai	nd V				
	Test	Free	quency	Conducted	Tune	Tune	Power	Measured	Report	Test
Mode	Position	СН	MHz	Power (dBm)	up limit (dBm)	up scaling factor	Drift(dB)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Plot
		4132	826.4	23.19	23.50	1.08	-	-	-	-
	Left- Cheek	4183	836.6	23.42	23.50	1.02	0.07	0.102	0.104	H4
	Chicon	4233	846.6	23.39	23.50	1.03	-	-	-	-
		4132	826.4	23.19	23.50	1.08	-	-	-	-
	Left-Tilt	4183	836.6	23.42	23.50	1.02	0.04	0.082	0.084	-
RMC 12.2K		4233	846.6	23.39	23.50	1.03	-	-	-	-
bps		4132	826.4	23.19	23.50	1.08	-	-	-	-
	Right- Cheek	4183	836.6	23.42	23.50	1.02	-0.10	0.098	0.100	-
	Chicon	4233	846.6	23.39	23.50	1.03	-	-	-	-
		4132	826.4	23.19	23.50	1.08	-	-	-	-
	Right-Tilt	4183	836.6	23.42	23.50	1.02	-0.04	0.077	0.079	-
		4233	846.6	23.39	23.50	1.03	-	-	-	-

Note:

Per KDB865664 D01v01r04, Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg

					WIFI 2.40	3				
Mada	Test	Free	quency	Conducted	Tune up	Tune up	Power	Measured SAR(1g)	Report SAR(1g)	Test
Mode	Positio n	СН	MHz	Power (dBm)	limit (dBm)	scaling factor	Drift(dB)	(W/kg)	(W/kg)	Plot
		01	2412	15.56	16.00	1.11	-0.07	0.329	0.364	H5
	Left- Cheek	06	2437	15.35	16.00	1.16	-	-	-	-
		11	2462	14.72	16.00	1.34	-	-	-	-
	Left- Tilt	01	2412	15.56	16.00	1.11	0.09	0.279	0.309	-
		06	2437	15.35	16.00	1.16	-	-	-	-
802.11b		11	2462	14.72	16.00	1.34	-	-	-	-
1Mbps		01	2412	15.56	16.00	1.11	0.04	0.316	0.350	-
	Right- Cheek	06	2437	15.35	16.00	1.16	-	-	-	-
	Chicon	11	2462	14.72	16.00	1.34	-	-	-	-
		01	2412	15.56	16.00	1.11	-0.05	0.266	0.294	-
	Right- Tilt	06	2437	15.35	16.00	1.16	-	-	-	-
		11	2462	14.72	16.00	1.34	-	-	-	-

Note:

 According to the above table, the initial test position for head is "LeftCheek", and its reported SAR is≤ 0.4W/kg. Thus further SAR measurement is not required for the other (remaining) test positions. Because the reported SAR of the highest measured maximum output power channel for the exposureconfiguration is ≤ 0.8W/kg, no further SAR testing is required for 802.11b DSSS in that exposureconfiguration.

2. When SAR measurement is required for 2.4 GHz 802.11g/n OFDM configurations, the measurement and test reduction procedures for OFDM are applied. SAR is not required for the following 2.4 GHz OFDM conditions.

a) When KDB Publication 447498 D01 SAR test exclusion applies to the OFDM configuration.

b) When the highest *reported* SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg,the 802.11g/n is not required.

	WIFI 2.4G- Scaled Reported SAR												
Mode	Test Position	Fre	equency	Actual duty	maximum	Reported SAR	Scaled reported SAR						
woue	Test Position	СН	MHz	factor	duty factor	(1g)(W/kg)	(1g)(W/kg)						
	Left-Cheek	01	2412	98.55%	100%	0.364	0.370						
802.11b	Left-Tilt	01	2412	98.55%	100%	0.309	0.313						
1Mbps	Right-Cheek	01	2412	98.55%	100%	0.350	0.355						
	Right-Tilt	01	2412	98.55%	100%	0.294	0.298						

Note:

 According to the KDB 248227 D01, The reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit. A maximum transmission duty factor of 98.55% is achievable for WLAN in this project.

Body SAR

	GSM850													
	Test	Freq	uency	Conducted	Tune up limit (dBm)	Tune	Davia	Measured	Report	Test				
Mode	Test Position	СН	MHz	Power (dBm)		up scaling factor	Power Drift(dB)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Test Plot				
		128	824.2	31.99	32.50	1.12	-	-	-	-				
	Front	190	836.6	32.03	32.50	1.11	0.03	0.385	0.429	-				
GPRS		251	848.8	31.93	32.50	1.14	-	-	-	-				
(3Tx slot)		128	824.2	31.99	32.50	1.12	-	-	-	-				
0.00)	Back	190	836.6	32.03	32.50	1.11	-0.07	0.584	0.651	B1				
		251	848.8	31.93	32.50	1.14	-	-	-	-				

	PCS1900													
	Test	Freq	uency	Conducted	Tune up	Tune up	Power	Measured	Report	Test				
Mode	Position	СН	MHz	Power (dBm)	limit (dBm)	scaling factor	Drift(dB)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Plot				
		512	1850.2	28.21	28.50	1.07	-	-	-	-				
	Front	661	1880.0	28.04	28.50	1.11	0.03	0.121	0.135	-				
GPRS		810	1909.8	28.11	28.50	1.09	-	-	-	-				
(3Tx slot)		512	1850.2	28.21	28.50	1.07	-	-	-	-				
,	Back	661	1880.0	28.04	28.50	1.11	-0.04	0.192	0.213	B2				
		810	1909.8	28.11	28.50	1.09	-	-	-	-				

	WCDMA Band II													
	Teet	Freq	uency	Conducted	Tune	Tune	Dowor	Measured	Report	Test				
Mode	Test Position	СН	MHz	Power (dBm)	up limit (dBm)	up scaling factor	Power Drift(dB)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Plot				
	Front	9262	1852.4	22.29	23.00	1.18	-	-	-	-				
		9400	1880.0	22.52	23.00	1.12	-0.04	0.193	0.215	-				
RMC		9538	1907.6	22.05	23.00	1.24	-	-	-	-				
12.2Kbps		9262	1852.4	22.29	23.00	1.18	-	-	-	-				
	Back	9400	1880.0	22.52	23.00	1.12	0.10	0.271	0.303	B3				
		Duoit	9538	1907.6	22.05	23.00	1.24	-	-	-	-			

	WCDMA Band V													
Mode	Test Position	Freq CH	uency MHz	Conducted Power (dBm)	Tune up limit (dBm)	Tune up scaling factor	Power Drift(dB)	Measured SAR(1g) (W/kg)	Report SAR(1g) (W/kg)	Test Plot				
	Front	4132	826.4	23.19	23.50	1.08	-	-	-	-				
		4183	836.6	23.42	23.50	1.02	-0.01	0.124	0.126	-				
RMC		4233	846.6	23.39	23.50	1.03	-	-	-	-				
12.2Kbps		4132	826.4	23.19	23.50	1.08	-	-	-	-				
	Back	4183	836.6	23.42	23.50	1.02	-0.02	0.201	0.205	B4				
		4233	846.6	23.39	23.50	1.03	-	-	-	-				

Note:

Per KDB865664 D01v01r04, Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg

	WIFI 2.4G													
	Test	Freq	luency	Conducted	Tune up limit (dBm)	Tune	Davia	Measured	Report	Test				
Mode	Position	СН	MHz	Power (dBm)		up scaling factor	Power Drift(dB)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Test Plot				
		1	2412	15.56	16.00	1.11	-0.04	0.103	0.114	-				
	Front	6	2437	15.35	16.00	1.16	-	-	-	-				
802.11b		11	2462	14.72	16.00	1.34	-	-	-	-				
1Mbps		1	2412	15.56	16.00	1.11	0.03	0.151	0.167	B5				
	Back	6	2437	15.35	16.00	1.16	-	-	-	-				
		11	2462	14.72	16.00	1.34	-	-	-	-				

Note:

1. According to the above table, the initial test position for body is "Back", and its reported SAR is≤ 0.4W/kg. Thus further SAR measurement is not required for the other (remaining) test positions. Because the reported SAR of the highest measured maximum output power channel for the exposureconfiguration is ≤ 0.8W/kg, no further SAR testing is required for 802.11b DSSS in that exposureconfiguration.

- When SAR measurement is required for 2.4 GHz 802.11g/n OFDM configurations, the measurement and test reduction procedures for OFDM are applied. SAR is not required for the following 2.4 GHz OFDM conditions.
 - a) When KDB Publication 447498 D01 SAR test exclusion applies to the OFDM configuration.
 - b) When the highest *reported* SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg. the 802.11g/n is not required

	WIFI 2.4G- Scaled Reported SAR												
Mode	Test Position	Fre	quency	Actual duty factor	maximum	Reported SAR	Scaled reported SAR						
wode	Test Position	СН	MHz	Actual duty factor	duty factor	(1g)(W/kg)	(1g)(W/kg)						
802.11b	Front	1	2412	98.55%	100%	0.114	0.116						
1Mbps	Back	1	2412	98.55%	100%	0.167	0.170						

Note:

1. According to the KDB248227 D01, The reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit. A maximum transmission duty factor of 98.55% is achievable for WLAN in this project.

Hotspot SAR

	Positions for SAR tests; Hotspot mode											
Antenna	Antenna Back Front Top side Bottom side Right side Left side											
WWAN	Yes	Yes	No	Yes	Yes	Yes						
WIFI / BT	WIFI/BT Yes Yes Yes No No Yes											

General note:

Referring to KDB941225 D06, when the overall device length and width are >9cm*5cm, the test distance is 10mm. SAR must be measured for all sides and surfaces with a transmitting antenna located within 25mm from that surface or edge.

					GSM85	0				
	Test	Freq	uency	Conducted	Tune	Tune up	Power	Measured	Report	Test
Mode	Position	СН	MHz	Power (dBm)	up limit (dBm)	scaling factor	Drift(dB)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Plot
		128	824.2	31.99	32.50	1.12	-	-	-	-
	Front	190	836.6	32.03	32.50	1.11	0.03	0.385	0.429	-
		251	848.8	31.93	32.50	1.14	-	-	-	-
		128	824.2	31.99	32.50	1.12	-	-	-	-
GPRS	Back	190	836.6	32.03	32.50	1.11	-0.07	0.584	0.651	B1
(3Tx slot)		251	848.8	31.93	32.50	1.14	-	-	-	-
,	Left	190	836.6	32.03	32.50	1.11	0.04	0.418	0.466	-
	Right	190	836.6	32.03	32.50	1.11	-0.03	0.186	0.207	-
	Тор	190	836.6	32.03	32.50	1.11	-	-	-	-
	Bottom	190	836.6	32.03	32.50	1.11	-0.03	0.397	0.443	-

	PCS1900									
Mode Test Position	Test	Freq	luency	Conducted Power	Tune up limit	Tune up	Power	Measured SAR(1g)	Report SAR(1g)	Test
	Position	СН	MHz	(dBm)	(dBm)	scaling factor	Drift(dB)	(W/kg)	(W/kg)	Plot
		512	1850.2	28.21	28.50	1.07	-	-	-	-
F	Front	661	1880.0	28.04	28.50	1.11	0.03	0.121	0.135	-
		810	1909.8	28.11	28.50	1.09	-	-	-	-
		512	1850.2	28.21	28.50	1.07	-	-	-	-
GPRS	Back	661	1880.0	28.04	28.50	1.11	-0.04	0.192	0.213	B2
(3Tx slot)		810	1909.8	28.11	28.50	1.09	-	-	-	-
,	Left	661	1880.0	28.04	28.50	1.11	0.02	0.116	0.129	-
	Right	661	1880.0	28.04	28.50	1.11	0.01	0.064	0.071	-
	Тор	661	1880.0	28.04	28.50	1.11	-	-	-	-
	Bottom	661	1880.0	28.04	28.50	1.11	-0.04	0.121	0.134	-

Note:

Per KDB865664 D01v01r04, Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg

Report No: TRE18050167

	WCDMA Band II									
	Test	Frequency		Conducted	Tune	Tune	Dowor	Measured	Report	Test
Mode	Position	СН		Power (dBm)	up limit (dBm)	up scaling factor	Power Drift(dB)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Test Plot
		9262	1852.4	22.29	23.00	1.18	-	-	-	-
	Front	9400	1880.0	22.52	23.00	1.12	-0.04	0.193	0.215	-
		9538	1907.6	22.05	23.00	1.24	-	-	-	-
		9262	1852.4	22.29	23.00	1.18	-	-	-	-
RMC	Back	9400	1880.0	22.52	23.00	1.12	0.10	0.271	0.303	B3
12.2Kbps		9538	1907.6	22.05	23.00	1.24	-	-	-	-
	Left	9400	1880.0	22.52	23.00	1.12	0.05	0.184	0.206	-
	Right	9400	1880.0	22.52	23.00	1.12	-0.11	0.101	0.113	-
	Тор	9400	1880.0	22.52	23.00	1.12	-	-	-	-
	Bottom	9400	1880.0	22.52	23.00	1.12	-0.03	0.178	0.199	-

	WCDMA Band V									
		Freq	uency	Conducted	Tune	Tune	5	Measured	Report	- -
Mode	Test Position	СН	MHz	Power (dBm)	up limit (dBm)	up scaling factor	Power Drift(dB)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Test Plot
		4132	826.4	23.19	23.50	1.08	-	-	-	-
	Front	4183	836.6	23.42	23.50	1.02	-0.01	0.124	0.126	-
		4233	846.6	23.39	23.50	1.03	-	-	-	-
	Back	4132	826.4	23.19	23.50	1.08	-	-	-	-
RMC		4183	836.6	23.42	23.50	1.02	-0.02	0.201	0.205	B4
12.2Kbps		4233	846.6	23.39	23.50	1.03	-	-	-	-
	Left	4183	836.6	23.42	23.50	1.02	0.01	0.122	0.124	-
	Right	4183	836.6	23.42	23.50	1.02	-0.03	0.075	0.076	-
	Тор	4183	836.6	23.42	23.50	1.02	-	-	-	-
	Bottom	4183	836.6	23.42	23.50	1.02	-0.01	0.122	0.124	-

Note:

Per KDB865664 D01v01r04, Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg

					WIFI 2.40	G				
	Test Position	Frequency		Conducted	Tune	Tune up	Power	Measured	Report	Test
Mode		СН	CH MHz	Power (dBm)	up limit (dBm)	scaling factor	Drift(dB)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Plot
		1	2412	15.56	16.00	1.11	-0.04	0.103	0.114	-
	Front	6	2437	15.35	16.00	1.16	-	-	-	-
		11	2462	14.72	16.00	1.34	-	-	-	-
	Back	1	2412	15.56	16.00	1.11	0.03	0.151	0.167	B5
802.11b		6	2437	15.35	16.00	1.16	-	-	-	-
1Mbps		11	2462	14.72	16.00	1.34	-	-	-	-
	Left	1	2412	15.56	16.00	1.11	0.02	0.126	0.140	-
	Right	1	2412	15.56	16.00	1.11	-	-	-	-
	Тор	1	2412	15.56	16.00	1.11	-0.01	0.100	0.110	-
	Bottom	1	2412	15.56	16.00	1.11	-	-	-	-

Note:

1. According to the above table, the initial test position for body is "Back", and its reported SAR is≤ 0.4W/kg. Thus further SAR measurement is not required for the other (remaining) test positions. Because the reported SAR of the highest measured maximum output power channel for the exposureconfiguration is ≤ 0.8W/kg, no further SAR testing is required for 802.11b DSSS in that exposureconfiguration.

2. When SAR measurement is required for 2.4 GHz 802.11g/n OFDM configurations, the measurement and test reduction procedures for OFDM are applied. SAR is not required for the following 2.4 GHz OFDM conditions.

c) When KDB Publication 447498 D01 SAR test exclusion applies to the OFDM configuration.

d) When the highest *reported* SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg. the 802.11g/n is not required

	WIFI 2.4G- Scaled Reported SAR									
Mode	Test Position	Frequency		Actual duty factor	maximum	Reported SAR	Scaled reported SAR			
	Test Position	СН	MHz	Actual duty lactor	duty factor	(1g)(W/kg)	(1g)(W/kg)			
	Front	1	2412	98.55%	100%	0.114	0.116			
802.11b	Back	1	2412	98.55%	100%	0.167	0.170			
1Mbps	Right	1	2412	98.55%	100%	0.140	0.142			
	Тор	1	2412	98.55%	100%	0.110	0.112			

Note:

According to the KDB248227 D01, The reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit. A maximum transmission duty factor of 98.55% is achievable for WLAN in this project.

Report No:	TRE18050167	Page: 4	4 of 60	Issued:	Issued: 2018-05-29		
SAR Test	Data Plots						
Test mode:	GPRS850 3Tx slot	Test Position:	Left Touch Cheek	Test Plot:	H1		

Communication System: UID 0, Generic GPRS(TDMA, GMSK, TN 0-1-2) (0); Frequency: 836.6 MHz;Duty Cycle: 1:2.67

Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.933 S/m; ϵ_r = 42.499; ρ = 1000 kg/m³ Phantom section: Left Section

DASY5 Configuration:

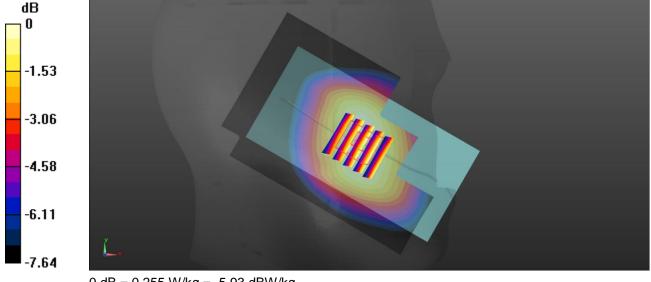
- Probe: EX3DV4 SN7494;ConvF(10.73, 10.73, 10.73);Calibrated: 2/26/2018;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 4/25/2018
- Phantom: Twin-SAM V8.0 ; Type: QD 000 P41 AA; Serial: 1974
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7437)

Left Touch Cheek/Procedure/Area Scan (71x121x1): Interpolated grid: dx=1.500 mm,

dy=1.500 mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 0.259 W/kg

Left Touch Cheek/Procedure/Zoom Scan (5x5x7)/Cube 0: Measurement grid:


dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.634 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 0.274 W/kg

SAR(1 g) = 0.220 W/kg; SAR(10 g) = 0.171 W/kg

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.255 W/kg

0 dB = 0.255 W/kg = -5.93 dBW/kg

Report No:	TRE18050167
1.00001110.	1111 10000101

Page: 45 of 60

Test mode: GPRS1900 3Tx slot Test Position: Left Touch Cheek Test Plot: H2

Date:2018-05-23

Communication System: UID 0, Generic GPRS(TDMA, GMSK, TN 0-1-2) (0); Frequency: 1880 MHz;Duty Cycle: 1:2.67 Medium parameters used: f = 1880 MHz; σ = 1.455 S/m; ϵ_r = 41.738; ρ = 1000 kg/m³

Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7494; ConvF(8.83, 8.83, 8.83); Calibrated: 2/26/2018;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 4/25/2018
- Phantom: Twin-SAM V8.0 ; Type: QD 000 P41 AA; Serial: 1974
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7437)

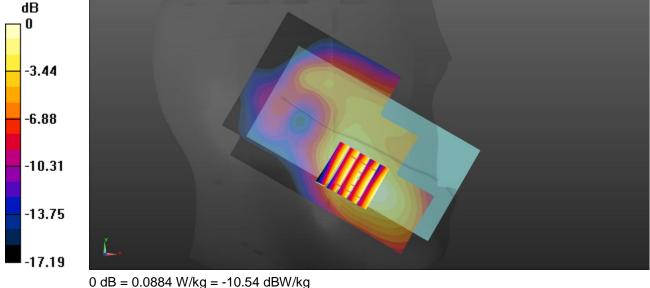
Left Touch Cheek/Procedure/Area Scan (71x121x1): Interpolated grid: dx=1.500 mm,

dy=1.500 mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.195 W/kg

Left Touch Cheek/Procedure/Zoom Scan (5x5x7)/Cube 0: Measurement grid:


dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.594 V/m; Power Drift = 0.11 dB Peak SAR (extrapolated) = 0.301 W/kg

SAR(1 g) = 0.167 W/kg; SAR(10 g) = 0.093 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.184 W/kg

Report No:	TRE18050167	Page: 46 of 60		Issued: 2	2018-05-29
Test mode:	WCDMA Band II	Test Position:	Left Touch Cheek	Test Plot:	H3

Communication System: UID 0, Generic UMTS (0); Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; σ = 1.455 S/m; ϵ_r = 41.738; ρ = 1000 kg/m³ Phantom section: Left Section

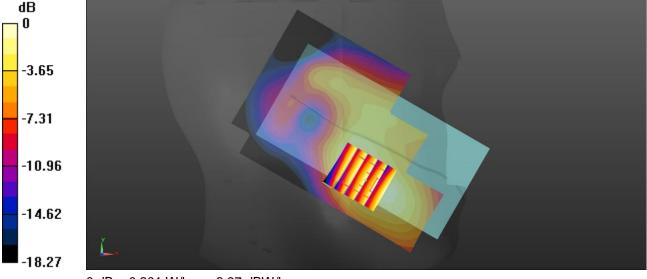
DASY5 Configuration:

- Probe: EX3DV4 SN7494; ConvF(8.83, 8.83, 8.83); Calibrated: 2/26/2018;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 4/25/2018
- Phantom: Twin-SAM V8.0 ; Type: QD 000 P41 AA; Serial: 1974
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7437)

Left Touch Cheek/Procedure/Area Scan (71x121x1): Interpolated grid: dx=1.500 mm,

dy=1.500 mm

Maximum value of SAR (interpolated) = 0.203 W/kg


Left Touch Cheek/Procedure/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.590 V/m; Power Drift = -0.15 dB Peak SAR (extrapolated) = 0.230 W/kg

SAR(1 g) = 0.148 W/kg; SAR(10 g) = 0.096 W/kg

Maximum value of SAR (measured) = 0.201 W/kg

0 dB = 0.201 W/kg = -6.97 dBW/kg

Report No:	TRE18050167	Page: 4	7 of 60	Issued:	2018-05-	29
Test mode:	WCDMA Band V	Test Position:	Left Touch Cheek	Test Plot:	H4	

Communication System: UID 0, Generic UMTS (0); Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.933 S/m; ϵ_r = 42.499; ρ = 1000 kg/m³ Phantom section: Left Section

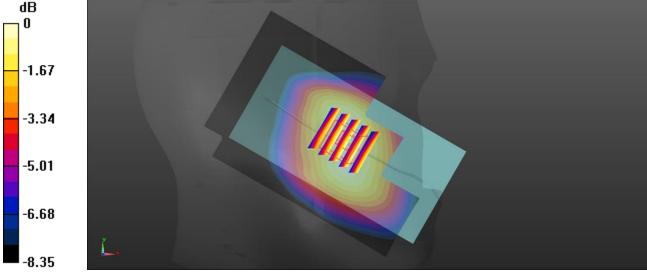
DASY5 Configuration:

- Probe: EX3DV4 SN7494; ConvF(10.73, 10.73, 10.73); Calibrated: 2/26/2018;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 4/25/2018
- Phantom: Twin-SAM V8.0 ; Type: QD 000 P41 AA; Serial: 1974
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7437)

Left Touch Cheek/Procedure/Area Scan (71x121x1): Interpolated grid: dx=1.500 mm,

dy=1.500 mm Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 0.120 W/kg

Left Touch Cheek/Procedure/Zoom Scan (5x5x7)/Cube 0: Measurement grid:


dx=8mm, dy=8mm, dz=5mm

Reference Value = 2.938 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 0.128 W/kg

SAR(1 g) = 0.102 W/kg; SAR(10 g) = 0.079 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.120 W/kg

0 dB = 0.120 W/kg = -9.21 dBW/kg

Report No:	TRE18050167	Page: 4	Page: 48 of 60		2018-05-3	29
Test mode:	WI AN 802 11b	Test Position	Left Touch Cheek	Test Plot	H5	

Communication System: UID 0, Generic WIFI (0); Frequency: 2412 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2412 MHz; σ = 1.829 S/m; ϵ_r = 41.002; ρ = 1000 kg/m³ Phantom section: Left Section

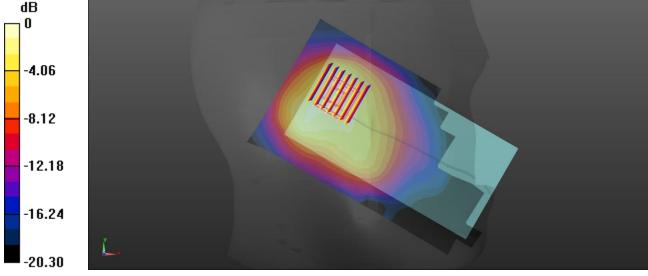
DASY5 Configuration:

- Probe: EX3DV4 SN7494; ConvF(8.27, 8.27, 8.27); Calibrated: 2/26/2018;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 4/25/2018
- Phantom: Twin-SAM V8.0 ; Type: QD 000 P41 AA; Serial: 1974
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7437)

Left Touch Cheek/Procedure/Area Scan (81x151x1): Interpolated grid: dx=1.200 mm,

dy=1.200 mm Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 0.494 W/kg

Left Touch Cheek/Procedure/Zoom Scan (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

Reference Value = 14.74 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 0.605 W/kg

SAR(1 g) = 0.329 W/kg; SAR(10 g) = 0.182 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.502 W/kg

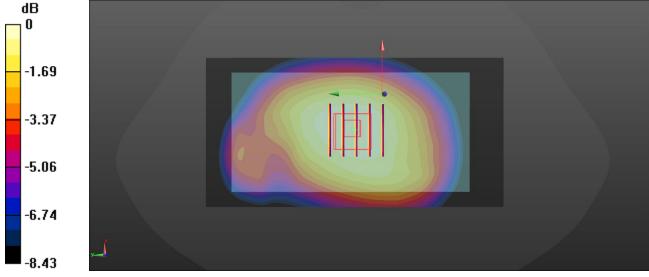
0 dB = 0.502 W/kg = -2.99 dBW/kg

Report No:	TRE18050167	Page: 49	9 of 60	Issued: 201	8-05-29	
Test mode:	GPRS850 3Tx slot	Test Position	Rear	Test Plot	B1	

Communication System: UID 0, Generic GPRS(TDMA, GMSK, TN 0-1-2) (0); Frequency: 836.6 MHz;Duty Cycle: 1:2.67

Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.967 S/m; ϵ_r = 55.399; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY 5 Configuration:


- Probe: EX3DV4 SN7494; ConvF(10.5, 10.5, 10.5); Calibrated: 2/26/2018;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 4/25/2018
- Phantom: Twin-SAM V8.0 ; Type: QD 000 P41 AA; Serial: 1974
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7437)

Rear/Procedure/Area Scan (61x121x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.716 W/kg

Rear/Procedure/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 28.08 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 0.788 W/kg SAR(1 g) = 0.584 W/kg; SAR(10 g) = 0.445 W/kg Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.713 W/kg

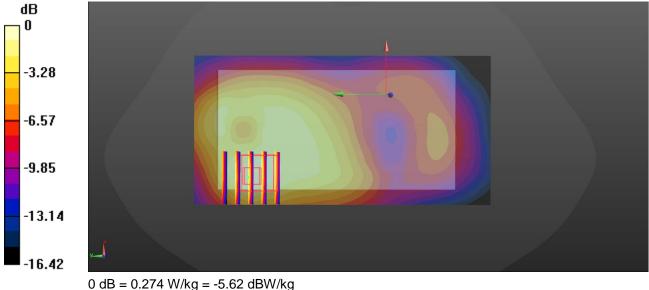
0 dB = 0.713 W/kg = -1.47 dBW/kg

Report No:	TRE18050167	Page: 50 of 60		Issued: 2018	3-05-29
Test mode:	GPRS1900 3Tx slot	Test Position:	Rear	Test Plot:	B2

Communication System: UID 0, Generic GPRS(TDMA, GMSK, TN 0-1-2) (0); Frequency: 1880 MHz;Duty Cycle: 1:2.67

Medium parameters used: f = 1880 MHz; σ = 1.539 S/m; ϵ_r = 53.741; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:


- Probe: EX3DV4 SN7494; ConvF(8.42, 8.42, 8.42); Calibrated: 2/26/2018;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 4/25/2018
- Phantom: Twin-SAM V8.0 ; Type: QD 000 P41 AA; Serial: 1974
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7437)

Rear/Procedure/Area Scan (61x121x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.290 W/kg

Rear/Procedure/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

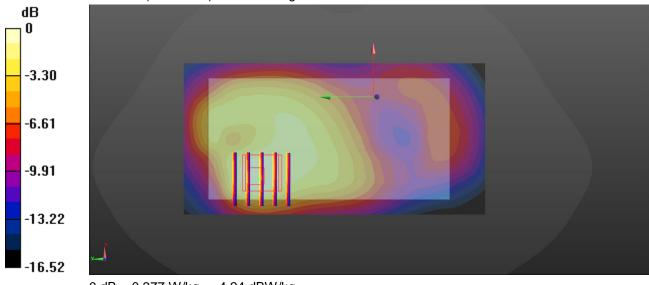
Reference Value = 6.926 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 0.323 W/kg SAR(1 g) = 0.192 W/kg; SAR(10 g) = 0.114 W/kg

Maximum value of SAR (measured) = 0.274 W/kg

Report No:	TRE18050167	Page: 51 of 60		Issued: 2018-05-29	
Test mode	WCDMA Band II	Test Position:	Rear	Test Plot	B3

Communication System: UID 0, Generic UMTS (0); Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; σ = 1.539 S/m; ϵ_r = 53.741; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY 5 Configuration:


- Probe: EX3DV4 SN7494; ConvF(8.42, 8.42, 8.42); Calibrated: 2/26/2018;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 4/25/2018
- Phantom: Twin-SAM V8.0 ; Type: QD 000 P41 AA; Serial: 1974
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7437)

Rear/Procedure/Area Scan (61x121x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.390 W/kg

Rear/Procedure/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.702 V/m; Power Drift = 0.10 dB Peak SAR (extrapolated) = 0.469 W/kg SAR(1 g) = 0.271 W/kg; SAR(10 g) = 0.156 W/kg Maximum value of SAR (measured) = 0.377 W/kg

0 dB = 0.377 W/kg = -4.24 dBW/kg

Report No:	TRE18050167	Page: 5	Page: 52 of 60		ed: 2018-05-29
Test mode:	WCDMA Band V	Test Position:	Rear	Test	Plot: B4

Communication System: UID 0, Generic UMTS (0); Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.967 S/m; ϵ_r = 55.399; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY 5 Configuration:

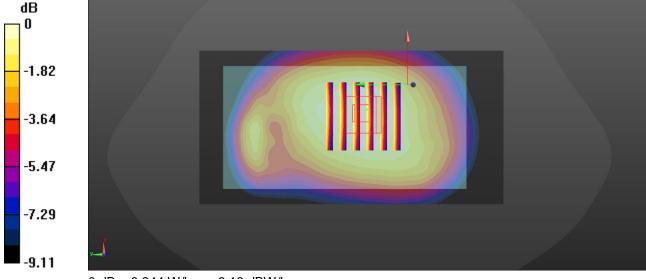
- Probe: EX3DV4 SN7494; ConvF(10.5, 10.5, 10.5); Calibrated: 2/26/2018;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 4/25/2018
- Phantom: Twin-SAM V8.0 ; Type: QD 000 P41 AA; Serial: 1974
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7437)

Rear/Procedure/Area Scan (61x121x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.244 W/kg

Rear/Procedure/Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 16.08 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 0.269 W/kg

SAR(1 g) = 0.201 W/kg; SAR(10 g) = 0.153 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.244 W/kg

0 dB = 0.244 W/kg = -6.13 dBW/kg

Report No:	TRE18050167	Page: (Page: 53 of 60		Issued: 2018-05-29	
Test mode:	WLAN 802.11b	Test Position:	Rear		Test Plot:	B9

Communication System: UID 0, Generic WIFI (0); Frequency: 2412 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2412 MHz; σ = 1.991 S/m; ϵ_r = 53.023; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

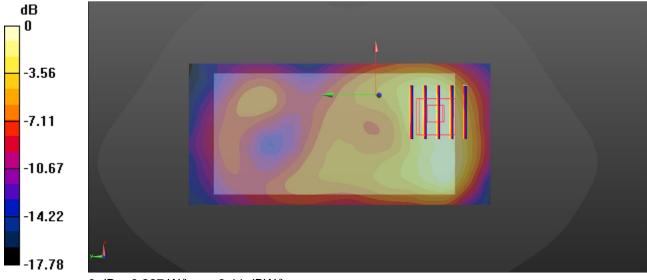
- Probe: EX3DV4 SN7494; ConvF(8.08, 8.08, 8.08); Calibrated: 2/26/2018;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 4/25/2018
- Phantom: Twin-SAM V8.0 ; Type: QD 000 P41 AA; Serial: 1974
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7437)

Rear/Procedure/Area Scan (71x151x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.231 W/kg

Rear/Procedure/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 5.235 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.279 W/kg

SAR(1 g) = 0.151 W/kg; SAR(10 g) = 0.086 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.227 W/kg

0 dB = 0.227 W/kg = -6.44 dBW/kg

15. Simultaneous Transmission analysis

No.	Simultaneous Transmission Configurations	Head	Body	Hotspot	Note
1	GSM(voice) + Bluetooth (data)	Yes	Yes	No	
2	GSM(voice) + WIFI (data)	Yes	Yes	Yes	
3	WCDMA(voice) + Bluetooth (data)	Yes	Yes	No	
4	WCDMA(voice) + WIFI (data)	Yes	Yes	Yes	
5	GPRS (data) + Bluetooth (data)	Yes	Yes	No	
6	GPRS (data) + WIFI (data)	Yes	Yes	Yes	
7	WCDMA (data) + Bluetooth (data)	Yes	Yes	No	
8	WCDMA (data) + WIFI (data)	Yes	Yes	Yes	

General note:

1. WLAN and Bluetooth share the same antenna, and cannot transmit simultaneously.

2. EUT will choose either GSM or WCDMA according to the network signal condition; therefore, they will not operate simultaneously at any moment.

3. The reported SAR summation is calculated based on the same configuration and test position

4. For simultaneous transmission analysis, Bluetooth SAR is estimated per KDB 447498 D01 based on the formula below

a) [(max. Power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] * [√f(GHz)/x]W/kg for test separation distances ≤50mm; whetn x=7.5 for 1-g SAR, and x=18.75 for 10-g SAR.

b) When the minimum separation distance is <5mm, the distance is used 5mm to determine SAR test exclusion

c) 0.4 W/kg for 1-g SAR and 1.0W/kg for 10-g SAR, when the test separation distances is >50mm.

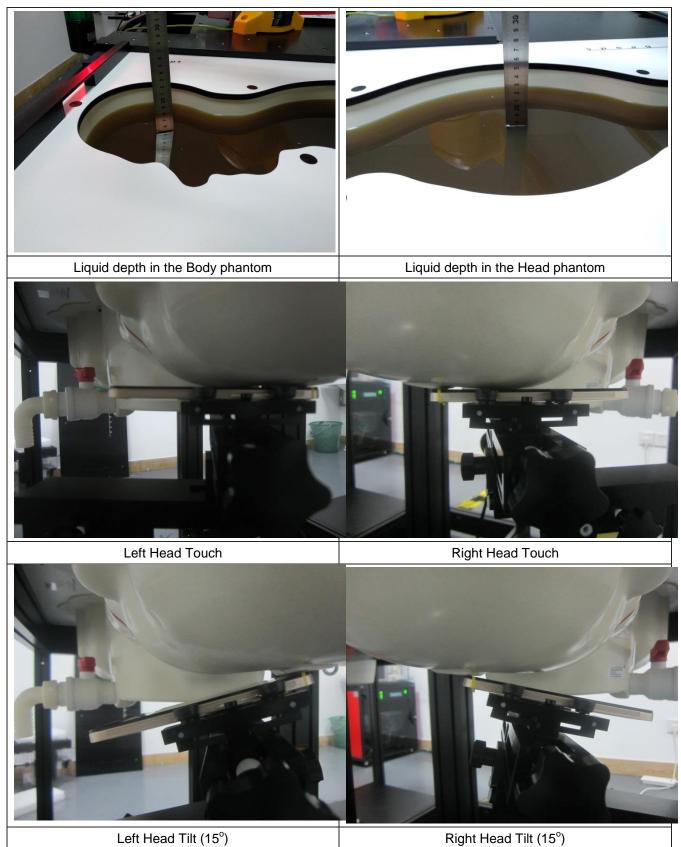
Bluetooth	Exposure position	Head	Body worn
Max power	Test separation	0mm	10mm
4.50 dBm	Estimated SAR (W/kg)	0.118	0.059

Maximum reported SAR value for Head mode

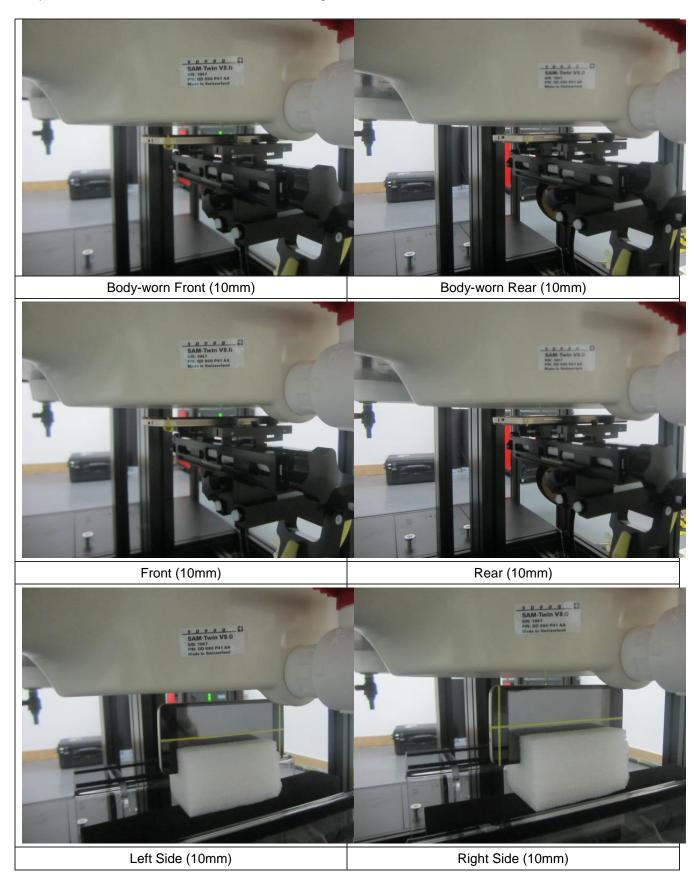
WWAN PCE + WLAN DTS								
\\\\\\\	N Rond	Exposure	Max SAI	R (W/kg)	Summed SAR			
WWAN Band		Position	WWAN PCE	WLAN DTS	(W/kg)			
	GSM850	Left Cheek	0.245	0.370	0.615			
		Left Tilted	0.188	0.313	0.501			
		Right Cheek	0.227	0.355	0.582			
GSM		Right Tilted	0.172	0.298	0.470			
GOIN		Left Cheek	0.186	0.370	0.555			
	PCS1900	Left Tilted	0.149	0.313	0.463			
		Right Cheek	0.178	0.355	0.534			
		Right Tilted	0.140	0.298	0.439			
		Left Cheek	0.165	0.370	0.535			
	Band II	Left Tilted	0.136	0.313	0.449			
	Dallu II	Right Cheek	0.158	0.355	0.513			
WCDMA		Right Tilted	0.126	0.298	0.425			
VVCDIVIA		Left Cheek	0.104	0.370	0.473			
	Band V	Left Tilted	0.084	0.313	0.397			
		Right Cheek	0.100	0.355	0.455			
		Right Tilted	0.079	0.298	0.377			

WWAN PCE + Bluetooth								
	N Dond	Exposure	Max SAF	R (W/kg)	Summed SAR			
WWAN Band		Position	WWAN PCE	Bluetooth	(W/kg)			
	GSM850	Left Cheek	0.245	0.118	0.363			
		Left Tilted	0.188	0.118	0.305			
		Right Cheek	0.227	0.118	0.345			
GSM		Right Tilted	0.172	0.118	0.290			
GOIN		Left Cheek	0.186	0.118	0.303			
	PCS1900	Left Tilted	0.149	0.118	0.267			
		Right Cheek	0.178	0.118	0.296			
		Right Tilted	0.140	0.118	0.258			
		Left Cheek	0.165	0.118	0.283			
	Band II	Left Tilted	0.136	0.118	0.254			
	Dallu II	Right Cheek	0.158	0.118	0.275			
WCDMA		Right Tilted	0.126	0.118	0.244			
VVCDIVIA		Left Cheek	0.104	0.118	0.221			
	Band V	Left Tilted	0.084	0.118	0.201			
	Dariu V	Right Cheek	0.100	0.118	0.218			
		Right Tilted	0.079	0.118	0.196			

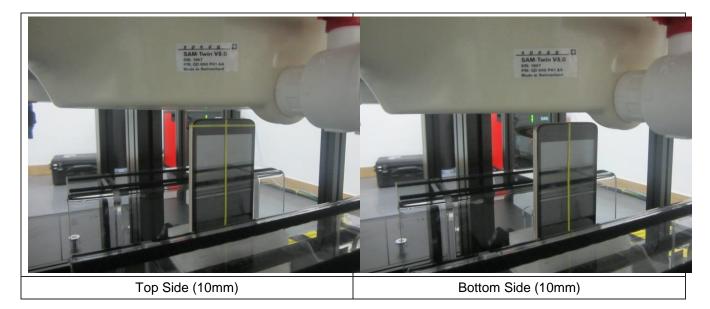
Maximum reported SAR value for Body


WWAN PCE + WLAN DTS							
WWAN Band		Exposure	Max SAF	R (W/kg)	Summed SAR		
		Position	WWAN PCE	WLAN DTS	(W/kg)		
	GSM850	Front	0.429	0.116	0.545		
GSM	GSIM050	Rear	0.651	0.170	0.821		
GSIM	PCS1900	Front	0.135	0.116	0.251		
		Rear	0.213	0.170	0.383		
	Pond II	Front	0.215	0.116	0.331		
WCDMA	Band II	Rear	0.303	0.170	0.472		
WCDINA		Front	0.126	0.116	0.242		
	Band V	Rear	0.205	0.170	0.374		

WWAN PCE + Bluetooth							
WWAN Band		Exposure	Max SAF	R (W/kg)	Summed SAR		
		Position	WWAN PCE	Bluetooth	(W/kg)		
	GSM850	Front	0.429	0.059	0.488		
GSM	GSIM850	Back	0.651	0.059	0.710		
GSIM	PCS1900	Front	0.135	0.059	0.194		
		Back	0.213	0.059	0.272		
	Band II	Front	0.215	0.059	0.274		
	Banu II	Back	0.303	0.059	0.361		
WCDMA	Band V	Front	0.126	0.059	0.185		
	Dallu V	Back	0.205	0.059	0.263		


Maximum reported SAR value for Hotspot mode

WWAN PCE + WLAN DTS							
10/10/0	N Pond	Exposure Position	Max S/	AR (W/kg)	Summed SAR		
WWAN Band		Position	WWAN PCE	WLAN DTS	(W/kg)		
		Front	0.429	0.116	0.545		
		Back	0.651	0.170	0.821		
	GSM850	Left side	0.466	0.142	0.607		
	6310000	Right side	0.207	-	0.207		
		Top side	-	0.112	0.112		
GSM		Bottom side	0.443	-	0.443		
GSIM		Front	0.135	0.116	0.251		
		Back	0.213	0.170	0.383		
	PCS1900	Left side	0.129	0.142	0.271		
		Right side	0.071	-	0.071		
		Top side	-	0.112	0.112		
		Bottom side	0.134	-	0.134		
		Front	0.215	0.116	0.331		
		Back	0.303	0.170	0.472		
	Band II	Left side	0.206	0.142	0.348		
	Banu II	Right side	0.113	-	0.113		
		Top side	-	0.112	0.112		
WCDMA		Bottom side	0.199	-	0.199		
		Front	0.126	0.116	0.242		
		Back	0.205	0.170	0.374		
	Band V	Left side	0.124	0.142	0.266		
		Right side	0.076	-	0.076		
		Top side	-	0.112	0.112		
		Bottom side	0.124	-	0.124		


16. TestSetup Photos

Report No: TRE18050167

Report No: TRE18050167

17. External and Internal Photos of the EUT

Please reference to the report No.: TRE1805016601.

-----End of Report-----

1.1. DAE4 Calibration Certificate

The Swiss Accreditation Serv Multilateral Agreement for th Client CCIC - HTW	e recognition of calibration	certificates	
		Castilizat	e No: DAE4-1549_Apr18
	CERTIFICATE		e No: DAE4-1343_API 10
Object		04 BN - SN: 1549	
Calibration procedure(s)	QA CAL-06.v29 Calibration procee	dure for the data acquisition e	electronics (DAE)
Calibration date:	April 25, 2018		
The measurements and the ur	acertainties with confidence producted in the closed laboratory	onal standards, which realize the physica obability are given on the following page / facility: environment temperature (22 ±	s and are part of the certificate.
The measurements and the un All calibrations have been con- Calibration Equipment used (N Primary Standards	acertainties with confidence producted in the closed laboratory t&TE critical for calibration)	obability are given on the following page / facility: environment temperature (22 ± Cal Date (Certificate No.)	s and are part of the certificate. 3)°C and humidity < 70%. Scheduled Calibration
The measurements and the un All calibrations have been cond Calibration Equipment used (N	acertainties with confidence producted in the closed laboratory	obability are given on the following page \prime facility: environment temperature (22 \pm	s and are part of the certificate. 3)°C and humidity < 70%.
The measurements and the ur All calibrations have been cone Calibration Equipment used (N Primary Standards Keithley Multimeter Type 2001 Secondary Standards	Acertainties with confidence producted in the closed laboratory I&TE critical for calibration) ID # SN: 0810278 ID #	obability are given on the following page (facility: environment temperature (22 ± <u>Cal Date (Certificate No.)</u> 31-Aug-17 (No:21092) Check Date (in house)	s and are part of the certificate. 3)°C and humidity < 70%. Scheduled Calibration
The measurements and the ur All calibrations have been cone Calibration Equipment used (N Primary Standards Keithley Multimeter Type 2001	Acertainties with confidence producted in the closed laboratory BATE critical for calibration) ID # SN: 0810278 ID # SE UWS 053 AA 1001	obability are given on the following page (facility: environment temperature (22 ± <u>Cal Date (Certificate No.)</u> 31-Aug-17 (No:21092) Check Date (in house)	s and are part of the certificate. 3)°C and humidity < 70%. Scheduled Calibration Aug-18
The measurements and the ur All calibrations have been cone Calibration Equipment used (M <u>Primary Standards</u> Keithley Multimeter Type 2001 <u>Secondary Standards</u> Auto DAE Calibration Unit Calibrator Box V2.1	Avertainties with confidence producted in the closed laboratory BATE critical for calibration) ID # SN: 0810278 ID # SE UWS 053 AA 1001 SE UMS 006 AA 1002	obability are given on the following page / facility: environment temperature (22 ± <u>Cal Date (Certificate No.)</u> 31-Aug-17 (No:21092) <u>Check Date (in house)</u> 04-Jan-18 (in house check) 04-Jan-18 (in house check) Function	s and are part of the certificate. 3)°C and humidity < 70%. Scheduled Calibration Aug-18 Scheduled Check In house check: Jan-19
The measurements and the ur All calibrations have been cone Calibration Equipment used (M Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit	Acertainties with confidence producted in the closed laboratory Barte critical for calibration) ID # SN: 0810278 ID # SE UWS 053 AA 1001 SE UMS 006 AA 1002	obability are given on the following page / facility: environment temperature (22 ± <u>Cal Date (Certificate No.)</u> 31-Aug-17 (No:21092) <u>Check Date (in house)</u> 04-Jan-18 (in house check) 04-Jan-18 (in house check)	s and are part of the certificate. 3)°C and humidity < 70%. <u>Scheduled Calibration</u> Aug-18 <u>Scheduled Check</u> In house check: Jan-19 In house check: Jan-19

2 of 44

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE Connector angle

data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle . mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a . result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on . the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an . input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter . corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of . zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset . current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, . during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery . alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-1549_Apr18

Page 2 of 5

S

Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage
- С Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 0108

DC Voltage Measurement A/D - Converter Resolution nominal

High Range:	1LSB =	6.1μV,	full range =	-100+300 mV
Low Range:	1LSB =	61nV,	full range =	-1+3mV
DASY measurement p	arameters: Aut	o Zero Time: 3	sec; Measuring	time: 3 sec

x	Y	Z
406.286 ± 0.02% (k=2)	405.992 ± 0.02% (k=2)	406.121 ± 0.02% (k=2)
3.98481 ± 1.50% (k=2)		
		2 00404 1 4 500/ // 0)

Connector Angle

Г

Connector Angle to be used in DASY system	19.5 ° ± 1 °
---	--------------

Certificate No: DAE4-1549_Apr18

Page 3 of 5

High Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	200032.88	-6.49	-0.00
Channel X + Input	20007.86	2.59	0.01
Channel X - Input	-19999.45	5.51	-0.03
Channel Y + Input	200041.48	8.18	0.00
Channel Y + Input	20005.02	-0.19	-0.00
Channel Y - Input	-20006.61	-1.53	0.01
Channel Z + Input	200032.37	-0.87	-0.00
Channel Z + Input	20003.95	-1.15	-0.01
Channel Z - Input	-20006.60	-1.44	0.01

Appendix (Additional assessments outside the scope of SCS0108)

Low Range Reading (µV) Difference (µV) Error (%) Channel X + Input 2001.67 0.37 0.02 Channel X + Input 201.82 0.29 0.15 Channel X - Input -198.25 0.31 -0.16 Channel Y + Input 2001.35 0.05 0.00 Channel Y + Input 200.82 -0.59 -0.29 Channel Y - Input -199.06 -0.48 0.24 Channel Z + Input 2000.94 -0.41 -0.02 Channel Z + Input 200.84 -0.55 -0.27 Channel Z - Input -199.79 -1.17 0.59

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (µV)
Channel X	200	-15.83	-18.16
	- 200	21.36	19.06
Channel Y	200	20.98	20.64
_	- 200	-22.25	-22.23
Channel Z	200	5.37	5.05
	- 200	-7.46	-7.54

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (µV)
Channel X	200	-	-1.66	-2.66
Channel Y	200	5.97	-	-0.75
Channel Z	200	9.87	3.19	-0.75

Certificate No: DAE4-1549_Apr18

Page 4 of 5

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16424	16943
Channel Y	15770	17113
Channel Z	15616	15207

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input $10M\Omega$

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	-0.33	-1.57	0.89	0.48
Channel Y	0.13	-0.93	1.54	0.52
Channel Z	-0.98	-2.13	0.50	0.47

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

Zeroing (kOhm)	Measuring (MOhm)
200	200
200	200
200	200
	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

1.2. Probe Calibration Certificate

ichmid & Partner Engineering AG aughausstrasse 43, 8004 Zuri	ory of	S S S	Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service
ccredited by the Swiss Accredit he Swiss Accreditation Servio ultilateral Agreement for the	ce is one of the signatories	to the EA	reditation No.: SCS 0108
lient CCIC-HTW (A	uden)	Certificate No:	EX3-7494_Feb18
CALIBRATION	CERTIFICATE		and a state of
Dbject	EX3DV4 - SN:749	4	
Calibration procedure(s)	QA CAL-25.v6	A CAL-12.v9, QA CAL-14.v4, QA lure for dosimetric E-field probes	CAL-23.v5,
Calibration date:	February 26, 2018		
The measurements and the unc	certainties with confidence pro	hal standards, which realize the physical units bability are given on the following pages and facility: environment temperature $(22 \pm 3)^{\circ}$ C a	are part of the certificate.
The measurements and the unconstructions have been conducted to the second construction Equipment used (M&	certainties with confidence pro ucted in the closed laboratory &TE critical for calibration)	bability are given on the following pages and facility: environment temperature (22 ± 3)°C a	are part of the certificate. and humidity < 70%,
The measurements and the unc ul calibrations have been condu Calibration Equipment used (M& Primary Standards	certainties with confidence pro ucted in the closed laboratory &TE critical for calibration)	bability are given on the following pages and facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.)	are part of the certificate. and humidity < 70%, Scheduled Calibration
he measurements and the unc all calibrations have been condu- calibration Equipment used (M& Primary Standards Power meter NRP	ertainties with confidence pro ucted in the closed laboratory &TE critical for calibration) ID SN: 104778	bability are given on the following pages and facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-18
he measurements and the unc all calibrations have been condu- calibration Equipment used (M& Primary Standards Power meter NRP Power sensor NRP-Z91	ertainties with confidence pro- ucted in the closed laboratory &TE critical for calibration) ID SN: 104778 SN: 103244	bability are given on the following pages and facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-18 Apr-18
The measurements and the unc All calibrations have been condu- calibration Equipment used (M& Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91	tertainties with confidence pro- ucted in the closed laboratory &TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245	bability are given on the following pages and facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02525)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-18
The measurements and the unc All calibrations have been condu- calibration Equipment used (M& Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator	ertainties with confidence pro- ucted in the closed laboratory &TE critical for calibration) ID SN: 104778 SN: 103244	bability are given on the following pages and facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-18 Apr-18 Apr-18
The measurements and the unc All calibrations have been condu- calibration Equipment used (M& Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Reference Probe ES3DV2	ertainties with confidence pro- ucted in the closed laboratory &TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: 103245 SN: S5277 (20x)	bability are given on the following pages and facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02525) 07-Apr-17 (No. 217-02525) 07-Apr-17 (No. 217-02528)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-18 Apr-18 Apr-18 Apr-18
The measurements and the unconstruction of the second seco	Exertainties with confidence pro- ucted in the closed laboratory &TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: 55277 (20x) SN: 3013	bability are given on the following pages and facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02525) 07-Apr-17 (No. 217-02525) 07-Apr-17 (No. 217-02528) 30-Dec-17 (No. ES3-3013_Dec17) 21-Dec-17 (No. DAE4-660_Dec17)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-18 Apr-18 Apr-18 Apr-18 Dec-18
The measurements and the unconstruction of the second of the unconstruction Equipment used (M8 construction Equipment used (M8 construction Equipment used (M8 construction) and the second of the sec	LD SN: 104778 SN: 103244 SN: 103245 SN: 5277 (20x) SN: 3013 SN: 660	bability are given on the following pages and facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02525) 07-Apr-17 (No. 217-02525) 07-Apr-17 (No. 217-02528) 30-Dec-17 (No. ES3-3013_Dec17)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-18 Apr-18 Apr-18 Apr-18 Dec-18 Dec-18
The measurements and the unconstruction Equipment used (M8 Calibration Equipment used (M8 Primary Standards Power sensor NRP-Z91 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power meter E4419B	certainties with confidence pro- ucted in the closed laboratory &TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: S5277 (20x) SN: 3013 SN: 660 ID	bability are given on the following pages and facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02525) 07-Apr-17 (No. 217-02525) 07-Apr-17 (No. 217-02528) 30-Dec-17 (No. ES3-3013_Dec17) 21-Dec-17 (No. DAE4-660_Dec17) Check Date (in house)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-18 Apr-18 Apr-18 Apr-18 Dec-18 Dec-18 Dec-18 Scheduled Check
The measurements and the unc All calibrations have been condu- Calibration Equipment used (M& Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A	ertainties with confidence pro- ucted in the closed laboratory &TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: 55277 (20x) SN: 3013 SN: 660 ID SN: GB41293874	bability are given on the following pages and facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02525) 07-Apr-17 (No. 217-02525) 07-Apr-17 (No. 217-02528) 30-Dec-17 (No. ES3-3013_Dec17) 21-Dec-17 (No. DAE4-660_Dec17) Check Date (in house) 06-Apr-16 (in house check Jun-16)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-18 Apr-18 Apr-18 Apr-18 Dec-18 Dec-18 Dec-18 Dec-18 Lec-18 Dec-18 Dec-18 Dec-18 Lec-18 Dec-18 Dec-18 Dec-18 Dec-18 Dec-18
The measurements and the unc All calibrations have been condu- calibration Equipment used (M& Primary Standards Power meter NRP Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor E44198 Power sensor E4412A Power sensor E4412A RF generator HP 8648C	certainties with confidence pro- ucted in the closed laboratory &TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: 103245 SN: 3013 SN: 660 ID SN: 660 ID SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700	Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02525) 07-Apr-17 (No. 217-02528) 30-Dec-17 (No. 217-02528) 30-Dec-17 (No. DAE4-660_Dec17) 21-Dec-17 (No. DAE4-660_Dec17) Check Date (in house) 06-Apr-16 (in house check Jun-16)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-18 Apr-18 Apr-18 Apr-18 Dec-18 Dec-18 Dec-18 Scheduled Check In house check: Jun-18 In house check: Jun-18 In house check: Jun-18
The measurements and the unc All calibrations have been condu- Calibration Equipment used (M& Primary Standards Power meter NRP Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A RF generator HP 8648C	certainties with confidence pro- ucted in the closed laboratory &TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: 55277 (20x) SN: 55277 (20x) SN: 660 ID SN: GB41293874 SN: GB41293874 SN: MY41498087 SN: 000110210	bability are given on the following pages and facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02525) 07-Apr-17 (No. 217-02528) 30-Dec-17 (No. 217-02528) 30-Dec-17 (No. ES3-3013 Dec17) 21-Dec-17 (No. DAE4-660_Dec17) Check Date (in house) 06-Apr-16 (in house check Jun-16) 06-Apr-16 (in house check Jun-16)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-18 Apr-18 Apr-18 Dec-18 Dec-18 Dec-18 Dec-18 Scheduled Check In house check: Jun-18 In house check: Jun-18
The measurements and the unc All calibrations have been condu- Calibration Equipment used (M& Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A RF generator HP 8648C Network Analyzer HP 8753E	certainties with confidence pro- ucted in the closed laboratory &TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: 103245 SN: 3013 SN: 660 ID SN: 660 ID SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700	Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02525) 07-Apr-17 (No. 217-02528) 30-Dec-17 (No. 217-02528) 30-Dec-17 (No. DAE4-660_Dec17) 21-Dec-17 (No. DAE4-660_Dec17) Check Date (in house) 06-Apr-16 (in house check Jun-16)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-18 Apr-18 Apr-18 Apr-18 Dec-18 Dec-18 Dec-18 Scheduled Check In house check: Jun-18 In house check: Jun-18 In house check: Jun-18 In house check: Jun-18
The measurements and the unc	Arr Control Co	Cal Date (Certificate No.) Q4-Apr-17 (No. 217-02521) Q4-Apr-17 (No. 217-02521) Q4-Apr-17 (No. 217-02521) Q4-Apr-17 (No. 217-02525) Q7-Apr-17 (No. 217-02528) 30-Dec-17 (No. 217-02528) 30-Dec-17 (No. 217-02528) 30-Dec-17 (No. 217-02528) 30-Dec-17 (No. ES3-3013_Dec17) 21-Dec-17 (No. DAE4-660_Dec17) Check Date (in house) Q6-Apr-16 (in house check Jun-16) Q6-Apr-16 (in house check Jun-16)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-18 Apr-18 Apr-18 Dec-18 Dec-18 Dec-18 Scheduled Check In house check: Jun-18 In house check: Jun-18

Certificate No: EX3-7494_Feb18

Page 1 of 39

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- S Servizio svizzero di taratura
- Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

and a data in gr	
TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization ϕ	φ rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at measurement center),
	i.e., 9 = 0 is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
 b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-
- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization ϑ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx.y.z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom
 exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX3-7494_Feb18

Page 2 of 39

February 26, 2018

Probe EX3DV4

SN:7494

Manufactured: Calibrated: March 20, 2017 February 26, 2018

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: EX3-7494_Feb18

Page 3 of 39

February 26, 2018

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7494

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.40	0.46	0.38	± 10.1 %
DCP (mV) ^B	96.1	100.9	97.7	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	139.9	±3.0 %
		Y	0.0	0.0	1.0		130.5	
		Z	0.0	0.0	1.0		141.2	

Note: For details on UID parameters see Appendix.

Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	T1 ms.V ⁻²	T2 ms.V ⁻¹	T3 ms	T4 V ⁻²	T5 V ⁻¹	Т6
X	35.16	262.6	35.64	5.712	0.042	5.019	0.180	0.312	1.002
Y	33.86	260.4	37.41	4.029	0.204	5.030	0.324	0.359	1.006
Z	29.60	221.1	35.61	5.101	0.000	5.027	0.562	0.186	1.003

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required. ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the

Certificate No: EX3-7494_Feb18

Page 4 of 39

February 26, 2018

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7494

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
150	52.3	0.76	13.63	13.63	13.63	0.00	1.00	± 13.3 %
450	43.5	0.87	11.70	11.70	11.70	0.14	1.25	± 13.3 %
750	41.9	0.89	11.02	11.02	11.02	0.43	0.86	± 12.0 %
835	41.5	0.90	10.73	10.73	10.73	0.44	0.82	± 12.0 %
1750	40.1	1.37	9.23	9.23	9.23	0.30	0.96	± 12.0 %
1900	40.0	1.40	8.83	8.83	8.83	0.36	0.84	± 12.0 %
2450	39.2	1.80	8.27	8.27	8.27	0.32	0.85	± 12.0 %
2600	39.0	1.96	7.92	7.92	7.92	0.35	0.84	± 12.0 %
5200	36.0	4.66	5.63	5.63	5.63	0.35	1.80	± 13.1 %
5300	35.9	4.76	5.40	5.40	5.40	0.35	1.80	± 13.1 %
5500	35.6	4.96	5.06	5.06	5.06	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.93	4.93	4.93	0.40	1.80	± 13.1 %
5800	35.3	5.27	4.90	4.90	4.90	0.40	1.80	± 13.1 %

Calibration Parameter Determined in Head Tissue Simulating Media

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity calibration be extended to ± 110 MHz. ^{*} At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 0 is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: EX3-7494_Feb18

Page 5 of 39

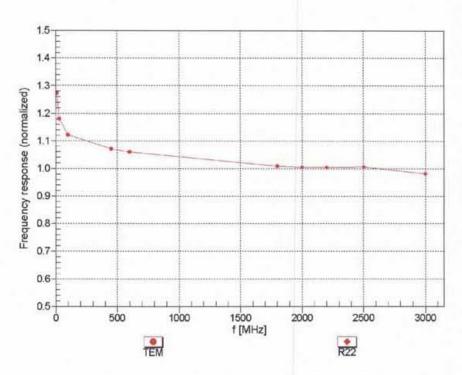
February 26, 2018

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7494

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^d (mm)	Unc (k=2)
150	61.9	0.80	12.81	12.81	12.81	0.00	1.00	± 13.3 %
450	56.7	0.94	11.87	11.87	11.87	0.08	1.25	± 13.3 %
750	55.5	0.96	10.87	10.87	10.87	0.41	0.85	± 12.0 %
835	55.2	0.97	10.50	10.50	10.50	0.38	0.85	± 12.0 %
1750	53.4	1.49	8.77	8.77	8.77	0.31	0.90	± 12.0 %
1900	53.3	1.52	8.42	8.42	8.42	0.36	0.84	± 12.0 %
2450	52.7	1.95	8.08	8.08	8.08	0.24	1.07	± 12.0 %
2600	52.5	2.16	7.51	7.51	7.51	0.19	1.10	± 12.0 %
5200	49.0	5.30	5.30	5.30	5.30	0.35	1.90	± 13.1 %
5300	48.9	5.42	4.97	4.97	4.97	0.40	1.90	± 13.1 %
5500	48.6	5.65	4.62	4.62	4.62	0.40	1.90	± 13.1 %
5600	48.5	5.77	4.51	4.51	4.51	0.40	1.90	± 13.1 %
5800	48.2	6.00	4.61	4.61	4.61	0.40	1.90	± 13.1 %

Calibration Parameter Determined in Body Tissue Simulating Media

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

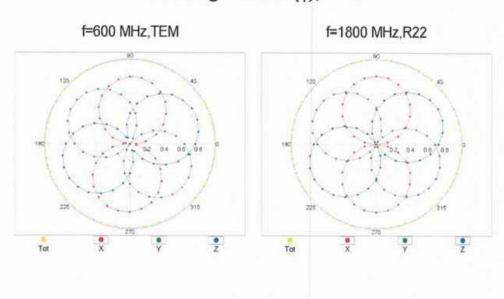

Validity can be extended to ± 110 MHZ. [®] At frequencies below 3 GHz, the validity of tissue parameters (c and o) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (c and o) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. [®] Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: EX3-7494_Feb18

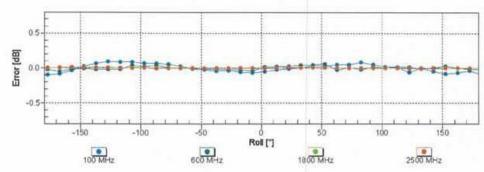
Page 6 of 39

February 26, 2018

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)



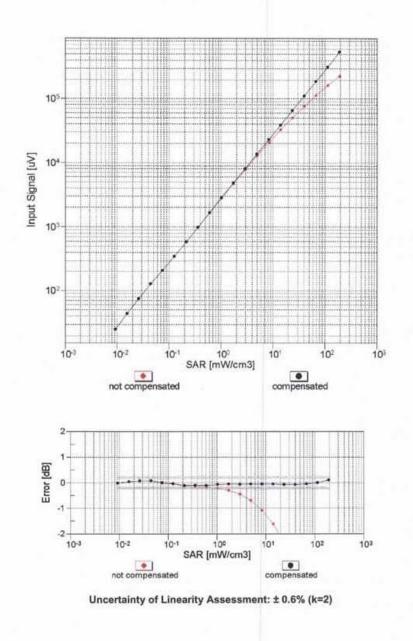
Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Certificate No: EX3-7494_Feb18

Page 7 of 39

February 26, 2018

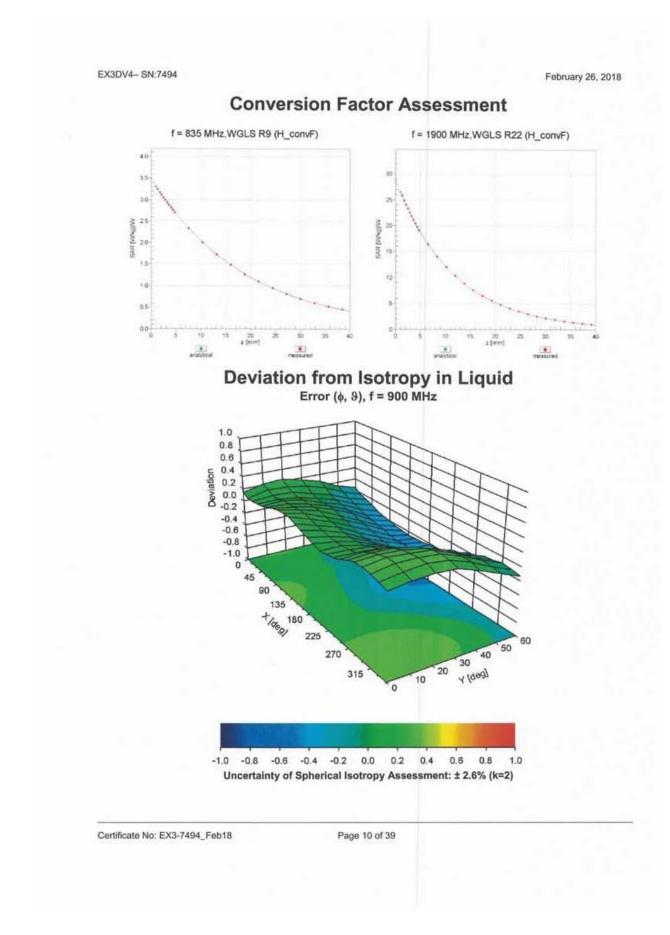
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: EX3-7494_Feb18

Page 8 of 39


February 26, 2018

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Certificate No: EX3-7494_Feb18

Page 9 of 39

February 26, 2018

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7494

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	22.8
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Certificate No: EX3-7494_Feb18

Page 11 of 39

February 26, 2018

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max Unc ^E (k=2)
0	CW	X	0.00	0.00	1.00	0.00	139.9	± 3.0 %
		Y	0.00	0.00	1.00		130.5	
		Z	0.00	0.00	1.00		141.2	
10010- CAA	SAR Validation (Square, 100ms, 10ms)	×	1.49	62.54	7.67	10.00	20.0	±9.6 %
		Y	1.40	61.40	6.89		20.0	
_		Z	1.51	62.75	7.79		20.0	
10011- CAB	UMTS-FDD (WCDMA)	×	0.98	67.35	15.11	0.00	150.0	±9.6 %
		Y	0.81	65.02	13.17		150.0	1.00
		Z	0.93	66.90	14.65		150.0	
10012- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	×	1.11	63.45	14.96	0.41	150.0	± 9.6 %
		Y	1.01	62.50	14.08		150.0	
and the second se		Z	1.10	63.40	14.81		150.0	10
10013- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps)	x	4.64	66.63	16.93	1.46	150.0	± 9.6 %
o-mail		Y	4.55	66.39	16.76		150.0	
		Z	4.54	66.74	16.91		150.0	
10021- DAC	GSM-FDD (TDMA, GMSK)	×	100.00	105.24	22.43	9.39	50.0	± 9.6 %
		Y	7.56	78.16	14.98		50.0	
		Z	100.00	105.86	22.69		50.0	
10023- DAC	GPRS-FDD (TDMA, GMSK, TN 0)	x	100.00	104.66	22.23	9.57	50.0	± 9.6 %
		Y	5.00	73.77	13.48		50.0	
		Z	100.00	105.06	22.39		50.0	
10024- DAC	GPRS-FDD (TDMA, GMSK, TN 0-1)	×	100.00	105.71	21.52	6.56	60.0	± 9.6 %
		Y	6.98	78.84	13.84		60.0	A
		Z	100.00	107.13	22.08		60.0	
10025- DAC	EDGE-FDD (TDMA, 8PSK, TN 0)	x	4.17	73.26	28.42	12.57	50.0	± 9.6 %
		Y	3.36	65.73	23.63		50.0	
	and the second	Z	4.00	72.02	27.83		50.0	
10026- DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1)	×	5.43	82.70	29.77	9.56	60.0	± 9.6 %
		Y	5.01	80.20	28.37		60.0	
		Z	4.92	80.62	29.06		60.0	
10027- DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	×	100.00	108.47	21.93	4.80	80.0	± 9.6 %
		Y	100.00	97.70	17.18		80.0	
man		Z	100.00	111.35	23.07		80.0	
10028- DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	x	100.00	113.56	23.37	3.55	100.0	± 9.6 %
_		Y	0.84	65.84	7.87	-	100.0	
		Z	100.00	118.99	25.50		100.0	
10029- DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	x	3.69	73.69	24.54	7.80	80.0	± 9.6 %
_		Y	3.47	72.25	23.68	-	80.0	
10055		Z	3.48	72.59	24.16		80.0	10.00
10030- CAA	IEEE 802.15.1 Bluetooth (GFSK, DH1)	×	100.00	103.93	20.28	5.30	70.0	± 9.6 %
		Y	1.23	65.73	8.63		70.0	-
		Z	100.00	104.97	20.64		70.0	
10031- CAA	IEEE 802.15.1 Bluetooth (GFSK, DH3)	×	100.00	106.93	19.48	1.88	100.0	±9.6 %
		Y	0.22	60.00	2.94		100.0	
		Z	100.00	109.18	20.25		100.0	

Certificate No: EX3-7494_Feb18

Page 12 of 39

February 26, 2018

10032- CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	Х	100.00	122.55	24.60	1.17	100.0	±9.6 %
		Y	7.61	60.44	1.42		100.0	-
101		Z	100.00	126.07	25.78		100.0	
10033- CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)	X	6.59	87.18	22.06	5.30	70.0	± 9.6 %
		Y	3.47	76.95	17.71	-	70.0	-
		Z	6.68	86.39	21.09		70.0	
10034-	IEEE 802.15.1 Bluetooth (PI/4-DQPSK,	X	1.88	72.27	15.10	1.88	100.0	±9.6 %
CAA	DH3)	Y	1.10	65.57	11.17	0.00	100.0	
		Z	1.53	69.51	13.02		100.0	
10035- CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)	x	1.40	69.50	13.68	1.17	100.0	±9.6 %
	unoy	Y	0.87	63.95	10.05		100.0	
		Z	1.12	66.96	11.59		100.0	
10036- CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	×	9.62	92.97	23.95	5.30	70.0	± 9.6 %
		Y	4.28	80.05	18.91		70.0	
-		Z	10.09	92.34	23.01	10103	70.0	
10037-	IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	X	1.68	71.06	14.59	1.88	100.0	± 9.6 %
CAA	1222 002.10.1 Dideloon (0-Di SK, DH3)	Ŷ	1.03	65.05	10.91	1,00	100.0	2 0.0 70
_		Z	1.36	68.33	12.52	-	100.0	-
10038- CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	X	1.40	69.76	13.93	1.17	100.0	± 9.6 %
OAA		Y	0.87	64.12	10.26		100.0	
_		Z	1.13	67.19	11.84	10.11	100.0	
10039- CAB	CDMA2000 (1xRTT, RC1)	X	1.34	69.22	13.14	0.00	150.0	± 9.6 %
UND		Y	0.77	63.08	9.10		150.0	
		Z	0.85	64.80	10.09		150.0	
10042- CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4- DQPSK, Halfrate)	X	100.00	102.28	20.38	7.78	50.0	± 9.6 %
0/10	Dan ord riamatoy	Y	1.72	65.50	9.21		50.0	
		Z	100.00	102.90	20.62		50.0	1
10044- CAA	IS-91/EIA/TIA-553 FDD (FDMA, FM)	×	0.00	99.20	3.16	0.00	150.0	± 9.6 %
		Y	0.09	120.69	13.78		150.0	
		Z	0.00	99.13	4.03	11.2	150.0	
10048- CAA	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	×	6.20	72.28	14.23	13.80	25.0	± 9.6 %
		Y	4.17	67.17	12.27		25.0	
		Z	7.20	73.81	14.76	1.0	25.0	
10049- CAA	DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)	X	7.52	77.18	14.97	10.79	40.0	± 9.6 %
		Y	3.87	69.54	12.04		40.0	
		Z	10.31	80.47	16.03		40.0	
10056- CAA	UMTS-TDD (TD-SCDMA, 1.28 Mcps)	×	44.37	107.84	27.61	9.03	50.0	± 9.6 %
		Y	11.98	87.68	21.33		50.0	
		Z	50.57	108.48	27.27		50.0	
10058- DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	X	3.09	70.29	22.11	6.55	100.0	± 9.6 %
uno		Y	2.91	69.17	21.43		100.0	
		Z	2.96	69.57	21.87		100.0	
	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)	X	1.11	64.07	15.34	0.61	110.0	± 9.6 %
		Y	1.00	63.03	14.40		110.0	
CAD							110.0	
CAD		Z	1.09	64.00	15.19		1 110.0	
10060-	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)	X	1.09 3.00	64.00 89.75	24.24	1.30	110.0	± 9.6 %
	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)					1.30		± 9.6 %

Certificate No: EX3-7494_Feb18

Page 13 of 39

February 26, 2018

10061- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)	×	1.60	73.10	19.62	2.04	110.0	± 9.6 %
		Y	1.35	70.56	17.98	-	110.0	
		Z	1.53	72.62	19.39		110.0	
10062- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	X	4.47	66.68	16.41	0.49	100.0	± 9.6 %
		Y	4.36	66.37	16.19		100.0	
		Z	4.36	66.73	16.35	1	100.0	
10063- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)	x	4.47	66.74	16.49	0.72	100.0	± 9.6 %
		Y	4.37	66.45	16.27		100.0	
		Z	4.37	66.82	16.44		100.0	
10064- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	X	4.71	66.94	16.68	0.86	100.0	± 9.6 %
		Y	4.60	66.65	16.48		100.0	
		Z	4.58	66.99	16.62		100.0	
10065- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps)	X	4.57	66.74	16.73	1.21	100.0	± 9.6 %
		Y	4.47	66.46	16.54		100.0	-
		Z	4.45	66.78	16.67	-	100.0	-
10066- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps)	X	4.57	66.71	16.86	1.46	100.0	± 9.6 %
		Y	4.47	66.44	16.68		100.0	
		Z	4.45	66.73	16.80		100.0	
10067- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps)	X	4.85	66.96	17.32	2.04	100.0	± 9.6 %
		Y	4.75	66.72	17.16		100.0	
_		Z	4.71	66.99	17.26		100.0	
10068- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)	X	4.86	66.83	17.46	2.55	100.0	± 9.6 %
		Y	4.77	66.61	17.31		100.0	
		Z	4.75	66.91	17.45		100.0	
10069- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps)	X	4.93	66.84	17.64	2.67	100.0	± 9.6 %
		Y	4.84	66.64	17.50		100.0	-
		Z	4.79	66.90	17.60		100.0	
10071- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps)	X	4.72	66.65	17.20	1.99	100.0	± 9.6 %
	and a second	Y	4.63	66.43	17.04		100.0	
_		Z	4.63	66.78	17.20		100.0	
10072- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)	X	4.66	66.84	17.36	2.30	100.0	± 9.6 %
- California		Y	4.57	66.61	17.20		100.0	
		Z	4.56	66.93	17.35		100.0	-
10073- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps)	×	4.70	66.96	17.65	2.83	100.0	±9.6 %
		Y	4.62	66.75	17.51		100.0	
		Z	4.61	67.10	17.68		100.0	
10074- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps)	×	4.69	66.86	17.79	3.30	100.0	± 9.6 %
and a first state of the		Y	4.62	66.67	17.65		100.0	
		Z	4.62	67.06	17.85		100.0	
10075- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps)	×	4.70	66.81	18.01	3.82	90.0	± 9.6 %
10000		Y	4.63	66.64	17.88		90.0	
		Z	4.63	67.02	18.07		90.0	_
10076- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)	X	4.73	66.67	18.17	4.15	90.0	±9.6 %
	The second se	Y	4.66	66.51	18.05		90.0	
		Z	4.67	66.88	18.24		90.0	
10077- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)	X	4.75	66.74	18.27	4.30	90.0	± 9.6 %
	and an	Y	4.69	66.59	18,15	_	90.0	
_								

Certificate No: EX3-7494_Feb18

Page 14 of 39

February 26, 2018

10081- CAB	CDMA2000 (1xRTT, RC3)	x	0.65	64.28	10.38	0.00	150.0	± 9.6 %
To all a		Y	0.42	60.39	6.92		150.0	
		Z	0.48	61.97	8.16		150.0	
10082- CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4- DQPSK, Fullrate)	X	0.61	60.00	2.85	4.77	80.0	± 9.6 %
		Y	0.27	125.15	3.93		80.0	
		Z	0.68	60.01	2.64		80.0	
0090- GPRS-FDD (TDMA, GMSK, TN 0-4)	GPRS-FDD (TDMA, GMSK, TN 0-4)	X	100.00	105.71	21.53	6.56	60.0	± 9.6 %
		Y	7.96	79.91	14.17		60.0	
		Z	100.00	107.12	22.09		60.0	100
10097- CAB	UMTS-FDD (HSDPA)	×	1.81	68.35	15.62	0.00	150.0	± 9.6 %
		Y	1.59	66.62	14.28		150.0	
		Z	1.75	68.38	15.28	1.141.1	150.0	
10098- CAB	UMTS-FDD (HSUPA, Subtest 2)	×	1.77	68.30	15.60	0.00	150.0	± 9.6 %
		Y	1.55	66.55	14.25		150.0	
		Z	1.71	68.32	15.26		150.0	
10099- DAC	EDGE-FDD (TDMA, 8PSK, TN 0-4)	×	5.47	82.85	29.83	9.56	60.0	± 9.6 %
		Y	5.04	80.32	28.42		60.0	
		Z	4.96	80.77	29.11		60.0	
10100- CAD	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	x	2.96	70.04	16.68	0.00	150.0	± 9.6 %
		Y	2.71	68.69	15.83		150.0	
	and a second	Z	2.82	69.64	16.51		150.0	
10101- CAD	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	X	3.10	67.35	15.86	0.00	150.0	± 9.6 %
		Y	2.94	66.61	15.35		150.0	
		Z	3.00	67.17	15.74	Line	150.0	
10102- CAD	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	X	3.20	67.37	15.97	0.00	150.0	±9.6 %
		Y	3.05	66.67	15.48		150.0	
		Z	3.10	67.22	15.85	I Same	150.0	
10103- CAD	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	x	5.04	73.87	19.92	3.98	65.0	± 9.6 %
		Y	4.45	71.80	18.94		65.0	
		Z	4.83	73.72	19.95		65.0	
10104- CAD	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	X	4.93	71.04	19.34	3.98	65.0	± 9.6 %
		Y	4.66	70.09	18.84		65.0	
		Z	4.74	70.79	19.24		65.0	
10105- CAD	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	x	4.89	70.60	19.44	3.98	65.0	± 9.6 %
		Y	4.42	68.79	18.52		65.0	
		Z	4.68	70.25	19.28		65.0	
10108- CAE	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	X	2.55	69.38	16.50	0.00	150.0	± 9.6 %
		Y	2.32	68.05	15.61		150.0	
		Z	2.42	69.06	16.32		150.0	- Common
10109- CAE	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	X	2.74	67.33	15.73	0.00	150.0	± 9.6 %
		Y	2.57	66.48	15.09		150.0	
		Z	2.63	67.20	15.54		150.0	
10110- CAE	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	x	2.04	68.62	15.99	0.00	150.0	± 9.6 %
		Y	1.82	67.09	14.87		150.0	
		Z	1.91	68.30	15.65		150.0	
10111- CAE	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	x	2.48	68.58	15.98	0.00	150.0	± 9.6 %
CAE		Y	2.26	67.29	15.00		150.0	
		1 1	2.20	01.23	10.00		100.0	

Certificate No: EX3-7494_Feb18

Page 15 of 39