Report No:CCISE160701205

FCC REPORT

Applicant: AZUMI S.A

Avenida Aquilino de la Guardia con Calle 47, PH Ocean Plaza,

Address of Applicant: Piso 16 of. 16-01, Marbella, Ciudad de Panamá City, Rep.

Panamá

Equipment Under Test (EUT)

Product Name: Mobile phone

Model No.: KINZO A55 OLi

FCC ID: QRP-AZUMIKA55OLI

Applicablestandards: FCC CFR Title 47 Part 15 Subpart B

Date of sample receipt: 11 Aug., 2016

Date of Test: 11 Aug., to 07 Sep., 2016

Date of report issued: 08 Sep., 2016

Test Result: Pass *

*In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCISproduct certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery orfalsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	08 Sep., 2016	Original

Tested by: Mike. DU Date: 08 Sep., 2016

Test Engineer

Reviewed by: Over (New Date: 08 Sep., 2016)

Project Engineer

3 Contents

		F	Page
			1
2	٧	ERSION	2
3	С	ONTENTS	3
4	Ti	EST SUMMARY	4
5	G	ENERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST MODE	
	5.4	Measurement Uncertainty	
	5.5	DESCRIPTION OF SUPPORT UNITS	6
	5.6	LABORATORY FACILITY	6
	5.7	LABORATORY LOCATION	
	5.8	TEST INSTRUMENTS LIST	7
6	T	EST RESULTS ANDMEASUREMENT DATA	8
	6.1	CONDUCTED EMISSION	8
	6.2	RADIATED EMISSION	
7	T	EST SETUP PHOTO	17
8	F	UT CONSTRUCTIONAL DETAILS	12
J			±0

4 Test Summary

Test Item	Section in CFR 47	Result	
Conducted Emission	Part15.107	Pass	
Radiated Emission	Part15.109	Pass	

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	AZUMI S.A		
Address of Applicant:	Avenida Aquilino de la Guardia con Calle 47, PH Ocean Plaza, Piso 16 of. 16-01, Marbella, Ciudad de Panamá City, Rep. Panamá		
Manufacturer	AZUMI HK LTD		
Address of Manufacturer:	FLAT/RM 18 BLK 1 14/F GOLDEN INDUSTRIAL BUILDING 16-26 KWAI TAK STREET KWAI CHUNG, HK		
Factory:	LWIN HK CO., LIMITED		
Address of Factory:	Room 9C, A Zone, Shenye Tairan Hongsong building, Tairan Six Road North, CheGongMiao, FuTian District, Shenzhen, Guangdong Province, P.R.China		

5.2 General Description of E.U.T.

Product Name:	Mobile phone
Model No.:	KINZO A55 OLi
Power supply:	Rechargeable Li-ion Battery DC3.7V-2600mAh
	Model: TPA-46B050100UU
AC adapter :	Input: AC100-240V 50/60Hz 0.2A
	Output: DC 5.0V, 1A

5.3 Test Mode

Operating mode	Detail description		
PC mode	Keep the EUT in Downloading mode(Worst case)		
Charging+Recording mode	Keep the EUT in Charging+Recording mode		
Charging+Playing mode	Keep the EUT in Charging+Playing mode		
FM mode	Keep the EUT in FM receiver mode		
GPS mode	Keep the EUT in GPS receiver mode		

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Measurement Uncertainty

Items	Expanded Uncertainty (Confidence of 95%)		
Conducted Emission (9kHz ~ 30MHz)	2.14 dB (k=2)		
Radiated Emission (9kHz ~ 30MHz)	4.24 dB (k=2)		
Radiated Emission (30MHz ~ 1000MHz)	4.35 dB (k=2)		
Radiated Emission (1GHz ~ 18GHz)	4.44 dB (k=2)		
Radiated Emission (18GHz ~ 26.5GHz)	4.56 dB (k=2)		

Report No: CCISE160701205

5.5 Description of Support Units

Manufacturer	anufacturer Description		Serial Number	FCC ID/DoC
DELL	PC	OPTIPLEX745	N/A	DoC
DELL	MONITOR	E178FPC	N/A	DoC
DELL	KEYBOARD	SK-8115 N/A		DoC
DELL	MOUSE	MOC5UO	N/A	DoC
HP	Printer	CB495A	05257893	DoC
MERCURY	Wireless router MW150R		12922104015	FCC ID
NAKAMICHI	Bluetooth earphone	T8	N/A	FCC ID

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.7 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

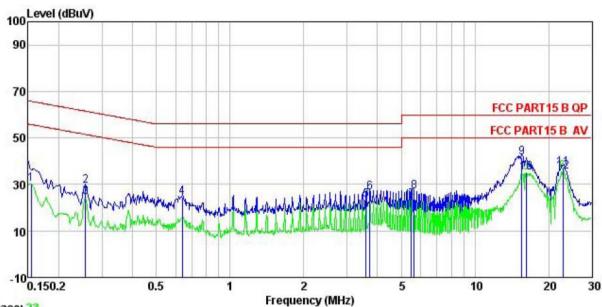
Tel: +86-755-23118282 Fax: +86-755-23116366

5.8 Test Instruments list

Radiated Emission:								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017		
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	03-25-2016	03-25-2017		
3	Horn Antenna SCHWARZBECK		BBHA9120D	CCIS0006	03-25-2016	03-25-2017		
4	Pre-amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2016	03-31-2017		
5	Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2016	03-31-2017		
6	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP30	CCIS0023	03-28-2016	03-28-2017		
7	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	03-28-2016	03-28-2017		
8	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		

Conducted Emission:									
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	08-23-2014	08-22-2017			
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-24-2016	03-24-2017			
3	LISN	CHASE	MN2050D	CCIS0074	03-26-2016	03-26-2017			
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2016	03-31-2017			
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A			

6 Test results and Measurement Data


6.1 Conducted Emission

o.i Odilaactea Elilissi	011						
Test Requirement:	FCC Part15 B Section 15.107						
Test Method:	ANSI C63.4:2014	ANSI C63.4:2014					
Test Frequency Range:	150kHz to 30MHz	150kHz to 30MHz					
Class / Severity:	Class B	Class B					
Receiver setup:	RBW=9kHz, VBW=30kHz						
Limit:	Francisco de la Contractica (NALLE)	Limit ((dBµV)				
	Frequency range (MHz)	Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	0.5-30	60	50				
	* Decreases with the logarith	nm of the frequency.					
Test setup:	Reference Plan	ne	_				
	Remark E.U.T Remark E.U.T Receiver Rest table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m						
Test procedure	 The E.U.T and simulators line impedance stabilization 500hm/50uH coupling impedance and a LISN that provides a 500 termination. (Please refers photographs). Both sides of A.C. line are interference. In order to find positions of equipment and according to ANSI C63.4: 	on network(L.I.S.N.). The pedance for the measure also connected to the ohm/50uH coupling impose to the block diagram of the maximum emissid all of the interface ca	ne provide a ring equipment. e main power through pedance with 500hm of the test setup and riconducted ion, the relative bles must be changed				
Test environment:	Temp.: 23°C Hun	nid.: 56% Pre	ess.: 101kPa				
Test Instruments:	Refer to section 5.7 for detail	ils	1				
Test mode:	Refer to section 5.3 for detail	ils					
Test results:	Pass						

Measurement data:

Line:

Trace: 23

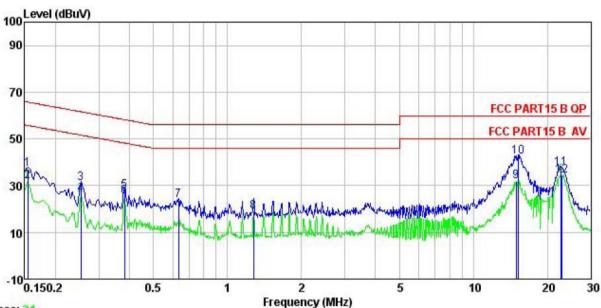
Site : CCIS Shielding Room

Condition : FCC PART15 B QP LISN LINE

: Mobile Phone EUT : KINZO A55 OLi Model Test Mode : PC mode Power Rating : AC120/60Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Mike


Kemark	: Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	<u>dB</u>		dBu⊽	dBu∀		
1	0.154	19.23	0.14	10.78	30.15	55.78	-25.63	Average
2	0.258	18.41	0.16	10.75	29.32	61.51	-32.19	QP
3	0.258	13.53	0.16	10.75	24.44	51.51	-27.07	Average
1 2 3 4 5 6 7 8 9	0.637	13.50	0.30	10.77	24.57	56.00	-31.43	QP
5	3.584	11.85	0.34	10.90	23.09	46.00	-22.91	Average
6	3.720	15.31	0.34	10.90	26.55	56.00	-29.45	QP
7	5.505	12.15	0.35	10.83	23.33	50.00	-26.67	Average
8	5.653	15.75	0.35	10.83	26.93	60.00	-33.07	QP
9	15.552	30.50	0.26	10.90	41.66	60.00	-18.34	QP
10	16.226	23.82	0.27	10.91	35.00	50.00	-15.00	Average
11	22.896	25.96	0.35	10.89	37.20	60.00	-22.80	QP
12	22.896	24.30	0.35	10.89	35.54	50.00	-14.46	Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Neutral:

Trace: 21

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL Condition

: Mobile Phone : KINZO A55 OLi EUT Model Test Mode : PC mode

Power Rating: AC120/60Hz Environment: Temp: 23 C Huni:56% Atmos:101KPa

Test Engineer: Mike

Remark

.cmazı	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∀	dB	dB	dBu∜	dBu₹	<u>dB</u>	
1	0.154	26.11	0.12	10.78	37.01	65.78	-28.77	QP
2	0.154	20.82	0.12	10.78	31.72	55.78	-24.06	Average
3	0.253	19.98	0.17	10.75	30.90	61.64	-30.74	QP
1 2 3 4 5 6 7 8 9	0.253	15.08	0.17	10.75	26.00	51.64	-25.64	Average
5	0.381	16.84	0.22	10.72	27.78	58.25	-30.47	QP
6	0.381	14.22	0.22	10.72	25.16	48.25	-23.09	Average
7	0.634	12.50	0.30	10.77	23.57	56.00	-32.43	QP
8	1.276	7.62	0.26	10.90	18.78	46.00	-27.22	Average
9	14.907	20.50	0.26	10.90	31.66	50.00	-18.34	Average
10	15.226	31.02	0.26	10.90	42.18	60.00	-17.82	QP
11	22.655	26.34	0.25	10.89	37.48	60.00	-22.52	QP
12	22.896	23.28	0.25	10.89	34.42	50.00	-15.58	Average

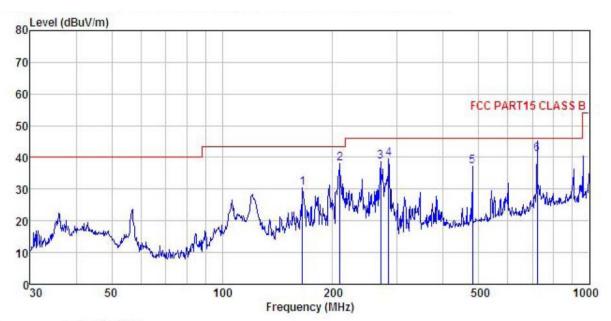
Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.2 Radiated Emission

0.2 Radiated Ellission									
Test Requirement:	FCC Part15 B Section 15.109								
Test Method:	ANSI C63.4:201	14							
Test Frequency Range:	30MHz to 26000	OMHz							
Test site:	Measurement D	istance:	3m (Se	mi-Anechoi	c Chan	nber)			
Receiver setup:	Frequency	Dete	ctor	RBW	VB\		Remark		
·	30MHz-1GHz	Quasi-		120kHz	300k		Quasi-peak Value		
	Above 1GHz	Pea		1MHz 3MH			Peak Value		
I insite	Frequenc	RM		1MHz (dBuV/m @	3MF	1Z	Average Value Remark		
Limit:	30MHz-88M		LIIIII	40.0	<i>(</i> 3111 <i>)</i>		Quasi-peak Value		
	88MHz-216N			43.5			Quasi-peak Value		
	216MHz-960			46.0			Quasi-peak Value		
	960MHz-1G			54.0			Quasi-peak Value		
				54.0		`	Average Value		
	Above 1GI	ΗZ		74.0			Peak Value		
Test setup:	Below 1GHz Antenna Tower								
	Search Antenna RF Test Receiver Turn Table 0.8m 1m Table Ground Plane								
	Above 1GHz								
	80CM	Horn Antenna Tower Ground Reference Plane Test Receiver Test Receiver Test Receiver							

Test Procedure:	grounda degrees 2. The EU antenna tower. 3. The ante ground thorizont measure 4. For each and ther the rotal maximu 5. The test Specifie 6. If the en limit spe	at a 3 meter set todetermine T was set 3 meters T was set 4 meters T w	emi-anechoice the position neters away incounted on the seried from the maximum all polarization emission, the was tuned to se turned from tem was set with Maximum of the EUT in esting could be	c camber. The of the highes from the internet top of a value of the anternet of the anternet of the degrees to the peak mode of the stopped are stoppe	e table was t radiation. ference-rec riable-heig o four meter field streng nna are se ranged to it n 1 meter to o 360 degree ect Function was 10Db l nd the peal	ceiving the antenna rs above the gth. Both t to make the s worst case o 4 meters and ees to find the and ower than the k values of the		
	EUT would be reported. Otherwise the emissions that did not have 10Db margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.							
Test environment:	Temp.:	25°C	Humid.:	55%	Press.:	101kPa		
Test Instruments:	Refer to section 5.7 for details							
Test mode:	Refer to section 5.3 for details							
Test results:	Passed	_	-	-	-			
Remark	All of the observed radiated emission value from 6GHz-26GHz were the noise floor and will not be recorded.							



Measurement Data:

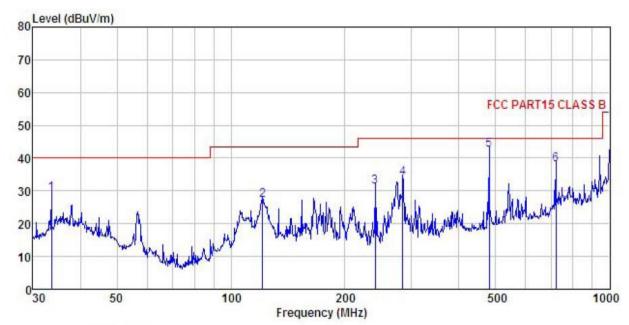
Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) HORIZONTAL Condition

: Mobile phone : KINZO A55 OLi EUT Model Test mode : PC Mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%


Test Engineer: Mike

REMARK

						Limit	Over	
Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
MHz	dBu₹	dB/m	<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	dBu√/m	dB	
165.487	47.02	9.84	2.62	29.09	30.39	43.50	-13.11	QP
209.313	53.22	10.65	2.86	28.77	37.96	43.50	-5.54	QP
270.375	52.28	12.10	2.86	28.50	38.74	46.00	-7.26	QP
283.979	52.80	12.24	2.90	28.48	39.46	46.00	-6.54	QP
480.528	46.21	16.57	3.46	28.92	37.32	46.00	-8.68	QP
721.726	45.59	19.76	4.26	28.58	41.03	46.00	-4.97	QP
	MHz 165. 487 209. 313 270. 375 283. 979 480. 528	Freq Level MHz dBuV 165.487 47.02 209.313 53.22 270.375 52.28 283.979 52.80 480.528 46.21	Freq Level Factor MHz dBuV dB/m 165.487 47.02 9.84 209.313 53.22 10.65 270.375 52.28 12.10 283.979 52.80 12.24 480.528 46.21 16.57	Freq Level Factor Loss MHz dBuV dB/m dB 165.487 47.02 9.84 2.62 209.313 53.22 10.65 2.86 270.375 52.28 12.10 2.86 283.979 52.80 12.24 2.90 480.528 46.21 16.57 3.46	Freq Level Factor Loss Factor MHz dBuV dB/m dB dB 165.487 47.02 9.84 2.62 29.09 209.313 53.22 10.65 2.86 28.77 270.375 52.28 12.10 2.86 28.50 283.979 52.80 12.24 2.90 28.48 480.528 46.21 16.57 3.46 28.92	MHz dBuV dB/m dB dB dBuV/m 165.487 47.02 9.84 2.62 29.09 30.39 209.313 53.22 10.65 2.86 28.77 37.96 270.375 52.28 12.10 2.86 28.50 38.74 283.979 52.80 12.24 2.90 28.48 39.46 480.528 46.21 16.57 3.46 28.92 37.32	Freq Level Factor Loss Factor Level Line MHz dBuV dB/m dB dB dBuV/m dBuV/m 165.487 47.02 9.84 2.62 29.09 30.39 43.50 209.313 53.22 10.65 2.86 28.77 37.96 43.50 270.375 52.28 12.10 2.86 28.50 38.74 46.00 283.979 52.80 12.24 2.90 28.48 39.46 46.00 480.528 46.21 16.57 3.46 28.92 37.32 46.00	MHz dBuV dB/m dB dB dBuV/m dBuV/m dBuV/m dB 165.487 47.02 9.84 2.62 29.09 30.39 43.50 -13.11 209.313 53.22 10.65 2.86 28.77 37.96 43.50 -5.54 270.375 52.28 12.10 2.86 28.50 38.74 46.00 -7.26 283.979 52.80 12.24 2.90 28.48 39.46 46.00 -6.54 480.528 46.21 16.57 3.46 28.92 37.32 46.00 -8.68

Vertical:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) VERTICAL Condition

: Mobile phone : KINZO A55 OLi EUT Model Test mode : PC Mode Power Rating : AC 120V/60Hz . ower Kating: AC 120V/60Hz Environment: Temp:25.5°C Humi:55% Test Engineer: Mike REMARK

THE THE									
	Freq		Antenna Factor				Limit Line	Over Limit	
-	MHz	dBu∜	<u>dB</u> /m	<u>d</u> B	dB	dBuV/m	dBuV/m	<u>dB</u>	
1	33.562	44.19	14.02	0.98	29.96	29.23	40.00	-10.77	QP
1 2 3 4 5	121.123	42.58	11.86	2.18	29.38	27.24	43.50	-16.26	QP
3	239.987	45.21	11.80	2.82	28.59	31.24	46.00	-14.76	QP
4	283.979	47.30	12.24	2.90	28.48	33.96	46.00	-12.04	QP
5	480.528	51.47	16.57	3.46	28.92	42.58	46.00	-3.42	QP
6	721.726	42.65	19.76	4.26	28.58	38.09	46.00	-7.91	QP

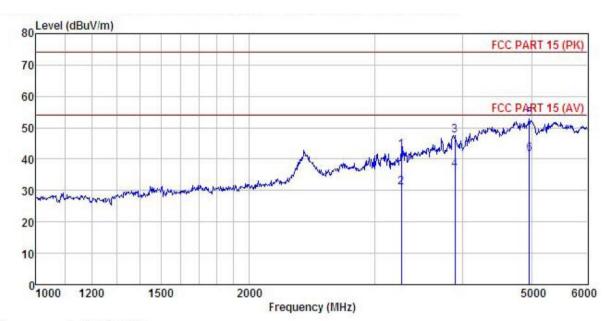
Above 1GHz

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: Mobile phone : KINZO A55 OLi EUT Model Test mode : PC Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%


Test Engineer: Mike REMARK :

הווצות										
	Freq		Antenna Factor				Limit Line	Over Limit		
-	MHz	dBu₹	dB/m	₫B	<u>dB</u>	dBuV/m	dBu√/m	dB		
1	3220.356	51.84	26.64	5.45	41.40	42.53	74.00	-31.47	Peak	
2	3220.356	37.60	26.64	5.45	41.40	28.29	54.00	-25.71	Average	
3	3866.724	51.47	31.15	6.09	41.80	46.91		-27.09		
4	3866.724	40.26	31.15	6.09	41.80	35.70	54.00	-18.30	Average	
5	5008.886	52.32	36.90	6.94	41.88	54.28	74.00	-19.72	Peak	
6	5008.886	38.64	36.90	6.94	41.88	40.60	54.00	-13.40	Average	

Vertical:

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

: Mobile phone : KINZO A55 OLi EUT : KINZO A55 OLi

lest mode : PC Mode

Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55%

Test Engineer: Mike

REMARK :

	Freq		Antenna Factor				Limit Line	Over Limit	
-	MHz	dBu₹	$-\frac{dB}{m}$	<u>d</u> B	<u>d</u> B	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1	3277.252	51.86	26.89	5.51	41.38	42.88	74.00	-31.12	Peak
2	3277.252	40.11	26.89	5.51	41.38	31.13	54.00	-22.87	Average
3	3896.938	51.88	31.44	6.10	41.80			-26.38	
4	3896.938	40.97	31.44	6.10	41.80	36.71	54.00	-17.29	Average
5	4960.389	51.00	36.71	6.91	41.87	52.75	74.00	-21.25	Peak
6	4960.389	39.87	36.71	6.91	41.87	41.62	54.00	-12.38	Average