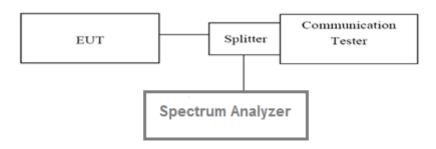

Issued: 2017-06-22


5.4. Band Edge

LIMIT

Part 24.238 and Part 22.917 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The RF output of the transceiver was connected to a spectrum analyzer through appropriate attenuation.
- 2. For the bandedge: 2G:Set the RBW=3KHz, VBW = 10KHz, Sweep time= Auto

3G: Set the RBW=100KHz, VBW = 300KHz, Sweep time= Auto

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

☑ Passed □ Not Applicable

Page: 30 of 64

Issued: 2017-06-22

	GSM850									
Channel	Frequency	Measureme	nt Results	Limit	Verdict					
Number	(MHz)	Frequency(MHz)	Values(dBm)	(dBm)	verdict					
128	824.2	824	-27.61	-13.00	Pass					
251	848.8	849	-27.06	-13.00	Pass					

	GPRS850									
Channel	Frequency	Measureme	nt Results	Limit	Verdict					
Number	(MHz)	Frequency(MHz)	Values(dBm)	(dBm)	Verdict					
128	824.2	824	-13.00	Pass						
251	848.8	849	-27.67	-13.00	Pass					

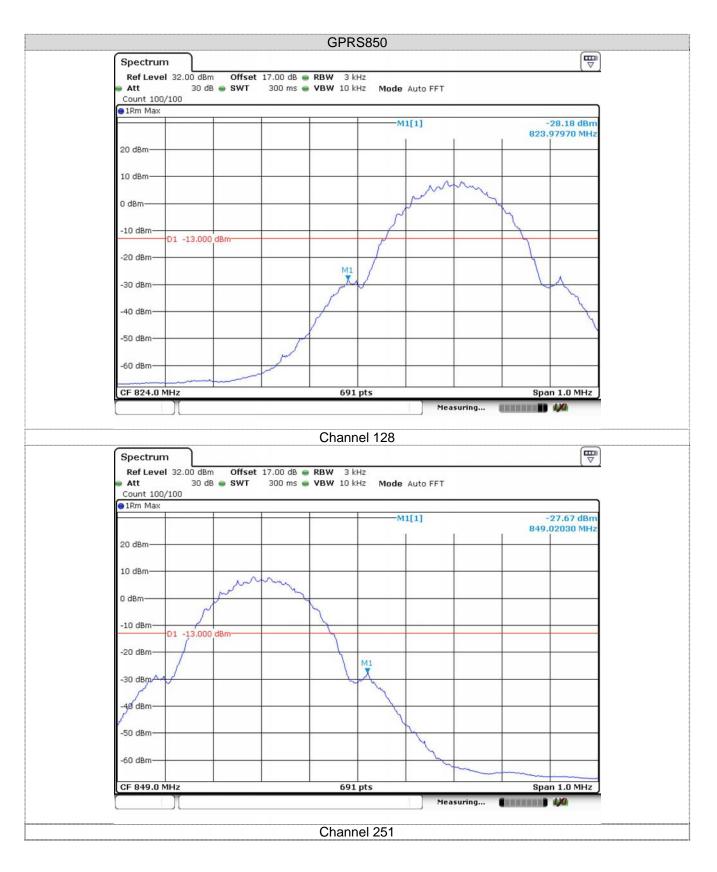
	EGPRS850									
Channel	Frequency	Measureme	nt Results	Limit	Verdict					
Number	(MHz)	Frequency(MHz)	Values(dBm)	(dBm)	Verdict					
128	824.2	824	-28.00	-13.00	Pass					
251	848.8	849	-27.91	-13.00	Pass					

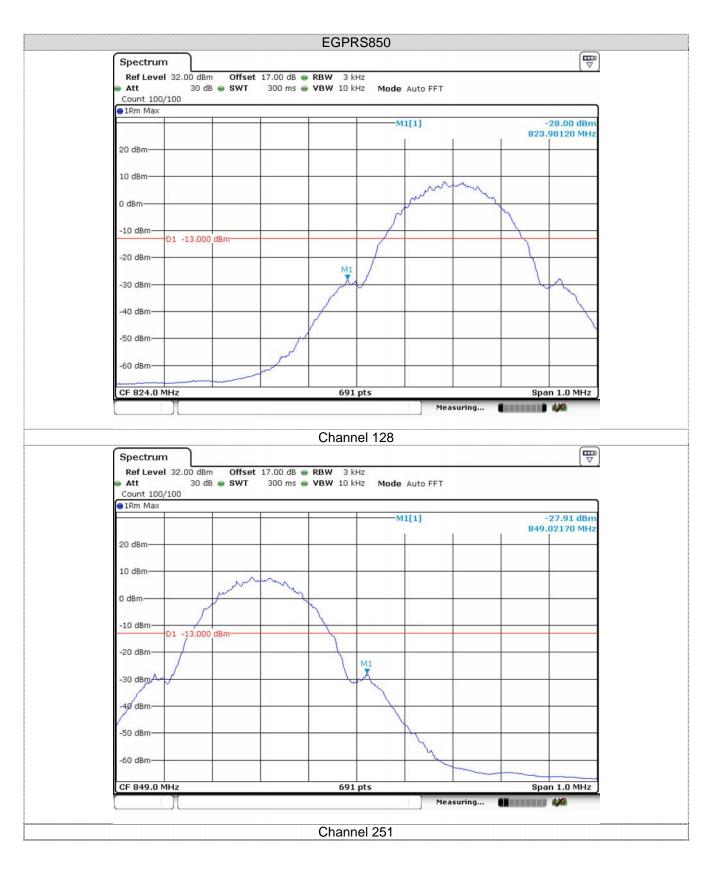
	PCS1900									
Channel	Frequency	Measureme	nt Results	Limit	Verdict					
Number	(MHz)	Frequency(MHz)	Values(dBm)	(dBm)	verdict					
512	1850.2	1850	-33.20	-13.00	Pass					
810	1909.8	1910	-32.99	-13.00	Pass					

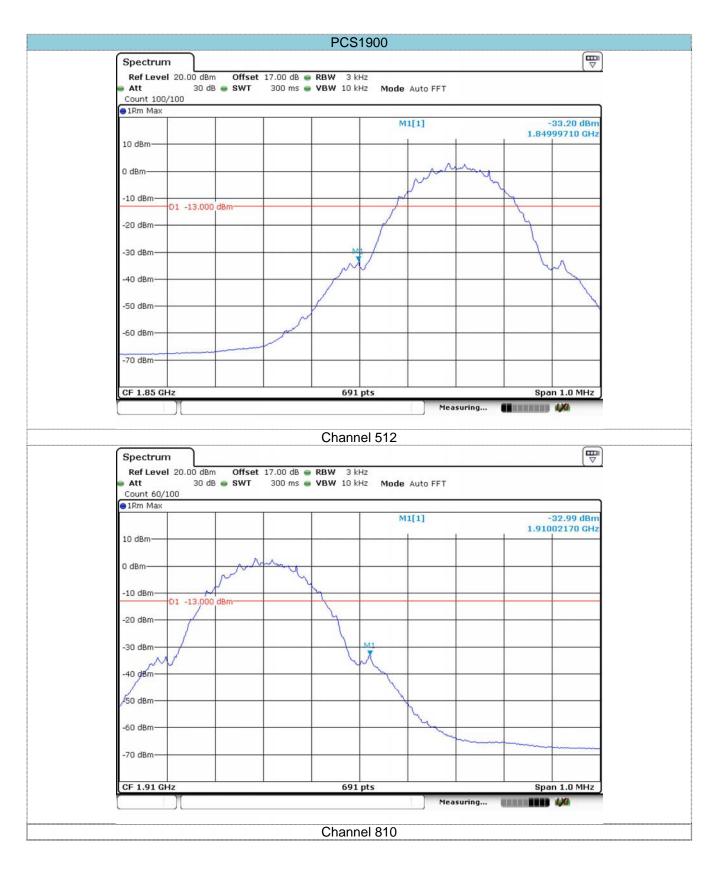
	GPRS1900									
Channel	Frequency	Measuremer	nt Results	Limit	Verdict					
Number	(MHz)	Frequency(MHz)	Values(dBm)	(dBm)	Verdict					
512	1850.2	1850	-13.00	Pass						
810	1909.8	1910	-33.08	-13.00	Pass					

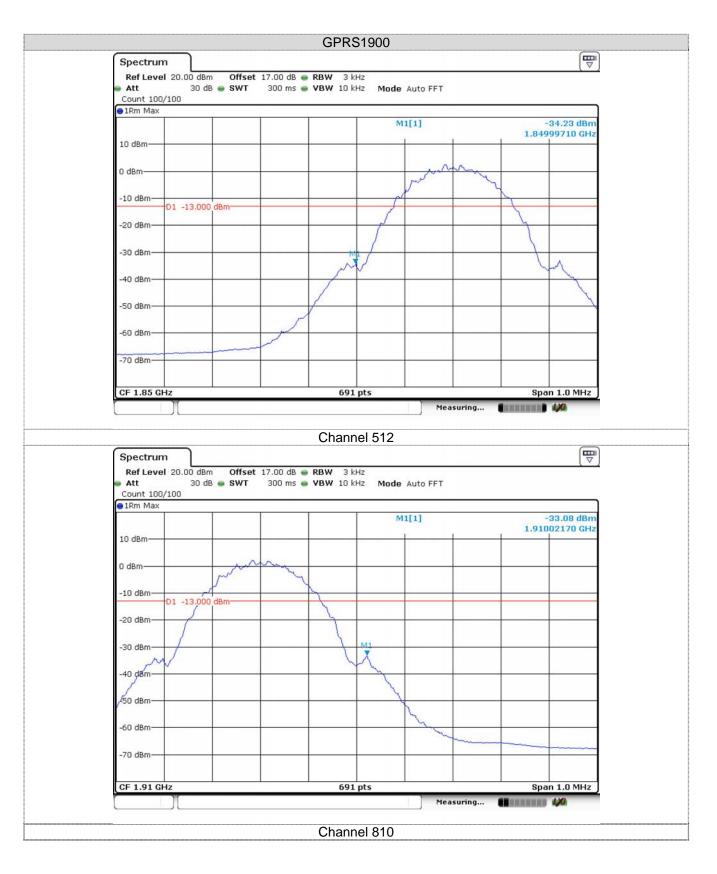

	EGPRS1900									
Channel	Frequency	Measureme	nt Results	Limit	Verdict					
Number	(MHz)	Frequency(MHz)	Values(dBm)	(dBm)	verdict					
512	1850.2	1850	-34.00	-13.00	Pass					
810	1909.8	1910	-33.58	-13.00	Pass					

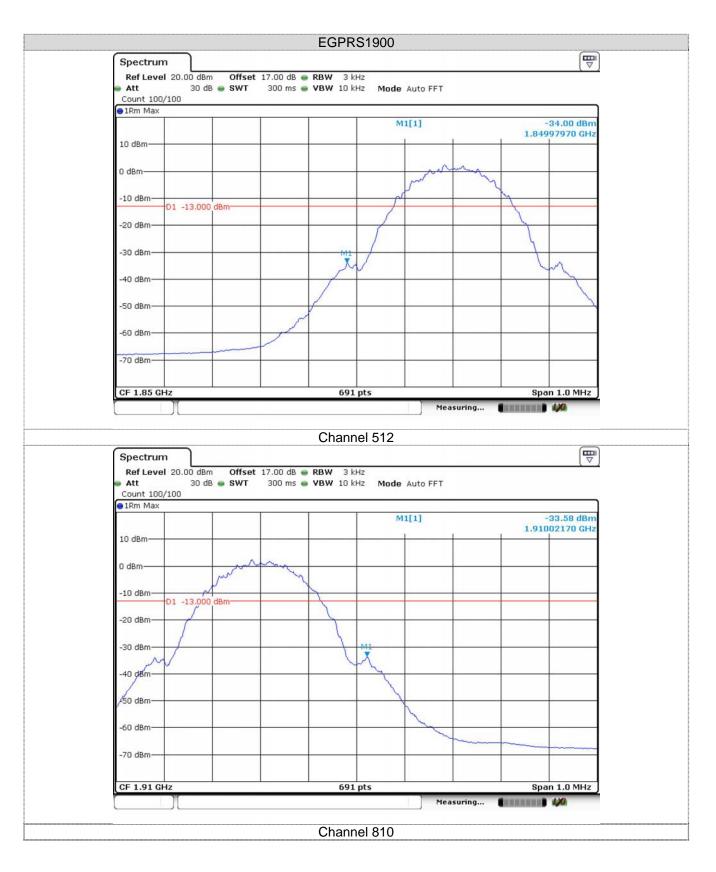
	WCDMA Band II								
Channel	Frequency	Measureme	nt Results	Limit	Verdict				
Number	(MHz)	Frequency(MHz)	Values(dBm)	(dBm)	verdict				
9262	1852.4	1850	-13.00	Pass					
9538	1907.6	1910	-29.17	-13.00	Pass				


	WCDMA Band V									
Channel	Frequency	Measureme	nt Results	Limit	Verdict					
Number	(MHz)	Frequency(MHz)	Values(dBm)	(dBm)	verdict					
1313	1712.6	1710	-34.88	-13.00	Pass					
1512	1752.4	1755	-34.70	-13.00	Pass					


	WCDMA Band V									
Channel	Frequency	Measureme	nt Results	Limit	Verdict					
Number	(MHz)	Frequency(MHz)	Values(dBm)	(dBm)	verdict					
4132	826.4	824	-24.72	-13.00	Pass					
4233	846.6	849	-25.86	-13.00	Pass					

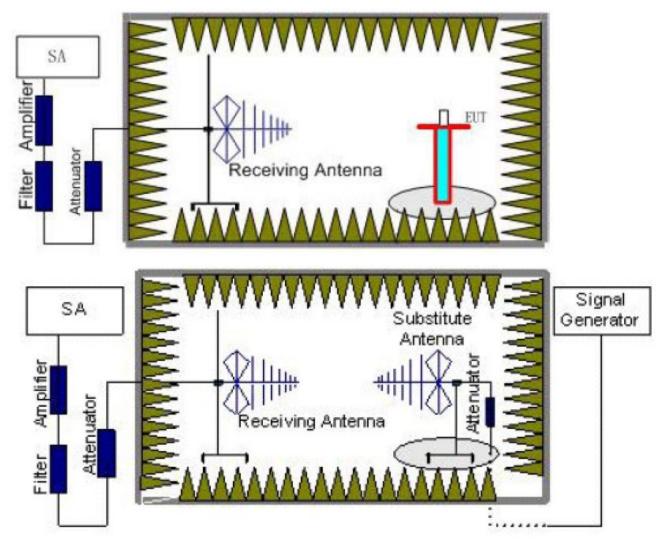

Issued: 2017-06-22




Report Template Version: H00 (2016-08)

	_		WCDMA	Band I	l			
Spectrum								
Ref Level 22		Offset 17.00 dB			(12) 12 12 12 1			
Att Count 100/100	15 dB 👄 S	WI 300 ms	VBW 300	HZ Mode	e Auto Swe	ep		
• 1Rm Max	-							
				M	1[1]			25.81 dBn
(80%) - 1258					1	E E	1.85	00000 GH:
10 dBm								
0.40					mon	minuma		~
0 dBm				1				1
-10 dBm				1				
D1	-13.000 dBm-		-	1		-		
-20 dBm								
			M	1				
-30 dBm						-		-
			m					
-40 dBm	and the second sec							
	manan							
-50 dBm								
-60 dBm								
-00 abm								
-70 dBm								
CF 1.85 GHz			691	pts			Span	10.0 MHz
	(Me	asuring		100
Spectrum			Channe	el 9262				
Ref Level 22		Offset 17.00 dB	RBW 100	Hz				
Ref Level 22 Att	15 dB 🥌 S	Offset 17.00 dB		Hz	e Auto Swe	еер		
Ref Level 22	15 dB 🥌 S	Offset 17.00 dB WT 300 ms	RBW 100	Hz	e Auto Swe	eep		
Ref Level 22 Att Count 100/100	15 dB 🥌 S	Dffset 17.00 dB WT 300 ms	RBW 100	(Hz (Hz Mode	e Auto Swe	еер		-29.17 dBn
Ref Level 22 Att Count 100/100 1Rm Max	15 dB 🥌 S	Offset 17.00 dB WT 300 ms	RBW 100	(Hz (Hz Mode		eep		
Ref Level 22 Att Count 100/100	15 dB 🥌 S	Offset 17.00 dB WT 300 ms	RBW 100	(Hz (Hz Mode		ер 		-29.17 dBn
Ref Level 22 Att Count 100/100 1Rm Max	15 dB 🥌 S	Offset 17.00 dB SWT 300 ms	RBW 100	(Hz (Hz Mode		ер 		-29.17 dBn
Ref Level 22 Att Count 100/100 1Rm Max	15 dB 🥌 S	Offset 17.00 dB SWT 300 ms	RBW 100	(Hz (Hz Mode		эер 		-29.17 dBn
Ref Level 22 Att Count 100/100 1Rm Max 10 dBm 0 dBm	15 dB 🥌 S	Offset 17.00 dB SWT 300 ms	RBW 100	(Hz (Hz Mode		еер 		-29.17 dBn
Ref Level 22 Att Count 100/100 1Rm Max 10 dBm 0 dBm 0 dBm	15 dB 🥌 S	Offset 17.00 dB WT 300 ms	RBW 100	(Hz (Hz Mode		eep		-29.17 dBn
Ref Level 22 Att Count 100/100 1Rm Max 10 dBm 0 dBm 0 dBm	15 dB • S	Offset 17.00 dB WT 300 ms	RBW 100	(Hz (Hz Mode		eep		-29.17 dBn
Ref Level 22 Att Count 100/100 1Rm Max 10 dBm 0 dBm -10 dBm	15 dB • S	Offset 17.00 dB :WT 300 ms	RBW 100	(Hz (Hz Mode		eep		-29.17 dBn
Ref Level 22 Att Count 100/100 1Rm Max 10 dBm 0 dBm -10 dBm	15 dB • S	Offset 17.00 dB WT 300 ms	RBW 100	(Hz (Hz Mode		ep		-29.17 dBn
Ref Level 22 Att Count 100/100 1Rm Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	15 dB • S	Offset 17.00 dB WT 300 ms	RBW 100	(Hz (Hz Mode		2ep		-29.17 dBn
Ref Level 22 Att Count 100/100 1Rm Max 10 dBm 0 dBm -10 dBm -20 dBm	15 dB • S	Diffset 17.00 dB IWT 300 ms	RBW 100	(Hz (Hz Mode		2ep		-29.17 dBn
Ref Level 22 Att Count 100/100 1Rm Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	15 dB • S	Diffset 17.00 dB IWT 300 ms	RBW 100	(Hz (Hz Mode				-29.17 dBn
Ref Level 22 Att Count 100/100 1Rm Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	15 dB • S	Diffset 17.00 dB IWT 300 ms	RBW 100	(Hz (Hz Mode				-29.17 dBn
Ref Level 22 Att Count 100/100 1Rm Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	15 dB • S	Diffset 17.00 dB BWT 300 ms	RBW 100	(Hz (Hz Mode				-29.17 dBn
Ref Level 22 Att Count 100/100 1Rm Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	15 dB • S	Diffset 17.00 dB BWT 300 ms	RBW 100	(Hz (Hz Mode				-29.17 dBn
Ref Level 22 Att Count 100/100 1Rm Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	15 dB • S	Diffset 17.00 dB SWT 300 ms	RBW 100	(Hz (Hz Mode				-29.17 dBn
Ref Level 22 Att Count 100/100 1Rm Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	15 dB • S	Diffset 17.00 dB SWT 300 ms	RBW 100	(Hz (Hz Mode				-29.17 dBn
Ref Level 22 Att Count 100/100 1Rm Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	15 dB • S	Diffset 17.00 dB SWT 300 ms	RBW 100	Hz Mode			1.91	-29.17 dBn
Ref Level 22 Att Count 100/100 1Rm Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	15 dB • S	Diffset 17.00 dB SWT 300 ms	RBW 100 VBW 300	Hz Mode			1.91	29.17 dBn 00000 GH;
Ref Level 22 Att Count 100/100 1Rm Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	15 dB • S	Diffset 17.00 dB SWT 300 ms	RBW 100 VBW 300	Hz Mode			Spar	29.17 dBn 00000 GH;

Issued: 2017-06-22



5.5. ERP and EIRP

LIMIT

GSM850/WCDMA Band V: 7W ERP PCS1900/WCDMA Band II: 2W EIRP TEST CONFIGURATION

TEST PROCEDURE

- EUT was placed on a 0.8 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.0m. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector.
- 2. A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.
- 3. The EUT is then put into continuously transmitting mode at its maximum power level during the test.Set Test Receiver or Spectrum RBW=1MHz,VBW=3MHz for above 1GHz and RBW=100kHz,VBW=300kHz for 30MHz to 1GHz,, And the maximum value of the receiver should be recorded as (Pr).
- 4. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the

frequency band of interest isconnected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (PMea) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (Pr). The power of signal source (PMea) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.

- A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (Pcl) ,the Substitution Antenna Gain (Ga) and the Amplifier Gain (PAg) should be recorded after test.
- The measurement results are obtained as described below: Power(EIRP)=PMea- PAg - Pcl + Ga We used SMF100A micowave signal generator which signal level can up to 33dBm,so we not used power Amplifier for substituation test; The measurement results are amend as described below: Power(EIRP)=PMea- Pcl + Ga
- This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
 ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP-2.15dBi.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

☑ Passed □ Not Applicable

Mode Channel Antenna Pol. ERP Limit (dBm) Result V 28.52 128 Н 19.45 V 28.43 **GSM850** 190 38.45 Pass Н 19.75 V 27.52 251 Н 18.33 V 28.43 128 Н 19.74 V 28.46 GPRS850 190 38.45 Pass Н 19.06 V 28.43 251 Н 18.37 V 24.35 128 Н 15.32 V 24.37 EGPRS850 190 38.45 Pass Н 14.68 V 24.52 251 Н 15.68

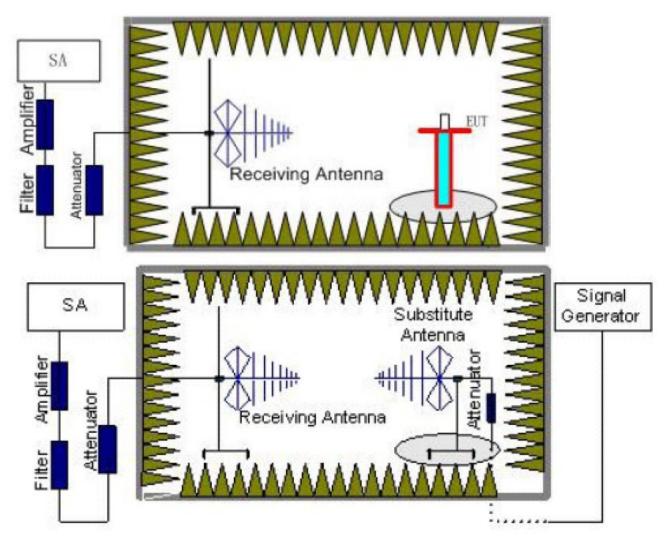
Page: 42 of 64

Issued: 2017-06-22

Mode	Channel	Antenna Pol.	EIRP	Limit (dBm)	Result
	512	V	25.43		
	512	Н	14.52		
PCS1900	661	V	25.36	33.00	Pass
PC31900	001	Н	14.37	33.00	F d 5 5
	810	V	25.37		
	810	Н	14.65		
	512	V	25.46		
	512	Н	14.38		Deer
GPRS1900	661	V	24.52	33.00	
GFK31900	001	Н	14.65	33.00	Pass
	810	V	24.33		
	010	Н	14.52		
	512	V	22.52		
	512	Н	13.45		
EGPRS1900	661	V	22.37	33.00	Pass
EGERSI900	001	Н	13.46	33.00	F d 3 3
	810	V	22.38		
	610	Н	13.52		

Mode	Channel	Antenna Pol.	EIRP	Limit (dBm)	Result
	0262	V	21.06		
	9262	Н	19.43		
WCDMA Band II	0.400	V	21.33	22.00	Deee
	9400	Н	19.52	33.00	Pass
	0500	V	21.46		
	9538	Н	19.37		

Mode	Channel	Antenna Pol.	EIRP	Limit (dBm)	Result
	1010	V	21.36		Pass
	1313	Н	19.52		
WCDMA Band IV	V 1450	V	21.47	33.00	
		Н	19.38		
		V	21.52		
		Н	19.36		


Mode	Channel	Antenna Pol.	ERP	Limit (dBm)	Result
	4122	V	20.43		Pass
	4132	Н	18.55		
	4183 - 4233 -	V	20.36	38.45	
WCDMA Band V		Н	18.33		
		V	20.36		
		Н	18.37		

5.6. Radiated Spurious Emssion

LIMIT

-13dBm

TEST CONFIGURATION

TEST RESULTS

- EUT was placed on a 0.8 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.0m. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector.
- 2. A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.
- 3. The EUT is then put into continuously transmitting mode at its maximum power level during the test.Set Test Receiver or Spectrum RBW=1MHz,VBW=3MHz for above 1GHz and RBW=100kHz,VBW=300kHz for 30MHz to 1GHz, And the maximum value of the receiver should be recorded as (Pr).
- 4. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest isconnected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (PMea) is applied to the input of the

substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (Pr). The power of signal source (PMea) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.

- A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (Pcl) ,the Substitution Antenna Gain (Ga) and the Amplifier Gain (PAg) should be recorded after test.
- The measurement results are obtained as described below: Power(EIRP)=PMea- PAg - Pcl + Ga We used SMF100A micowave signal generator which signal level can up to 33dBm,so we not used power Amplifier for substituation test; The measurement results are amend as described below: Power(EIRP)=PMea- Pcl + Ga
- This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
 ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP-2.15dBi.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

☑ Passed □ Not Applicable

Note: Worst case at GSM850/PCS1900

Page: 45 of 64

Issued: 2017-06-22

		GS	M850		
Channel	Frequency	Spurious	Emission	Lizzit (dDzz)	Decult
Channel	(MHz)	Polarization	Level (dBm)	Limit (aBm)	Result
	156.46	Vertical	-64.13		
	261.06	V	-59.03		5
	1648.51	V	-36.28	10.00	
	2345.56	V	-50.32	-13.00	Pass
	2345.56 V 3759.98 V 4945.67 V 128 156.46 Horizontal	-58.07			
100	4945.67	V	-52.28		
128	156.46	Horizontal	-52.28 -70.46 -65.88		
	378.58	Н	-65.88		
	1648.51	н	-35.81	10.00	Dees
	2058.11	Н	-50.02	-13.00	Pass
	3290.34	Н	-51.63		
	4945.67	Н	-43.15		
	156.46	Vertical	-63.44		
	261.06	V	-59.07	-13.00	Pace
	1674.06	V	-39.11		
	2284.52	V	-50.32		Pass
	4173.82	V	-52.46		
100	5017.92	V	-46.11		
190	156.46	Horizontal	-65.04		Dasa
	261.06	Н	-60.86		
	1234.83	н	-54.59	10.00	
	1674.06	н	-37.78	-13.00	Pass
	5017.92	Н	-48.19		
	9609.30	Н	-46.59	Limit (dBm) -13.00 -13.00 -13.00 -13.00 -13.00	
	182.56	Vertical	-67.72		
	261.06	V	-61.09		
	1696.27	V	-39.27	12.00	Deee
	2058.11	V	-49.57	-13.00	Pass
	4113.73	V	-54.77		
0F1	6943.97	V	-48.54		
251	156.46	Horizontal	-64.81		
	199.99	н	-62.82		
	1476.99	Н	-53.57	40.00	Dere
	1696.27	Н	-38.14	-13.00	Pass
	4113.73	н	-53.97		
	5937.25	н	-48.21		

Remark:

1. The emission behaviour belongs to narrowband spurious emission.

2. The emission levels of not record in the report are very lower than the limit and not show in test report.

Page: 46 of 64

Issued: 2017-06-22

		PCS	\$1900		
Channel	Frequency	Spurious	Emission	Lizzit (dDzz)	Decult
Channel	(MHz)	Polarization	Level (dBm)	Limit (aBm)	Result
	86.20	Vertical	-71.90		
	199.99	V	-61.80		5
	1753.11	V	-45.72	10.00	
	1901.59	V	-43.67	-13.00	Pass
	7401.51 V -45.13 9267.14 V -36.87 182.56 Horizontal -68.30				
540	9267.14	V	-36.87		
512	182.56	Horizontal	-68.30		
	261.06	Н	-60.73		
	1444.89	н	-53.49	10.00	Deee
	2595.02	н	-48.96	-13.00	Pass
	5554.08	н	-37.14		
	9267.14	н	-36.87		
	75.27	Vertical	-74.62		
	156.56	V	-65.82	-13.00	Pass
	365.30	V	-67.86		
	1240.45	V	-54.26		Pass
	1514.67	V	-53.52		
661	2564.41	V	-49.12		
001	156.46	Horizontal	-61.10		Pass
	261.06	Н	-58.43		
	1764.70	н	-50.37	12.00	
	2309.76	н	-49.20	-13.00	
	6328.46	Н	-38.33		
	6883.81	Н	-30.78	Limit (dBm) I -13.00 I	
	156.56	Vertical	-61.33		
	261.87	V	-58.15		
	626.00	V	-68.86	12.00	Doop
	1015.88	V	-60.95	-13.00	Pass
	1434.37	V	-60.38		
910	2399.25	V	-57.50		
810	234.99	Horizontal	-60.89		
	625.08	Н	-65.97		
	1570.71	Н	-59.87	12.00	Doco
	2232.42	Н	-56.96	-13.00	Pass
	3814.91	Н	-54.02		
	5734.15	Н	-44.56		

Remark:

1. The emission behaviour belongs to narrowband spurious emission.

2. The emission levels of not record in the report are very lower than the limit and not show in test report.

Page: 47 of 64

Issued: 2017-06-22

		WCDM	A Band II		
Channel	Frequency	Lizzit (dDzz)	Desult		
Channel	(MHz)	Polarization	Level (dBm)	Limit (aBm)	Result
	47.99 Vertical	-66.82			
	246.82	V	-62.83		2
	1753.11	V	-42.60	10.00	
	1901.59 V -43.93 6725.91 V -49.61 9080.88 V -45.25 1764.70 Horizontal -46.46 1931.06 H -38.78	Pass			
0000	6725.91	V	-49.61 -45.25 al -46.46 -38.78 -13.00		
9262	9080.88	V	-45.25		
	1764.70	Horizontal	-46.46		
	9262 6725.91 V -49.61 9080.88 V -45.25 1764.70 Horizontal -46.46 1931.06 H -38.78 4559.89 H -54.70 7866.36 H -47.11 49.71 Vertical -73.11 266.61 V -63.81 1753.11 V -49.35 1960.99 V -42.07 4101.82 V -54.98 7820.86 V -45.87 47.99 Horizontal -69.90 266.61 H -62.28 1753.11 H -42.91 1960.99 H -41.71 4054.50 H -56.79 6824.17 H -47.86	-38.78	10.00	Dava	
		-13.00	Pass		
	7866.36	Н	-47.11	Limit (dBm) -13.00 -13.00 -13.00 -13.00 -13.00	
	49.71	Vertical	-73.11		
	266.61	V	-63.81		Pass
	1753.11	V	-49.35	10.00	
	1960.99	V	-42.07	-13.00	
	4101.82	V	-54.98		
0.400	7820.86	V	-45.87		
9400	47.99	Horizontal	-69.90		Pass
	266.61	Н	-62.28		
	1753.11	Н	-42.91	12.00	
	1960.99	Н	-41.71	-13.00	Pass
	4054.50	Н	-56.79		
	6824.17	Н	-47.86	-13.00 -13.00 -13.00 -13.00	
	47.99	Vertical	-68.18		
	414.72	V	-65.99		
	1753.11	V	-44.72	12.00	Deee
	2461.72	V	-48.30	-13.00	Pass
	4101.82	V	-56.22		
0520	10051.17	V	-43.26		
9538	143.83	Horizontal	-66.13		
	266.61	Н	-61.80		
	1987.01	Н	-39.78	12.00	Dece
	2521.95	Н	-46.27	-13.00	Pass
	4101.82	Н	-56.31		
	10007.53	Н	-43.27		

Remark:

1.

The emission behaviour belongs to narrowband spurious emission. The emission levels of not record in the report are very lower than the limit and not show in test report. 2.

		WCDM	A Band IV		
Channel	Frequency	Limit (dDm)	Deput		
Channel	(MHz)	Polarization	Level (dBm)		Result
	47.99	Vertical	-68.01		
-	266.61	V	-64.07		
	1133.42	V	-54.74	12.00	Pass
	2113.10	V	-46.33	-13.00	Pass
	4210.30	V	-54.56		
1010	8732.17	V	-45.68		
1313	47.99	Horizontal	-69.97		
	266.61	Н	-62.04		
-	1753.11	Н	-43.68	12.00	Pass
	2113.10	Н	-39.41	-13.00	Pass
	4222.53 H 7316.14 H	Н	-56.01		
	7316.14	Н	-48.33		
	47.99	Vertical	-68.22		
	246.82	V	-63.10	-13.00	Pass
	1313.19	V	-59.66		
	2141.14	V	-56.25		Pass
	5225.88	V	-54.12		
1450	7820.86	V	-46.65		
1450	266.61	Horizontal	-62.30		
	616.37	Н	-63.28		
	2141.14	Н	-47.96	12.00	Pass
	2521.95	Н	-46.13	-13.00	Fass
	4974.45	Н	-54.06		
	10022.06	Н	-42.79	Limit (dBm) -13.00 -13.00 -13.00 -13.00 -13.00	
	246.82	Vertical	-65.73		
	434.07	V	-64.85		
	1700.00	V	-49.43	40.00	Deer
	2094.61	V	-50.37	-13.00	Pass
	4113.73	V	-53.39		
	5241.06	V	-51.04		
1512	143.83	Horizontal	-70.39		
	266.61	Н	-58.06		
	2155.30	Н	-44.11		
	2521.95	Н	-46.24	-13.00	Pass
	5256.28	Н	-49.69		
	7889.21	н	-47.73		

Remark:

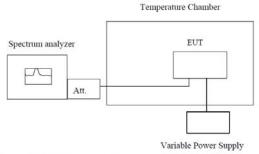
1. The emission behaviour belongs to narrowband spurious emission.

2. The emission levels of not record in the report are very lower than the limit and not show in test report.

		WCDM	A Band V				
Channel Frequency Spurious Emission Limit (dBm) Result							
Channel	(MHz)	Polarization	Level (dBm)		Result		
	52.58	Vertical -67.80					
4132	246.82	V	-60.50				
	1650.32	V	-46.08	12.00	Deee		
	1764.70	V	-43.03	-13.00	Pass		
	4804.28	V	-55.56				
4400	7531.45	V	-48.02				
4132	143.83	Horizontal	-69.54				
	266.61	Н	-57.38				
	1753.11	Н	-45.23	12.00	Deee		
	1914.16	Н	-48.85	-13.00	Pass		
	1914.16 H 4666.94 H 7575.27 H 47.99 Vertical	-54.41					
	7575.27	Н	-48.35	-13.00			
	47.99	Vertical	-69.20				
	266.61	V	-63.01	-13.00	Pass		
	1480.24	V	-52.99				
	2521.95	V	-47.36		Pass		
	4101.82	V	-54.05				
4400	6883.81	V	-47.25				
4183	143.83	Horizontal	-67.49				
	266.61	Н	-57.20				
	1513.13	Н	-50.67	12.00	Pass		
	2595.02	Н	-46.40	-13.00	Fd55		
	6094.28	Н	-51.37				
	10080.37	Н	-43.30	-13.00 -13.00 -13.00 -13.00 -13.00 -13.00			
	144.84	Vertical	-65.42				
	246.82	V	-61.88				
	1352.72	V	-54.40	40.00	Dese		
	1909.96	V	-40.94	-13.00	Pass		
	4101.82	V	-54.82				
	7597.27	V	-47.29				
4233 —	266.61	Horizontal	-64.91				
	431.03	Н	-64.62				
	1340.89	Н	-53.22				
	1905.77	Н	-37.00	-13.00	Pass		
	4149.68	Н	-56.53				
	10051.17	H	-42.79				

Remark:

3. The emission behaviour belongs to narrowband spurious emission.


4. The emission levels of not record in the report are very lower than the limit and not show in test report.

5.7. Frequency stability V.S. Temperature measurement

LIMIT

2.5ppm

TEST CONFIGURATION

Note : Measurement setup for testing on Antenna connector

TEST PROCEDURE

- 1. The equipment under test was connected to an external DC power supply and input rated voltage.
- 2. RF output was connected to a frequency counter or spectrum analyzer via feed through attenuators.
- 3. The EUT was placed inside the temperature chamber.
- 4. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 25°Coperating frequency as reference frequency.
- Turn EUT off and set the chamber temperature to -30°C. After the temperature stabilized for approximately 30 minutes recorded the frequency.
- 6. Repeat step measure with 10°C increased per stage until the highest temperature of +50°C reached.

TEST MODE:

Please refer to the clause 3.3

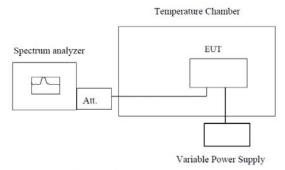
TEST RESULTS

☑ Passed □ Not Applicable

Note:Worst case at GSM850/PCS1900/WCDMA B2/B4/B5 mid channel

Reference Frequency: GSM850 Middle channel=190 channel=836.6MHz							
Power supplied	Temperature (°C)	Frequen	ncy error	Limit (ppm)	Result		
(Vdc)	Temperature (C)	Hz	ppm	Еник (ррпт)	Result		
	-30	14	0.017	_			
	-20	13	0.016				
	-10	12	0.014				
	0	11	0.013				
3.80	10	16	0.019	2.50	Pass		
	20	15	0.018				
	30	14	0.017	-			
	40	13	0.016				
	50	18	0.022				
Refe	erence Frequency: PO	CS1900 Middle ch	annel=661 chanr	nel=1880MHz			
Power supplied	Temperature (°C)	Frequency error		Limit (ppm)	Result		
(Vdc)	Temperature (C)	Hz	ppm	Limit (ppm)	Result		
	-30	26	0.014				
	-20	25	0.013				
	-10	24	0.013				
	0	19	0.010				
3.80	10	18	0.010	2.50	Pass		
	20	23	0.012				
	30	26	0.014]			
	40	25	0.013]			
	50	21	0.011]			

Reference Frequency: WCDMA Band II Middle channel=9400 channel=1880MHz								
Power supplied	Temperature (°C)	Frequen	ncy error	Limit (ppm)	Result			
(Vdc)	Temperature (C)	Hz	ppm	Emit (ppm)	Result			
	-30	17	0.009					
	-20	12	0.006					
	-10	13	0.007					
	0	16	0.009					
3.80	10	15	0.008	2.50	Pass			
	20	14	0.007					
	30	18	0.010					
	40	16	0.009					
	50	15	0.008					
Reference	ce Frequency: WCDM	IA Band IV Middle	e channel=1450 c	hannel=1740MH	Z			
Power supplied	Temperature (°C)	Frequency error		Limit (ppm)	Result			
(Vdc)		Hz	ppm	Emit (ppm)	Result			
	-30	16	0.009					
	-20	15	0.008					
	-10	14	0.007					
	0	13	0.007					
3.80	10	15	0.008	2.50	Pass			
	20	14	0.007					
	30	16	0.009					
	40	18	0.010					
	50	14	0.007					


Reference Frequency: WCDMA Band V Middle channel=4182 channel=836.6MHz								
Power supplied	Temperature (°C)	Frequer	ncy error	Limit (nom)	Result			
(Vdc)	remperature (C)	Hz	ppm	Limit (ppm)	Result			
	-30	13	0.016					
	-20	16	0.019		Pass			
	-10	11	0.013	-				
	0	15	0.018					
3.80	10	14	0.017	2.50				
	20	13	0.016					
	30	15	0.018					
	40	12	0.014					
	50	15	0.018					

5.8. Frequency stability V.S. Voltage measurement

LIMIT

2.5ppm

TEST CONFIGURATION

Note : Measurement setup for testing on Antenna connector

TEST PROCEDURE

- 1. Set chamber temperature to 25°C. Use a variable DC power source topower the EUT and set the voltage to rated voltage.
- 2. Set the spectrum analyzer RBW lowenough to obtain the desired frequency resolution and recorded the frequency.
- 3. Reduce the input voltage to specified extreme voltage variation (+/- 15%) and endpoint, record the maximum frequency change.

TEST MODE:

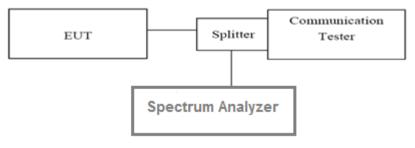
Please refer to the clause 3.3

TEST RESULTS

🛛 Passed

Not Applicable

Note:Worst case at GSM850/PCS1900/WCDMA B2/B4/B5 mid channel


Reference	Frequency: GSM85	0 (GSM link) Midc	lle channel=190 (channel=836.6Mł	Ηz
Tomporature (°C)	Power supplied	Frequen	cy error	Limit (ppm)	Result
Temperature (°C)	(Vdc)	Hz	ppm	– Limit (ppm)	Result
	4.35	16	0.019		
25	3.80	15	0.018	2.50	Pass
	3.60	14	0.017		
Reference	Frequency: PCS190	00 (GSM link) Mid	dle channel=661	channel=1880Mł	Ηz
Temperature (°C)	Power supplied	Frequen	cy error	– Limit (ppm)	Result
Temperature (C)	(Vdc)	Hz	ppm	Linii (ppin)	Result
	4.35	22	0.012		
25	3.80	19	0.010	2.50	Pass
	3.60	21	0.011		
Referen	ce Frequency: WCDM	MA Band II Middle	channel=9400 c	hannel=1880MHz	2
Temperature (°C)	Power supplied	Frequen	cy error	Limit	(ppm)
Temperature (C)	(Vdc)	Hz ppm		Result	
	4.35	16	0.009		
25	3.80	15	0.008	2.50	Pass
	3.60	14	0.007		
Reference	e Frequency: WCDM	IA Band IV Middle	channel=1450 c	hannel=1740MH	Z
Temperature (°C)	Power supplied	Frequency error		Limit (ppm)	Result
remperature (C)	(Vdc)	Hz	ppm	Einin (ppin)	Result
	4.35	13	0.016		
25	3.80	17	0.020	2.50	Pass
	3.60	16	0.019		
Reference	e Frequency: WCDM	IA Band V Middle	channel=4183 cl	hannel=836.6MH	z
Temperature (°C)	Power supplied	Frequen	cy error	– Limit (ppm)	Result
remperature (°C)	(Vdc)	Hz	ppm	Linit (ppin)	Nesuit
	4.35	14	0.017		
25	3.80	18	0.022	2.50	Pass
	3.60	13	0.016		

5.9. Peak-Average Ratio

LIMIT

13dB

TEST CONFIGURATION

TEST PROCEDURE

According with KDB 971168

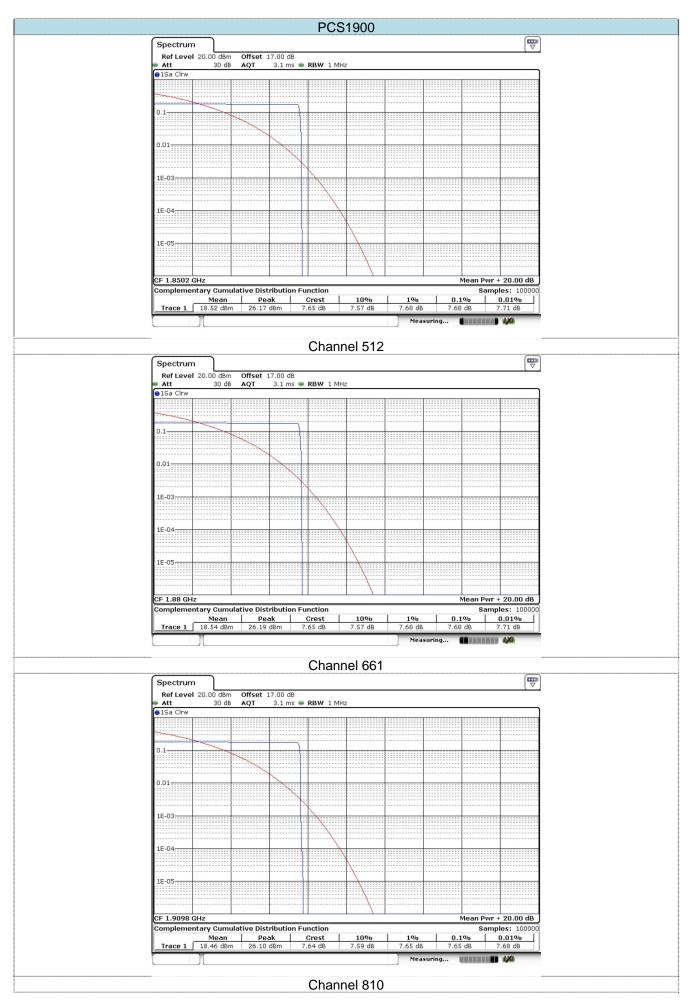
- 1. The signal analyzer's CCDF measurement profile is enabled
- 2. Frequency = carrier center frequency
- 3. Measurement BW > Emission bandwidth of signal
- 4. The signal analyzer was set to collect one million samples to generate the CCDF curve

5. The measurement interval was set depending on the type of signal analyzed. Forcontinuoussignals(>98% duty cycle), the measurement interval was set to 1ms. For bursttransmissions, the spectrum analyzer is set to use an internal "RF Burst" trigger that issynced with an incoming pulse and the measurement interval is set to less than the duration of the " on time" of one burst to ensure that energy is only captured during a time in which the transmitter is operating at maximum power

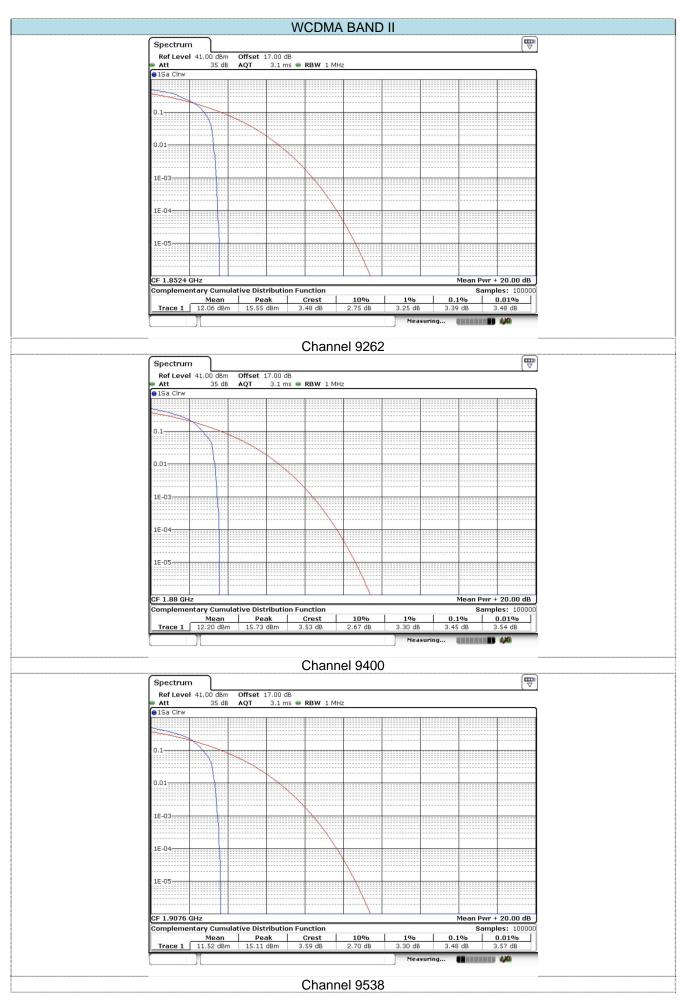
TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

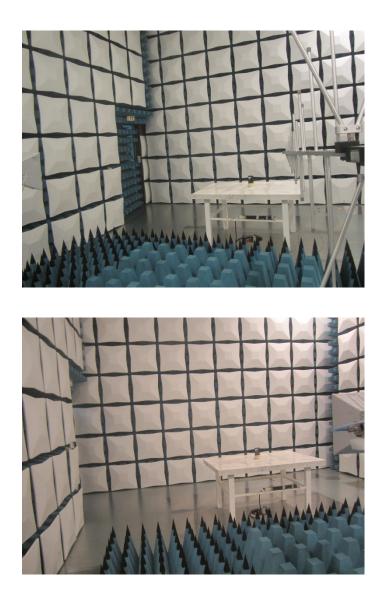

☑ Passed □ Not Applicable

Note:Worst case PCS1900,WCDMA BAND1900, WCDMA BAND1700


Band	Channel	Frequency(MHz)	PAR	Limit(dB)	Result
	512	1850.2	7.68	13.00	Pass
PCS1900	661	1880.0	7.68	13.00	Pass
	810	1909.8	7.65	13.00	Pass

Band	Channel	Frequency(MHz)	PAR	Limit(dB)	Result
WCDMA BAND II	9262	1852.4	3.39	13.00	Pass
	9400	1880.0	3.45	13.00	Pass
	9538	1907.6	3.48	13.00	Pass

Band	Channel	Frequency(MHz)	PAR	Limit(dB)	Result
WCDMA BAND IV	1313	1712.6	2.52	13.00	Pass
	1450	1740.0	2.78	13.00	Pass
	1512	1752.4	2.68	13.00	Pass



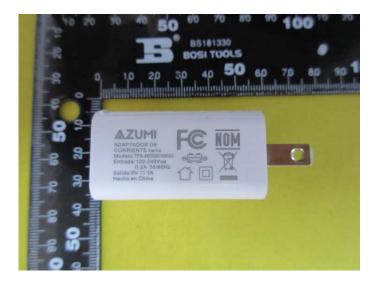
Issued: 2017-06-22

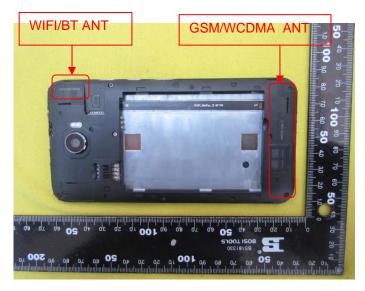
6. Test Setup Photos of the EUT

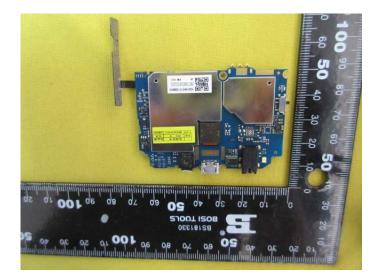
Radiated emission:

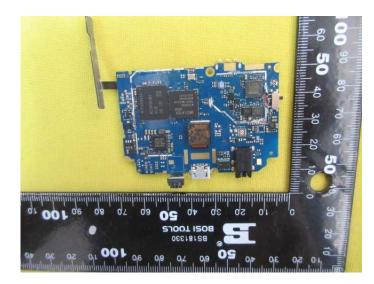
7. External and Internal Photos of the EUT

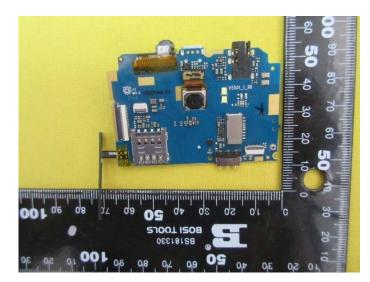
External photos of the EUT

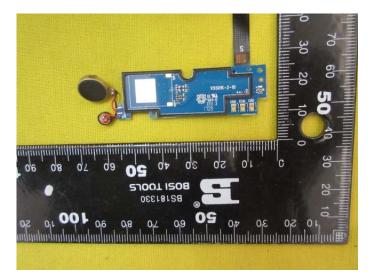


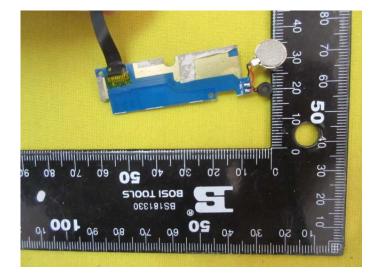

Report Template Version: H00 (2016-08)




Internal photos of the EUT







.....End of Report.....