

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCIS14100090502

FCC REPORT (BLE)

Applicant: AZUMI S.A

Avenida Aquilino de la Guardia con Calle 47, PH Ocean Plaza,

Address of Applicant: Piso 16 of. 16-01, Marbella, Ciudad de Panamá City, Rep.

Panamá

Equipment Under Test (EUT)

Product Name: Mobile phone

Model No.: A50c+

FCC ID: QRP-AZUMIA50CP

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 30 Oct., 2014

Date of Test: 31 Oct., to 04 Nov., 2014

Date of report issued: 05 Nov., 2014

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	05 Nov., 2014	Original

Prepared by: Date: 05 Nov., 2014

Report Clerk

Reviewed by: Date: 05 Nov., 2014

Project Engineer

Contents

			Page
1	COVER	PAGE	1
2	VERSIO	DN	2
3		NTS	
4		UMMARY	
5	GENER	AL INFORMATION	5
	5.1 CLI	IENT INFORMATION	5
		NERAL DESCRIPTION OF E.U.T.	
	5.3 TES	ST ENVIRONMENT AND MODE	7
		SCRIPTION OF SUPPORT UNITS	
		BORATORY FACILITY	
		BORATORY LOCATION	
	5.7 TES	ST INSTRUMENTS LIST	8
6	TEST RI	ESULTS AND MEASUREMENT DATA	9
	6.1 An	ITENNA REQUIREMENT:	9
		NDUCTED EMISSION	
		NDUCTED OUTPUT POWER	
		CCUPY BANDWIDTH	
		WER SPECTRAL DENSITY	
		ND EDGE	
		Conducted Emission Method	
		Radiated Emission Method	
		URIOUS EMISSIONConducted Emission Method	
		Radiated Emission Method	
7	TEST SE	ETUP PHOTO	35
8	EUT CO	DNSTRUCTIONAL DETAILS	36

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	AZUMI S.A
Address of Applicant:	Avenida Aquilino de la Guardia con Calle 47, PH Ocean Plaza, Piso 16 of. 16-01, Marbella, Ciudad de Panamá City, Rep. Panamá
Manufacturer:	AZUMI (HK) Limited
Address of Manufacturer:	RM 2309, 23/F HO KING COMM CTR, 2-16 FAYUEN ST, MONGKOK KOWLOON, HONG KONG

Report No: CCIS14100090502

5.2 General Description of E.U.T.

Product Name:	Mobile phone
Model No.:	A50c+
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	3.0 dBi
Power supply:	Rechargeable Li-ion Battery DC3.7V,1900mAh

Operation Frequency each of channel									
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency		
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz		
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz		
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz		
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz		
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz		
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz		
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz		
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz		
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz		
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2442MHz
The Highest channel	2480MHz

5.3 Test environment and mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Operation mode	Keep the EUT in continuous transmitting with modulation

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

N/A

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Report No: CCIS14100090502

5.7 Test Instruments list

Radiated Emission:								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
1	3m Semi- Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	Aug. 23 2014	Aug. 22 2017		
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	Apr. 19 2014	Apr. 19 2015		
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	Apr. 19 2014	Apr. 19 2015		
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
5	Coaxial Cable	CCIS	N/A	CCIS0016	Apr. 01 2014	Mar. 31 2015		
6	Coaxial Cable	CCIS	N/A	CCIS0017	Apr. 01 2014	Mar. 31 2015		
7	Coaxial cable	CCIS	N/A	CCIS0018	Apr. 01 2014	Mar. 31 2015		
8	Coaxial Cable	CCIS	N/A	CCIS0019	Apr. 01 2014	Mar. 31 2015		
9	Coaxial Cable	CCIS	N/A	CCIS0087	Apr. 01 2014	Mar. 31 2015		
10	Amplifier(10kHz- 1.3GHz)	HP	8447D	CCIS0003	Apr. 01 2014	Mar. 31 2015		
11	Amplifier(1GHz- 18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	June 09 2014	June 08 2015		
12	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	Apr. 01 2014	Mar. 31 2015		
13	Horn Antenna	ETS-LINDGREN	3160	GTS217	Mar. 30 2014	Mar. 29 2015		
14	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A		
15	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A		
16	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP	CCIS0023	Apr. 19 2014	Apr. 19 2015		
17	EMI Test Receiver	Rohde & Schwarz	ESPI	CCIS0022	Apr. 01 2014	Mar. 31 2015		
18	Loop antenna	Laplace instrument	RF300	EMC0701	Apr. 01 2014	Mar. 31 2015		
19	Universal radio communication tester	Universal radio Rhode & Schwarz		CCIS0069	May. 29 2014	May. 28 2015		
20	Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	Apr. 19 2014	Apr. 19 2015		

Con	Conducted Emission:										
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)					
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	Oct. 10 2012	Oct. 09 2015					
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	Apr. 10 2014	Apr. 10 2015					
3	LISN	CHASE	MN2050D	CCIS0074	Apr. 10 2014	Apr. 10 2015					
4	Coaxial Cable	CCIS	N/A	CCIS0086	Apr. 01 2014	Mar. 31 2015					
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A					

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement:

FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

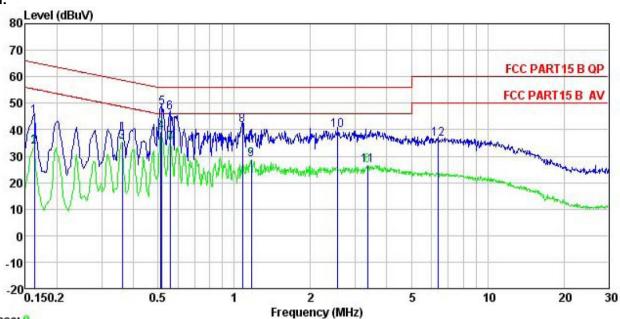
15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 3.0 dBi.

6.2 Conducted Emission


	_							
Test Requirement:	FCC Part15 C Section 15.207							
Test Method:	ANSI C63.4: 2003							
Test Frequency Range:	150 kHz to 30 MHz	150 kHz to 30 MHz						
Class / Severity:	Class B							
Receiver setup:	RBW=9kHz, VBW=30kHz							
Limit:	Frequency range (MHz)	Limit (d	dBuV)					
		Quasi-peak	Average					
	0.15-0.5	66 to 56*	56 to 46*					
	0.5-5	56	46					
	5-30 * Decreases with the logarithn	60	50					
	a line impedance stabiliz 50ohm/50uH coupling im 2. The peripheral devices through a LISN that prowith 50ohm termination. test setup and photograp 3. Both sides of A.C. lin interference. In order to positions of equipment changed according to measurement.	pedance for the measure are also connected ovides a 500hm/50uH (Please refer to the hs). The are checked for a find the maximum of and all of the interfer.	to the main power coupling impedance block diagram of the maximum conducted emission, the relative					
Test setup:	LISN 40cm		er — AC power					
Test Instruments:	Refer to section 5.7 for details							
rest instruments.	Refer to section 5.7 for details	j						
Test mode:	Refer to section 5.7 for details							

Measurement Data

Neutral:

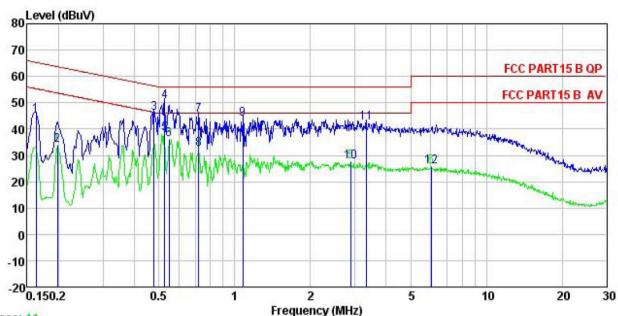
Trace: 9

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL : 906RF Condition

Job No.

FOUR NO. : SUDKF
EUT : Mobile phone
Model : A50C +
Test Mode : BLE mode
Power Rating : AC 120/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa
Test Engineer: Colin
Remark


Remark

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
-	MHz	dBu∜	dB	₫B	dBu₹	dBu∀	<u>dB</u>	
1	0.162	34.05	0.25	10.77	45.07	65.34	-20.27	QP
1 2 3	0.162	22.33	0.25	10.77	33.35	55.34	-21.99	Average
3	0.361	24.22	0.25	10.73	35.20	48.69	-13.49	Average
4 5	0.513	27.94	0.28	10.76	38.98	46.00	-7.02	Average
5	0.518	37.17	0.28	10.76	48.21	56.00	-7.79	QP
6	0.558	35.28	0.25	10.77	46.30	56.00	-9.70	QP
6 7 8 9	0.561	23.80	0.25	10.77	34.82	46.00	-11.18	Average
8	1.077	30.50	0.23	10.88	41.61	56.00	-14.39	QP
9	1.166	17.58	0.24	10.89	28.71	46.00	-17.29	Average
10	2.567	28.52	0.29	10.94	39.75	56.00	-16.25	QP
11	3.364	15.37	0.29	10.91	26.57	46.00	-19.43	Average
12	6.352	25.30	0.27	10.81	36.38	60.00	-23.62	QP

Line:

Trace: 11

Site

: CCIS Shielding Room : FCC PART15 B QP LISN LINE Condition

: 906RF Job No.

EUT : Mobile phone : A50C + Model Test Mode : BLE mode

Power Rating: AC 120/60Hz Environment: Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Colin

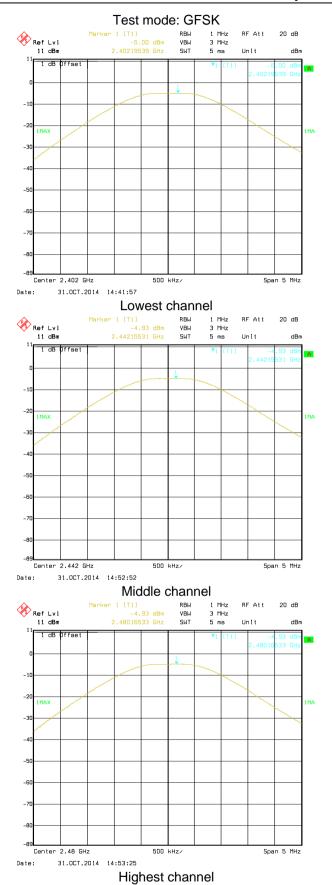
Remark

omark	Freq	Read Level	LISN Factor	Cable Loss		Limit Line	Over Limit	Remark
	MHz	dBu∜	<u>dB</u>	dB	dBu₹	dBu∀	dB	
1	0.162	34.21	0.27	10.77	45.25	65.34	-20.09	QP
2	0.198	22.73	0.28	10.76	33.77	53.71	-19.94	Average
3	0.479	35.16	0.29	10.75	46.20	56.36	-10.16	QP
4	0.527	39.53	0.28	10.76	50.57	56.00	-5.43	QP
4 5 6 7	0.527	27.45	0.28	10.76	38.49	46.00	-7.51	Average
6	0.549	25.06	0.27	10.77	36.10	46.00	-9.90	Average
	0.720	34.42	0.22	10.78	45.42	56.00	-10.58	QP
8 9	0.720	21.22	0.22	10.78	32.22	46.00	-13.78	Average
9	1.077	32.85	0.25	10.88	43.98	56.00	-12.02	QP
10	2.884	16.47	0.27	10.92	27.66	46.00	-18.34	Average
11	3.328	31.25	0.27	10.91	42.43	56.00	-13.57	QP
12	6, 024	14.58	0.31	10.82	25, 71	50, 00	-24.29	Average

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power


Test Requirement:	FCC Part15 C Section 15.247 (b)(3)					
Test Method:	ANSI C63.4:2003 and KDB558074					
Limit:	30dBm					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					
Remark:	Test method refer to KDB558074 v03r01 (DTS Measure Guidance) section 9.2.2.2					

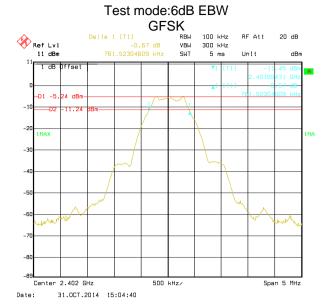
Measurement Data

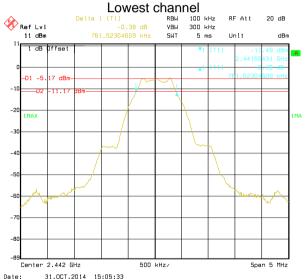
Test CH	Maximum Conducted Output Power (dBm)	Limit(dBm)	Result
Lowest	-5.00		
Middle	-4.93	30.00	Pass
Highest	-4.93		

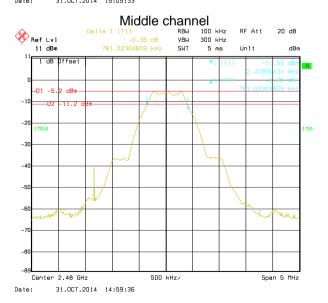
Test plot as follows:

6.4 Occupy Bandwidth

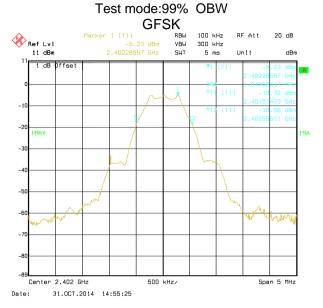
Test Requirement:	FCC Part15 C Section 15.247 (a)(2)					
Test Method:	ANSI C63.4:2003 and KDB558074					
Limit:	>500kHz					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

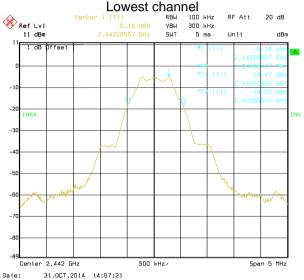

Measurement Data

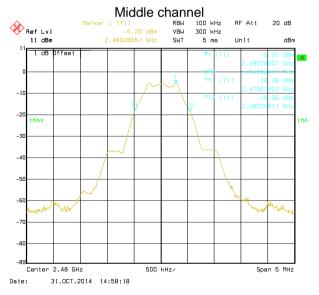

Test CH	6dB Emission Bandwidth (MHz)	Limit(kHz)	Result
Lowest	0.76		
Middle	0.76	>500	Pass
Highest	0.76		


Test CH	99% Occupy Bandwidth (MHz)	Limit(kHz)	Result
Lowest	1.04		
Middle	1.04	N/A	N/A
Highest	1.04		

Test plot as follows:



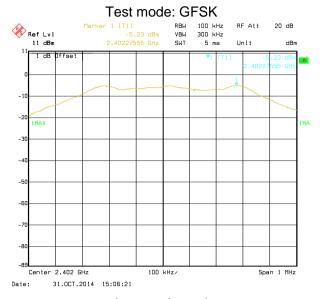


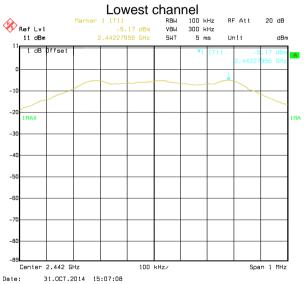


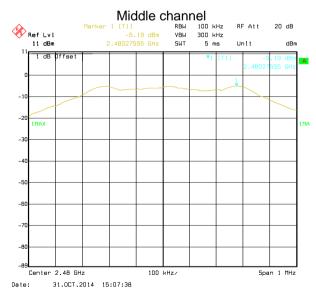
Highest channel

Highest channel

6.5 Power Spectral Density


Test Requirement:	FCC Part15 C Section 15.247 (e)					
Test Method:	ANSI C63.4:2003 and KDB558074					
Limit:	8 dBm					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

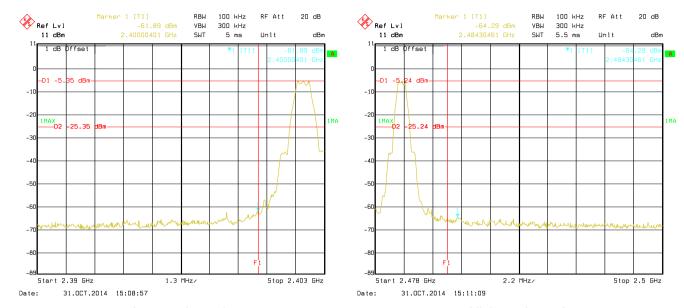

Measurement Data


Test CH	Power Spectral Density (dBm)	Limit(dBm)	Result
Lowest	-5.23		
Middle	-5.17	8.00	Pass
Highest	-5.19		

Test plots as follow:

Highest channel

6.6 Band Edge


6.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)					
Test Method:	ANSI C63.4:2003 and KDB558074					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:						
	Spectrum Analyzer E.U.T Non-Conducted Table					
	Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Test plots as follow:

Lowest channel Highest channel

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part15 C S	Section 15.209	and 15.205			
Test Method:	ANSI C63.4: 20	03				
Test Frequency Range:	2.3GHz to 2.5G	Hz				
Test site:	Measurement D	Distance: 3m				
Receiver setup:	Frequency Above 1GHz	Detector Peak	RBW 1MHz	VBW 3MHz	Remark Peak Value	
1		Peak	1MHz	10Hz	Average Value	
Limit:	Freque Above 1		Limit (dBuV/ 54.0 74.0	0	Remark Average Value Peak Value	
Test Procedure:	 The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi- 					
Test setup:	Sheet. Antenna Tower Horn Antenna Spectrum Analyzer Amplifier Amplifier					
Test Instruments:	Refer to section	5.7 for details				
Test mode:	Refer to section	5.3 for details				
Test results:	Passed					

Test channel: Lowest

Horizontal:

Site

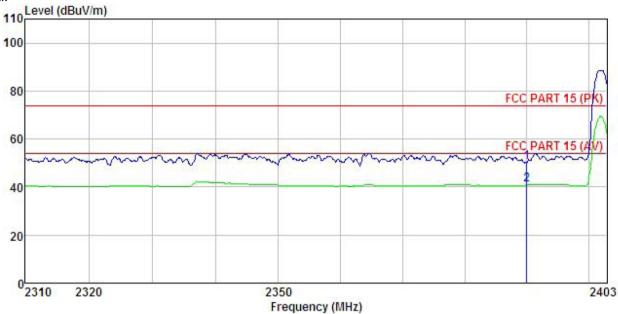
3m chamber FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Mobile phone Model : A50C +
Test mode : BLE-L mode
Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni:55%

Test Engineer: Carey

REMARK


	200		Antenna Factor						
2	MHz	—dBuV	— <u>dB</u> /m	<u>d</u> B	<u>ab</u>	$\overline{dBuV/m}$	dBuV/m	<u>ab</u>	
	2390.000 2390.000								

Test channel: Lowest

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

Mobile phone

Model : A50C +

Test mode : BLE-L mode

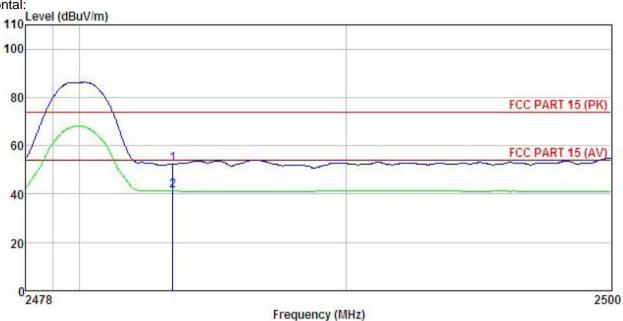
Power Rating : AC120V/60Hz

Environment : Temp:25.5°C

Test Engineer: Carey

REMARK : : Mobile phone EUT

Huni:55%


шино		Read	Antenna	Cable	Preamo		Limit	Over	
	Freq		Factor						
-	MHz	—dBu∇			<u>ab</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
	2390.000 2390.000								

Test channel: Highest

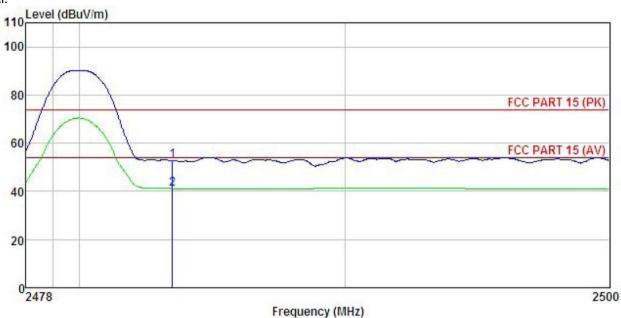
Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Mobile phone Model : A50C +
Test mode : BLE-H mode
Power Rating : AC120V/60Hz

Environment : Temp:25.5°C
Test Engineer: Carey
REMARK : Huni:55%


RIIMO					
	Freq	Antenna Factor		Limit Line	
N.	MHz	dB/m			
1 2	2483.500 2483.500				

Test channel: Highest

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Mobile phone Condition

EUT Model : A50C +

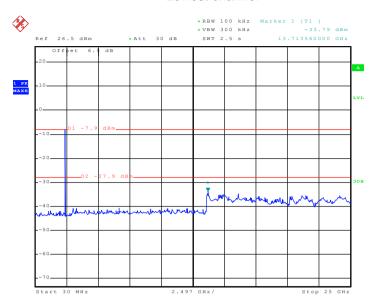
Test mode : BLE-H mode Power Rating : AC120V/60Hz

Environment: Temp: 25.5°C Huni: 55%

Test Engineer: Carey REMARK :

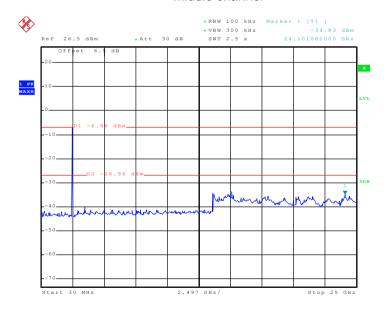
	Freq		ReadAntenna Level Factor						Remark
9	MHz	dBu₹	<u>dB</u> /m	d <u>B</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>d</u> B	
1 2	2483.500 2483.500								

6.7 Spurious Emission


6.7.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)							
Test Method:	ANSI C63.4:2003 and KDB558074							
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.							
Test setup:								
	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane							
Test Instruments:	Refer to section 5.7 for details							
Test mode:	Refer to section 5.3 for details							
Test results:	Passed							

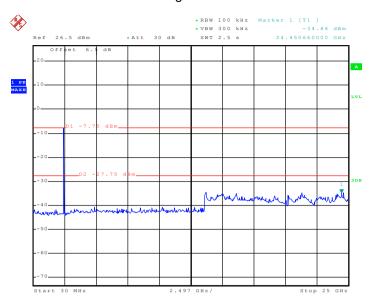
Test plot as follows:


Lowest channel

Date: 31.0CT.2014 14:24:12

30MHz~25GHz

Middle channel



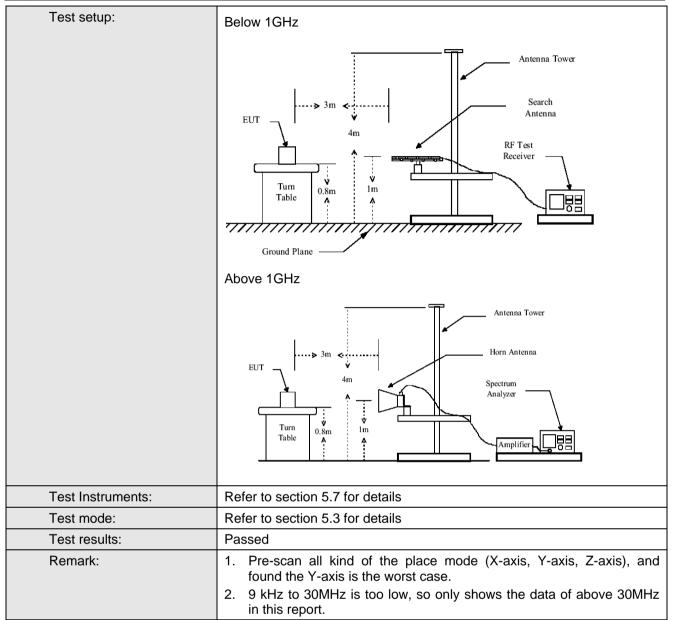
Date: 31.0CT.2014 14:23:19

30MHz~25GHz

Highest channel

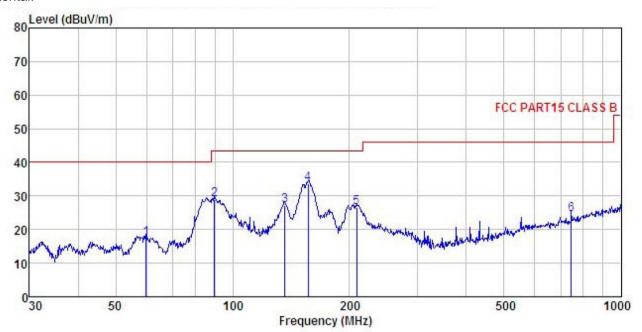
Date: 31.OCT.2014 14:27:39

30MHz~25GHz



6.7.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 and 15.205						
Test Method:	ANSI C63.4:2003						
Test Frequency Range:	9KHz to 25GHz						
Test site:	Measurement D	istance: 3m					
Receiver setup:							
receiver setup.	Frequency	Detector	RBW	VBW	Remark		
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak Value		
	Above 1GHz	Peak	1MHz	3MHz	Peak Value		
	Above IGHZ	Peak	1MHz	10Hz	Average Value		
Limit:	r						
	Frequency		Limit (dBuV/m	@3m)	Remark		
	30MHz-88MHz		40.0		Quasi-peak Value		
	88MHz-216MHz		43.5		Quasi-peak Value		
	216MHz-960MH	Z	46.0		Quasi-peak Value		
	960MHz-1GHz		54.0		Quasi-peak Value		
	Above 1GHz	-	54.0 74.0		Average Value Peak Value		
Test Procedure:	1. The EUT w	as placed or		rotating tah	le 0.8 meters above		
	the ground to determin 2. The EUT of antenna, we tower. 3. The antenry the ground Both horizon make the make the make the make the make to find the meters and to find the make the limit specified B for the EUT have 10 dB	at a 3 meter at a 3 meter the position was set 3 meter the position was more than the and the position and t	camber. The nof the highest teters away funted on the trained from one the maximutical polarization was turned awas turned ding. If maximum Here awas set of the maximum Here EUT in peresting could be ported. Other do be re-tested.	table was a st radiation. The incorpor a variance meter to the important of the incorpor at th	rotated 360 degrees		



Below 1GHz

Horizontal:

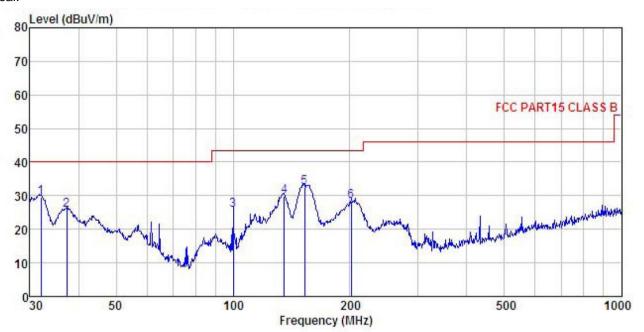
Site

3m chamber FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL Condition

EUT : Mobile phone

Model : A50C + Test mode : BLE mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni: 55%


Test Engineer: Carey
REMARK

$r_{11}r_{21}r_{12}$									
	Freq		Antenna Factor				Limit Line		Remark
-	MHz	dBu∜	dB/π	<u>d</u> B	<u>ab</u>	$\overline{\mathtt{dBuV/m}}$	$\overline{\mathtt{dBuV/m}}$	<u>d</u> B	
1	59.859	33.89	12.71	0.69	29.77	17.52	40.00	-22.48	QP
2	89.905	45.74	11.90	0.91	29.57	28.98	43.50	-14.52	QP
3	136.460	46.91	8.45	1.24	29.29	27.31	43.50	-16.19	QP
2 3 4	156.458	52.86	8.51	1.33	29.16	33.54	43.50	-9.96	QP
5	208.580	42.97	10.84	1.42	28.78	26.45	43.50	-17.05	QP
6	744.866	30.50	19.39	3.03	28.50	24.42	46.00	-21.58	QP

Vertical:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL Condition

: Mobile phone EUT : A50C + Model

Test mode : BLE mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Carey REMARK :

TUTATUE									
	Freq		Antenna Factor						
_	MHz	dBu₹	$-\overline{dB}/\overline{m}$	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1	32.067	46.59	12.32	0.45	29.97	29.39	40.00	-10.61	QP
1 2 3 4 5	37.285	42.10	12.92	0.50	29.93	25.59	40.00	-14.41	QP
3	100.229	41.21	13.11	0.96	29.53	25.75	43.50	-17.75	QP
4	135.506	49.27	8.51	1.23	29.30	29.71	43.50	-13.79	QP
5	152.664	51.82	8.39	1.32	29.20	32.33	43.50	-11.17	QP
6	201.393	45.17	10.60	1.39	28.82	28.34	43.50	-15.16	QP

Above 1GHz

Test channe	l:		Lowest		Level:		Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	45.79	31.53	8.90	40.24	45.98	74.00	-28.02	Vertical
4804.00	47.19	31.53	8.90	40.24	47.38	74.00	-26.62	Horizontal
Te	st channel	•	Lowest		Le	vel:	A ^r	verage
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	35.67	31.53	8.90	40.24	35.86	54.00	-18.14	Vertical
4804.00	37.85	31.53	8.90	40.24	38.04	54.00	-15.96	Horizontal

Report No: CCIS14100090502

Test channe	l:		Middle		Level:		Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4884.00	47.20	31.58	8.98	40.15	47.61	74.00	-26.39	Vertical
4884.00	45.48	31.58	8.98	40.15	45.89	74.00	-28.11	Horizontal
Test channe	l:		Middle		Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4884.00	37.73	31.58	8.98	40.15	38.14	54.00	-15.86	Vertical
4884.00	35.71	31.58	8.98	40.15	36.12	54.00	-17.88	Horizontal

Test channel:			Highest		Level:		Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	46.38	31.69	9.08	40.03	47.12	74.00	-26.88	Vertical
4960.00	47.54	31.69	9.08	40.03	48.28	74.00	-25.72	Horizontal
Test channe	l:		Highest		Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	36.21	31.69	9.08	40.03	36.95	54.00	-17.05	Vertical
4960.00	37.84	31.69	9.08	40.03	38.58	54.00	-15.42	Horizontal

Remark:

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.