

Project:	04RT08419
File:	MC1884
Report:	040210C
Date:	December 15, 2004 (Revised February 8, 2005)
Model:	MP9310 Low-Power RFID Reader Device

Test Report

On

Electromagnetic Compatibility Testing

SAMSys Technologies

Durham, NC 27713

Copyright © 2004, 2005 Underwriters Laboratories Inc.

Underwriters Laboratories Inc. authorizes the above-named company to reproduce this Report provided it is reproduced in its entirety.

Underwriters Laboratories, Inc. Test Report on Electromagnetic Compatibility Test Report: 040210C

Test Report Details:

Tests Performed By:	Underwriters Laboratories Inc. 12 Laboratory Drive Research Triangle Park, NC 27709
Tests Performed For:	SAMSys Technologies, Inc. 2525 Meridian Parkway, Lake Level Suite 60 Durham, NC 27713 USA
Applicant Contact:	Michael Koch Phone: +1 (919) 281-1576 Fax: +1 (919) 1551 Email: Michael.koch@samsys.com
Test Report Number:	040210
Test Report Date: Product Type:	December 15, 2004 - Initial Release (Revision A – 1/31/2005 to include 9 dBi antenna data) (Revision B – 2/3/2005 Revised MPE information) (Revision C – 2/8/2005 TCB requested modifications) Radio Frequency ID reader
Product Type.	Radio Frequency ib reader
Model Number:	MP9310
Sample Serial Number:	unserialized sample
Sample Tag Number:	S04LB259
EUT Category:	Transmitter - Low Powered
EUT Type:	Component
Sample Receive Date:	November 12, 2004
Testing Start Date:	November 12, 2004
Date Testing Complete:	December 15, 2004

Underwriters Laboratories Inc. reports apply only to the specific samples tested under stated test conditions. All samples tested were in good operating condition throughout the entire test program. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. Underwriters Laboratories Inc. shall have no liability for any deductions, inferences or generalizations drawn by the client or others from Underwriters Laboratories Inc. issued reports. This report shall not be used to claim, constitute or imply product certification, approval, or endorsement by NVLAP, A2LA, or any agency of the US government.

This report may contain test results that are not covered by the NVLAP or A2LA accreditation. The scope of accreditation is limited to the specific tests that are listed on the NVLAP and/or A2LA certificates provided at the end of this report. Complaints or inquiries regarding the information within this report shall be brought to the attention of the report's author.

Summary of Testing:

Test #	Test Name Test Requirement/Specification	Comply	Does Not Comply	See Remark
1	Conducted Disturbance Emissions - AC Voltage	N/A	N/A	5
	47 CFR Part 15, Subpart B / CISPR 22:1997 Class A			
2	Radiated Spurious Emissions / Unintentional Emissions - 30 to 1000 MHz 47 CFR Part 15.247 / 47 CFR Part 15.209 and Part 15.247 (Restricted Band and Spurious) 47 CFR Part 15, Subpart B / 47 CFR Part 15, Subpart B, Class B (Unintentional)	Х	-	8
3	Radiated Spurious Emissions - Above 1 GHz 47 CFR Part 15.247 / 47 CFR Part 15.209 and Part 15.247 (Restricted Band and Spurious)	Х	-	8
4	Bandedge 47 CFR Part 15 Subpart C / 47 CFR Part 15.247	Х	-	
5	Conducted Power, Conducted Spurious, and Occupied Bandwidth 47 CFR Part 15.247 / ANSI C63.4:2001	Х	-	
6	Radiated Disturbance Emissions - Peak-to-Average Ratio 47 CFR Part 15, Subpart C / 47 CFR Part 15, Subpart C, Section 15.247	-	-	6
7	Frequency Hopping Channels, Channel Spacing, and Dwell Time 47 CFR Part 15.247 / ANSI C63.4:2001	Х	-	
8	Maximum Permissible Exposure 47 CFR Part 1 Subpart I / 47 CFR Part 1.1307	Х	-	

Remarks:

- 1) <u>OEM Installation</u>: This device is installed into the host device at the point of manufacture.
- 2) <u>Environment:</u> The host device for this printer is not intended for residential environment. Class A limits apply for the digital portions of this device.
- 3) <u>Antenna Connector</u>: Antenna is attached with SMA-type connector that is considered to be "readily available", however this device will be imbedded within other devices with antenna in the final product.
- 4) <u>Antennas Tested:</u> Two antennas were used for test:
 - a. Minus 2.5 dBi antenna.
 - b. Plus 9 dBi antenna.
- 5) <u>Power:</u> The RFID device is DC powered, therefore AC Conducted Emissions test is not applicable. Voltage is regulated within the device.
- 6) <u>Peak-to-Average Ratio:</u> No limit apples for Peak-to-Average ratio, however results are used to calculate average emissions.
- 7) <u>Modifications:</u> These modifications were required to comply:
 - a. The manufacturer improved the case design to comply with radiated spurious harmonics.
 - b. A shielded Ethernet 10-base-T cable was required to comply with radiated spurious emissions. It is required to instruct the user of this requirement.
- 8) <u>Restricted Bands:</u> From results of Tests 2 and 3, it is shown that the requirement for compliance with General Limits found in 15.209 is met in all restricted bands found in 15.205.
- 10) <u>Similar Models:</u> The MP 9310 is available with an optional Ethernet daughter board. All testing was performed with the Ethernet daughter board installed. The data is considered to be applicable to the non-Ethernet product as well without additional testing.
- 11) <u>Composite Device</u>: This device contains digital electronics subject to FCC Part 15 Subpart B rules. This device was found to comply with FCC Part 15 Subpart B, Class B limits. As testing was performed at a NVLAP-

accredited laboratory, the manufacturer may choose to use a Declaration of Conformity, rather than certification, for this portion of the device.

Conclusion:

The tests listed in the Summary of Testing section of this report have been performed and the results recorded by Underwriters Laboratories Inc. in accordance with the procedures stated in each test requirement and specification. The test list was determined by the Applicant as being applicable to the Equipment Under Test. As a result, the subject product has been verified to comply or not comply as noted in the Summary of Testing with each test specification. The test results relate only to the items tested.

Prepared By:

-marley

Jim Marley NARTE Certified EMC Engineer EMC-002278-NE +1 (919) 549-1408 e-mail: james.r.marley@us.ul.com

Reviewed By:

mars or

Mark Nolting NARTE Certified EMC Test Lab Engineer ATL-0340-E +1 (919) 549-1584 e-mail: mark.nolting@us.ul.com

Test Facilities:

Test Location A) 10-Meter Anechoic Chamber (Industry Canada - IC 2953, NVLAP - 200246-0, VCCI - R-722)

Constructed by Lindgren RF Enclosures, this room consists of a 17.9 by 12 by 8.3 m (inside clearance) shielded room lined with TDK absorber material. The walls, floor (conducting ground plane) and ceiling are constructed of double sided galvanized sheet steel supported by 19 mm thick particle board. The interior walls and ceiling are covered with 10 by 10 cm, 4.6 mm thick ferrite tiles and partially covered with polystyrene absorber cones. Removable floor tiles and cones covering the floor between the EUT and antenna are provided when RF immunity testing is performed.

Room is provided with a 4.0 m diameter embedded turntable and a 1.2 by 2.1 m and 2.4 by 2.4 m double knife edge doors for access. Also, the room is fed electrical EUT power via permanently installed filters and is provided with a permanently mounted video surveillance camera. A remotely controllable antenna mast is located in the room for positioning the measuring antenna from 1 to 4 m above the ground plane.

Test Location B) Compact Anechoic Chamber

Constructed by Lindgren RF Enclosures, this room consists of a 6 by 3 by 2.9 m (inside clearance) shielded room lined with TDK absorber material. The walls, floor, and ceiling are constructed of double sided galvanized sheet steel supported by 19 mm thick particle board. The interior walls and ceiling are covered with 10 by 10 cm, 4.6 mm thick ferrite tiles and partially covered with polystyrene absorber cones. Removable floor tiles and cones cover the floor between the EUT and antenna.

Room is provided with a 1.2 by 2.1 m double knife edge door for access. Also, the room is fed electrical EUT power via permanently installed filters and is provided with a video camera.

Test Location C) RF Shielded Room (VCCI - C-744, NVLAP - 200246-0)

Constructed by Lindgren RF Enclosures, this room consists of a 7.3 by 4.3 by 2.7 m (inside clearance) shielded room. The walls, floor (conducting ground plane) and ceiling are constructed of double sided galvanized sheet steel supported by 19 mm thick particle board. Room is provided with a 1.2 by 2.1m double knife edge door for access. Also, the room is fed electrical EUT power via permanently installed filters and is provided with a portable video surveillance camera.

Test Location D) Ground Reference Plane # 1 (VCCI - C-742, NVLAP - 200246-0)

Horizontal floor ground reference plane constructed of double sided galvanized sheet steel supported by 19 mm particle board and measures 3.6 by 3.0 m. It is located and bonded next to one vertical wall of the Control Room and is, therefore, provided with a 3.0 by 3.6 m vertical ground reference plane constructed of the same material. Power filters and LISNs, when required, are placed on top of and bonded to the horizontal floor ground reference plane.

Test Location E) Ground Reference Plane # 2 (VCCI - C-743, NVLAP - 200246-0)

Horizontal floor ground reference plane constructed of double sided galvanized sheet steel supported by 19 mm particle board and measures 4.3 by 5.2 m. It is located and bonded next to one vertical wall of the RFD Shielded Room and is, therefore, provided with a 4.3 by 2.8 m vertical ground reference plane constructed of the same material. Power filters and LISNs, when required, are placed on top of and bonded to the horizontal floor ground reference plane.

Test Location F) Ground Reference Plane # 3

Horizontal floor ground reference plane constructed of galvanized sheet steel measuring 3.0 by 3.6 m x 2.5mm thick.

Test Location G) Ground Reference Plane #4 (Automotive)

Horizontal floor ground reference plane constructed of double-sided galvanized sheet steel supported by 19 mm particle board and measures 3.6 by 3.0 m.

Test Location I) Harmonic Current Test Area - Located in front of Standard Source Impedance Power Supply.

Test Location J) Magnetic Field Ground Reference Plane

Horizontal floor ground reference plane constructed of 1.5 mm thick aluminum measuring 3.6 by 2.4 m.

Test Location P) Ground Reference Plane # 5

Horizontal floor ground reference plane constructed of double-sided galvanized sheet steel supported by 19 mm particle board and measures 3.6 by 3.0 m.

Test Location R) Ground Reference Plane # 6

Ground reference plane constructed of galvanized sheet steel measuring 3.0 m x 3.6 m x 2.5 mm thick. CDNs, when required, are placed on top of and bonded to the horizontal floor ground reference plane.

Test Location Q) CISPR 12 Outdoor Site

30 meter diameter non-reflective area located behind the UL-RTP EMC Lab. Test area is used for CISPR 12 testing.

Test Location X) Other - As described in the Comments Section of Test Results.

EUT Information:

Equipment Used During Test:

Use*	Product Type	Manufacturer	Model	Comments
EUT	RFID Transmitter	SAMSys Technologies	MP9310	
ACC	Laptop Computer	Dell	-	
ACC	Antenna #1			RFID antenna (Minus 2.5 dBi gain)
ACC	Antenna #2			RFID antenna (Plus 9 dBi gain)

* Use = EUT - Equipment Under Test, ACC - Accessory (Not Subjected to Test), or SIM - Simulator (Not Subjected to Test)

Input/Output Ports:

Port			Cable	Cable	
#	Name	Type*	Max. >3m	Shielded	Comments
0	Enclosure	N/E	No	No	
1	DC Power/Serial Interface	DC	No	No	Devices is powered from a single cable from printer host with both DC power and serial I/O
2	Antenna	N/E	No	No	Connects RFID device to antenna
3	Ethernet	I/O	Yes	No	Auxiliary I/O (optional). Terminated in Laptop 10- Base-T port

AC = AC Power Port DC = DC Power Port N/E = Non-Electrical

I/O = Signal Input or Output Port (Not Involved in Process Control)

PMC = Process Measurement and Control Port

Product Description:

The device under test is a Radio Frequency Identification (RFID) reader designed to be used with printers. The RFID reader is designed such that it operates as a self-contained device with no dependencies on the host printer. The RFID reader contains onboard voltage regulation to minimize the effects of DC voltage variations supplied by the printer.

The RFID reader requires a 9 dBi gain antenna (or lower gain antenna of the same antenna family) that is external to the RFID reader, however it is mounted within the printer and already installed at the factory. Therefore no installation will be required beyond the normal installation of the printer. If the antenna gain is greater than 8.7 dBi, then output power must be reduced to ensure that no more than 4 Watts EIRP is produced. If antenna gain is greater than 7.5 dBi, then a caution must be provided to the end user to maintain spacing of 23 cm in installation.

The RFID reader operates in the 902-928 MHz band as a frequency hopping spread spectrum device. The hopping algorithm and other information regarding the operation of the device is located in the Operational Description exhibit.

Canadian Emissions Designator:

Device is pulse modulated CW signal. Maximum Bandwidth from Test 5 is 145.6 kHz.

Emissions Designator = 146KG1D.

EUT Internal Operating Frequencies:

Frequency (MHz)*	Description	Frequency (MHz)*	Description
903.1 - 926.9	Operating Band		
10	Digital Clock		

Power Interface:

Mode #	Voltage (V)	Current (A)	Power (W)	Frequency (DC/AC-Hz)	Phases (#)	Comments
Rated	120	-	-	60	1	AC voltage supplied to host
1	5	-	-	DC	1	Voltage supplied to RFID device

EUT Operation Modes:

Mode #	Description				
1	RFID transmitter is transmitting on low channel. Device operating at full output power.				
2	RFID transmitter is transmitting on mid channel. Device operating at full output power.				
3	RFID transmitter is transmitting on high channel. Device operating at full output power.				
4	RFID transmitter is transmitting while hopping normally. Device operating at full output power.				
5	RFID transmitter is powered on, however the RF carrier is turned off.				

EUT Configuration Modes:

Mode #	Description
1	RFID transmitter is located on a non-conductive table. The laptop is connected to the RFID device (device interface/power) and laptop computer (serial port). The RFID body is located in the x orientation (flat). The highest gain orientation of the transmit antenna is pointed toward the receive antenna during rotation. Minus 2.5 dBi antenna attached.
2	Same as 1, except RFID body is located in the y orientation (on side).
3	Same as 1, except RFID body is located in the z orientation (on end).
4	RFID transmitter is located on a non-conductive table. The laptop is connected to the RFID device (device interface/power) and laptop computer (serial port). The RFID body is located in the x orientation (flat). The highest gain orientation of the transmit antenna is pointed toward the receive antenna during rotation. 9 dBi antenna attached.
5	Same as 4, except RFID body is located in the y orientation (on side).
6	Same as 4, except RFID body is located in the z orientation (on end).

Test 1: Conducted Disturbance Emissions - Voltage

Test Requirement: 47 CFR Part 15, Subpart B

Test Specification: CISPR 22:1997 Class B

Test Procedure:

The test was performed in accordance with the Test Requirement and Specification and configured as noted in the Test Setup. The EUT was connected to the proper supply source via a Line Impedance Stabilization Network (LISN). The Measuring Receiver was connected to the Port under test via the LISN. A peak measurement was first made at the test point across the test frequency range over a one minute test period. Then, Quasi-Peak or Average measurements were taken and recorded under Discrete Data. This was repeated for each conductor of the test port except for equipment grounding.

Mains Terminals of Class A Equipment					
Frequency	Quasi-Peak Limit	Average Limit			
(MHz)	dB μV	dB μV			
0.15 to 0.50	79	66			
0.50 to 5	73	60			
5 to 30	73	60			

Conducted Disturbance Emission Limits For Mains Terminals of Class A Equipment

Note:

Test is not applicable. Equipment under test is DC powered.

Test 2: Radiated Spurious Emissions/Unintentional Emissions - 30 to 1000 MHz

Test Requirement: 47 CFR Part 15.247

Test Specification: ANSI C63.4:2001

Test Procedure:

The test was performed in accordance with the Test Requirement and Specification and configured as noted in the Test Setup. The EUT was placed inside the anechoic chamber on a non-conductive table with a fresh battery installed or operating at nominal voltage. The EUT was rotated from 0 to 360 degrees with the receive antenna scanned from 1 to 4 meters in height in vertical and horizontal polarities. All emissions close to the applicable limit were then measured with the appropriate detector (quasi-peak or average). All peak emissions were verified to be below the limits below.

Radiated Disturbance Limits for Spread Spectrum Transmitters - Section 15.247					
Fundamental Frequency	Hopping	Permissible	Output Power	Permissible Spu	rious Emissions
(MHz)	Channels	(milliwatts)	(dBm)	(milliwatts)	(dBm)
	25 to 49	250	24	25	14
902 – 928	50 or more	1000	30	100	20
	Digital Modulation	1000	30	100	20
	15 to 74	125	21	12.5	11
2400 – 2483	75 or more	1000	30	100	20
	Digital Modulation	1000	30	100	20
5725 – 5850	75 or more	1000	30	100	20
	Digital Modulation	1000	30	100	20

Other than fixed point-to-point applications, power adjustment for antenna gain is as follows:

Gain of 6 dBi or less No reduction is required

Gain greater than 6 dBi Reduce the maximum output power by 1 dB for each 1 dB of antenna gain above 6 dBi

Radiated Disturbance Limits for Class B Equipment at a measuring distance of 3m

	Frequency Range	Quasi-Peak Limits	Quasi-Peak Limits			
	MHz	μV/m	dBµV/m			
	30 to 88	100	40.00			
	88 to 216	150	43.52			
	216 to 960	200	46.02			
	Above 960	500	53.97			

Test Deviations:

None

Test Setup:

Only the following ports were tested. See EUT Information for details.

Test Item			EUT Configuration	Power Interface	
Α	0	Enclosure	5 (RF Off, Unintentional Emissions, -2.5 dBi antenna)	1	1
В	0	Enclosure	4 (Rf On, 800-1000 Spurious, matched load)	1	1
С	0	Enclosure	5 (RF Off, Unintional Emissions, 9 dBi antenna)	4	1

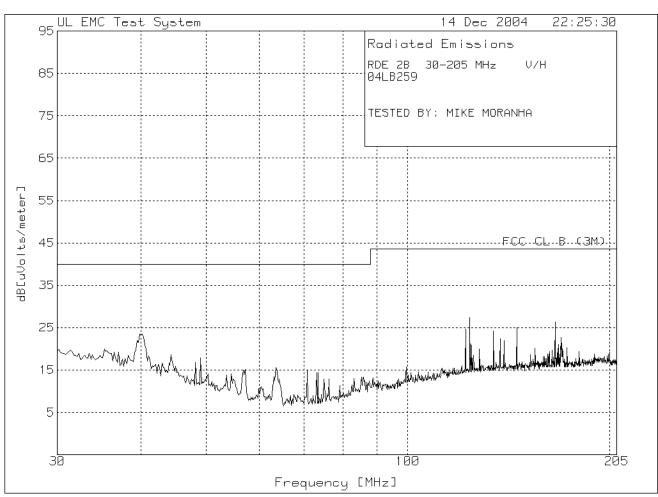
Test 2 - Results: Radiated Spurious Emissions/Unintentional Emissions - 30 to 1000 MHz

Test Results Summary:

Test Item	Test Location	Humidity (%)	Temperature (°C)	Pressure (kPa)	Pass/Fail (P/F)	Date Completed	Comment #
А	А	41	24	100	Р	12/14/04	1
В	А	33	24	102	Р	11/15/04	
С	А	36	24	101	Р	1/20/05	1

The EUT was considered to **Pass** the Requirements.

Comments:


Comment #	Description
1	Note: Data recorded with RFID body in the x-orientation (flat). From preliminary testing, emissions in this frequency range were not affected significantly by the orientation of the RFID body.

Test 2 - Test Equipment Used: Radiated Spurious Emissions/Unintentional Emissions - 30 to 1000 MHz

Equipment ID	Description	Manufacturer	Model Number	Last Cal.	Next Cal.
AT0025	Biconical Antenna, 30 to 300 MHz	Schaffner, EMC	VBA6106A	3/22/04	3/31/05
AT0030	Log periodic Antenna, 200 MHz to 1000 MHz	Schaffner, EMC	3160-07	2/9/04	2/28/05
ATA084	Attenuator 6 dB, 2 GHz	Pasternack	PE7002-6	3/11/04	3/31/05
ATA085	Attenuator 6 dB, 2 GHz	Pasternack	PE7002-6	3/11/04	3/31/05
ATA096	50 ft, N male - N male	Micro-Coax	Coaxial Cable	3/11/04	3/31/05
ATA124	RF Amplifier, 1 to 1000 MHz	Miteq	AM-3A-000110-N	3/11/04	3/31/05
ATA125	RF Amplifier, 1 to 1000 MHz	Miteq	AM-3A-000110-N	3/11/04	3/31/05
ATA140	RG214 Ferrite Cable	EMC Eupen	N/A	3/11/04	3/31/05
ATA143	Cable, 6ft., N-male to N-male	Micro-Coax	N/A	3/11/04	3/31/05
ATA167	RG214 Ferrite Cable	EMC Eupen	N/A	3/11/04	3/31/05
SAR001	Spectrum Analyzer / Receiver	Hewlett-Packard	8572A	2/2/04	2/28/05

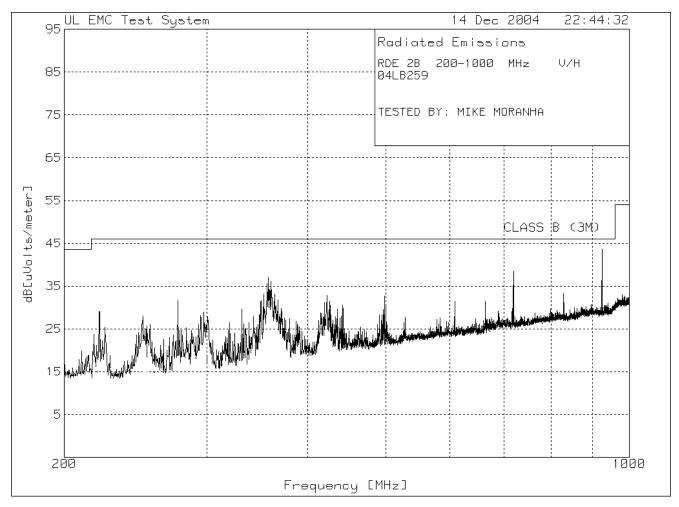
The above equipment has been calibrated and is within the manufacturer's published limit of error. Calibration is traceable to the National Institute of Standards & Technology(NIST) and conforms to ANSI/NCSL Z540-1-1994.

Test 2, Item A - Peak Plot (Amplitude in dBuV/m):

Radiated Spurious Emissions/Unintentional Emissions - 30 to 200 MHz (RF Off, Unintentional Emissions)

Test 2, Item A - Discrete Data:

Radiated Spurious Emissions/Unintentional Emissions - 30 to 200 MHz


Test Item	Detector Type*	Antenna Polarity	Antenna Distance	Measured Frequency	Value	Correction		Peak Limit	Spec Margin	See Comment
(A-Z)	(P/Q/A)	(H/V)	(m)	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(#)**
А	Р	V	3	121.967	40.15	-15.5	24.65	43.5	-18.85	
А	Р	V	3	123.718	42.65	-15.2	27.45	43.5	-16.05	
А	Р	V	3	134.229	38.81	-14.6	24.21	43.5	-19.29	
А	Р	V	3	137.382	36.99	-14.5	22.49	43.5	-21.01	
А	Р	V	3	145.440	39.25	-14.2	24.95	43.5	-18.55	
А	Р	Η	3	165.936	40.38	-14.0	26.38	43.5	-17.12	

* P = Peak, Q = Quasi-Peak, A = Average.

= See Comment Number Under This Test's Comments Section.
 Sample Calculation: Corrected Value = Measured Value + Equip Correction
 Sample Calculation: Equip Correction = Antenna Factor (dB/m) + Cable Loss (dB) - Amplifier Gain (dB, if used)

Test 2, Item A - Peak Plot (Amplitude in dBuV/m):

Test 2, Item A - Discrete Data:

Radiated Spurious Emissions/Unintentional Emissions - 200 to 1000 MHz - Minus 2.5 dBi antenna

Test	Detector	Antenna	Antenna	Measured	Measured	Equip	Corrected	Quasi-	Spec	See
Item	Type*	Polarity		Frequency		Correction		Peak Limit	•	Comment
(A-Z)	(P/Q/A)	(H/V)	(m)	(MHz)	(dBuV)	(dB/m)	(dBuV/m)		(dB)	(#)**
Α	Р	Н	3	220.810	45.6	-16.5	29.1	46	-16.9	
Α	Р	Н	3	276.438	45.9	-14.3	31.6	46	-14.4	
А	Р	Н	3	357.279	48.8	-11.8	37.0	46	-9.0	
А	Р	Н	3	422.911	43.1	-10.2	32.9	46	-13.1	
А	Р	Н	3	497.749	40.4	-8.1	32.3	46	-13.7	
А	Р	Н	3	719.059	42.5	-4.1	38.4	46	-7.6	
А	Р	Н	3	829.515	35.9	-2.7	33.2	46	-12.8	
А	Р	Н	3	924.762	45.4	-1.8	43.6	46	-2.4	

* P = Peak, Q = Quasi-Peak, A = Average.

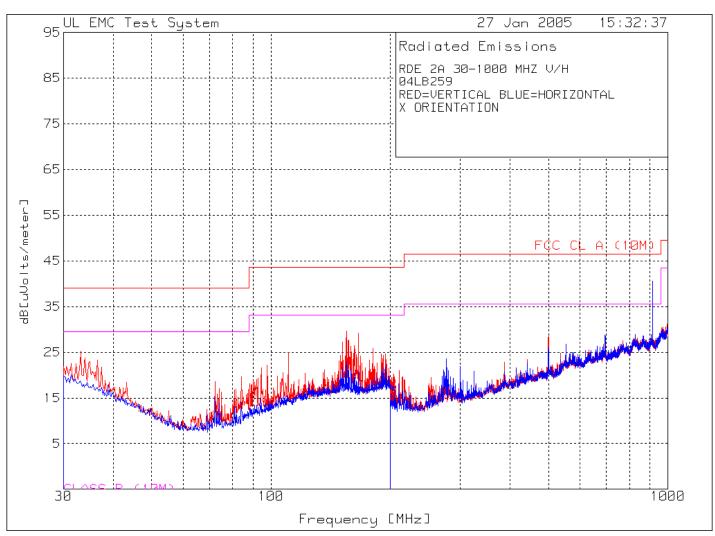
= See Comment Number Under This Test's Comments Section.
 Sample Calculation: Corrected Value = Measured Value + Equip Correction
 Sample Calculation: Equip Correction = Antenna Factor (dB/m) + Cable Loss (dB) - Amplifier Gain (dB, if used)

Test 2, Item B - Peak Plot:

Radiated Spurious Emissions/Unintentional Emissions - 800 to 1000 MHz – Matched Load (RF On, Spurious Emissions near transmit frequency)

	95	UL EMC Test System	12 Nov 2004 11:25:55
	55		47 CFR PART 15.247
	85		RDE 2A 200-1000 MHZ V/H 04LB259
	75		X ORIENTATION TESTED BY: GERARD PAUL
	65		
dB[u∪a ts/meter]	55		
s/m	45		CLASS B (3M)
Jalt		and the week and a second and the se	CLASS B (3M)
BCul	35		
U	25		
	20		
	15		
	5		
	8	100 ::	1000
		Frequency	[MHz]
			1

Quasi-peak measurement at 901.200 MHz


Frequency	Meter Reading	Cable/Amplifier	Antenna Factor	Field Strength	Gerenal Limit	Margin
(MHz)	(dBuV)	Factor (dB)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)
901.200	-0.56	11.7	23.7	34.84	46	

Note: In this range the antenna was replaced with a match impedance load so that radiated emissions near the transmit frequency could be observed. All measurements with significant spurious emissions (multiples of transmit frequency) was measured with antenna in place.

Peak emission observed at 901.2 MHz (just outside band edge) was a momentary emission present only during hopping that was measured below the general limit when measured with a quasi-peak detector.

Product in X-orientation shown. Y-orientation and Z-orientation performed similarly.

Test 2, Item C - Peak Plot:

Radiated Spurious Emissions/Unintentional Emissions - 30 to 1000 MHz – 9 dBi antenna (RF Off, Unintentional Emissions)

Note: Measurement performed at 10 meter distance with Class B limit extrapolated as 20 dB/decade. Emission from transmitter local oscillator in 902-928 MHz band is disregarded.

Test 2, Item C - Discrete Data:

Radiated Spurious Emissions/Unintentional Emissions - 30 to 1000 MHz – 9 dBi Antenna

Test Item	Detector Type*	Antenna Polarity	Antenna Distance	Measured Frequency		Equip Correction	Corrected Value	Quasi- Peak Limit	Spec Margin	See Comment
(A-Z)	(P/Q/A)	(H/V)	(m)	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(#)**
А	Р	V	10	33.1532	37.0	-11.8	25.2	29.5	-4.3	
А	Р	V	10	110.580	40.9	-14.0	24.9	33.1	-8.2	
А	Р	V	10	155.000	43.3	-13.6	29.7	33.1	-3.4	
А	Р	V	10	500.150	38.6	-10.1	28.5	35.6	-7.1	
А	Р	Н	10	915.157	44.7	-4.2	40.5	35.6	+4.9	2

* P = Peak, Q = Quasi-Peak, A = Average.

= See Comment Number Under This Test's Comments Section.
 Sample Calculation: Corrected Value = Measured Value + Equip Correction
 Sample Calculation: Equip Correction = Antenna Factor (dB/m) + Cable Loss (dB) - Amplifier Gain (dB, if used)

Comments:

Comment #	Description
1	Data recorded with RFID body in the x-orientation (flat). From preliminary testing, emissions in this frequency range were not affected significantly by the orientation of the RFID body.
2	Measurement performed at 10 meter distance with Class B limit extrapolated as 20 dB/decade. Emission from transmitter local oscillator in 902-928 MHz band is disregarded

Test 2, Item A - Test Set-Up Photo - Maximum Emissions Configuration:

Radiated Spurious Emissions/Unintentional Emissions - 30 MHz to 10 GHz - Minus 2.5 dBi antenna

Laptop computer is not visible behind easel. See next page.

Test 2, Item A - Test Set-Up Photo - Maximum Emissions Configuration:

Radiated Spurious Emissions/Unintentional Emissions - 30 MHz to 10 GHz - Minus 2.5 dBi antenna

Note: Styrofoam added below EUT to reduce reflection of emissions from wooden tabletop at high frequencies. EUT is shown in the "X Orientation" or flat. Antenna is positioned to be pointed with direction of maximum gain toward receive antenna. Measurements were also performed with EUT positioned on side and on end as shown below:

X – Orientation

Z – Orientation

Y – Orientation

Test 2, Item C - Test Set-Up Photo - Maximum Emissions Configuration:

Radiated Spurious Emissions/Unintentional Emissions - 30 MHz to 10 GHz - 9 dBi antenna

Test 2, Item C - Test Set-Up Photo - Maximum Emissions Configuration:

Radiated Spurious Emissions/Unintentional Emissions - 30 MHz to 10 GHz - 9 dBi antenna

Test 3: **Radiated Spurious Emissions - Above 1 GHz**

Test Requirement: 47 CFR Part 15.247

Test Specification: ANSI C63.4:2001

Test Procedure:

The test was performed in accordance with the Test Requirement and Specification and configured as noted in the Test Setup. The EUT was placed inside the anechoic chamber on a non-conductive table with a fresh battery installed or operating at nominal voltage. The EUT was rotated from 0 to 360 degrees with the receive antenna scanned from 1 to 4 meters in height in vertical and horizontal polarities. All emissions close to the applicable limit were then measured with the appropriate detector (quasi-peak or average). All peak emissions were verified to be below the limits below.

Radiated I	Radiated Disturbance Limits for Spread Spectrum Transmitters - Section 15.247				
Fundamental Frequency	Hopping	Permissible	Output Power	Permissible Spu	rious Emissions
(MHz)	Channels	(milliwatts)	(dBm)	(milliwatts)	(dBm)
	25 to 49	250	24	25	14
902 – 928	50 or more	1000	30	100	20
	Digital Modulation	1000	30	100	20
	15 to 74	125	21	12.5	11
2400 – 2483	75 or more	1000	30	100	20
	Digital Modulation	1000	30	100	20
5725 – 5850	75 or more	1000	30	100	20
	Digital Modulation	1000	30	100	20

Other than fixed point-to-point applications, power adjustment for antenna gain is as follows:

Gain of 6 dBi or less No reduction is required

Gain greater than 6 dBi Reduce the maximum output power by 1 dB for each 1 dB of antenna gain above 6 dBi

Radiated Disturbance Limits for Class B Equipment at a magguring distance of

		at a measuring distance of	3m.
Ĩ	Frequency Range	Quasi-Peak Limits	Quasi-Peak Limits
	MHz	μV/m	dBµV/m
I	30 to 88	100	40.00
	88 to 216	150	43.52
	216 to 960	200	46.02
	Above 960	500	53.97

Test Setup:

Only the following ports were tested. See EUT Information for details.

Test Item	Port #	Port Name EUT Operation Mode E		EUT Configuration	Power Interface						
Items A-C	Items A-C performed with Minus 2.5 dBi antenna										
А	A 0 Enclosure 4 (Hopping Normally) 1 (X-orientation)										
В	0	Enclosure	4 (Hopping Normally)	2 (Y-orientation)	1						
С	0	Enclosure 4 (Hopping Normally) 3 (Z-orienta		3 (Z-orientation)	1						
Items D-F p	performed w	ith 9 dBi antenna									
D	0	Enclosure	4 (Hopping Normally)	1 (X-orientation)	1						
E	0	Enclosure	4 (Hopping Normally)	2 (Y-orientation)	1						
F	0	Enclosure	4 (Hopping Normally)	3 (Z-orientation)	1						

Test 3 - Results: Radiated Spurious Emissions - Above 1 GHz

Test Results Summary:

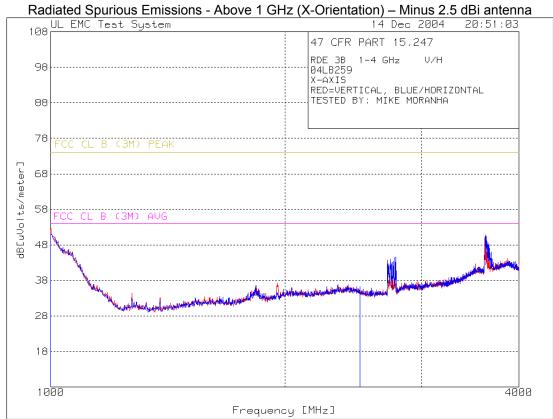
Test Item	Test Location	Humidity (%)	Temperature (°C)	Pressure (kPa)	Pass/Fail (P/F)	Date Completed	Comment #
A - C	А	41	24	100	Р	12/14/04	1
D – F	А	36	24	101	Р	1/20/05	2

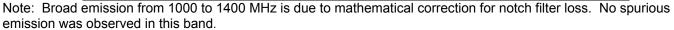
The EUT was considered to **Pass** the Requirements.

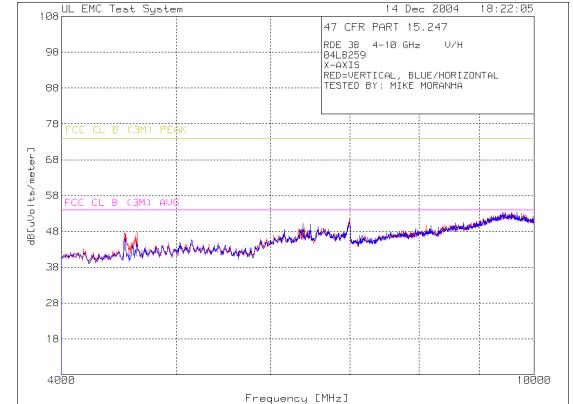
Comments:

Comment #	Description
1	Testing from 1 to 10 GHz was performed in two frequency bands. 1 to 4 GHz used a notch filter to suppress the 902-928 MHz carrier. 4 to 10 GHz used a high pass filter with an approximate 3 GHz cutoff frequency.
2	Same comment as #1, however a 3 GHz breakpoint was used.

Test 3 - Test Equipment Used:


Radiated Spurious Emissions - Above 1 GHz


Equipment ID	Description	Manufacturer	Model Number	Last Cal.	Next Cal.
AT0026	Horn Antenna, 1 to 18 GHz	EMC Test Systems	3115	6/8/04	6/30/05
ATA096	50 ft, N male - N male	Micro-Coax	Coaxial Cable	3/11/04	3/31/05
ATA143	Cable, 6ft., N-male to N-male	Micro-Coax	N/A	3/11/04	3/31/05
ATA144	Amplifier, 0.1 to 18 GHz	Miteq	AFS42-00101800-2	3/11/04	3/31/05
ATA152	27 ft. N male - N male low loss cable	Micro-Coax	UFB293C-0-3149-50504	2/21/04	2/29/05
SAR001	Spectrum Analyzer / Receiver	Hewlett-Packard	8572A	2/2/04	2/28/05
Filters used	for Minus 2.5 dBi antenna testing				
ATA163	High Pass Filter, 3.6 GHz cutoff frequency, N-male to N-female	UL	N/A	See Note*	See Note*
ZATA31	Notch filter, Tunable 900 to 2.5 GHz	Eastern Wireless	-	See Note*	See Note*
Filters used	l for 9 dBi antenna testing				
ATA185	High Pass Filter, 1.1 GHz cutoff frequency, SMA-male to SMA-fem.	Microcircuits	VHF-1320	11/29/04	11/30/05
ATA187	High Pass Filter, 3 GHz cutoff frequency, SMA-male to SMA-fem.	Microcircuits	s VHF-2275		11/29/05


The above equipment has been calibrated and is within the manufacturer's published limit of error. Calibration is traceable to the National Institute of Standards & Technology(NIST) and conforms to ANSI/NCSL Z540-1-1994.

* Insertion Loss measured prior to test.

Test 3, Item A - Peak Plot:

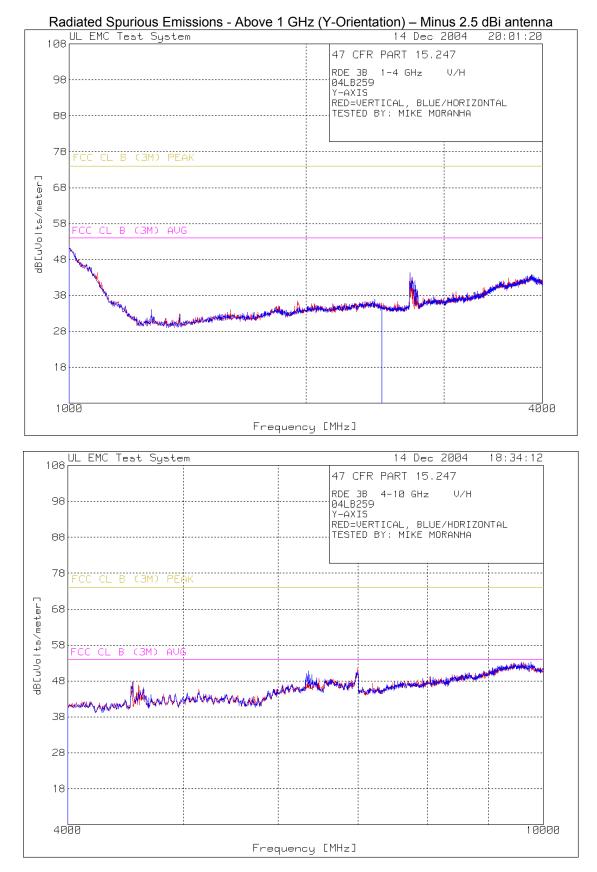
Note floor for measurement system approached limit at 9500 MHz. It was verified that no spurious emission was present by repositioning receive antenna to a 1 meter distance with no increase in emissions observed.

Test 3, Item A - Discrete Data (X-Orientation):

Radiated Spurious Emissions - Above 1 GHz - Minus 2.5 dBi antenna

Test	Detector	Antenna	Antenna	Measured	Measured	Equip	Corrected	0	Spec	See
Item	Type*	Polarity	Distance	Frequency	Value	Correction	Value	Limit**	Margin	Comment
(A-Z)	(P/Q/A)	(H/V)	(m)	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(#)***
А	Р	Н	3	2777.778	45.57	-0.9	44.67	54	-9.33	
А	Р	Н	3	3623.123	45.52	5.3	50.82	54	-3.18	
А	Р	V	3	4516.344	39.28	8.3	47.58	54	-6.42	
А	Р	V	3	4628.419	39.83	8.1	47.93	54	-6.07	
А	Р	V	3	5148.766	35.64	10.1	45.74	54	-8.26	
А	Р	Н	3	6389.593	37.81	12.5	50.31	54	-3.69	
А	Р	Н	3	6989.993	36.83	14.6	51.43	54	-2.57	Noise Floor

* P = Peak, Q = Quasi-Peak, A = Average.


** No peak-to-average reduction applied.

*** # = See Comment Number Under This Test's Comments Section.

Sample Calculation: Corrected Value = Measured Value + Equip Correction

Sample Calculation: Equip Correction = Antenna Factor (dB/m) + Cable Loss (dB) - Amplifier Gain (dB, if used)

Test 3, Item B - Peak Plot:

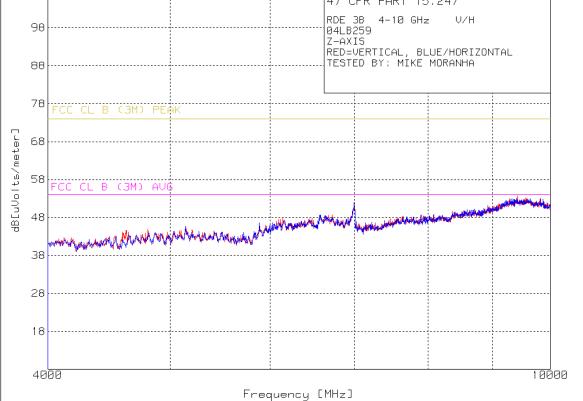
Test 3, Item B - Discrete Data (Y-Orientation):

Radiated Spurious Emissions - Above 1 GHz (Y-Orientation) - Minus 2.5 dBi antenna

Test Item (A-Z)	Detector Type* (P/Q/A)	Antenna Polarity (H/V)	Antenna Distance (m)	Measured Frequency (MHz)		Equip Correction (dB/m)	Corrected Value (dBuV/m)	Limit**	Spec Margin (dB)	See Comment (#)***
А	Р	Н	3	2713.213	45.39	-1.0	44.39	54	-9.61	
А	Р	V	3	4528.352	38.35	9.3	47.65	54	-6.35	
А	Р	V	3	4584.390	38.35	8.6	46.95	54	-7.05	
А	Р	Н	3	6361.574	38.51	12.3	50.81	54	-3.19	

* P = Peak, Q = Quasi-Peak, A = Average.

** No peak-to-average reduction applied.


*** # = See Comment Number Under This Test's Comments Section.

Sample Calculation: Corrected Value = Measured Value + Equip Correction

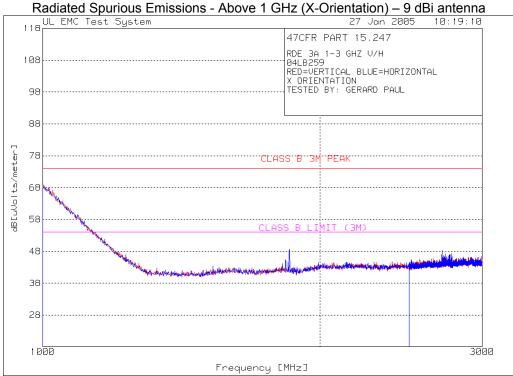
Sample Calculation: Equip Correction = Antenna Factor (dB/m) + Cable Loss (dB) - Amplifier Gain (dB, if used)

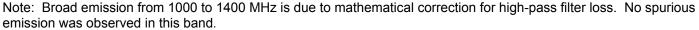
Test 3, Item C - Peak Plot:

Test 3, Item C - Discrete Data (Z-Orientation):

Radiated Spurious Emissions - Above 1 GHz (Z-Orientation) - Minus 2.5 dBi antenna

Test	Detector	Antenna	Antenna	Measured	Measured	Equip	Corrected	Average	Spec	See
Item	Type*	Polarity	Distance	Frequency	Value	Correction	Value	Limit**	Margin	Comment
(A-Z)	(P/Q/A)	(H/V)	(m)	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(#)***
А	Р	V	3	1831.832	40.97	-3.9	37.07	54	-16.93	
А	Р	V	3	2741.742	43.41	-1.2	42.21	54	-11.79	
А	Р	V	3	3615.616	47.21	5.2	52.41	54	-1.59	
А	Р	V	3	4616.411	37.39	7.3	44.69	54	-9.31	
А	Р	V	3	6137.425	35.84	12.1	47.94	54	-6.06	


* P = Peak, Q = Quasi-Peak, A = Average.


** No peak-to-average reduction applied.


*** # = See Comment Number Under This Test's Comments Section. Sample Calculation: Corrected Value = Measured Value + Equip Correction Sample Calculation: Equip Correction = Antenna Factor (dB/m) + Cable Loss (dB) - Amplifier Gain (dB, if used)

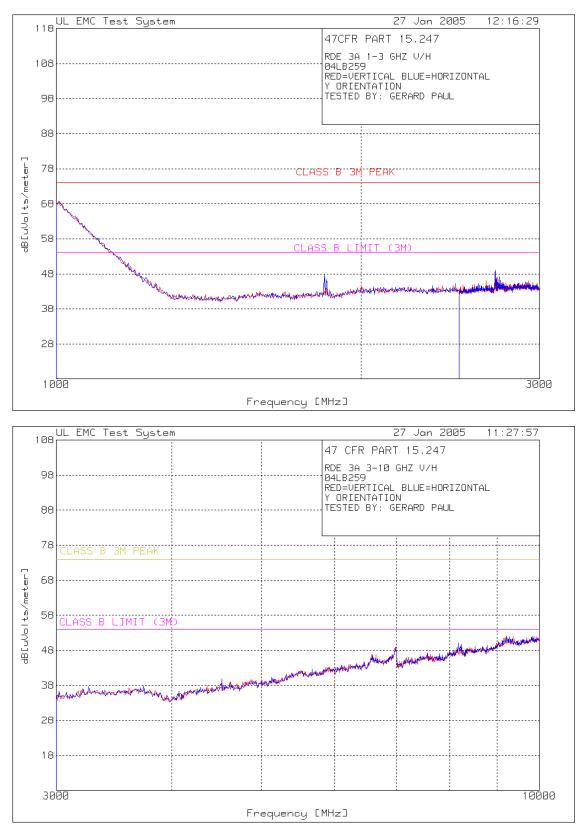
Comment #	Description

Test 3, Item D - Peak Plot:

Test 3, Item D - Discrete Data (X-Orientation):

Radiated Spurious Emissions - Above 1 GHz - 9 dBi antenna

Test Item (A-Z)	Detector Type* (P/Q/A)	Antenna Polarity (H/V)	Antenna Distance (m)	Measured Frequency (MHz)		Equip Correction (dB/m)	Corrected Value (dBuV/m)	Limit**	Spec Margin (dB)	See Comment (#)***
A	P	H	3	8171.171	35.4	17.5	52.9	54	-1.1	
Α	Р	Н	3	9292.092	30.5	21.6	52.1	54	-1.9	
Α	Р	Н	3	9810.811	29.1	23.3	52.4	54	-1.6	


* P = Peak, Q = Quasi-Peak, A = Average.

** No peak-to-average reduction applied.

= See Comment Number Under This Test's Comments Section.
 Sample Calculation: Corrected Value = Measured Value + Equip Correction
 Sample Calculation: Equip Correction = Antenna Factor (dB/m) + Cable Loss (dB) - Amplifier Gain (dB, if used)

Comment	# Description	
1	Closest spurious emission to limit. 52.9 dBuV/m, or in linear units, 441.6 uV/m, at 8171 MHz.	

Test 3, Item E - Peak Plot:

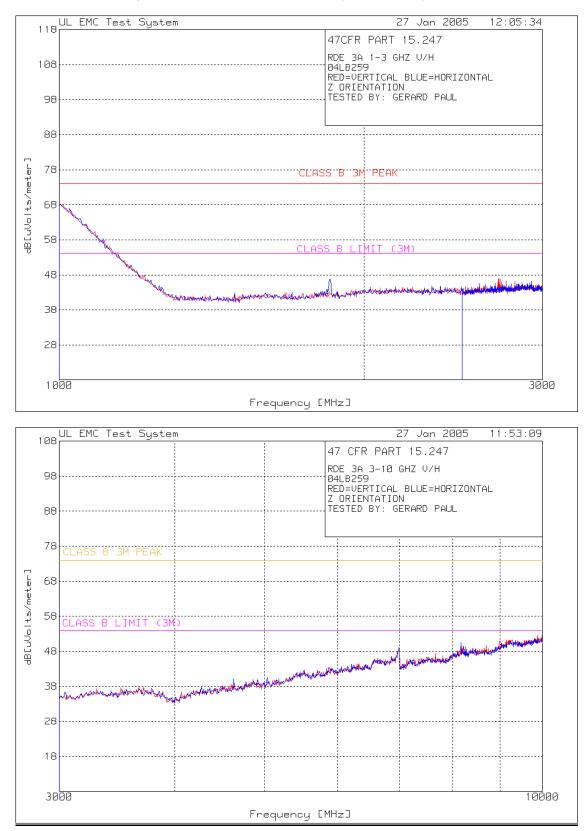
Radiated Spurious Emissions - Above 1 GHz (Y-Orientation) - 9 dBi antenna

Test 3, Item E - Discrete Data (Y-Orientation):

Radiated Spurious Emissions - Above 1 GHz (Y-Orientation) - 9 dBi antenna

Test Item (A-Z)	Detector Type* (P/Q/A)	Antenna Polarity (H/V)		Measured Frequency (MHz)		Equip Correction (dB/m)		Average Limit** (dBuV/m)	Spec Margin (dB)	See Comment (#)***
А	Р	V	3	3595.596	36.0	1.3	37.3	54	-16.7	
А	Р	V	3	6580.581	36.7	10.2	46.9	54	-7.1	
А	Р	Н	3	8171.171	32.5	17.5	50.0	54	-4.0	
А	Р	Н	3	9215.215	30.4	21.7	52.1	54	-1.9	

* P = Peak, Q = Quasi-Peak, A = Average.


** No peak-to-average reduction applied.

*** # = See Comment Number Under This Test's Comments Section.

Sample Calculation: Corrected Value = Measured Value + Equip Correction

Sample Calculation: Equip Correction = Antenna Factor (dB/m) + Cable Loss (dB) - Amplifier Gain (dB, if used)

Test 3, Item F - Peak Plot:

Radiated Spurious Emissions - Above 1 GHz (Z-Orientation) - 9 dBi antenna

Test 3, Item F - Discrete Data (Z-Orientation):

Radiated Spurious Emissions - Above 1 GHz (Z-Orientation) - 9 dBi antenna

Test	Detector	Antenna	Antenna	Measured	Measured	Equip	Corrected	Average	Spec	See
Item	Type*	Polarity	Distance	Frequency	Value	Correction	Value	Limit**	Margin	Comment
(A-Z)	(P/Q/A)	(H/V)	(m)	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(#)***
Α	Р	Н	3	4632.633	36.1	4.0	40.1	54	-13.9	
А	Р	Н	3	6993.994	36.9	2.0	48.9	54	-5.1	
А	Р	Н	3	8157.157	33.2	17.4	50.6	54	-3.4	

* P = Peak, Q = Quasi-Peak, A = Average.

** No peak-to-average reduction applied.

= See Comment Number Under This Test's Comments Section.Sample Calculation: Corrected Value = Measured Value + Equip Correction

Sample Calculation: Equip Correction = Antenna Factor (dB/m) + Cable Loss (dB) - Amplifier Gain (dB, if used)

Comment #	Description

Test 4: Bandedge

Test Requirement: 47 CFR Part 15 Subpart C

Test Specification: 47 CFR Part 15.247

Test Procedure:

All testing was performed on an open test area covered by a ground plane. The spectrum analyzer Resolution Bandwidth and Video Bandwidth were set to 10 kHz for the measurement. A plot of the spectrum analyzer display screen is produced with marker points displaying the center frequency and the left and right side points that are 20 dB below the field strength at the center frequency.

The spectrum analyzer frequency is positioned such that the left or right bandedge frequency and the edge of the nearest channel are observed on the display. The device is considered to comply if all emissions at the bandedge and outside the

Limits - FCC Part 15.247					
Bandedge	Frequency				
Lower	902 MHz				
Upper	928 MHz				

Limite ECC Dart 15 247

Test Deviations:

None

Test Setup:

Only the following ports were tested. See EUT Information for details.

Test Item	Port #	Port Name	EUT Operation Mode	EUT Configuration	Power Interface	
А	2	Antenna	1 (Low Channel, lower edge)	1	1	
В	2	Antenna	2 (High Channel, upper edge)	1	1	

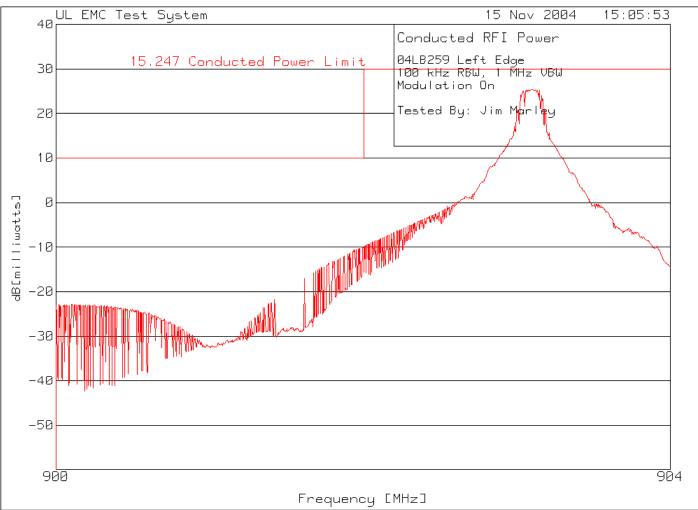
Test 4 - Results: Bandedge

Test Results Summary:

Test Item	Test Location	Humidity (%)	Temperature (°C)	Pressure (kPa)	Pass/Fail (P/F)	Date Completed	Comment #
A - B	D	33	24	102	Р	11/15/04	

The EUT was considered to Pass the Requirements.

Comments:

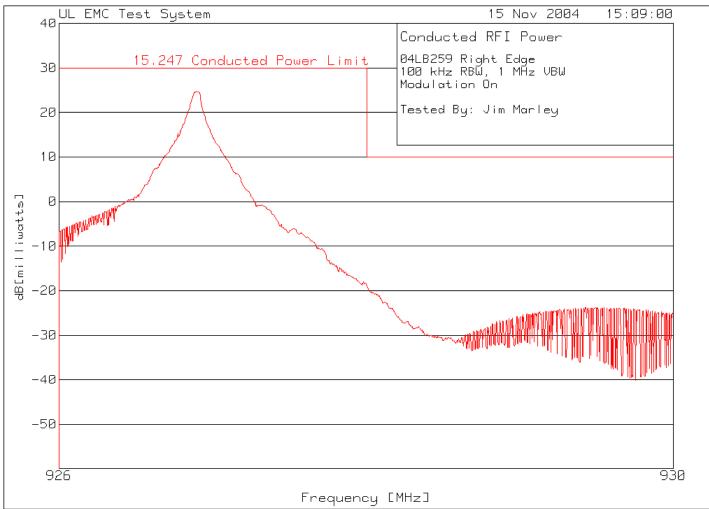

Comment #	Description

Test 4 - Test Equipment Used: Bandedge

Equipment ID	Description	Manufacturer	Model Number	Last Cal.	Next Cal.
ATA160	RF Attenuator, 30 dB	Weinshel	47-30-43	8/25/04	8/30/05
SAR001	Spectrum Analyzer / Receiver	Hewlett-Packard	8572A	2/2/04	2/28/05

The above equipment has been calibrated and is within the manufacturer's published limit of error. Calibration is traceable to the National Institute of Standards & Technology(NIST) and conforms to ANSI/NCSL Z540-1-1994.

Test 4, Item A - Peak Plot (Amplitude in dBuV):



Bandedge - Lower Edge

Left Bandedge at 902 MHz is shown to be >30 dB below lowest channel carrier. Requirement is >20 dB.

Test 4, Item B - Peak Plot (Amplitude in dBuV):

Right Bandedge at 928 MHz is shown to be >30 dB below lowest channel carrier. Requirement is >20 dB.

Test 5: Conducted Power, Conducted Spurious, and Occupied Bandwidth

Test Requirement: 47 CFR Part 15.247

Test Specification: ANSI C63.4:2001

Test Procedure:

The EUT was tested per ANSI C63.4:2001 as a conducted measurement. The output of the transmitter was connected to the input of the measurement spectrum analyzer via a calibrated attenuator.

Conducted Power: The spectrum analyzer Resolution Bandwidth is set to 100 kHz and Video Bandwidth to 1 MHz or higher. The peak measurements for low, middle, and high channels are reported.

Occupied Bandwidth: The spectrum analyzer Resolution Bandwidth and Video Bandwidth were set to 10 kHz for the measurement. A plot of the spectrum analyzer display screen is produced with marker points displaying the center frequency and the left and right side points that are 20 dB below the field strength at the center frequency.

Limits - FCC Part 15.247 - Frequency Hopping

Frequency of Operation	Maximum Conducted Power	Maximum Bandwidth					
/ Channels							
902 - 928 MHz,	1000 mW*	200 kHz					
>50 channels							

*for antenna with gain of 6 dBi or less

Test Deviations:

None

Test Setup: Only the following ports were tested. See EUT Information for details.

Test Item	Port #	Port Name	EUT Operation Mode	EUT Configuration	Power Interface
А	2	Antenna	1 (low channel power)	1	1
В	2	Antenna	2 (mid channel power)	1	1
С	2	Antenna	3 (high channel power)	1	1
D	2	Antenna	4 (hopping normally, conducted spurious)	1	1
E	2	Antenna	1 (low channel occupied bandwidth)	1	1
F	2	Antenna	2 (mid channel occupied bandwidth)	1	1
G	2	Antenna	3 (high channel occupied bandwidth)	1	1

Test 5 - Results: Conducted Power, Conducted Spurious, and Occupied Bandwidth

Test Results Summary:

Test Item	Test Location	Humidity (%)	Temperature (°C)	Pressure (kPa)	Pass/Fail (P/F)	Date Completed	Comment #
A - C	D	39	23	101	Р	12/15/04	
D	D	33	24	102	Р	11/15/04	
E - G	D	39	23	101	Р	12/15/04	1

The EUT was considered to Pass the Requirements.

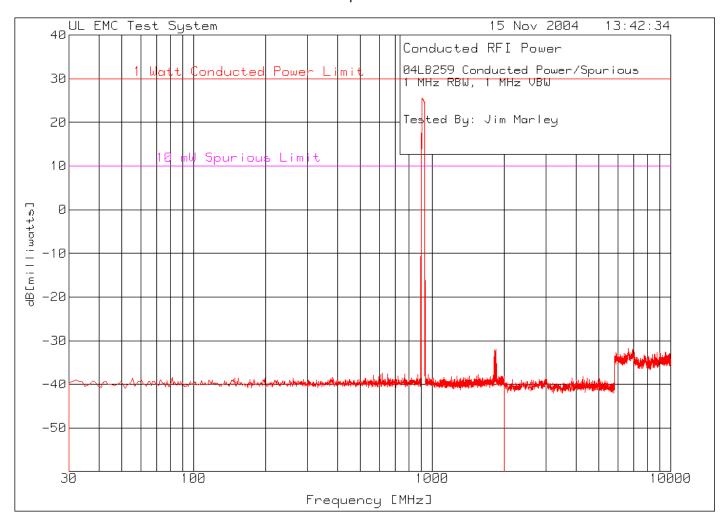
Comments:

Comment #	Description
1	No output power reduction is required for antenna gain less than or equal to 8.7 dBi. For output greater than 8.7 dBi, output power must be reduced such that: Maximum Output Power (27.3 dBm) + Antenna Gain (in dBi) ≤ 36 dBm

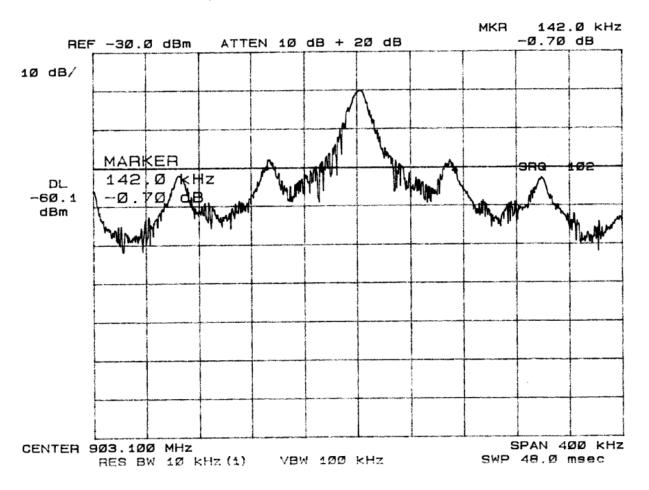
Test 5 - Test Equipment Used: Conducted Power and Occupied Bandwidth

Equipment ID	Description	Manufacturer	Model Number	Last Cal.	Next Cal.			
Conducted Power:								
PAR010	Power Meter	Rohde & Schwarz	NRVD	4/7/04	4/30/05			
PAR006	Thermal Sensor	Rohde & Schwarz	NRV-Z51	2/5/04	2/28/05			
ATA130	RF Attenuator, 10 dB	N-male to N-female	-	8/25/04	8/31/05			
Conducted	Conducted Spurious/Occupied Bandwidth:							
SAR001	Spectrum Analyzer / Receiver	Hewlett-Packard	8572A	2/2/04	2/28/05			
ATA160	RF Attenuator, 30 dB	Weinshel	47-30-43	8/25/04	8/30/05			

The above equipment has been calibrated and is within the manufacturer's published limit of error. Calibration is traceable to the National Institute of Standards & Technology(NIST) and conforms to ANSI/NCSL Z540-1-1994.

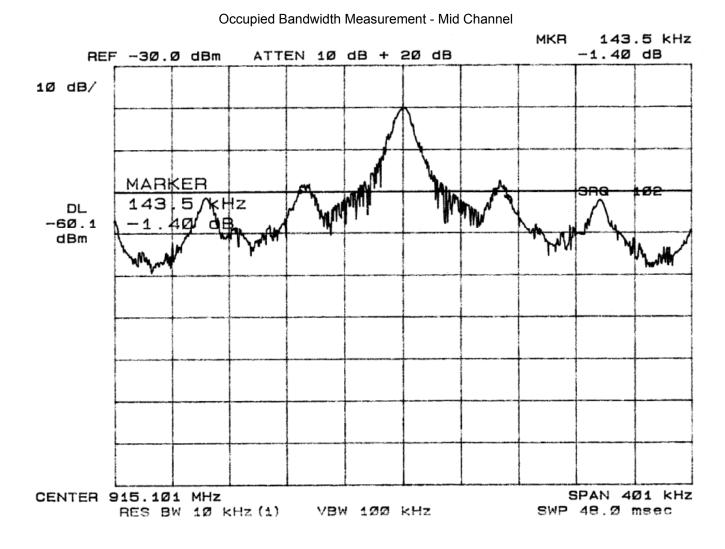

Test 5, Item A-C - Peak Plot (Amplitude in dBuV):

Conducted Power - Low, Mid, and High channels

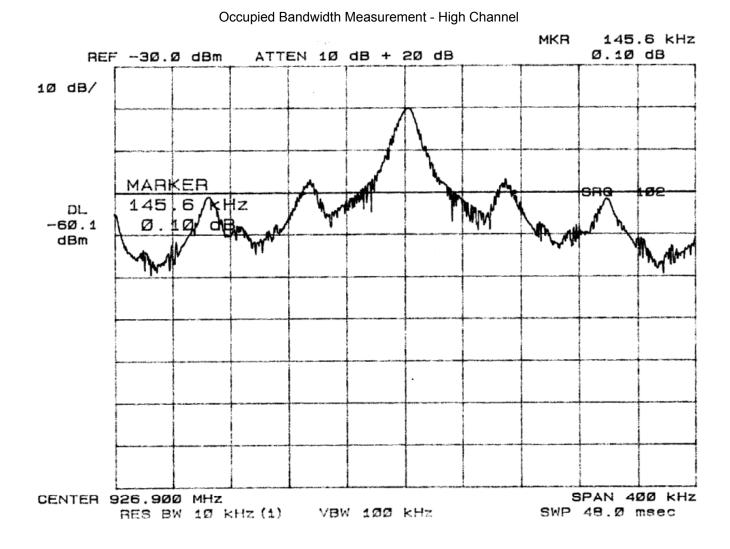

Measured Frequency (MHz)	Measured Power - Receiver (dBm)	Attenuator Loss (dB)	Corrected Power (dBm)	Corrected Power (mW)	Limit (mW)	Pass/Fail (P/F)	Comments (#)
903.1 (Lowest Channel)	17.48	9.8	27.28	535	1000	Р	
915.1 (Middle Channel)	17.11	9.8	26.91	491	1000	Р	
926.9 (Highest Channel)	16.74	9.8	26.54	451	1000	Р	

Test 5, Item D - Peak Plot:

Conducted Spurious Emissions



Test 5, Item E - Occupied Bandwidth:



Occupied Bandwidth Measurement - Low Channel

Test 5, Item F - Occupied Bandwidth:

Test 5, Item G - Occupied Bandwidth:

Test 6: Radiated Disturbance Emissions - Peak-to-Average Ratio

Test Requirement: 47 CFR Part 15, Subpart C

Test Specification: 47 CFR Part 15, Subpart C, Section 15.247

Test Procedure:

The test was performed in accordance with the Test Requirement and Specification and configured as noted in the Test Setup. This test may be performed as a radiated or conducted measurement. This test was performed as a conducted measurement.

The measurement spectrum analyzer is centered on the EUT's transmit frequency and span is reduced to 0 Hz to obtain a time domain measurement. The period of one complete transmit cycle is recorded. Next each button on the transmitter is depressed in sequence to determine which button produces the largest duty cycle. The duration of each pulse in the cycle is recorded and the percentage of time the EUT is transmitting is calculated.

No limit is expressed in Section 15.247 for this test, however the result of this test is used to calculate average values for the remaining measurements.

Test Deviations:

None

Test Results:

As this RFID device transmits a CW nearly continuously, the peak-to-average ratio is assumed to be zero. No average reduction may be applied to peak measurements.

Test 7: Frequency Hopping Channels, Channel Spacing, and Dwell Time

Test Requirement: 47 CFR Part 15.247

Test Specification: ANSI C63.4:2001

Test Procedure:

Testing is performed with a measurement spectrum analyzer connected directly from the output stage of the antenna to the antenna. An impedance matching network is installed if needed.

Measurements are performed to document the number of hopping channels, the spacing (in kHz) of the channel centers, and the duration (in ms) of each channel occupied.

Duration on each hopping channel shall not exceed 0.4 seconds and be randomly (or pseudo-randomly) distributed.

Test Deviations:

None

Test Setup: Only the following ports were tested. See EUT Information for details.

Test Item	Port #	Port Name	EUT Operation Mode	EUT Configuration	Power Interface
А	2	Antenna	4 (hopping normally)	1	1

Test 7 - Results: Frequency Hopping Channels, Channel Spacing, and Dwell Time

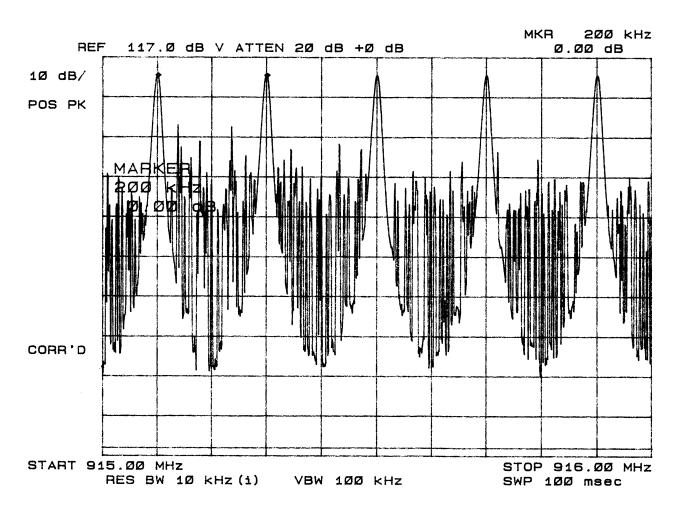
Test Results Summary:

Test Item	Test Location	Humidity (%)	Temperature (°C)	Pressure (kPa)	Pass/Fail (P/F)	Date Completed	Comment #
А	D	33	24	102	Р	11/15/04	

The EUT was considered to **Pass** the Requirements.

Comments:

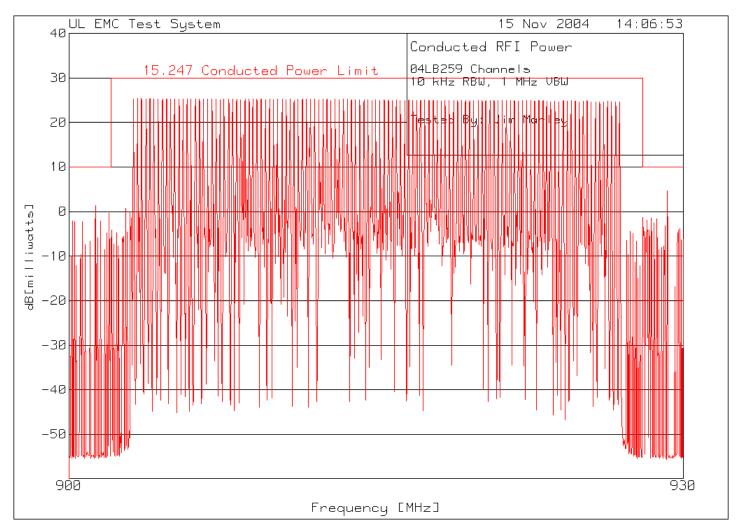
Comment #	Description


Test Equipment Used:

Equipment ID	Description	Manufacturer	Model Number	Last Cal.	Next Cal.
SAR003	EMC Receiver (channels)	Rohde & Schwarz	1088.7490K40	11/10/03	11/30/04
SAR001	Spectrum Analyzer / Receiver (channel spacing, hop duration)	Hewlett-Packard	8572A	2/2/04	2/28/05
ATA160	RF Attenuator, 30 dB	Weinshel	47-30-43	8/25/04	8/30/05

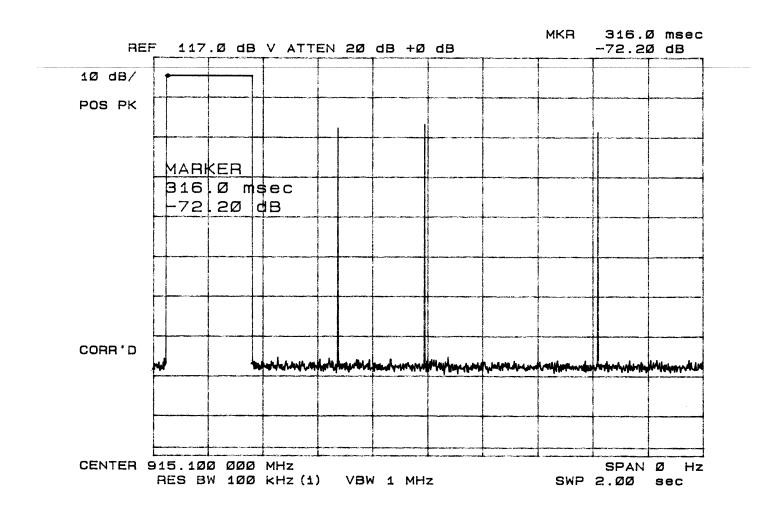
The above equipment has been calibrated and is within the manufacturer's published limit of error. Calibration is traceable to the National Institute of Standards & Technology(NIST) and conforms to ANSI/NCSL Z540-1-1994.

Test 7, Item A - Peak Plot (Amplitude in dBuV):


Channel Spacing

Channel spacing is 200 kHz center to center.

Test 7, Item A - Peak Plot (Amplitude in dBuV):


Number of Channels

The device is shown to have 120 hopping channels.

Test 7, Item A - Peak Plot (Amplitude in dBuV):

Hop duration is 316 milliseconds at any channel.

Test 8: Maximum Permissible Exposure

Test Requirement: 47 CFR Part 1

Test Specification: 47 CFR Part 1, Section 1.1307

Test Procedure:

Maximum Permissible Exposure limits are as follows:

FCC Limits for Occupational/Controlled Exposure						
Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/cm ²)	Averaging Time E ² , H ² . or S (minutes)		
0.3 – 3.0	614	1.63	(100)*	6		
3.0 - 30	1824/f	4.89/f	(900/f ²)*	6		
30 - 300	61.4	0.163	1.0	6		
300 – 1500	-	-	f/300	6		
1500 - 100,000	-	-	5.0	6		

* Plane-wave equivalent power density

FCC Limits for General Population/Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/cm²)	Averaging Time E ² , H ² . or S (minutes)			
0.3 - 1.34	614	1.63	(100)*	30			
1.34 - 30	824/f	2.19/f	(180/f ²)*	30			
30 - 300	27.5	0.073	0.2	30			
300 – 1500	-	-	f/1500	30			
1500 – 100,000	_	-	1.0	30			

*Plane-wave equivalent power density

Test Details: This device is considered to possibly be located in either environment. See calculation for assumptions.

Background: Per the following guidance from OET Bulletin 65 Supplement C required minimum spacings are provided to the professional installer.

Transmitter or Device Type ¹⁸	Output ¹⁹	Applicable Methods to Ensure Compliance ²⁰
Transmitters using indoor antennas that operate at 20 cm or more from nearby persons	>2.5 W at 915 MHz	If the MPE distance is greater than that required for normal operation of the device, operating instructions, warning instructions and/or warning labels may be used to ensure compliance by indicating the minimal separation distance to comply with MPE limits.
		If the antennas are professionally installed to ensure compliance, warning instructions and warning labels are not necessary.
	=< 2.5 W at 915 MHz or =< 4 W at 2450 MHz	Transmitters operating at 2.5 W EIRP (1.5 W ERP) or less at 915 MHz, or at 4 W EIRP (2.4 W ERP) or less at 2450 MHz, generally are not expected to exceed MPE limits when nearby persons are 20 cm or more from most antennas. Therefore, special instructions and warnings are normally not necessary to ensure compliance.

MPE Calculation with highest EIRP:

Assuming the an antenna with gain of 7.5 dBi or less, it is shown that 20 cm spacing is sufficient to comply with RF Uncontrolled/General Exposure Limits at full power of the device.

 $S = EIRP / (4 * Pi * R^2),$

Power Density = EIRP / $(4 * Pi * R^2)$,

where EIRP = Output Power * Antenna Gain

0.535 Watt, 7.5 dBi antenna, 20 cm spacing					
Operating Frequency	902 MHz				
Output Power (Peak)	0.535 Watts				
Antenna Gain	7.5 dB	or (linear)	5.623413 (unitless)		
Separation Distance	0.2 m	-or-	7.874 inches		
Peak Power Density	5.985 W/m ²	- or -	0.5985 mW/cm ²		
Exposure %					
(over 6 min timespan for					
uncontrolled)	100%				
Transmit Duty Cycle					
(Peak-to-Average Ratio)	100%				
Average Power Density	5.98526 W/m ²	- or -	0.5985 mW/cm ²		
Limit for Uncontrolled Exposure at Operating	6.01333 W/m ²	- or -	0.601333 mW/cm ²		
Frequency	0.01333 10/11	- 01 -	U.OU 1333 11107/CIT		

Uncontrolled/General Exposure – Calculation #2

Accreditation Certificates:

ISOJEC 17025:1999 ISOJEC 17025:1999 Scope of Accreditation Fars of we Page: 1 of 4 ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIONS UNDERWRITERS LABORATORIES, INC. 12 Laboratory Drive Research Triangle Park, NC 27709 Mr. Rick A. Titus Phone: 847-272-8800 x43281 Fax: 847-509-6321 E-Mail: Rick A. Titus@usul.com UNDERWRITERS LABORATORIES, INC. 12 Laboratory Drive Research Triangle Park, NC 27709 Mr. Rick A. Titus Phone: 847-272-8800 x43281 Fax: 847-509-6321 E-Mail: Rick A. Titus@usul.com UNDERWRITERS LABORATORIES, INC. 12 Laboratory Drive Research Triangle Park, NC 27709 Mr. Rick A. Titus Phone: 847-272-8800 x43281 Fax: 847-509-6321 E-Mail: Rick A. Titus@usul.com UNDERWRITERS LABORATORIES, INC. 12 Laboratory Drive Research Triangle Park, NC 27709 Mr. Rick A. Titus@usul.com UNDERWRITERS LABORATORIES, INC. 12 Laboratory Drive Research Triangle Park, NC 27709 Mr. Rick A. Titus@usul.com UNDERWRITERS LABORATORIES, INC. 12 Laboratory Drive Research Triangle Park, NC 27709 Mr. Rick A. Titus@usul.com UNDERWRITERS LABORATORIES, INC. 12 Laboratory Drive Research Triangle Park, NC 27709 Mr. Rick A. Titus@usul.com UNDERWRITERS LABORATORIES, INC. 12 Laboratory Drive Research Triangle Park, NC 27709 Mr. Rick A. Titus@usul.com UNDERWRITERS LABORATORIES, INC. 12 Laboratory Drive Research Triangle Park, NC 27709 Mr. Rick A. Titus@usul.com UNDERWRITERS LABORATORIES, INC. 12 Laboratory Drive Research Triangle Park, NC 27709 Mr. Rick A. Titus@usul.com II Li bitus@usul.com II Li bitus A. Titus@usul.com II Li bitus A. Titus@usul.com II ZEM02a IEC 61000-3-2, Edition 2.1 (2001-10), EN 61000-3-2 (2000), and A	Survey of Artes of A
Image: 1 of 4 Page: 1 of 4 ELECTROMAGNETIC COMPATIBILITY NVLAP LAB CODE 200246-0 AND TELECOMMUNICATIONS UNDERWRITERS LABORATORIES, INC. I2 Laboratory Drive Research Triangle Park, NC 27709 Mr. Rick A. Titus NVLAP Code Designation / Description Phone: 847-272-8800 x3281 Fax: 847-509-6321 LP-Mail: Rick A. Titus@usul.com URL between reme 12/EM02a IEC 61000-3-2, Edition 2.1 (2001-10), EN 61000-3-2 (2000), and A	-
Page: 1 of 4 ELECTROMAGNETIC COMPATIBILITY NVLAP LAB CODE 200246-0 ELECTROMAGNETIC COMPATIBILITY NVLAP LAB CODE AND TELECOMMUNICATIONS NVLAP LAB CODE 200246-0 AND TELECOMMUNICATIONS NVLAP LAB CODE UNDERWRITERS LABORATORIES, INC. 12 Laboratory Drive K CMDERWRITERS LABORATORIES, INC. UNDERWRITERS LABORATORIES, INC. UNDERWRITERS LABORATORIES, INC. NVLAP LAB CODE 0 12 Laboratory Drive Research Triangle Park, NC 27709 NrLAP LAB CODE Designation / Description 12/CIS22b CNS 13438 (1997): Limits and Methods of Measurement of Radio In Characteristics of Information Technology Equipment E-Mail: Rick A. Titus@usul.com 12/EM02a IEC 61000-3-2, Edition 2.1 (2001-10), EN 61000-3-2 (2000), and A	-
NVLAP Code Designation / Description (2000): Electromagnetic compatibility (EMC) Part 3-2: Limits - Lim NVLAP Code Designation / Description current emissions (equipment input current <= 16 A)	S/NZS 2279.1
Emissions Test Methods: 12/EM03b IEC 61000-3-3, Edition 1.1(2002-03) & EN 61000-3-3, A1(2001): E 12/CIS14 CISPR 14-1 (March 30, 2000): Limits and Methods of Measurement of Radio interference Characteristics of Household Electrical Appliances, Portable Tools and Similiar Electrical Apparatus - Part 1: Emissions 12/EM03b IEC 61000-3-3, Edition 1.1(2002-03) & EN 61000-3-3, A1(2001): E 12/CIS14 CISPR 14-1 (March 30, 2000): Limits and Methods of Measurement of Radio interference Characteristics of Household Electrical Appliances, Portable Tools and Similiar Electrical Apparatus - Part 1: Emissions 12/EM03b IEC 61000-3-3, Edition 1.1(2002-03) & EN 61000-3-3, A1(2001): E	ker, in public
12/CIS14a EN 55014-1 (1993) with Amendments A1 (1997) & A2 (1999) 12/FCC15b ANSI C63.4 (2001) with FCC Method - 47 CFR Part 15, Subpart B: Radiators 12/CIS14b AS/NZS 1044 (1995) 12/FC15b ANSI C63.4 (2001) with FCC Method - 47 CFR Part 15, Subpart B: Radiators 12/CIS14b AS/NZS 1044 (1995) 12/FC15b ANSI C63.4 (2001) with FCC Method - 47 CFR Part 15, Subpart B: Radiators	
12/CIS14c CNS 13783-1 Limits and Methods of Measurement of Information Technology Eq	
 12/CIS22 IEC/CISPR 22 (1997) and EN 55022 (1998): Limits and methods of measurement of radio disturbance characteristics of information technology equipment 12/CIS22a IEC/CISPR 22 (1993): Limits and methods of measurement of radio disturbance characteristics of information technology equipment, Amendment 1 (1995) and Amendment 2 (1996) IEC/CISPR 22 (1993): Limits and methods of measurement of radio disturbance characteristics of information technology equipment, Amendment 1 (1995) and Amendment 2 (1996) IEC/CISPR 22 (1993): Limits and methods of measurement of radio disturbance characteristics of information technology equipment, Amendment 1 (1995) and Amendment 2 (1996) 	1000-4-2:
June 30, 2005 Effective through For the National Institute of Standards and Technology June 30, 2005 Effective through June 30, 2005 For the National Institute of Standards and Technology	and Technology
National Institute Notes in the interval and Technology National Voluntary ISO/IEC 17025:1999 ISO/IEC 17025:1999 Scope of Accreditation Page: 3 of 4	readitation Program
ELECTROMAGNETIC COMPATIBILITY NVLAP LAB CODE 200246-0 ELECTROMAGNETIC COMPATIBILITY NVLAP LAB CO AND TELECOMMUNICATIONS NULAP LAB CODE 200246-0 AND TELECOMMUNICATIONS NVLAP LAB CO UNDERWRITERS LABORATORIES, INC. UNDERWRITERS LABORATORIES, INC. UNDERWRITERS LABORATORIES, INC.	DDE 200246-0
NVLAP Code Designation / Description 12/103 IEC 61000-4-4 (1995) + Amd. 1 (2000) & Amd. 2 (2001) and EN 61000-4-4: 12/76200a SBC-TP-76200, Issue 4 (May 2003): Network Equipment Power, Gr	ounding,
Electrical Fast Transient/Burst Immunity Test Environmental, and Physical Design Requirements (sections: 6.1B, 7 and 10.1 - 10.4B)	.1, 7.2, 7.3, 7.4,
12/104 IEC 61000-4-5, Edition 1.1 (2001-04) and EN 61000-4-5: Surge Immunity Test Interference Control Control <thcontrol< th=""> <thcontrol< th=""> Cont</thcontrol<></thcontrol<>	vsical Protection
12/106 IEC 61000-4-8, Edition 1.1 (2001) and EN 61000-4-8: Power Frequency Magnetic Field Immunity Test	
12/107 IEC 61000-4-11, Edition 1.1 (2001-03) and EN 61000-4-11: Voltage Dips, Short Interruptions and Voltage Variations Immunity Tests	
Safety Test Methods:	
12/T41 AC/ACIF S001 (2001): Safety Requirements for Customer Equipment	
12/T50 AS/NZS 3260 (1993) + Supplement 1 (1996): Safety of Information Technology Equipment Including Electrical Business Equipment	
Telecommunications Test Methods:	
12/1089d GR-1089-CORE, Issue 3 (April 2002): EMC and Electrical Safety - Generic Criteria for Network Telecommunications Equipment (sections: 2.1.2.1, 2.1.2.2, 2.1.4, 2.2, 3.2, 3.3, 4.6.2, 4.6.5, 4.6.7 - 4.6.17, 4.7, 5.2, 5.3.1, 5.4, 6, 7.2 - 7.7, 8, and 9.2 - 9.12)	
June 30, 2005 Mar. D. M.Q. June 30, 2005 June 30, 2005 Mar. D. M.Q. Effective through For the National Institute of Standards and Technology Effective through For the National Institute of Standards and Technology	nd Technology

Measurement Uncertainty Statement

Test	Expanded Estimate of Uncertainty (k = 2, for 95% of a normal distribution)	Units
Radiated Disturbance Emissions:		
 3 and 10 meter measurement distances 	ent +/- 3.8 dB	Volts/meter
 1 meter measurement dista 	ance +/- 2.3 dB	Volts/meter
Conducted Disturbance Emissions (9 kHz – 30 MHz):	+/- 3.4 dB	Volts
Electrostatic Discharge	+/- 2.2 %	Volts
Radiated RF Immunity (Chamber):	+/- 2.7 dB	Volts/meter
Electrical Fast Transients/Bursts Im	nmunity +/- 4.6 %	Volts
Surge Immunity	+/- 4.6 %	Volts
Conducted RF Immunity	+/- 2.8 dB	Volts
Power Frequency Magnetic Field In	nmunity +/-13.6 %	Amps/meter
Voltage Dips and Short Interrupts	+/-4.2 %	Volts
Radiated RF Immunity (Tri-plate)	+/-3.2 %	Volts/meter
Disturbance Power (30 – 300 MHz)) +/-3.5%	Volts

CISPR 16-4:2000 Statement

The UL-RTP estimate of expanded measurement uncertainty listed above for Conducted Disturbance (+/- 3.4 dB), Disturbance Power (+/- 3.5 dB), and Radiated Disturbance (+/-3.8 dB) are less than the Values of U_{cispr} as listed in Table 1 of CISPR 16-4. Therefore:

- Compliance is deemed to occur if no measured disturbance reported exceeds the disturbance limits.
- Non-compliance is deemed to occur if any measured disturbance reported exceeds the disturbance limits.