

FCC TEST REPORT

FCC 47 CFR Part 15C Industry Canada RSS-310

License exempt radio equipment

Report Reference No. G0M-1304-2799-TFC209L-V01

Testing Laboratory: Eurofins Product Service GmbH

Address: Storkower Str. 38c

15526 Reichenwalde

Germany

Accreditation:

A2LA Accredited Testing Laboratory, Certificate No.: 1983.01

FCC Filed Test Laboratory, Reg.-No.: 96970 IC OATS Filing assigned code: 3470A

Applicant's name: BIOTRONIK SE & Co. KG

Address: Woermannkehre 1

12359 Berlin GERMANY

Test specification:

Standard.....: 47 CFR Part 15C

RSS-310, Issue 3, 2010-12 RSS-Gen, Issue 3, 2010-12

ANSI C63.4:2009

Equipment under test (EUT):

Product description IPG / Implantable Pulse Generator

Model No. Eluna 8-HF-T

Hardware version 6082220-03 Rev 0A

Firmware / Software version GTR-12-0173-A

FCC-ID: QRIPRIMUSNXT IC: 4708A-PRIMUSNXT

Test result Passed

Possible test case verdicts:

- neither assessed nor tested N/N

- required by standard but not appl. to test object......: N/A

- required by standard but not tested...... N/T

- not required by standard for the test object N/R

- test object does meet the requirement...... P (Pass)

- test object does not meet the requirement...... F (Fail)

Testing:

Date of receipt of test item 2013-05-06

Compiled by: Antje Bartusch

(Tooting Manager)

(Test Lab Manager)

Jens Zimmermann

Date of issue: 2013-07-30

Total number of pages: 24

Approved by (+ signature):

General remarks:

The test results presented in this report relate only to the object tested.

The results contained in this report reflect the results for this particular model and serial number. It is the responsibility of the manufacturer to ensure that all production models meet the intent of the requirements detailed within this report.

This report shall not be reproduced, except in full, without the written approval of the Issuing testing laboratory.

Additional comments:

The report applies to all model stated in the "Primus NXT Family Listing" issued by the Manufacturer

Model	Description
Eluna 8 SR	One chamber , only Coil telemetry
Eluna 8 SR-T	One chamber , Coil telemetry and RF Transceiver
Eluna 8 DR	Two chambers , only Coil telemetry
Eluna 8 DR-T	Two chamber , Coil telemetry and RF Transceiver
Eluna 8 HF-T	Three chambers , Coil telemetry and RF Transceiver
Epyra 6 SR-T	One chamber , Coil telemetry and RF Transceiver
Epyra 6 DR-T	Two chambers , Coil telemetry and RF Transceiver
Epyra 8 SR-T	One chamber , Coil telemetry and RF Transceiver
Epyra 8 DR-T	Two chambers , Coil telemetry and RF Transceiver
Epyra 8 HF-T	Three chambers , Coil telemetry and RF Transceiver
Etrinsa 6 SR	One chamber , only Coil telemetry
Etrinsa 6 SR-T	One chamber , Coil telemetry and RF Transceiver
Etrinsa 6 DR	Two chambers , only Coil telemetry
Etrinsa 6 DR-T	Two chambers , Coil telemetry and RF Transceiver
Etrinsa 8 SR-T	One chamber , Coil telemetry and RF Transceiver
Etrinsa 8 DR-T	Two chambers , Coil telemetry and RF Transceiver
Etrinsa 8 HF-T	Three chambers , Coil telemetry and RF Transceiver

The BIOTRONIK PRIMUS NXT family of products includes the following models :

Eluna, Epyra and Etrinsa.

All models comprise identical internal electronic including a low frequency telemetry coil and packaged in titanium cases with a header where the leads connect.

The T Devices include additional an internal RF Transceiver and an antenna within the header.

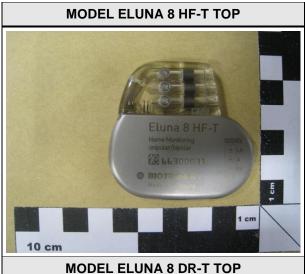
The internal electronic of HF-T devices differs slightly from SR and DR devices to include the third channel electronic. Therefore the device under test is three chambers model **Eluna 8 HF-T**.

The PRIMUS NXT models contain a different therapeutic feature set. The feature differences comprising only software.

Evaluation measurements were performed for worst case with the Eluna 8-HF-T, as the most complex model, was selected for the measurements.

REPORT INDEX

1	EQUIPMENT (TEST ITEM) DESCRIPTION	5
1.1	Photos – Equipment External	6
1.2	Photos – Equipment Internal	7
1.3	Photos – Test setup	9
1.4	Supporting Equipment Used During Testing	10
1.5	Test Modes	11
1.6	Test Equipment Used During Testing	12
1.7	Sample emission level calculation	13
2	RESULT SUMMARY	14
3	TEST CONDITIONS AND RESULTS	15
3.1	Test Conditions and Results – Occupied Bandwidth	15
3.2	Test Conditions and Results – Fundamental field strength emissions	18
3.4	Test Conditions and Results – Receiver radiated emissions	20
	IEX A Transmitter radiated spurious emissions IEX B Receiver radiated spurious emissions	22 24



1 Equipment (Test item) Description

Description	IPG / Implantable Pulse Generator					
Model	Eluna 8-HF-T					
Serial number	None					
Hardware version	6082220-03 Re	ev 0A	A			
Software / Firmware version	GTR-12-0173-	A				
FCC-ID	QRIPRIMUSN)	QRIPRIMUSNXT				
IC	4708A-PRIMUS	SNX	Т			
Equipment type	End product					
Radio type	Transceiver					
Radio technology	custom					
Operating frequency range	64 kHz					
Frequency range	F _{MID} 64 kHz					
Modulations	ООК					
Number of channels	1					
Channel spacing	None					
Number of antennas	1					
	Туре	inte	grated			
Antenna	Model	Model loop antenna				
Aitteilia	Manufacturer	Biot	tronik SE & Co. KG			
	Gain	-21.	.6 dBi (Determined by measurements)			
	BIOTRONIK SI	E & C	Co. KG			
Manufacturer	Woermannkeh	re 1				
Mariarastarer	12359 Berlin					
	GERMANY		,			
	V _{NOM}		2.8 VDC (Lithium-Battery)			
Power supply	V _{MIN}		N/A			
	V _{MIN}		N/A			
	Model		N/A			
AC/DC-Adaptor	Vendor		N/A			
AOIDO-Adaptoi	Input		N/A			
	Output		N/A			

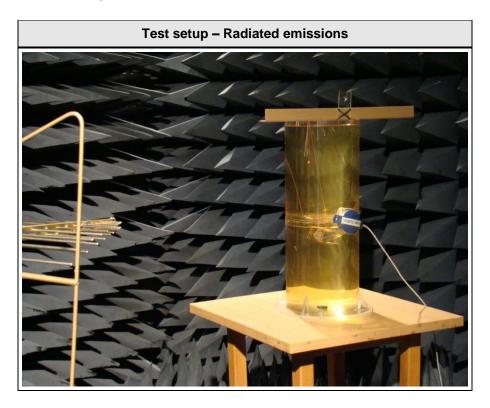
1.1 **Photos – Equipment External**

MODEL EPYRA 6 SR-T TOP


MODEL ELUNA 8 HF-T BOTTOM

MODEL ELUNA 8 DR-T BOTTOM

MODEL EPYRA 6 SR-T BOTTOM



Test Report No.: G0M-1304-2799-TFC209L-V01

Eurofins Product Service GmbH Storkower Str. 38c, D-15526 Reichenwalde, Germany

1.3 Photos – Test setup

1.4 Supporting Equipment Used During Testing

Product Type*	Device	Manufacturer	Model No.	Comments					
None									
*Note: Use the following abbreviations:									
AE : Auxiliary/Associated Equipment, or									
SIM : Simulator (Not Subjected to Test)									
CABL : 0	CABL : Connecting cables								

1.5 Test Modes

Mode #	Description					
	General conditions:	EUT powered by battery				
Single	Radio conditions:	Mode = standalone transmit Modulation = OOK Power level = Maximum				
	General conditions:	EUT powered by battery				
Receive	Radio conditions:	Mode = standalone receive Modulation = OOK				

1.6 Test Equipment Used During Testing

Occupied Bandwidth							
Description	Manufacturer	Model	Identifier	Cal. Date	Cal. Due		
Spectrum Analyzer	R&S	FSP 30	EF00312	2013-01	2014-01		

Field strength emissions									
Description	Manufacturer	Model	Identifier	Cal. Date	Cal. Due				
Semi-anechoic chamber	Frankonia	AC 5	EF00395	calibration	calibration				
Spectrum Analyzer	R&S	FSIQ26	EF00151	2012-12	2013-12				
Biconical Antenna	R&S	HK 116	EF00012	2013-02	2016-02				
LPD Antenna	R&S	HL 223	EF00187	2011-02	2014-02				
LPD Antenna	R&S	HL 025	EF00327	2013-02	2016-02				

1.7 Sample emission level calculation

The following is a description of terms and a sample calculation, as appears in the radiated emissions data table. The numbers used in the calculation are for example only. There is no direct correlation to the specific data taken for the product described in this document:

Reading:

This is the reading obtained on the spectrum analyzer in dBµV. Any external preamplifiers used are taken into account through internal analyzer settings.

A.F.:

This is the antenna factor for the receiving antenna. It is a conversion factor, which converts electric fields strengths to voltages, which can be measured directly on the spectrum analyzer. It is treated as a loss in dB. Cable losses have been included with the A.F. to simplify the calculations. The antenna factor is used in calculations as follows:

Reading on Analyzer (dB μ V) + A.F. (dB) = Net field strength (dB μ V/m)

Net:

This is the net field strength measurement (as shown above).

Limit:

This is the FCC Class B radiated emission limit (in units of $dB\mu V/m$). The FCC limits are given in units of $\mu V/m$. The following formula is used to convert the units of $\mu V/m$ to $dB\mu V/m$:

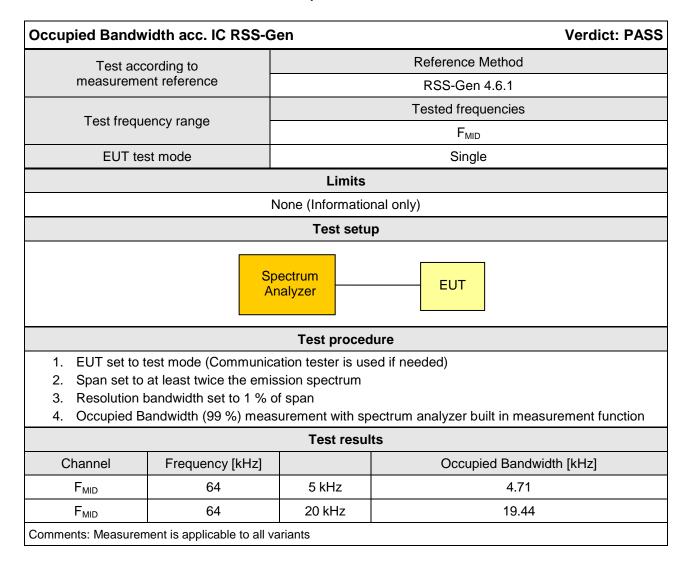
Limit (dB μ V/m) = 20*log (μ V/m)

Margin:

This is the margin of compliance below the FCC limit. The units are given in dB. A negative margin indicates the emission was below the limit. A positive margin indicates that the emission exceeds the limit.

Example only:

Reading + AF = Net Reading : Net reading - FCC limit = Margin 21.5 dB μ V + 26 dB = 47.5 dB μ V/m : 47.5 dB μ V/m - 57.0 dB μ V/m = -9.5 dB


2 Result Summary

FCC 47 CFR Part 15C, IC RSS-310										
Product Specific Standard Section	Requirement – Test	Reference Method	Result	Remarks						
RSS-Gen 4.6.1	Occupied Bandwidth	RSS-Gen 4.6.1	N/R	Informational only						
FCC 15.201(a), FCC 15.209 IC RSS-310 3.7	Field strength emissions	ANSI C63.4	PASS							
IC RSS-310 2.3 IC RSS-Gen 4.10 6.1	Receiver radiated spurious emissions	ANSI C63.4	PASS							

3 Test Conditions and Results

3.1 Test Conditions and Results - Occupied Bandwidth

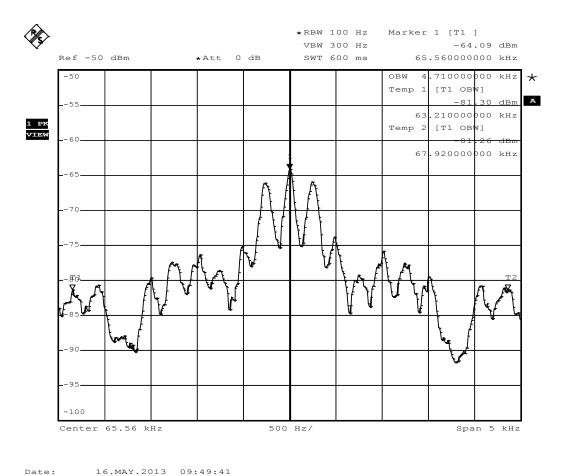
Occupied Bandwidth - F_{MID}

RSS-Gen

Occupied frequency bandwidth

EUT IPG / Implantable Pulse Generator Model Primus NXT / G0M-1304-2799

Approval Holder Biotronik SE & Co. KG Temperature / Voltage 25°C / Vnom


Test Site / Operator Eurofins Product Service GmbH / Mr Treffke

Test Specification Occupied frequency bandwidth

Comment 1 A spectrum analyzer with an integrated 99% power bandwidth function is used

Comment 2 Carrier channel: 64 kHz

Comment 3

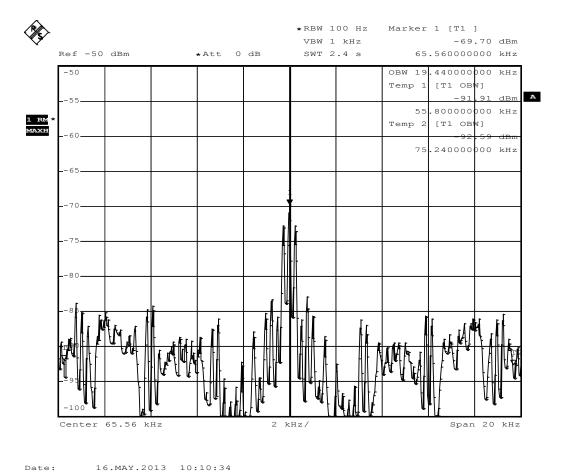
Occupied Bandwidth - F_{MID}

RSS-Gen

Occupied frequency bandwidth

EUT IPG / Implantable Pulse Generator Model Primus NXT / G0M-1304-2799

Approval Holder Biotronik SE & Co. KG Temperature / Voltage 25°C / Vnom

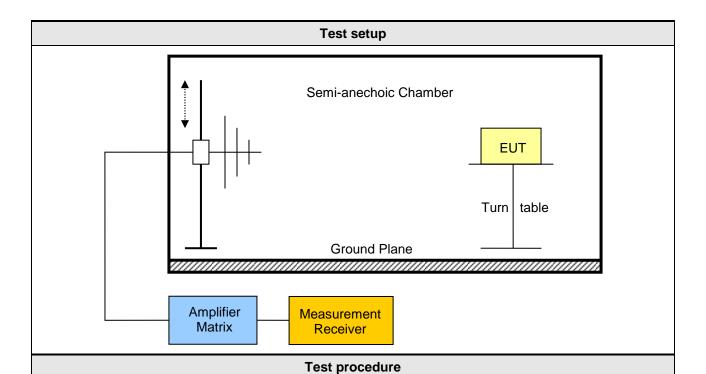

Test Site / Operator Eurofins Product Service GmbH / Mr Treffke

Test Specification Occupied frequency bandwidth

Comment 1 A spectrum analyzer with an integrated 99% power bandwidth function is used

Comment 2 Carrier channel: 64 kHz

Comment 3



3.2 Test Conditions and Results – Fundamental field strength emissions

Field strength emission	s acc. FCC 47 (CFR 15.201 / IC R	RSS-310	Verdict: PASS	
Test according refe	renced	Reference Method			
standards		FCC 15.2	01(a) + 15.209 / IC R	SS-310 3.7	
Test according	to		Reference Method		
measurement refe			ANSI C63.4		
T			Tested frequencies	;	
Test frequency ra	ange		9 kHz – 10 th Harmon	ic	
EUT test mod	е		Single		
	_	Limits			
Frequency range [MHz]	Detector	Limit [µV/m]	Limit [dBµV/m]	Limit Distance [m]	
0.009 - 0.490	Quasi-Peak	2400/F[kHz]	48.5 – 13.8	300	
0.490 - 1.705	Quasi-Peak	2400/F[kHz]	13.8 – 1.4	30	
1.705 – 30	Quasi-Peak	30	29.5	30	
30 – 88	Quasi-Peak	100	40	3	
88 – 216	Quasi-Peak	150	43.5	3	
216 – 960	Quasi-Peak	200	46	3	
960 – 1000	Quasi-Peak	500	54	3	
> 1000	Average	500	54	3	

The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.

- 1. EUT set to test mode
- 2. Span it set according to measurement range
- 3. Resolution bandwidth below 1 GHz is set according to CISPR 16 with peak/quasi-peak detector and RBW of 1 MHz with peak/average detector is used above 1 GHz
- 4. Markers are set to maximum emission levels

	Test results								
Channel	Frequency [kHz]	Emission [kHz]	Level [dbµV/m]	Detector	Pol.	Limit [dbµV/m]	Limit distance [m]*	Margin [dB]	
	No significant spurious emission								
Comments:	* Physical dis	tance between	n EUT and me	asurement a	ntenna.				

3.4 Test Conditions and Results - Receiver radiated emissions

Receiver radiated emiss	ions acc. I	C RS	SS-310		Verd	ict: PASS
Test according refere	nced			Reference Method	1	
standards			IC RSS-310 3.7			
Test according to)			Reference Method	d	
measurement reference ANSI C63.4						
Toot from you ron	a.o.			Tested frequencies	S	
Test frequency ran	ge			9 kHz – 10 th Harmor	nic	
EUT test mode		Receive				
			Limits			
Frequency range [MHz]	Detector	tor Limit [μV/m] Limit [dBμV/m] Limit Dist				
0.009 - 0.490	Quasi-Pea	ak	2400/F[kHz]	48.5 – 13.8	3	300
0.490 – 1.705	Quasi-Pea	ak	2400/F[kHz]	13.8 – 1.4		30
1.705 – 30	Quasi-Peak		30	29.5		30
30 – 88	Quasi-Peak		100	40		3
88 – 216	Quasi-Peak		150	43.5		3
216 – 960	Quasi-Peak		200	46		3
960 – 1000	Quasi-Peak		500	54		3
> 1000	Average	;	500	54		3
			Test setup	•	-	
	-		Semi-anechoic C	Turn ta	able	
"""			Ulding Flame			
	nplifier //atrix	N	Measurement Receiver			

Test Report No.: G0M-1304-2799-TFC209L-V01

Eurofins Product Service GmbH Storkower Str. 38c, D-15526 Reichenwalde, Germany

Test procedure

- 1. EUT set to receive mode (Communication tester is used if needed)
- 2. Span it set according to measurement range
- 3. Resolution bandwidth below 1 GHz is set according to CISPR 16 with peak/quasi-peak detector and RBW of 1 MHz with peak/average detector is used above 1 GHz
- 4. Markers are set to peak emission levels

Test results										
Channel Frequency Emission Emission Level Emission Level Det. Limit Margin [μV/m] [μV/m]										
	No significant spurious emission									
Comments:										

ANNEX A Transmitter radiated spurious emissions

Spurious emissions according to FCC 15.209

Project number: G0M-1304-2799

Manufacturer: BIOTRONIK SE & Co. KG

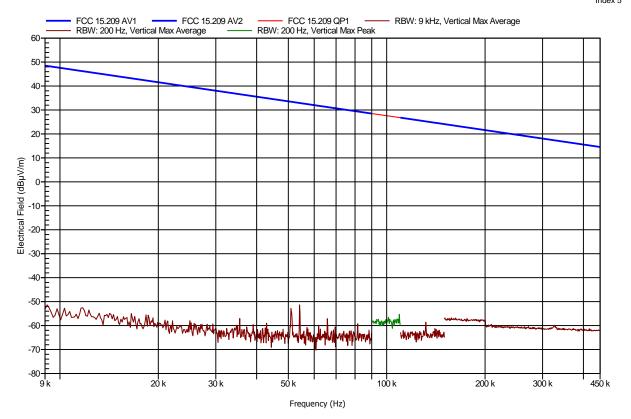
EUT Name: IPG / Implantable Pulse Generator

Model: Eluna 8 HF-T

Test Site: Eurofins Product Sevice GmbH

Operator: Treffke

Test Conditions: Tnom: 25°C, Vnom: 2.8 V DC lithium battery


Antenna: Rohde & Schwarz HFH 2-Z2
Measurement distance: 3 m converted to 300 m

 Mode:
 TX; 64 kHz

 Test Date:
 2013-05-13

 Note:
 FCC 15.209

Index 5

Spurious emissions according to FCC 15.209

Project number: G0M-1304-2799

Manufacturer: BIOTRONIK SE & Co. KG

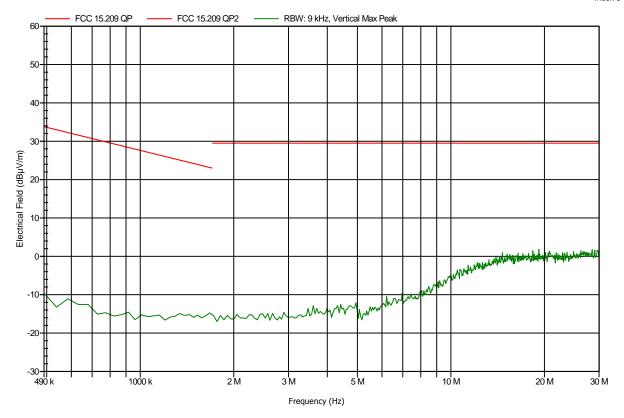
EUT Name: IPG / Implantable Pulse Generator

Model: Eluna 8 HF-T

Test Site: Eurofins Product Sevice GmbH

Operator: Treffke

Test Conditions: Tnom: 25°C, Vnom: 2.8 V DC lithium battery


Antenna: Rohde & Schwarz HFH 2-Z2
Measurement distance: 3 m converted to 30 m

 Mode:
 TX; 64 kHz

 Test Date:
 2013-05-13

 Note:
 FCC 15.209

Index 6

ANNEX B Receiver radiated spurious emissions

Spurious emissions according to RSS-GEN

Project number: G0M-1304-2799

Manufacturer: BIOTRONIK SE & Co. KG

EUT Name: IPG / Implantable Pulse Generator

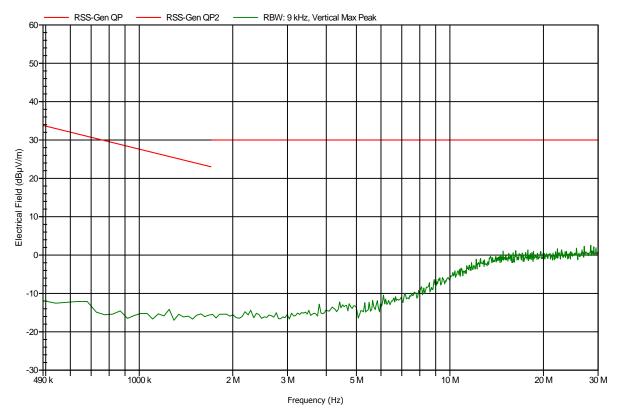
Model: Eluna 8 HF-T

Test Site: Eurofins Product Sevice GmbH

Operator: Treffke

Test Conditions: Tnom: 25°C, Vnom: 2.8 V DC lithium battery

Antenna: Rohde & Schwarz HFH 2-Z2


Measurement distance: 3 m converted to 30 m

 Mode:
 RX; 64 kHz

 Test Date:
 2013-05-13

 Note:
 RSS 310

Index 12

