

BIOTRONIK, Inc. Neuro SCS Trial Stimulator

FCC 15.209:2021 Inductive Radio

Report: BIOT0085.3, Issue Date: August 30, 2021

This report must not be used to claim product certification, approval, or endorsement by A2LA or any agency of the U.S. Government. This Report shall not be reproduced, except in full without written approval of the laboratory.

EAR-Controlled Data - This document contains technical data whose export and reexport/retransfer is subject to control by the U.S. Department of Commerce under the Export Administration Act and the Export Administration Regulations. The Department of Commerce's prior written approval may be required for the export or re-export/retransfer of such technical data to any foreign person, foreign entity or foreign organization whether in the United States or abroad.

CERTIFICATE OF TEST

Last Date of Test: April 28, 2021 BIOTRONIK, Inc. EUT: Neuro SCS Trial Stimulator

Radio Equipment Testing

Standards	
Specification	Method
FCC 15.209:2021	ANSI C63.10:2013

Results

Method Clause	Method Clause Test Description		Results	Comments
6.2	Powerline Conducted Emissions	No	N/A	Not required for a battery powered EUT.
6.4	Field Strength of Fundamental	Yes	Pass	
6.4, 6.5	Spurious Radiated Emissions	Yes	Pass	

Deviations From Test Standards

None

Approved By:

Kyle Holgate, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information. As indicated in the Statement of Work sent with the quotation, Element's standard process is to always use the latest published version of the test methods even when earlier versions are cited in the test specification. Issuance of a purchase order was de facto acceptance of this approach. Otherwise, the client would have advised Element in writing of the specific version of the test methods they wanted applied to the subject testing.

REVISION HISTORY

Revision Number		Description	Date (yyyy-mm-dd)	Page Number
00	None			

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Each laboratory is accredited by A2LA to ISO / IEC 17025, and as a product certifier to ISO / IEC 17065 which allows Element to certify transmitters to FCC and IC specifications.

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB) and as a CAB for the acceptance of test data.

European Union

European Commission – Recognized as an EU Notified Body validated for the EMCD and RED Directives.

United Kingdom

BEIS - Recognized by the UK as an Approved Body under the UK Radio Equipment and UK EMC Regulations.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIT / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC – Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

OFCA - Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

SCOPE

For details on the Scopes of our Accreditations, please visit: https://www.nwemc.com/emc-testing-accreditations

FACILITIES

California	Minnesota	Oregon	Texas	Washington			
Labs OC01-17	Labs MN01-11	Labs EV01-12	Labs TX01-09	Labs NC01-05			
41 Tesla	9349 W Broadway Ave.	6775 NE Evergreen Pkwy #400	3801 E Plano Pkwy	19201 120 th Ave NE			
Irvine, CA 92618	Brooklyn Park, MN 55445	Hillsboro, OR 97124	Plano, 1X 75074	Bothell, WA 98011			
(949) 861-8918	(612)-638-5136	(503) 844-4066	(469) 304-5255	(425)984-6600			
		A2LA					
Lab Code: 3310.04	Lab Code: 3310.05	Lab Code: 3310.02	Lab Code: 3310.03	Lab Code: 3310.06			
	Innovation, Science and Economic Development Canada						
2834B-1, 2834B-3	2834E-1, 2834E-3	2834D-1	2834G-1	2834F-1			
		BSMI					
SL2-IN-E-1154R	SL2-IN-E-1152R	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R			
	VCCI						
A-0029	A-0109	A-0108	A-0201	A-0110			
Recognized Phase I CAB for ISED, ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA							
US0158	US0175	US0017	US0191	US0157			
050158	050175	030017	050191	030157			

MEASUREMENT UNCERTAINTY

Measurement Uncertainty

When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found in the table below. A lab specific value may also be found in the applicable test description section. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

Test	+ MU	- MU
Frequency Accuracy	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	1.2 dB	-1.2 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	5.2 dB	-5.2 dB
AC Powerline Conducted Emissions (dB)	2.6 dB	-2.6 dB

Test Setup Block Diagrams

Test Setup Block Diagrams

Bore Sighting (>1GHz)

The diameter of the illumination area is the dimension of the line tangent to the EUT formed by 3 dB beamwidth of the measurement antenna at the measurement distance. At a 3 meter test distance, the diameter of the illumination area was 3.8 meters at 1 GHz and greater than 2.1 meters up to 6 GHz. Above 1 GHz, when required by the measurement standard, the antenna is pointed for both azimuth and elevation to maintain the receive antenna within the cone of radiation from the EUT. The specified measurement detectors were used for comparison of the emissions to the peak and average specification limits.

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	BIOTRONIK, Inc.
Address:	6024 Jean Road, BLDG B
City, State, Zip:	Lake Oswego, OR 97035
Test Requested By:	Roy Wang
EUT:	Neuro SCS Trial Stimulator
First Date of Test:	April 28, 2021
Last Date of Test:	April 28, 2021
Receipt Date of Samples:	April 26, 2021
Equipment Design Stage:	Production
Equipment Condition:	No Damage
Purchase Authorization:	Verified

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

Body-worn Neurostimulator

Testing Objective:

To demonstrate compliance of the inductive portion of the device to FCC Part 15.209 specifications.

Configuration BIOT0085-4

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Neuro SCS Trial Stimulator	BIOTRONIK, Inc.	Neuro SCS Trial Stimulator	91820147

Peripherals in test setup boundary						
Description	Manufacturer	Model/Part Number	Serial Number			
Simulated Load	BIOTRONIK, Inc.	SDD-0649	003			

Cables							
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2		
Patient Leads	No	0.4m	No	Neuro SCS Trial Stimulator	Simulated Load		

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT	
		Spurious	Tested as	No EMI suppression	EUT remained at	
1	2021-04-28	Radiated	delivered to	devices were added or	Element following	
		Emissions	Test Station.	modified during this test.	the test.	
		Field Strength of	Tested as	No EMI suppression	Schodulod testing	
2 2	2021-04-28	4-28 Field Strength of	delivered to	devices were added or		
		Fundamenta	Fundamental	Test Station.	modified during this test.	was completed.

POWER SETTINGS AND ANTENNAS

The power settings, antenna gain value(s) and cable loss (if applicable) used for the testing contained in this report were provided by the customer and will affect the validity of the results. Element assumes no responsibility for the accuracy of this information.

ANTENNA GAIN (dBi)

Туре	Provided by:	Frequency Range (kHz)	Gain (dBi)
Magnetic Coil	Manufacturer	32 - 64	N/A

No adjustable power settings were provided. The EUT was tested using power settings pre-defined by the manufacturer.

FIELD STRENGTH OF FUNDAMENTAL

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was continuously transmitting while set to the channel specified.

The fundamental carrier of the EUT was maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis, and adjusting the measurement antenna polarization (per ANSI C63.10). A calibrated active loop antenna was used for this test in order to provide sufficient measurement sensitivity. The reference point of the loop antenna was maintained at 1m above the ground plane during the testing.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector PK = Peak Detector AV = RMS Detector

As outlined in 15.209(e), 15.31(f)(2), and RSS-GEN, 6.5, measurements may be performed at a distance closer than what is specified with the limit. The limit at the specified distance is shown on the data sheet. Measurements are made at a closer distance and the data is adjusted using a distance correction factor of 40dB/decade for comparison to the limit.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Analyzer - Spectrum Analyzer	Agilent	E4443A	AFB	2020-06-26	2021-06-26
Cable	None	3m Test Distance Cable	EVM	2021-02-16	2022-02-16
Antenna - Loop	EMCO	6502	AOA	2020-07-06	2022-07-06

MEASUREMENT UNCERTAINTY

Description		
Expanded k=2	1.7 dB	-1.7 dB

FREQUENCY RANGE INVESTIGATED

9 kHz TO 30 MHz

POWER INVESTIGATED

Battery

CONFIGURATIONS INVESTIGATED

BIOT0085-4

MODES INVESTIGATED

Inductive radio continuous Tx, ASK, 38 kHz

FIELD STRENGTH OF FUNDAMENTAL

EUT:	Neuro SCS Trial Stir	nulator				Work Order:	BIOT0085				
Serial Number:	91820147			Date:	2021-04-28						
Customer:	BIOTRONIK, Inc.			Temperature:	21.7°C						
Attendees:	Roy Wang			Relative Humidity:	39%						
Customer Project:	None		Bar. Pressure:	1029 mb							
Tested By:	Jeff Alcoke		Job Site:	EV11							
Power:	Battery Configuration: BIOT0085-4										
TEST SPECIFICATIONS											
Specification:				Method:							
FCC 15.209:2021				ANSI C63.	.10:20	013					
TEST PARAME	TERS										
Run #:	4 Te	est Distance (m):	1			Ant. Height(s) (m):	1(m)				
COMMENTS											
Please reference c	omments below for EU	T orientation									
EUT OPERATI											
Inductive radio con	tinuous Tx, ASK, 38 kH	lz									
DEVIATIONS F	ROM TEST STAN	IDARD									
None											
70											
50											
30											
E ¹⁰											
Š											
n B -10											
ן ״ׂ ס											

2

-30

-50

-70

FIELD STRENGTH OF FUNDAMENTAL

RESULTS - Run #4

Freq (MHz)	Amplitude (dBuV)	Factor (dB/m)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
0.038	34.5	13.4	1.0	109.0	1.0	0.0	Perp EUT	AV	-99.1	-51.2	36.0	-87.2	EUT Horz
0.038	33.9	13.3	1.0	-5.0	1.0	0.0	Perp EUT	AV	-99.1	-51.9	35.9	-87.8	EUT Vert
0.038	33.8	13.4	1.0	50.0	1.0	0.0	Par EUT	AV	-99.1	-51.9	36.0	-87.9	EUT Vert
0.038	33.8	13.3	1.0	141.0	1.0	0.0	Par EUT	AV	-99.1	-52.0	35.9	-87.9	EUT on Side
0.038	33.5	13.3	1.0	201.0	1.0	0.0	Par GND	AV	-99.1	-52.3	35.9	-88.2	EUT on Side
0.038	33.5	13.3	1.0	210.0	1.0	0.0	Par EUT	AV	-99.1	-52.3	35.9	-88.2	EUT Horz
0.038	33.6	13.4	1.0	333.0	1.0	0.0	Par GND	AV	-99.1	-52.1	36.1	-88.2	EUT Vert
0.038	33.5	13.4	1.0	345.0	1.0	0.0	Par GND	AV	-99.1	-52.2	36.1	-88.3	EUT Horz
0.038	33.4	13.3	1.0	103.0	1.0	0.0	Perp EUT	AV	-99.1	-52.4	36.0	-88.4	EUT on Side
0.038	41.1	13.4	1.0	103.0	1.0	0.0	Perp EUT	PK	-99.1	-44.6	56.1	-100.7	EUT on Side
0.038	41.0	13.4	1.0	109.0	1.0	0.0	Perp EUT	PK	-99.1	-44.7	56.1	-100.8	EUT Horz
0.038	40.8	13.3	1.0	141.0	1.0	0.0	Par EUT	PK	-99.1	-45.0	56.0	-101.0	EUT on Side
0.038	40.2	13.4	1.0	201.0	1.0	0.0	Par GND	PK	-99.1	-45.5	56.0	-101.5	EUT on Side
0.038	40.1	13.4	1.0	345.0	1.0	0.0	Par GND	PK	-99.1	-45.6	56.1	-101.7	EUT Horz
0.038	39.8	13.4	1.0	333.0	1.0	0.0	Par GND	PK	-99.1	-45.9	56.0	-101.9	EUT Vert
0.038	39.7	13.3	1.0	210.0	1.0	0.0	Par EUT	PK	-99.1	-46.1	55.9	-102.0	EUT Horz
0.038	39.1	13.3	1.0	-5.0	1.0	0.0	Perp EUT	PK	-99.1	-46.7	55.9	-102.6	EUT Vert
0.038	38.0	13.4	1.0	50.0	1.0	0.0	Par EUT	PK	-99.1	-47.7	56.1	-103.8	EUT Vert

CONCLUSION Pass

Tested By

SPURIOUS RADIATED EMISSIONS LESS THAN 30 MHz

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was continuously transmitting while set to the channel specified.

For each configuration, the spectrum was scanned throughout the specified range as part of the exploratory investigation of the emissions. These "pre-scans" are not included in the report. Final measurements on individual emissions were then made and included in this test report.

The individual emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis, and adjusting the measurement antenna height (where applicable) and polarization (per ANSI C63.10). A calibrated active loop antenna was used for this test in order to provide sufficient measurement sensitivity. The reference point of the loop antenna was maintained at 1m above the ground plane during the testing.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector PK = Peak Detector AV = RMS Detector

If there are no detectable emissions above the noise floor, the data included may show noise floor measurements for reference only.

As outlined in 15.209(e), 15.31(f)(2), and RSS-GEN, 6.5, measurements may be performed at a distance closer than what is specified with the limit. The limit at the specified distance is shown on the data sheet. Measurements are made at a closer distance and the data is adjusted using a distance correction factor of 40dB/decade for comparison to the limit.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Analyzer - Spectrum Analyzer	Agilent	E4443A	AFB	2020-06-26	2021-06-26
Cable	None	3m Test Distance Cable	EVM	2021-02-16	2022-02-16
Antenna - Loop	EMCO	6502	AOA	2020-07-06	2022-07-06

MEASUREMENT UNCERTAINTY

Expanded k=2 1.7 dB -1.7 dB	

FREQUENCY RANGE INVESTIGATED

9 kHz TO 30 MHz

POWER INVESTIGATED

Battery

CONFIGURATIONS INVESTIGATED

BIOT0085-4

MODES INVESTIGATED

Inductive radio continuous Tx, ASK, 38 kHz

SPURIOUS RADIATED EMISSIONS LESS THAN 30 MHz

EUT:	Neuro SCS Trial	Stimulator			Work Order:	BIOT0085						
Serial Number:	91820147	91820147 Date: 2021-04-28										
Customer:	BIOTRONIK, Inc.		Temperature:	21.7°C								
Attendees:	Roy Wang		Relative Humidity:	39%								
Customer Project:	None	None Bar. Pressure: 1029 mb										
Tested By:	Jeff Alcoke	Jeff Alcoke Job Site: EV11										
Power: Battery Configuration: BIOT0085-4												
TEST SPECIFICATIONS												
Specification:				Method:								
FCC 15.209:2021 ANSI C63.10:2013												
TEST PARAMETERS												
Run #:	4	Test Distance (m):	1		Ant. Height(s) (m):	1(m)						
COMMENTS												
Please reference c	omments below for	EUT orientation										
EUT OPERATING MODES												
Inductive radio con	tinuous Tx, ASK, 38	3 kHz										
DEVIATIONS FROM TEST STANDARD												
None												
70												
70												
50												

SPURIOUS RADIATED EMISSIONS LESS THAN 30 MHz

RESULTS - Run #4

Freq (MHz)	Amplitude (dBuV)	Factor (dB/m)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
0.224	32.3	11.0	1.0	59.0	1.0	0.0	Perp EUT	AV	-99.1	-55.8	20.6	-76.4	EUT Horz
0.149	35.7	11.1	1.0	133.0	1.0	0.0	Perp EUT	AV	-99.1	-52.3	24.2	-76.5	EUT Horz
0.301	29.6	11.0	1.0	186.0	1.0	0.0	Perp EUT	AV	-99.1	-58.5	18.0	-76.5	EUT Horz
0.340	28.6	11.0	1.0	115.0	1.0	0.0	Perp EUT	AV	-99.1	-59.5	17.0	-76.5	EUT Horz
0.187	33.7	11.0	1.0	103.0	1.0	0.0	Perp EUT	AV	-99.1	-54.4	22.2	-76.6	EUT Horz
0.262	30.8	10.9	1.0	149.0	1.0	0.0	Perp EUT	AV	-99.1	-57.4	19.2	-76.6	EUT Horz
0.377	27.6	11.0	1.0	185.0	1.0	0.0	Perp EUT	AV	-99.1	-60.5	16.1	-76.6	EUT Horz
0.225	45.2	11.0	1.0	59.0	1.0	0.0	Perp EUT	PK	-99.1	-42.9	40.6	-83.5	EUT Horz
0.152	47.5	11.1	1.0	133.0	1.0	0.0	Perp EUT	PK	-99.1	-40.5	44.0	-84.5	EUT Horz
0.187	45.8	11.0	1.0	103.0	1.0	0.0	Perp EUT	PK	-99.1	-42.3	42.2	-84.5	EUT Horz
0.337	40.6	11.0	1.0	115.0	1.0	0.0	Perp EUT	PK	-99.1	-47.5	37.1	-84.6	EUT Horz
0.376	39.1	11.0	1.0	185.0	1.0	0.0	Perp EUT	PK	-99.1	-49.0	36.1	-85.1	EUT Horz
0.263	42.2	10.9	1.0	149.0	1.0	0.0	Perp EUT	PK	-99.1	-46.0	39.2	-85.2	EUT Horz
0.301	40.9	11.0	1.0	186.0	1.0	0.0	Perp EUT	PK	-99.1	-47.2	38.0	-85.2	EUT Horz
0.076	29.3	11.7	1.0	154.0	1.0	0.0	Perp EUT	AV	-99.1	-58.1	30.0	-88.1	EUT Horz
0.114	25.4	11.2	1.0	276.0	1.0	0.0	Perp EUT	AV	-99.1	-62.5	26.5	-89.0	EUT Horz
0.114	32.8	11.2	1.0	276.0	1.0	0.0	Perp EUT	PK	-99.1	-55.1	46.5	-101.6	EUT Horz
0.076	35.6	11.7	1.0	154.0	1.0	0.0	Perp EUT	PK	-99.1	-51.8	49.9	-101.7	EUT Horz

CONCLUSION Pass

Tested By