

Specific Absorption Rate (SAR) Test Report for COMPAL COMMUNICATIONS, INC.

on the **PDA Phone**

Report No.	: FA650602-2-2-02
Trade Name	: Fujitsu Siemens Computers GmbH
Model Name	: Pocket LOOX T830 / Pocket LOOX T810
FCC ID	: QQXUPX001
IC ID	: 4626A-UPX001
Date of Testing	: Jun. 26, 2006
Date of Report	: Jul. 06, 2006
Date of Review	: Jul. 06, 2006

• The test results refer exclusively to the presented test model / sample only.

• Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.

Report Version: Rev. 02

SPORTON International Inc.

6F, No.106, Sec. 1, Hsin Tai Wu Rd., Hsi Chih, Taipei Hsien, Taiwan, R.O.C.

Table of Contents

		nt of Compliance	
2. A		tration Data	
	2.1	Testing Laboratory	
	2.2	Detail of Applicant	
	2.3	Detail of Manufacturer	
	2.4	Application Detail	
3. So	cope		
	3.1	Description of Device Under Test (DUT)	.3
	3.2	Product Photo	
	3.3	Applied Standards:	
	3.4	Device Category and SAR Limits	
	3.5	Test Conditons	
		3.5.1 Ambient Condition:	
		3.5.2 Test Configuration:	
4. Sj		Absorption Rate (SAR)	
	4.1	Introduction	
	4.2	SAR Definition	
5. S/		asurement Setup	
	5.1	DASY4 E-Field Probe System	
		5.1.1 ET3DV6 E-Field Probe Specification	10
		5.1.2 ET3DV6 E-Field Probe Calibration	11
	5.2	DATA Acquisition Electronics (DAE)	
	5.3	Robot	
	5.4	Measurement Server	
	5.5	SAM Twin Phantom	13
	5.6	Data Storage and Evaluation	
		5.6.1 Data Storage	
		5.6.2 Data Evaluation	
	5.7	Test Equipment List	
		Simulating Liquids	
		inty Assessment	
8. S/		asurement Evaluation	23
	8.1	Purpose of System Performance check	23
	8.2	System Setup	
	8.3	Validation Results	
		tion for DUT Testing Position	
10.		urement Procedures	
	10.1	Spatial Peak SAR Evaluation	
	10.2	Scan Procedures	
	10.3	SAR Averaged Methods	
11.		Fest Results	
	11.1	Right Cheek	
	11.2	Right Tilted	
	11.3	Left Cheek	
	11.4	Left Tilted	
	11.5	Keypad Up with Holster 1 Touch	
	11.6	Keypad Down with Holster 1 Touch	
	11.7	Keypad Up with Holster 2 Touch	
	11.8	Keypad Down with Holster 2 Touch	
12.	Refere	ences	33

- Appendix A System Performance Check Data
- Appendix B SAR Measurement Data
- Appendix C Calibration Data
- Appendix D Product Photographs

Appendix E – Test Setup Photo

1. <u>Statement of Compliance</u>

The Specific Absorption Rate (SAR) maximum result found during testing for the COMPAL COMMUNICATIONS, INC. PDA Phone Fujitsu Siemens Computers GmbH Pocket LOOX T830 / Pocket LOOX T810 are as follows (with expanded uncertainty 20.6%):

WLAN 2.4GHz	WLAN 2.4GHz	WLAN 2.4GHz	WLAN 2.4GHz
Head for T830	Body for T830	Head for T810	Body for T810
(W/kg)	(W/kg)	(W/kg)	(W/kg)
0.041	0.034	0.031	0.038

The co-location of GSM/GPRS, WLAN and Bluetooth were also checked. It is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1999 and had been tested in accordance with the measurement methods and procedures specified in OET Bulletin 65 Supplement C (Edition 01-01).

Approved by

Dr. Daniel Lee EMC/SAR Director

©2006 SPORTON International Inc. SAR Testing Lab This report shall not be reproduced except in full, without the written approval of Sporton. Page 1 of 33 Rev. 02

Test Report No 🔅 FA650602-2-2-02

2. Administration Data

2.1 <u>Testing Laboratory</u>

Company Name :	Sporton International Inc.
Department :	Antenna Design/SAR
Address :	No.52, Hwa-Ya 1 st RD., Hwa Ya Technology Park, Kwei-Shan Hsiang, TaoYuan
	Hsien, Taiwan, R.O.C.
Telephone Number :	886-3-327-3456
Fax Number :	886-3-327-0973

2.2 Detail of Applicant

Company Name :	Kinpo Electronics, Inc.
Address :	7F, No. 319, Sec. 4, Pa-Te Rd., Taipei, Taiwan

2.3 Detail of Manufacturer

Company Name :	Kinpo Electronics (China)Co., Ltd.
Address :	7F, No. 319, Sec. 4, Pa-Te Rd., Taipei, Taiwan

2.4 Application Detail

Date of reception of application:	Apr. 27, 2006
Start of test :	Jun. 26, 2006
End of test :	Jun. 26, 2006

3. <u>Scope</u>

3.1 Description of Device Under Test (DUT)

Pocket LOOX T810 is the serial model of Pocket LOOX T830. They have the same RF chipset, RF board, antenna, battery and PCB layout. The differences between these models are ID and camera function.

DUT Type :	PDA Phone
Trade Name :	Fujitsu Siemens Computers GmbH
Model Name :	Pocket LOOX T830 / Pocket LOOX T810
FCC ID :	QQXUPX001
IC ID :	4626A-UPX001
Type of Modulation :	PCS : GMSK WLAN: DSSS / OFDM BT: GFSK
Frequency Range :	PCS : 1930-1990 MHz WLAN/BT: 2400~2483.5 MHz
Antenna Connector :	Finger
Antenna Type :	PIFA Antenna
Antenna Gain :	PCS : 0 dBi WLAN : 1 dBi BT : 1 dBi
Maximum Output Power to Antenna :	PCS : 29.57 dBm for T830 / 29.63 dBm for T810 802.11b : 17.92 dBm for T830 / 17.85 dBm for T810 802.11g : 16.81 dBm for T830 / 16.83 dBm for T810 BT : 1.85 dBm
Power Rating (DC/AC Voltage) :	PCS : 4.2V / 2A WLAN : 3.3V / 450mA BT : 3.3V / 200mA
DUT Stage :	Identical Prototype
Application Type :	Certification

©2006 SPORTON International Inc. SAR Testing Lab This report shall not be reproduced except in full, without the written approval of Sporton.

Test Report No 👘 FA650602-2-2-02

3.2 <u>Product Photo</u> Please refer to Appendix D

Test Report No 👘 FA650602-2-2-02

3.3 <u>Applied Standards:</u>

The Specific Absorption Rate (SAR) testing specification, method and procedure for this PDA Phone is in accordance with the following standards:

47 CFR Part 2 (2.1093), IEEE C95.1-1999, IEEE C95.3-2002, IEEE P1528 -2003, and OET Bulletin 65 Supplement C (Edition 01-01)

3.4 Device Category and SAR Limits

This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user.

Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue.

3.5 <u>Test Conditons</u>

3.5.1 Ambient Condition:

Item	Head	Body	
Ambient Temperature (°C)	20-24		
Tissue simulating liquid temperature (°C)	21.9 22.2		
Humidity (%)	<60 %		

3.5.2 <u>Test Configuration:</u>

The data rates for SAR testing are 11Mbps for 802.11b. Engineering testing software installed on the EUT can provide continuous transmitting RF signal. This RF signal utilized in SAR measurement has almost 100% duty cycle and its crest factor is 1. The measurements were performed on the lowest, middle, and highest channel, i.e. channel 1, channel 6, and channel 11 for each testing position.

4. <u>Specific Absorption Rate (SAR)</u> 4.1 <u>Introduction</u>

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The FCC recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

4.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density.

). The equation description is as below:

$$\mathbf{SAR} = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$\mathbf{SAR} = C \, \frac{\delta T}{\delta t}$$

, where C is the specific head capacity, δT is the temperature rise and δt the exposure duration,

or related to the electrical field in the tissue by

$$\mathbf{SAR} = \frac{\sigma |E|^2}{\rho}$$

, where is the conductivity of the tissue, is the mass density of the tissue and E is the rms electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

©2006 SPORTON International Inc. SAR Testing Lab

This report shall not be reproduced except in full, without the written approval of Sporton.

Test Report No 👘 FA650602-2-2-02

5. <u>SAR Measurement Setup</u>

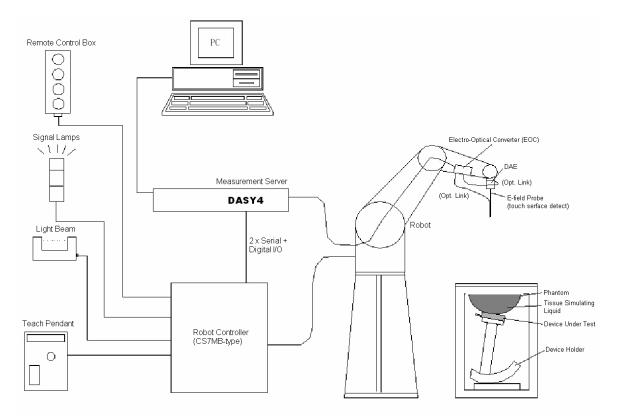


Fig. 5.1 DASY4 system

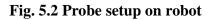
The DASY4 system for performance compliance tests is illustrated above graphically. This system consists of the following items:

- A standard high precision 6-axis robot with controller, a teach pendant and software
- A data acquisition electronic (DAE) attached to the robot arm extension
- A dosimetric probe equipped with an optical surface detector system
- > The electro-optical converter (ECO) performs the conversion between optical and electrical signals
- A measurement server performs the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the accuracy of the probe positioning
- A computer operating Windows XP
- DASY4 software
- Remove control with teach pendant and additional circuitry for robot safety such as warming lamps, etc.
- The SAM twin phantom
- ➢ A device holder
- Tissue simulating liquid
- > Dipole for evaluating the proper functioning of the system

Some of the components are described in details in the following sub-sections.

5.1 DASY4 E-Field Probe System

The SAR measurement is conducted with the dosimetric probe ET3DV6 (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom.



5.1.1 ET3DV6 and EX3DV4 E-Field Probe Specification

<et3dv6 probe=""></et3dv6>	
Construction	Symmetrical design with triangular core Built-in optical fiber for surface detection system
	Built-in shielding against static charges
	PEEK enclosure material (resistant to organic solvents)
Calibration	Simulating tissue at frequencies of 900MHz, 1.8GHz and 2.45GHz for brain and muscle (accuracy $\pm 8\%$)
Frequency	10 MHz to $>$ 3 GHz
Directivity	\pm 0.2 dB in brain tissue (rotation around
	probe axis) ± 0.4 dB in brain tissue (rotation
	perpendicular to probe axis)
Dynamic Range Surface Detection	5μ W/g to > 100mW/g; Linearity: ±0.2dB
Surface Detection	\pm 0.2 mm repeatability in air and clear liquids on reflecting surface
Dimensions	Overall length: 330mm
	Tip length: 16mm
	Body diameter: 12mm
	Tip diameter: 6.8mm
	Distance from probe tip to dipole centers:
Application	2.7mm General dosimetry up to 3GHz
Application	Compliance tests for mobile phones and
	Wireless LAN
	Fast automatic scanning in arbitrary phantoms
	Phantonis

Test Report No 👘 FA650602-2-2-02

<ex3dv4 probe=""></ex3dv4>	
Construction	Symmetrical design with triangular core
	Built-in shielding against static charges
	PEEK enclosure material (resistant to
	organic solvents)
Calibration	Basic Broad Band Calibration in air:
	10-3000 MHz Conversion Factors (CF) for
	HSL 900 and HSL 1800 Additional CF for
	other liquids and frequencies upon request
Frequency	10 MHz to > 6 GHz; Linearity: ± 0.2 dB
	(30 MHz to 3 GHz)
Directivity	\pm 0.3 dB in HSL (rotation around probe
	axis)
	\pm 0.5 dB in tissue material (rotation normal
	to probe axis)
Dynamic Range	10 μ W/g to > 100 mW/g; Linearity: \pm 0.2
	dB (noise: typically < 1 μ W/g)
Dimensions	Overall length: 330 mm (Tip: 20 mm)
	Tip diameter: 2.5 mm (Body: 12 mm)
	Typical distance from probe tip to dipole
	centers: 1 mm
Application	High precision dosimetric measurements in
	any exposure scenario (e.g., very strong
	gradient fields). Only probe which enables
	compliance testing for frequencies up to 6
	GHz with precision of better 30%.

5.1.2 ET3DV6 and EX3DV4 E-Field Probe Calibration

Each probe needs to be calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy shall be evaluated and within \pm 0.25dB. The sensitivity parameters (NormX, NormY, and NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested. The calibration data are as below:

<EX3DV4 Probe>

Sensitivity	X axis : 0.500 μV		Y axis : 0.506 μV		Z axis : 0.550 μV
Diode compression point	X axis : 93 mV		Y axis : 93 mV		Z axis : 93 mV
Conversion factor	Frequency (MHz)	X axis Y ax		Y axis	Z axis
(Head / Body)	2350~2550	6.47 / 6.47		6.47 / 6.47	6.47 / 6.47
Boundary effect	Frequency (MHz)	Alp	ha	Depth	
(Head / Body)	2350~2550	0.52 /	0.59	0.80 / 0.73	

<ET3DV6 Probe>

Sensitivity	X axis : 1.5	57 μV	Y ax	is : 1.71 μV	Z axis : 2.09 µV
Diode compression point	X axis : 94	mV	Y axis : 94 mV		Z axis : 94 mV
Conversion factor	Frequency (MHz)	X axis		Y axis	Z axis
(Head / Body)	1710~1910	5.26 / 4.66		5.26 / 4.66	5.26 / 4.66
Boundary effect	Frequency (MHz)	Alp	oha	Depth	
(Head / Body)	1710~1910	0.59/	0.62	2.46 / 2.44	

NOTE : The probe parameters have been calibrated by the SPEAG.

5.2 <u>DATA Acquisition Electronics (DAE)</u>

The data acquisition electronics (DAE4) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock. The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection. The input impedance of the DAE4 is 200M Ohm; the inputs are symmetrical and floating. Common mode rejection is above 80dB.

5.3 <u>Robot</u>

The DASY4 system uses the high precision robots RX90BL type out of the newer series from Stäubli SA (France). For the 6-axis controller DASYS system, the CS7MB robot controller version from Stäubli is used. The RX robot series have many features that are important for our application:

- → High precision (repeatability 0.02 mm)
- High reliability (industrial design)
- > Jerk-free straight movements
- > Low ELF interference (the closed metallic construction shields against motor control fields)
- ➢ 6-axis controller

5.4 <u>Measurement Server</u>

The DASY4 measurement server is based on a PC/104 CPU board with 166 MHz CPU 32 MB chipset and 64 MB RAM.

Communication with the DAE4 electronic box the 16-bit AD-converter system for optical detection and digital I/O interface.

The measurement server performs all the real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operations.

5.5 <u>SAM Twin Phantom</u>

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

- ➢ Left head
- Right head
- ➢ Flat phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections.

Test Report No 👘 FA650602-2-2-02

A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters.

On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

The phantom can be used with the following tissue simulating liquids: *Water-sugar based liquid *Glycol based liquids

Fig. 5.3 Top view of twin phantom

Fig. 5.4 Bottom view of twin phantom

5.6 Data Storage and Evaluation

5.6.1 Data Storage

The DASY4 software stores the assessed data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all the necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension .DA4. The postprocessing software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of erroneous parameter settings. For example, if a measurement has been performed with an incorrect crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be reevaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type (e.g., [V/m], [A/m], [mW/g]). Some of these units are not available in certain situations or give meaningless results, e.g., a SAR-output in a loseless media, will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

5.6.2 Data Evaluation

The DASY4 postprocessing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software :

Probe parameters :	- Sensitivity	Norm _{<i>i</i>} , a_{i^0} , a_{i^1} , a_{i^2}
	- Conversion factor	ConvF _i
	- Diode compression point	dcp <i>i</i>
Device parameters :	- Frequency	f
	- Crest factor	cf
Media parameters :	- Conductivity	
	- Density	

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel

Test Report No 🔅 FA650602-2-2-02

can be given as :

$$Vi = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

with

 V_i = compensated signal of channel i (i = x, y, z) U_i = input signal of channel i (i = x, y, z) cf = crest factor of exciting field (DASY parameter) dcp_i = diode compression point (DASY parameter)

From the compensated input signals, the primary field data for each channel can be evaluated :

E-field probes :
$$E_i = \sqrt{\frac{V_i}{Norm_iConvF}}$$

H-field probes : $H_i = \sqrt{V_i} \frac{a_{i0+}a_{i1}f + a_{i2}f^2}{f}$

with V_i = compensated signal of channel i (i = x, y, z) $Norm_i$ = sensor sensitivity of channel i (i = x, y, z) $\mu V/(V/m)2$ for E-field Probes ConvF = sensitivity enhancement in solution a_{ij} = sensor sensitivity factors for H-field probes f = carrier frequency [GHz] E_i = electric field strength of channel i in V/m H_i = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude) :

$$E_{tot} = \sqrt{E_X^2 + E_Y^2 + E_Z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$

with

SAR = local specific absorption rate in mW/g
Etot = total field strength in V/m
= conductivity in [mho/m] or [Siemens/m]
= equivalent tissue density in g/ cm³

* Note that the density is set to 1, to account for actual head tissue density rather than the density of the tissue simulating liquid.

The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = \frac{E_{tot}^2}{3770}$$
 or $P_{pwe} = H_{tot}^2 \cdot 37.7$

with P_{pwe} = equivalent power density of a plane wave in mW/cm² E_{tot} = total electric field strength in V/m H_{tot} = total magnetic field strength in A/m

5.7 <u>Test Equipment List</u>

Max fast is		T Madal		Calib	ration
Manufacture	Name of Equipment	Type/Model	Serial Number	Last Cal. May 31, 2006 Mar. 20, 2006 Mar. 15, 2006 Jul. 19, 2005 Jul. 20, 2005 Mar. 21, 2006 Jul. 12, 2005 Nov. 11, 2005 NCR NCR NCR NCR	Due Date
SPEAG	Dosimetric E-Filed Probe	ET3DV6	1787	May 31, 2006	May 31, 2007
SPEAG	Dosimetric E-Filed Probe	EX3DV4	3578	Mar. 20, 2006	Mar. 20, 2007
SPEAG	835MHz System Validation Kit	D835V2	499	Mar. 15, 2006	Mar. 15, 2008
SPEAG	900MHz System Validation Kit	D900V2	190	Jul. 19, 2005	Jul. 19, 2007
SPEAG	1800MHz System Validation Kit	D1800V2	2d076	Jul. 20, 2005	Jul. 20, 2007
SPEAG	1900MHz System Validation Kit	D1900V2	5d041	Mar. 21, 2006	Mar. 21, 2008
SPEAG	2450MHz System Validation Kit	D2450V2	736	Jul. 12, 2005	Jul. 12, 2007
SPEAG	Data Acquisition Electronics	DAE3	577	Nov. 11, 2005	Nov. 11, 2006
SPEAG	Device Holder	N/A	N/A	NCR	NCR
SPEAG	Phantom	QD 000 P40 C	TP-1150	NCR	NCR
SPEAG	Robot	Staubli RX90BL	F03/5W15A1/A/01	NCR	NCR
SPEAG	Software	DASY4 V4.6 Build 23	N/A	NCR	NCR
SPEAG	Software	SEMCAD V1.8 Build 161	N/A	NCR	NCR
SPEAG	Measurement Server	SE UMS 001 BA	1021	NCR	NCR
Agilent	S-Parameter Network Analyzer (PNA)	E8358A	US40260131	Sep. 16, 2005	Sep. 16, 2006
Agilent	Dielectric Probe Kit	85070D	US01440205	NCR	NCR
Agilent	Dual Directional Coupler	778D	50422	NCR	NCR
Agilent	Power Amplifier	8449B	3008A01917	NCR	NCR
R&S	Radio Communication Tester	CMU200	105934	Aug. 24, 2004	Aug. 24, 2006
Agilent	Power Meter	E4416A	GB41292344	Jan. 23, 2006	Jan. 23, 2008
Agilent	Power Sensor	E9327A	US40441548	Feb. 6, 2006	Feb. 6, 2007
Agilent	Signal Generator	E8247C	MY43320596	Mar. 1, 2006	Mar. 1, 2008

Table 5.1 Test Equipment List

6. <u>Tissue Simulating Liquids</u>

For the measurement of the field distribution inside the SAM phantom with DASY4, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. The liquid height from the bottom of the phantom body is 15.2 centimeters, which is shown in Fig. 6.1.

The following ingredients for tissue simulating liquid are used:

- **Water**: deionized water (pure H_20), resistivity 16M as basis for the liquid
- Sugar: refined sugar in crystals, as available in food shops to reduce relative permittyvity
- Salt: pure NaCl to increase conductivity
- Cellulose: Hydroxyethyl-cellulose, medium viscosity (75-125 mPa.s, 2% in water, 20°C), CAS#54290-to increase viscosity and to keep sugar in solution.
- Preservative: Preventol D-7 Bayer AG, D-51368 Leverkusen, CAS#55965-84-9- to prevent the spread of bacteria and molds.
- DGMBE: Deithlenglycol-monobuthyl ether (DGMBE), Fluka Chemie GmbH, CAS#112-34-5 to reduce relative permittivity.

Table 6.1 gives the recipes for one liter of tissue simulating liquid for frequency band 2450 MHz.

Ingredient	HSL_2450	MSL-2450
Water	450.0 ml	698.3 ml
DGMBE	550.0 ml	301.7 ml
Total amount	1 liter (1.0 kg)	1 liter (1.0 kg)
Dielectric Parameters at 22°	f = 2450 MHz	f = 2450MHz
	$r = 39.2 \pm 5\%, = 1.8 \pm 5\%$ S/m	$f = 52.7 \pm 5\%, = 1.95 \pm 5\%$ S/m
	T 11 (1	

Table 6.1

The dielectric parameters of the liquids were verified prior to the SAR evaluation using an Agilent 85070D Dielectric Probe Kit and an Agilent E8358A Network Analyzer.

Position	Bands	Frequency(MHz)	Permittivity (r)	Conductivity ()	Measurement date	
		2412	39.1	1.81		
Head	2450 MHz	2437	38.7	1.84	Jun. 26, 2006	
		2462	38.5	1.87		
		2412	51.6	1.95		
Body	2450 MHz	2437	51.8	1.99	Jun. 26, 2006	
		2462	51.8	2.01		

Table 6.2 shows the measuring results for head and muscle simulating liquid.

Table 6.2

The measuring data are consistent with $r = 39.2 \pm 5\%$ and $= 1.80 \pm 5\%$ for head 2450 band, $r = 52.7 \pm 5\%$ and $= 1.95 \pm 5\%$ for body 2450 band.

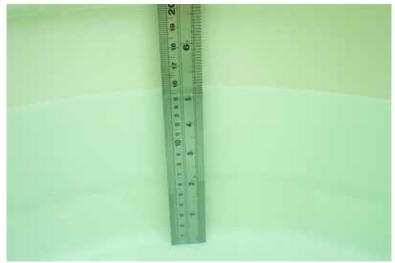


Fig. 6.1

7. <u>Uncertainty Assessment</u>

The component of uncertainly may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainly by the statistical analysis of a series of observations is termed a Type A evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance.

A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data. This includes calculating the standard deviation of the mean of a series of independent observations; using the method of least squares to fit a curve to the data in order to estimate the parameter of the curve and their standard deviations; or carrying out an analysis of variance in order to identify and quantify random effects in certain kinds of measurement.

A type B evaluation of standard uncertainty is typically based on scientific judgment using all of the relevant information available. These may include previous measurement data, experience and knowledge of the behavior and properties of relevant materials and instruments, manufacture's specification, data provided in calibration reports and uncertainties assigned to reference data taken from handbooks. Broadly speaking, the uncertainty is either obtained from an outdoor source or obtained from an assumed distribution, such as the normal distribution, rectangular or triangular distributions indicated in Table 7.1

Uncertainty Distributions	Normal	Rectangular	Triangular	U-shape
Multiplying factor ^(a)	$_{1/k}$ (b)	1/ 3	1/ 6	1/ 2

(a) standard uncertainty is determined as the product of the multiplying factor and the estimated range of variations in the measured quantity
 (b) is the coverage factor

Table 7.1

The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances.

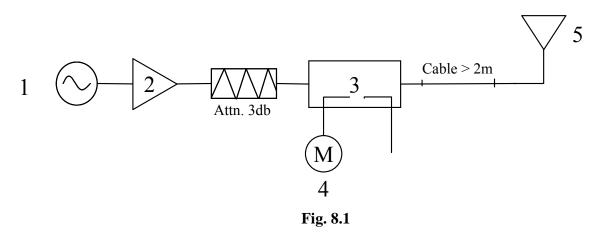
Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor allows the true value of a measured quantity to be specified with a defined probability within the specified uncertainty range. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY4 uncertainty Budget is showed in Table 7.2.

Test Report No : FA650602-2-2-02

Error Description	Uncertainty Value ± %	Probability Distribution	Divisor	Ci 1g	Standard Unc. (1-g)	vi or Veff
Measurement System						
Probe Calibration	± 4.8	Normal	1	1	±4.8	
Axial Isotropy	± 4.7	Rectangular	$\sqrt{3}$	0.7	±1.9	
Hemispherical Isotropy	± 9.6	Rectangular	$\sqrt{3}$	0.7	±3.9	
Boundary Effect	± 1.0	Rectangular	$\sqrt{3}$	1	±0.6	
Linearity	± 4.7	Rectangular	$\sqrt{3}$	1	±2.7	
System Detection Limit	± 1.0	Rectangular	$\sqrt{3}$	1	±0.6	
Readout Electronics	± 1.0	Normal	1	1	±1.0	
Response Time	± 0.8	Rectangular	$\sqrt{3}$	1	± 0.5	
Integration time	± 2.6	Rectangular	$\sqrt{3}$	1	± 1.5	
RF Ambient Conditions	± 3.0	Rectangular	$\sqrt{3}$	1	±1.7	
Probe Positioner Mech. Tolerance	± 0.4	Rectangular	$\sqrt{3}$	1	±0.2	
Probe Positioning with respect to Phantom Shell	± 2.9	Rectangular	√3	1	±1.7	
Extrapolation and Interpolation Algorithms for Max. SAR Evaluation	± 1.0	Rectangular	$\sqrt{3}$	1	±0.6	
Test sample Related						
Test sample Positioning	±2.9	Normal	1	1	±2.9	145
Device Holder Uncertainty	±3.6	Normal	1	1	±3.6	5
Output Power Variation-SAR drift measurement	±5.0	Rectangular	$\sqrt{3}$	1	±2.9	
Phantom and Setup						
Phantom uncertainty(Including shar and thickness tolerances)	±4.0	Rectangular	$\sqrt{3}$	1	±2.3	
Liquid Conductivity Target tolerance	±5.0	Rectangular	$\sqrt{3}$	0.64	±1.8	
Liquid Conductivity measurement uncertainty	±2.5	Normal	1	0.64	±1.6	
Liquid Permittivity Target tolerance	±5.0	Rectangular	√3	0.6	±1.7	
Liquid Permittivity measurement uncertainty	±2.5	Normal	1	0.6	±1.5	
Combined standard uncertainty					±10.3	330
Coverage Factor for 95 %		<u>K=2</u>				
Expanded uncertainty (Coverage factor = 2)			Normal (k=2) 27		±20.6	

Table 7.2 Uncertainty Budget of DASY

8. <u>SAR Measurement Evaluation</u>


Each DASY system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the DASY software, enable the user to conduct the system performance check and system validation. System validation kit includes a dipole, tripod holder to fix it underneath the flat phantom and a corresponding distance holder.

8.1 <u>Purpose of System Performance check</u>

The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure.

8.2 <u>System Setup</u>

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave which comes from a signal generator at frequency 2450 MHz. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

- 1. Signal Generator
- 2. Amplifier
- 3. Directional Coupler
- 4. Power Meter
- 5. 2450 MHz Dipole

The output power on dipole port must be calibrated to 100 mW (20 dBm) before dipole is connected.

Fig 8.2 Dipole Setup

8.3 Validation Results

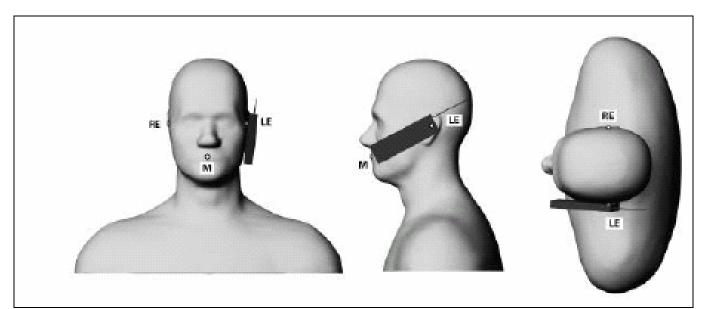
Comparing to the original SAR value provided by Speag, the validation data should within its specification of 10 %. Table 8.1 shows the target SAR and measured SAR after normalized to 1W input power.

		Target (W/kg)	Measurement data (W/kg)	Variation	Measurement date		
Head	SAR (1g)	SAR (1g) 52.8 54.6	54.6	3.4 %	Jun. 26, 2006		
Ticad	SAR (10g)	24.7	25	1.2 %	Jun. 20, 2000		
Dodri	SAR (1g)	52.8	53.6	1.5 %	In 26, 2006		
Body	SAR (10g)	24.5	25	2.0 %	Jun. 26, 2006		

Table 8.1

The table above indicates the system performance check can meet the variation criterion.

9. Description for DUT Testing Position


This DUT was tested in 6 different positions. They are left cheek, left tilted, right cheek, right tilted, body worn with keypad up and body worn with keypad down as illustrated below:

- 1) "Cheek Position"
 - i) To position the device with the vertical center line of the body of the device and the horizontal line crossing the center piece in a plane parallel to the sagittal plane of the phantom. While maintaining the device in this plane, align the vertical center line with the reference plane containing the three ear and mouth reference point (M, RE and LE) and align the center of the ear piece with the line RE-LE.
 - ii) To move the device towards the phantom with the ear piece aligned with the line LE-RE until the phone touched the ear. While maintaining the device in the reference plane and maintaining the phone contact with the ear, move the bottom of the phone until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost (see Fig. 9.1).
- 2) "Tilted Position"
 - i) To position the device in the "cheek" position described above.
 - ii) While maintaining the device the reference plane described above and pivoting against the ear, move it outward away from the mouth by an angle of 15 degrees or until contact with the ear is lost (see Fig. 9.2).
- 3) "Body Worn"
 - i) To position the device parallel to the phantom surface with either keypad up or down.
 - ii) To adjust the phone parallel to the flat phantom.
 - iii) To adjust the distance between the holster surface and the flat phantom to 0 cm.

Remark: Please refer to Appendix E for the test setup photo.

Test Report No 👘 FA650602-2-2-02

Fig. 9.1 Phone Position 1, "Cheek" or "Touch" Position. The reference points for the right ear (RE), left ear (LE) and mouth (M), which define the plane for phone positioning, are indicated.

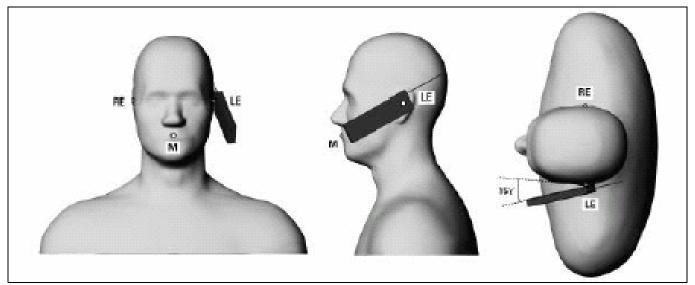


Fig. 9.2 Phone Position 2, "Tilted Position". The reference point for the right ear (RE), left ear (LE) and mouth (M), which define the plane for phone positioning, are indicated.

Test Report No 🔅 FA650602-2-2-02

10. Measurement Procedures

The measurement procedures are as follows:

- Plugging DUT into the notebook
- ▶ Using engineering software to transmit RF power continuously (continuous Tx) in the low channel
- Placing the DUT in the positions described in the last section
- Setting scan area, grid size and other setting on the DASY4 software
- > Taking data for the low channel
- > Repeat the previous steps for the middle and high channels.

According to the IEEE P1528 draft standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- Power reference measurement
- Area scan
- Zoom scan
- Power reference measurement

10.1 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the IEEE1528-2003 standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY4 software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

Base on the Draft: SCC-34, SC-2, WG-2-Computational Dosimetry, P1528/D1.2 (Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques), a new algorithm has been implemented. The spatial-peak SAR can be computed over any required mass.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the postprocessing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- extraction of the measured data (grid and values) from the Zoom Scan
- calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- generation of a high-resolution mesh within the measured volume
- interpolation of all measured values form the measurement grid to the high-resolution grid
- extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- calculation of the averaged SAR within masses of 1g and 10g

10.2 <u>Scan Procedures</u>

First **Area Scan** is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an **Area Scan** is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, **Zoom Scan** is required. The **Zoom Scan** measures 5x5x7 points with step size 8, 8 and 5 mm. The **Zoom Scan** is performed around the highest E-field value to determine the averaged SAR-distribution over 1 g.

10.3 <u>SAR Averaged Methods</u>

In DASY4, the interpolation and extrapolation are both based on the modified Quadratic Shepard's method. The interpolation scheme combines a least-square fitted function method and a weighted average method which are the two basic types of computational interpolation and approximation.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1 g and 10 g cubes, the extrapolation distance should not be larger than 5 mm.

Test Report No 👘 FA650602-2-2-02

11.<u>SAR Test Results</u> 11.1 <u>Right Cheek</u>

Model Name	Camera Module	Mode	Chan.	Freq (MHz)	Modulation type	Conducted Power (dBm)	Power Drift (dB)	Measured 1g SAR (W/kg)	Limits (W/Kg)	Results
			1	2412(Low)	CCK	16.78	-	-	-	-
		802.11b	6	2437(Mid)	CCK	17.92	0.157	0.00999	1.6	Pass
T830	Premier		11	2462(High)	CCK	16.81	-	-	-	-
1850	Fiennei	802.11g	1	2412(Low)	OFDM	16.52	-	-	-	-
			6	2437(Mid)	OFDM	16.81	-0.12	0.011	1.6	Pass
			11	2462(High)	OFDM	16.72	-	-	-	-
			1	2412(Low)	CCK	16.76	-	-	-	-
		802.11b	6	2437(Mid)	CCK	17.85	-	-	-	-
T810	N/A		11	2462(High)	CCK	16.82	-	-	-	-
1810	IN/A	802.11g	1	2412(Low)	OFDM	16.55	-	-	-	-
			6	2437(Mid)	OFDM	16.83	0.16	0.00983	1.6	Pass
			11	2462(High)	OFDM	16.75	-	-	-	-

11.2 <u>Right Tilted</u>

Model Name	Camera Module	Mode	Chan.	Freq (MHz)	Modulation type	Conducted Power (dBm)	Power Drift (dB)	Measured 1g SAR (W/kg)	Limits (W/Kg)	Results
			1	2412(Low)	CCK	16.78	-	-	-	-
		802.11b	6	2437(Mid)	CCK	17.92	-	-	-	-
T830	Premier		11	2462(High)	CCK	16.81	-	-	-	-
1650	Fiennei	802.11g	1	2412(Low)	OFDM	16.52	-	-	-	-
			6	2437(Mid)	OFDM	16.81	0.18	0.00463	1.6	Pass
			11	2462(High)	OFDM	16.72	-	-	-	-
			1	2412(Low)	CCK	16.76	-	-	-	-
		802.11b	6	2437(Mid)	CCK	17.85	-	-	-	-
T810	N/A		11	2462(High)	CCK	16.82	-	-	-	-
1810	IN/A	802.11g	1	2412(Low)	OFDM	16.55	-	-	-	-
			6	2437(Mid)	OFDM	16.83	-	-	-	-
			11	2462(High)	OFDM	16.75	-	-	-	-

11.3 Left Cheek

Model Name	Camera Module	Mode	Chan.	Freq (MHz)	Modulation type	Conducted Power (dBm)	Power Drift (dB)	Measured 1g SAR (W/kg)	Limits (W/Kg)	Results
			1	2412(Low)	CCK	16.78	-	-	-	-
		802.11b	6	2437(Mid)	CCK	17.92	-	-	-	-
			11	2462(High)	CCK	16.81	-	-	-	-
	Premier		1	2412(Low)	OFDM	16.52	0.159	0.035	1.6	Pass
T830	1 Termer	802.11g	6	2437(Mid)	OFDM	16.81	0.154	0.041	1.6	Pass
			11	2462(High)	OFDM	16.72	-0.13	0.023	1.6	Pass
		802.11g with BT On	6	2437(Mid)	OFDM	16.81	0.151	0.038	1.6	Pass
	ABICO	802.11g	6	2437(Mid)	OFDM	16.81	-0.15	0.039	1.6	Pass
			1	2412(Low)	ССК	16.76	-	-	-	-
		802.11b	6	2437(Mid)	CCK	17.85	-	-	-	-
T810	N/A		11	2462(High)	CCK	16.82	-	-	-	-
1010	IN/A	802.11g	1	2412(Low)	OFDM	16.55	-0.154	0.03	1.6	Pass
			6	2437(Mid)	OFDM	16.83	0.19	0.031	1.6	Pass
			11	2462(High)	OFDM	16.75	0.168	0.019	1.6	Pass

©2006 SPORTON International Inc. SAR Testing Lab

This report shall not be reproduced except in full, without the written approval of Sporton.

Page 30 of 33 *Rev. 0*2

Test Report No 🔅 FA650602-2-2-02

11.4 Left Tilted

Model Name	Camera Module	Mode	Chan.	Freq (MHz)	Modulation type	Conducted Power (dBm)	Power Drift (dB)	Measured 1g SAR (W/kg)	Limits (W/Kg)	Results
			1	2412(Low)	CCK	16.78	-	-	-	-
		802.11b	6	2437(Mid)	CCK	17.92	-	-	-	-
T830	Premier		11	2462(High)	CCK	16.81	-	-	-	-
1650	Fiennei	802.11g	1	2412(Low)	OFDM	16.52	-	-	-	-
			6	2437(Mid)	OFDM	16.81	-0.153	0.00249	1.6	Pass
			11	2462(High)	OFDM	16.72	-	-	-	-
		802.11b	1	2412(Low)	CCK	16.76	-	-	-	-
			6	2437(Mid)	CCK	17.85	-	-	-	-
T810	N/A		11	2462(High)	CCK	16.82	-	-	-	-
1810	IN/A	802.11g	1	2412(Low)	OFDM	16.55	-	-	-	-
			6	2437(Mid)	OFDM	16.83	-	-	-	-
			11	2462(High)	OFDM	16.75	-	-	-	-

11.5 Keypad Up with Holster 1 Touch

Model Name	Camera Module	Mode	Chan.	Freq (MHz)	Modulation type	Conducted Power (dBm)	Power Drift (dB)	Measured 1g SAR (W/kg)	Limits (W/Kg)	Results	
T830	Premier	802.11b 802.11g	1	2412(Low)	CCK	16.78	-	-	-	-	
			6	2437(Mid)	CCK	17.92	-0.081	0.00727	1.6	Pass	
			11	2462(High)	CCK	16.81	-	-	-	-	
			1	2412(Low)	OFDM	16.52	-	-	-	-	
			6	2437(Mid)	OFDM	16.81	-	-	-	-	
			11	2462(High)	OFDM	16.72	-	-	-	-	
	N/A	802.11b 802.11g	1	2412(Low)	CCK	16.76	-	-	-	-	
			6	2437(Mid)	CCK	17.85	-	-	-	-	
T810				11	2462(High)	CCK	16.82	-	-	-	-
1810			1	2412(Low)	OFDM	16.55	-	-	-	-	
			6	2437(Mid)	OFDM	16.83	-	-	-	-	
			11	2462(High)	OFDM	16.75	-	-	-	-	

11.6 Keypad Down with Holster 1 Touch

Model Name	Camera Module	Mode	Chan.	Freq (MHz)	Modulation type	Conducted Power (dBm)	Power Drift (dB)	Measured 1g SAR (W/kg)	Limits (W/Kg)	Results
	Premier		1	2412(Low)	CCK	16.78	-	-	-	-
		802.11b	6	2437(Mid)	CCK	17.92	-0.123	0.00953	1.6	Pass
Т830			11	2462(High)	CCK	16.81	-	-	-	-
		802.11g	1	2412(Low)	OFDM	16.52	-	-	-	-
			6	2437(Mid)	OFDM	16.81	-	-	-	-
			11	2462(High)	OFDM	16.72	-	-	-	-
	N/A	802.11b 802.11g	1	2412(Low)	CCK	16.76	-	-	-	-
			6	2437(Mid)	CCK	17.85	-	-	-	-
T810			11	2462(High)	CCK	16.82	-	-	-	-
1810			1	2412(Low)	OFDM	16.55	-	-	-	-
			6	2437(Mid)	OFDM	16.83	-	-	-	-
			11	2462(High)	OFDM	16.75	-	-	-	-

©2006 SPORTON International Inc. SAR Testing Lab This report shall not be reproduced except in full, without the written approval of Sporton.

Model	Camera	Mode	Chan.	Freq (MHz)	Modulation	Conducted Power	Power	Measured 1g	Limits	Results	
Name	Module	Module	wioue	Chan.	ricq (minz)	type	(dBm)	Drift (dB)	SAR (W/kg)	(W/Kg)	Results
T830	Premier	802.11b	1	2412(Low)	CCK	16.78	-	-	-	-	
			6	2437(Mid)	CCK	17.92	0.13	0.00733	1.6	Pass	
			11	2462(High)	CCK	16.81	-	-	-	-	
		802.11g	1	2412(Low)	OFDM	16.52	-	-	-	-	
			6	2437(Mid)	OFDM	16.81	-	-	-	-	
			11	2462(High)	OFDM	16.72	-	-	-	-	
	N/A	802.11b 802.11g	1	2412(Low)	CCK	16.76	-	-	-	-	
			6	2437(Mid)	CCK	17.85	-	-	-	-	
T810			11	2462(High)	CCK	16.82	-	-	-	-	
			1	2412(Low)	OFDM	16.55	-	-	-	-	
			6	2437(Mid)	OFDM	16.83	-	-	-	-	
			11	2462(High)	OFDM	16.75	-	-	-	-	

11.7 Keypad Up with Holster 2 Touch

11.8 Keypad Down with Holster 2 Touch

Model Name	Camera Module	Mode	Chan.	Freq (MHz)	Modulation type	Conducted Power (dBm)	Power Drift (dB)	Measured 1g SAR (W/kg)	Limits (W/Kg)	Results
	Premier		1	2412(Low)	ССК	16.78	0.183	0.034	1.6	Pass
		802.11b	6	2437(Mid)	CCK	17.92	0.15	0.012	1.6	Pass
			11	2462(High)	CCK	16.81	0.16	0.00691	1.6	Pass
			1	2412(Low)	OFDM	16.52	-	-	-	-
T830		802.11g 802.11b with BT On	6	2437(Mid)	OFDM	16.81	0.169	0.00814	1.6	Pass
			11	2462(High)	OFDM	16.72	-	-	-	-
			1	2412(Low)	ССК	16.78	-0.175	0.019	1.6	Pass
	ABICO	802.11b	1	2412(Low)	CCK	16.78	-0.16	0.031	1.6	Pass
	N/A	802.11b	1	2412(Low)	ССК	16.76	0.198	0.038	1.6	Pass
			6	2437(Mid)	CCK	17.85	-0.17	0.018	1.6	Pass
T810			11	2462(High)	CCK	16.82	-0.13	0.00921	1.6	Pass
1810			1	2412(Low)	OFDM	16.55	-	-	-	-
		802.11g	6	2437(Mid)	OFDM	16.83	-	-	-	-
			11	2462(High)	OFDM	16.75	-	-	-	-

Remark:

- 1. The largest summation of GSM and WLAN for head SAR are 0.247 W/Kg (T830) and 0.23483 W/Kg (T810) and its position is right cheek.
- 2. The largest summation of GSM/GPRS and WLAN for body SAR are 1.094 W/Kg (T830) and 0.994 W/Kg (T810) and its position is keypad down with holster 2 touch.

Test Engineer : Gordon Lin

12. References

- [1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations"
- [2] IEEE Std. P1528-2003, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", April 21,2003.
- [3] Supplement C (Edition 01-01) to OET Bulletin 65 (Edition 97-01), "Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to RF Emissions", June 2001
- [4] IEEE Std. C95.3-2002, "IEEE Recommended Practice for the Meaurement of Potentially Hazardous Electromagnetic Fields-RF and Microwave", 2002
- [5] IEEE Std. C95.1-1999, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", 1999
- [6] Robert J. Renka, "Multivariate Interpolation Of Large Sets Of Scattered Data", University of Noth Texas ACM Transactions on Mathematical Software, vol. 14, no. 2, June 1988, pp. 139-148
- [7] DAYS4 System Handbook

Appendix A - System Performance Check Data

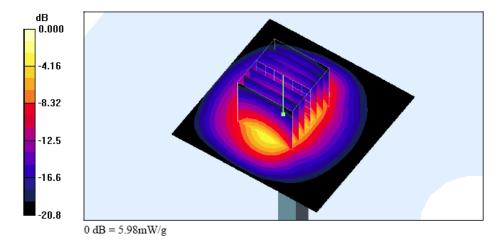
Test Laboratory: Sporton International Inc. SAR Testing Lab

Date/Time: 6/26/2006 8:29:05 AM

System Check_Head_2450MHz_20060626

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:736

Communication System: CW; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium: HSL_2450 Medium parameters used: f = 2450 MHz; $\sigma = 1.86$ mho/m; $\epsilon_r = 38.5$; $\rho = 1000$ kg/m³ Ambient Temperature : 23.2 °C; Liquid Temperature : 21.9 °C


DASY4 Configuration:

- Probe: EX3DV4 - SN3578; ConvF(6.47, 6.47, 6.47); Calibrated: 3/20/2006

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/11/2005
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 161

2450MHz/Area Scan (41x41x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 5.68 mW/g

2450MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 89.7 V/m; Power Drift = -0.037 dB Peak SAR (extrapolated) = 13.6 W/kg SAR(1 g) = 5.46 mW/g; SAR(10 g) = 2.5 mW/g Maximum value of SAR (measured) = 5.98 mW/g

Test Laboratory: Sporton International Inc. SAR Testing Lab

Date/Time: 6/26/2006 1:41:50 PM

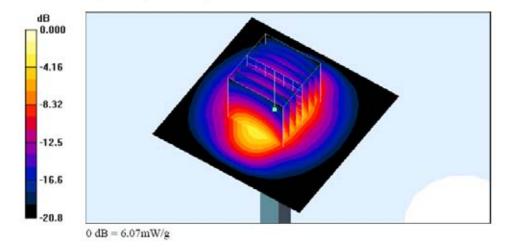
System Check Body 2450MHz 20060626

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:736

Communication System: CW; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium: MSL_2450 Medium parameters used: f = 2450 MHz; $\sigma = 2$ mho/m; $\varepsilon_r = 51.8$; $\rho = 1000$ kg/m³ Ambient Temperature : 23.4 °C: Liquid Temperature : 22.2 °C

DASY4 Configuration:

Probe: ET3DV6 - SN1787; ConvF(4.13, 4.13, 4.13); Calibrated: 5/31/2006
 Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)Sensor-Surface: 4mm (Mechanical Surface Detection)


- Electronics: DAE3 Sn577; Calibrated: 11/11/2005

- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303

- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 161

Pin=100mW/Area Scan (41x41x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 5.95 mW/g

Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 59.4 V/m; Power Drift = -0.058 dB Peak SAR (extrapolated) = 11.5 W/kg SAR(1 g) = 5.36 mW/g; SAR(10 g) = 2.5 mW/g Maximum value of SAR (measured) = 6.07 mW/g

Appendix B - SAR Measurement Data

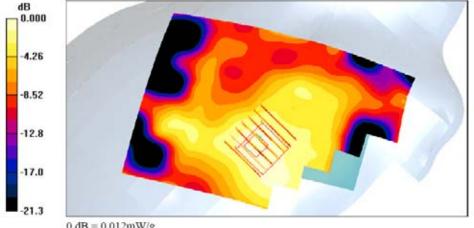
Test Laboratory: Sporton International Inc. SAR Testing Lab

Date/Time: 6/26/2006 8:52:11 AM

Right Cheek_802.11b Ch6_20060626_Premier

DUT: 650602; Type: Pocket LOOX T830

Communication System: 802.11b ; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium: HSL_2450 Medium parameters used: f = 2437 MHz; $\sigma = 1.84$ mho/m; $\epsilon_r = 38.7$; $\rho = 1000$ kg/m³ Ambient Temperature : 23.2 °C ; Liquid Temperature : 21.9 °C


DASY4 Configuration:

- Probe: EX3DV4 - SN3578; ConvF(6.47, 6.47, 6.47); Calibrated: 3/20/2006

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/11/2005
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 161

Ch6/Area Scan (71x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.010 mW/g

Ch6/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 1.85 V/m; Power Drift = 0.157 dB Peak SAR (extrapolated) = 0.017 W/kg SAR(1 g) = 0.00999 mW/g; SAR(10 g) = 0.00576 mW/g Maximum value of SAR (measured) = 0.012 mW/g

0 dB = 0.012 mW/g

Test Laboratory: Sporton International Inc. SAR Testing Lab

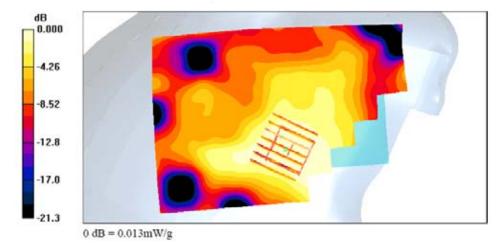
Date/Time: 6/26/2006 9:13:48 AM

Right Cheek_802.11g Ch6_20060626_Premier

DUT: 650602; Type: Pocket LOOX T830

Communication System: 802.11g; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium: HSL_2450 Medium parameters used: f = 2437 MHz; σ = 1.84 mho/m; ϵ_r = 38.7; ρ = 1000 kg/m³ Ambient Temperature : 23.2 °C; Liquid Temperature : 21.9 °C

DASY4 Configuration:


- Probe: EX3DV4 - SN3578; ConvF(6.47, 6.47, 6.47); Calibrated: 3/20/2006

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/11/2005
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303

- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 161

Ch6/Area Scan (71x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.013 mW/g

Ch6/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 1.95 V/m; Power Drift = -0.12 dB Peak SAR (extrapolated) = 0.023 W/kg SAR(1 g) = 0.011 mW/g; SAR(10 g) = 0.00642 mW/g Maximum value of SAR (measured) = 0.013 mW/g

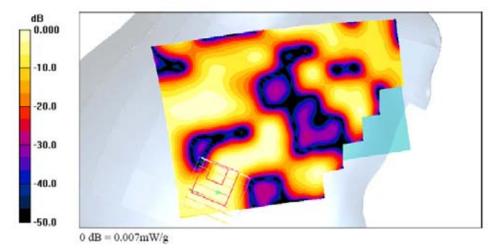
Test Laboratory: Sporton International Inc. SAR Testing Lab

Date/Time: 6/26/2006 9:34:26 AM

Right Tilted_802.11g Ch6_20060626_Premier

DUT: 650602; Type: Pocket LOOX T830

Communication System: 802.11g; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium: HSL_2450 Medium parameters used: f = 2437 MHz; σ = 1.84 mho/m; ϵ_r = 38.7; ρ = 1000 kg/m³ Ambient Temperature : 23.2 °C; Liquid Temperature : 21.9 °C


DASY4 Configuration:

- Probe: EX3DV4 - SN3578; ConvF(6.47, 6.47, 6.47); Calibrated: 3/20/2006

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/11/2005
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 161

Ch6/Area Scan (71x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.010 mW/g

Ch6/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 2.56 V/m; Power Drift = 0.18 dB Peak SAR (extrapolated) = 0.031 W/kg SAR(1 g) = 0.00463 mW/g; SAR(10 g) = 0.00104 mW/g Maximum value of SAR (measured) = 0.007 mW/g

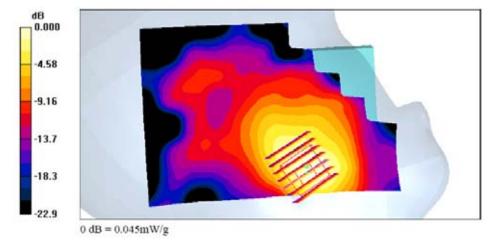
Test Laboratory: Sporton International Inc. SAR Testing Lab

Date/Time: 6/26/2006 9:53:07 AM

Left Cheek_802.11g Ch6_20060626_Premier

DUT: 650602; Type: Pocket LOOX T830

Communication System: 802.11g; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium: HSL_2450 Medium parameters used: f = 2437 MHz; $\sigma = 1.84$ mho/m; $\varepsilon_r = 38.7$; $\rho = 1000$ kg/m³ Ambient Temperature : 23.3 °C; Liquid Temperature : 21.9 °C


DASY4 Configuration:

- Probe: EX3DV4 - SN3578; ConvF(6.47, 6.47, 6.47); Calibrated: 3/20/2006

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/11/2005
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 161

Ch6/Area Scan (71x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.047 mW/g

Ch6/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 1.87 V/m; Power Drift = 0.154 dB Peak SAR (extrapolated) = 0.093 W/kg SAR(1 g) = 0.041 mW/g; SAR(10 g) = 0.021 mW/g Maximum value of SAR (measured) = 0.045 mW/g

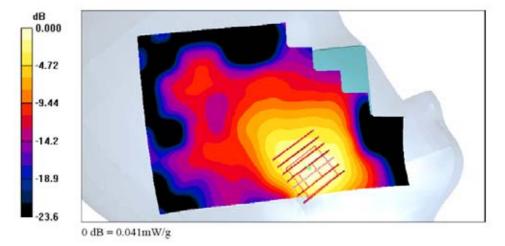
Test Laboratory: Sporton International Inc. SAR Testing Lab

Date/Time: 6/26/2006 11:14:38 AM

Left Cheek_802.11g Ch6_20060626_Premier_Bluetooth On

DUT: 650602; Type: Pocket LOOX T830

Communication System: 802.11g; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium: HSL_2450 Medium parameters used: f = 2437 MHz; $\sigma = 1.84$ mho/m; $\epsilon_r = 38.7$; $\rho = 1000$ kg/m³ Ambient Temperature : 23.4 °C; Liquid Temperature : 22.0 °C


DASY4 Configuration:

Probe: EX3DV4 - SN3578; ConvF(6.47, 6.47, 6.47); Calibrated: 3/20/2006

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/11/2005
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 161

Ch6/Area Scan (71x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.040 mW/g

Ch6/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 1.62 V/m; Power Drift = 0.151 dB Peak SAR (extrapolated) = 0.083 W/kg SAR(1 g) = 0.038 mW/g; SAR(10 g) = 0.019 mW/g Maximum value of SAR (measured) = 0.041 mW/g

Test Laboratory: Sporton International Inc. SAR Testing Lab

Date/Time: 6/26/2006 11:33:20 AM

Left Cheek 802.11g Ch6 20060626 ABICO

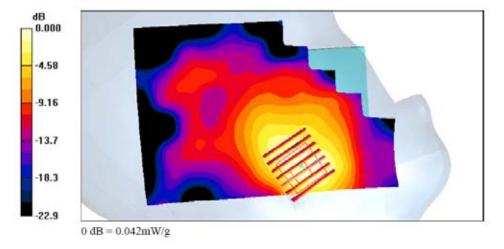
DUT: 650602; Type: Pocket LOOX T830

Communication System: 802.11g; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium: HSL_2450 Medium parameters used: f = 2437 MHz; $\sigma = 1.84$ mho/m; $\epsilon_r = 38.7$; $\rho = 1000$ kg/m³ Ambient Temperature : 23.4 °C : Liquid Temperature : 22.0 °C

DASY4 Configuration:

- Probe: EX3DV4 - SN3578; ConvF(6.47, 6.47, 6.47); Calibrated: 3/20/2006

- Sensor-Surface: 4mm (Mechanical Surface Detection)


- Electronics: DAE3 Sn577; Calibrated: 11/11/2005

- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303

- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 161

Ch6/Area Scan (71x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.046 mW/g

Ch6/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 1.84 V/m; Power Drift = -0.15 dB Peak SAR (extrapolated) = 0.093 W/kg SAR(1 g) = 0.039 mW/g; SAR(10 g) = 0.02 mW/g Maximum value of SAR (measured) = 0.042 mW/g

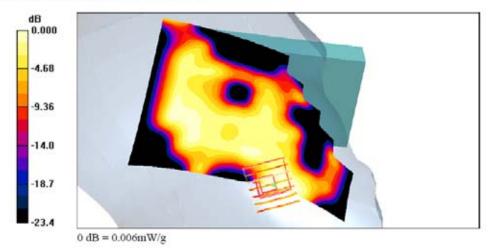
Test Laboratory: Sporton International Inc. SAR Testing Lab

Date/Time: 6/26/2006 10:12:32 AM

Left Tilted 802.11g Ch6 20060626 Premier

DUT: 650602; Type: Pocket LOOX T830

Communication System: 802.11g; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium: HSL_2450 Medium parameters used: f = 2437 MHz; $\sigma = 1.84$ mho/m; $\epsilon_r = 38.7$; $\rho = 1000$ kg/m³ Ambient Temperature : 23.3 °C; Liquid Temperature : 22.0 °C


DASY4 Configuration:

- Probe: EX3DV4 - SN3578; ConvF(6.47, 6.47, 6.47); Calibrated: 3/20/2006

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/11/2005
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 161

Ch6/Area Scan (71x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.007 mW/g

Ch6/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 1.72 V/m; Power Drift = -0.153 dB Peak SAR (extrapolated) = 0.014 W/kg SAR(1 g) = 0.00249 mW/g; SAR(10 g) = 0.00105 mW/g Maximum value of SAR (measured) = 0.006 mW/g

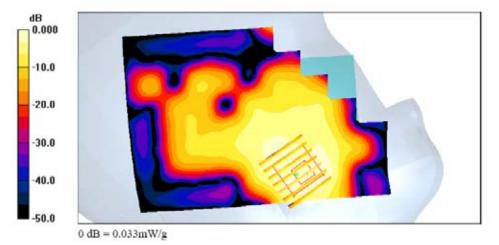
Test Laboratory: Sporton International Inc. SAR Testing Lab

Date/Time: 6/26/2006 12:19:56 PM

Left Cheek_802.11g Ch6_20060626

DUT: 650602; Type: Pocket LOOX T810

Communication System: 802.11g: Frequency: 2437 MHz;Duty Cycle: 1:1 Medium: HSL_2450 Medium parameters used: f = 2437 MHz; σ = 1.84 mho/m; ϵ_r = 38.7; ρ = 1000 kg/m³ Ambient Temperature : 23.5 °C: Liquid Temperature : 22.0 °C


DASY4 Configuration:

- Probe: EX3DV4 - SN3578; ConvF(6.47, 6.47, 6.47); Calibrated: 3/20/2006

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/11/2005
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 161

Ch6/Area Scan (71x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.039 mW/g

Ch6/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 1.49 V/m; Power Drift = 0.19 dB Peak SAR (extrapolated) = 0.078 W/kg SAR(1 g) = 0.031 mW/g; SAR(10 g) = 0.015 mW/g Maximum value of SAR (measured) = 0.033 mW/g

©2006 SPORTON International Inc. SAR Testing Lab This report shall not be reproduced except in full, without the written approval of Sporton.

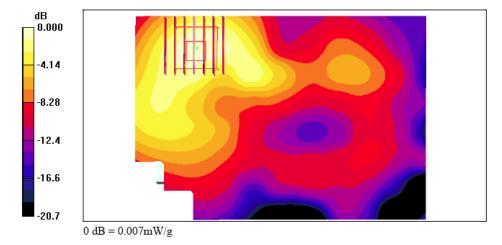
Test Laboratory: Sporton International Inc. SAR Testing Lab

Date/Time: 6/26/2006 2:02:15 PM

Body_802.11b Ch6_Keypad Up with Holster 1 Touch_20060626_Premier

DUT: 650602; Type: Pocket LOOX T830

Communication System: 802.11b ; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium: MSL_2450 Medium parameters used: f = 2437 MHz; $\sigma = 1.99$ mho/m; $\epsilon_r = 51.8$; $\rho = 1000$ kg/m³ Ambient Temperature : 23.4 °C; Liquid Temperature : 22.2 °C


DASY4 Configuration:

- Probe: ET3DV6 - SN1787; ConvF(4.13, 4.13, 4.13); Calibrated: 5/31/2006

- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/11/2005
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 161

Ch6/Area Scan (71x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.010 mW/g

 $\label{eq:ch6/Zoom Scan} Ch6/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 0.667 V/m; Power Drift = -0.081 dB Peak SAR (extrapolated) = 0.033 W/kg SAR(1 g) = 0.00727 mW/g; SAR(10 g) = 0.0026 mW/g Maximum value of SAR (measured) = 0.007 mW/g \\$

Test Laboratory: Sporton International Inc. SAR Testing Lab Date/T

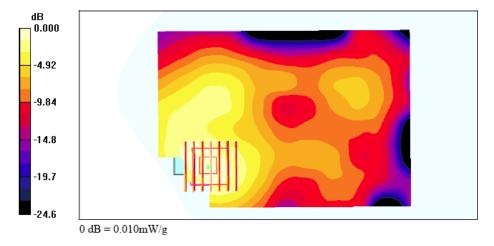
Date/Time: 6/26/2006 2:23:39 PM

Body_802.11b Ch6_Keypad Down with Holster 1 Touch_20060626_Premier

DUT: 650602; Type: Pocket LOOX T830

Communication System: 802.11b ; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium: MSL_2450 Medium parameters used: f = 2437 MHz; σ = 1.99 mho/m; ϵ_r = 51.8; ρ = 1000 kg/m³ Ambient Temperature : 23.3 °C; Liquid Temperature : 22.2 °C

DASY4 Configuration:


- Probe: ET3DV6 - SN1787; ConvF(4.13, 4.13, 4.13); Calibrated: 5/31/2006

- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/11/2005
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303

- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 161

Ch6/Area Scan (71x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.013 mW/g

 $\label{eq:ch6/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 0.675 V/m; Power Drift = -0.19 dB Peak SAR (extrapolated) = 0.039 W/kg SAR(1 g) = 0.00953 mW/g; SAR(10 g) = 0.0048 mW/g Maximum value of SAR (measured) = 0.010 mW/g \\$

Test Laboratory: Sporton International Inc. SAR Testing Lab Date

Date/Time: 6/26/2006 2:45:06 PM

Body_802.11b Ch6_Keypad Up with Holster 2 Touch_20060626_Premier

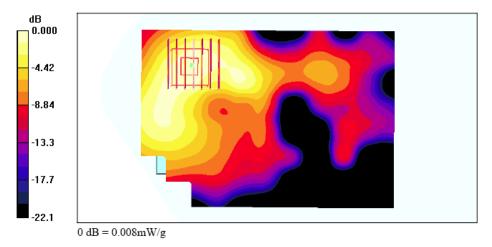
DUT: 650602; Type: Pocket LOOX T830

Communication System: 802.11b ; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium: MSL_2450 Medium parameters used: f = 2437 MHz; $\sigma = 1.99$ mho/m; $\epsilon_r = 51.8$; $\rho = 1000$ kg/m³ Ambient Temperature : 23.3 °C; Liquid Temperature : 22.2 °C

DASY4 Configuration:

- Probe: ET3DV6 - SN1787; ConvF(4.13, 4.13, 4.13); Calibrated: 5/31/2006

- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)


- Electronics: DAE3 Sn577; Calibrated: 11/11/2005

- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303

- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 161

Ch6/Area Scan (71x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.010 mW/g

 $\label{eq:ch6/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 0.720 V/m; Power Drift = 0.13 dB Peak SAR (extrapolated) = 0.027 W/kg SAR(1 g) = 0.00733 mW/g; SAR(10 g) = 0.00349 mW/g Maximum value of SAR (measured) = 0.008 mW/g$

Test Laboratory: Sporton International Inc. SAR Testing Lab Date

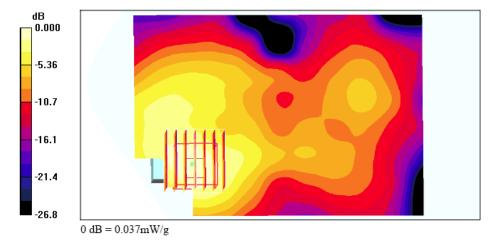
Date/Time: 6/26/2006 3:49:32 PM

Body_802.11b Ch1_Keypad Down with Holster 2 Touch_20060626_Premier

DUT: 650602; Type: Pocket LOOX T830

Communication System: 802.11b ; Frequency: 2412 MHz;Duty Cycle: 1:1 Medium: MSL_2450 Medium parameters used: f = 2412 MHz; $\sigma = 1.95$ mho/m; $\epsilon_r = 51.6$; $\rho = 1000$ kg/m³ Ambient Temperature : 23.2 °C; Liquid Temperature : 22.2 °C

DASY4 Configuration:


- Probe: ET3DV6 - SN1787; ConvF(4.13, 4.13, 4.13); Calibrated: 5/31/2006

- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/11/2005
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303

- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 161

Ch1/Area Scan (71x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.036 mW/g

 $\label{eq:ch1/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 1.69 V/m; Power Drift = 0.183 dB Peak SAR (extrapolated) = 0.067 W/kg SAR(1 g) = 0.034 mW/g; SAR(10 g) = 0.018 mW/g Maximum value of SAR (measured) = 0.037 mW/g \\$

Test Laboratory: Sporton International Inc. SAR Testing Lab Date/T

Date/Time: 6/26/2006 3:28:18 PM

Body_802.11g Ch6_Keypad Down with Holster 2 Touch_20060626_Premier

DUT: 650602; Type: Pocket LOOX T830

Communication System: 802.11g; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium: MSL_2450 Medium parameters used: f = 2437 MHz; $\sigma = 1.99$ mho/m; $\epsilon_r = 51.8$; $\rho = 1000$ kg/m³ Ambient Temperature : 23.2 °C; Liquid Temperature : 22.2 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(4.13, 4.13, 4.13); Calibrated: 5/31/2006
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/11/2005
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 161

Ch6/Area Scan (71x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.029 mW/g

 $\label{eq:ch6/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 0.591 V/m; Power Drift = 0.169 dB Peak SAR (extrapolated) = 0.022 W/kg SAR(1 g) = 0.00814 mW/g; SAR(10 g) = 0.00416 mW/g Maximum value of SAR (measured) = 0.009 mW/g$

Test Laboratory: Sporton International Inc. SAR Testing Lab

Date/Time: 6/26/2006 4:33:58 PM

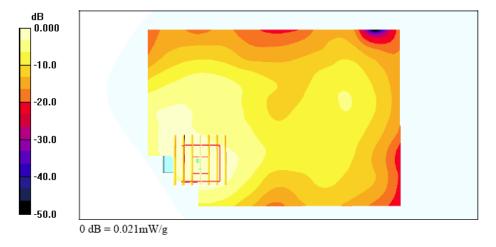
Body_802.11b Ch1_Keypad Down with Holster 2 Touch_20060626_Premier_BT On

DUT: 650602; Type: Pocket LOOX T830

Communication System: 802.11b ; Frequency: 2412 MHz;Duty Cycle: 1:1 Medium: MSL_2450 Medium parameters used: f = 2412 MHz; $\sigma = 1.95$ mho/m; $\epsilon_r = 51.6$; $\rho = 1000$ kg/m³ Ambient Temperature : 23.2 °C; Liquid Temperature : 22.2 °C

DASY4 Configuration:

- Probe: ET3DV6 - SN1787; ConvF(4.13, 4.13, 4.13); Calibrated: 5/31/2006


- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/11/2005

- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303

- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 161

Ch1/Area Scan (71x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.020 mW/g

Ch1/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 1.14 V/m; Power Drift = -0.175 dB Peak SAR (extrapolated) = 0.053 W/kg SAR(1 g) = 0.019 mW/g; SAR(10 g) = 0.00947 mW/g Maximum value of SAR (measured) = 0.021 mW/g

Test Laboratory: Sporton International Inc. SAR Testing Lab Date/Time: 6

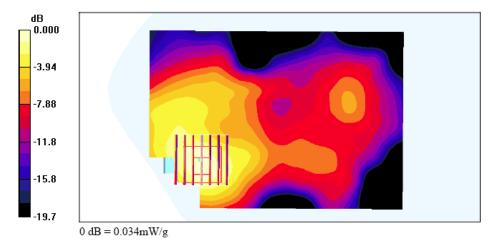
Date/Time: 6/26/2006 4:55:36 PM

Body_802.11b Ch1_Keypad Down with Holster 2 Touch_20060626_ABICO

DUT: 650602; Type: Pocket LOOX T830

Communication System: 802.11b ; Frequency: 2412 MHz;Duty Cycle: 1:1 Medium: MSL_2450 Medium parameters used: f = 2412 MHz; σ = 1.95 mho/m; ϵ_r = 51.6; ρ = 1000 kg/m³ Ambient Temperature : 23.2 °C; Liquid Temperature : 22.2 °C

DASY4 Configuration:


- Probe: ET3DV6 - SN1787; ConvF(4.13, 4.13, 4.13); Calibrated: 5/31/2006

- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/11/2005
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303

- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 161

Ch1/Area Scan (71x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.033 mW/g

 $\label{eq:ch1/Zoom Scan} Ch1/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 1.69 V/m; Power Drift = -0.16 dB Peak SAR (extrapolated) = 0.061 W/kg SAR(1 g) = 0.031 mW/g; SAR(10 g) = 0.017 mW/g Maximum value of SAR (measured) = 0.034 mW/g \\$

Test Laboratory: Sporton International Inc. SAR Testing Lab D

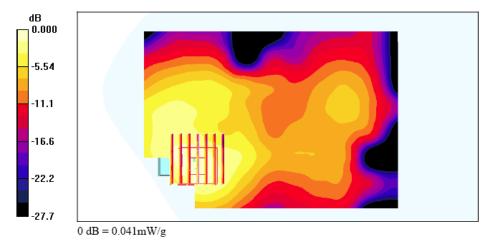
Date/Time: 6/26/2006 5:19:01 PM

Body_802.11b Ch1_Keypad Down with Holster 2 Touch_20060626

DUT: 650602; Type: Pocket LOOX T810

Communication System: 802.11b ; Frequency: 2412 MHz;Duty Cycle: 1:1 Medium: MSL_2450 Medium parameters used: f = 2412 MHz; $\sigma = 1.95$ mho/m; $\epsilon_r = 51.6$; $\rho = 1000$ kg/m³ Ambient Temperature : 23.1 °C; Liquid Temperature : 22.2 °C

DASY4 Configuration:


- Probe: ET3DV6 - SN1787; ConvF(4.13, 4.13, 4.13); Calibrated: 5/31/2006

- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/11/2005
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303

- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 161

Ch1/Area Scan (71x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.039 mW/g

 $\label{eq:ch1/Zoom Scan} Ch1/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 1.49 V/m; Power Drift = 0.198 dB Peak SAR (extrapolated) = 0.081 W/kg SAR(1 g) = 0.038 mW/g; SAR(10 g) = 0.020 mW/g Maximum value of SAR (measured) = 0.041 mW/g \\$

Test Laboratory: Sporton International Inc. SAR Testing Lab

Date/Time: 6/26/2006 9:53:07 AM

Left Cheek_802.11g Ch6_20060626_Premier_2D

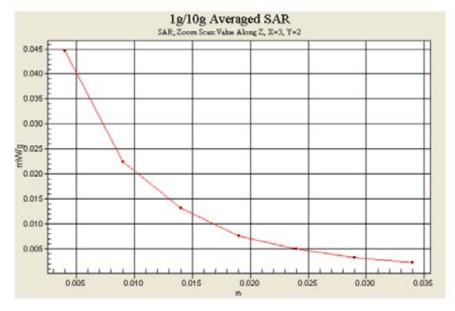
DUT: 650602; Type: Pocket LOOX T830

Communication System: 802.11g; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium: HSL_2450 Medium parameters used: f = 2437 MHz; $\sigma = 1.84$ mho/m; $\epsilon_r = 38.7$; $\rho = 1000$ kg/m³ Ambient Temperature : 23.3 °C; Liquid Temperature : 21.9 °C

DASY4 Configuration:

- Probe: EX3DV4 - SN3578; ConvF(6.47, 6.47, 6.47); Calibrated: 3/20/2006

- Sensor-Surface: 4mm (Mechanical Surface Detection)


- Electronics: DAE3 Sn577; Calibrated: 11/11/2005

- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303

- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 161

Ch6/Area Scan (71x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.047 mW/g

Ch6/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 1.87 V/m; Power Drift = 0.154 dB Peak SAR (extrapolated) = 0.093 W/kg SAR(1 g) = 0.041 mW/g; SAR(10 g) = 0.021 mW/g Maximum value of SAR (measured) = 0.045 mW/g

Test Laboratory: Sporton International Inc. SAR Testing Lab

Date/Time: 6/26/2006 12:19:56 PM

Left Cheek_802.11g Ch6_20060626_2D

DUT: 650602; Type: Pocket LOOX T810

Communication System: 802.11g; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium: HSL_2450 Medium parameters used: f = 2437 MHz; $\sigma = 1.84$ mho/m; $\epsilon_r = 38.7$; $\rho = 1000$ kg/m³ Ambient Temperature : 23.5 °C: Liquid Temperature : 22.0 °C

DASY4 Configuration:

- Probe: EX3DV4 - SN3578; ConvF(6.47, 6.47, 6.47); Calibrated: 3/20/2006

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn577; Calibrated: 11/11/2005

- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303

- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 161

Ch6/Area Scan (71x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.039 mW/g

Ch6/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 1.49 V/m; Power Drift = 0.19 dB Peak SAR (extrapolated) = 0.078 W/kg SAR(1 g) = 0.031 mW/g; SAR(10 g) = 0.015 mW/g Maximum value of SAR (measured) = 0.033 mW/g

Test Laboratory: Sporton International Inc. SAR Testing Lab

Date/Time: 6/26/2006 3:49:32 PM

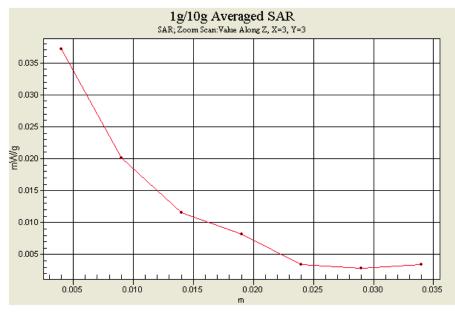
Body_802.11b Ch1_Keypad Down with Holster 2 Touch_20060626_Premier_2D

DUT: 650602; Type: Pocket LOOX T830

Communication System: 802.11b ; Frequency: 2412 MHz;Duty Cycle: 1:1 Medium: MSL_2450 Medium parameters used: f = 2412 MHz; $\sigma = 1.95$ mho/m; $\epsilon_r = 51.6$; $\rho = 1000$ kg/m³ Ambient Temperature : 23.2 °C; Liquid Temperature : 22.2 °C

DASY4 Configuration:

- Probe: ET3DV6 - SN1787; ConvF(4.13, 4.13, 4.13); Calibrated: 5/31/2006


- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

- Electronics: DAE3 Sn577; Calibrated: 11/11/2005
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303

- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 161

Ch1/Area Scan (71x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.036 mW/g

Ch1/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 1.69 V/m; Power Drift = 0.183 dB Peak SAR (extrapolated) = 0.067 W/kg SAR(1 g) = 0.034 mW/g; SAR(10 g) = 0.018 mW/g Maximum value of SAR (measured) = 0.037 mW/g

Test Laboratory: Sporton International Inc. SAR Testing Lab

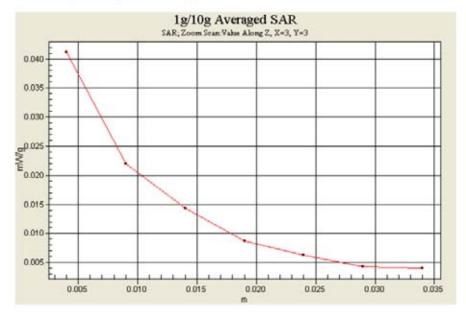
Date/Time: 6/26/2006 5:19:01 PM

Body_802.11b Ch1_Keypad Down with Holster 2 Touch_20060626_2D

DUT: 650602; Type: Pocket LOOX T810

Communication System: 802.11b ; Frequency: 2412 MHz;Duty Cycle: 1:1 Medium: MSL_2450 Medium parameters used: f = 2412 MHz; $\sigma = 1.95$ mho/m; $\epsilon_r = 51.6$; $\rho = 1000$ kg/m³ Ambient Temperature : 23.1 °C; Liquid Temperature : 22.2 °C

DASY4 Configuration:


- Probe: ET3DV6 - SN1787; ConvF(4.13, 4.13, 4.13); Calibrated: 5/31/2006

- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/11/2005
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303

- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 161

Ch1/Area Scan (71x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.039 mW/g

Ch1/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 1.49 V/m; Power Drift = 0.198 dB Peak SAR (extrapolated) = 0.081 W/kg SAR(1 g) = 0.038 mW/g; SAR(10 g) = 0.020 mW/g Maximum value of SAR (measured) = 0.041 mW/g

Appendix C – Calibration Data

Client

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Sporton (Auden)

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 108

Certificate No: D2450V2-736_Jul05

bject	D2450V2 - SN: 7	36	
Calibration procedure(s)	QA CAL-05.v6 Calibration proce	dure for dipole validation kits	
aibration date	July 12, 2005		
ondition of the calibrated item	In Tolerance		
		ry facility: environment temperature (22 \pm 3)*C an	d humidity < 70%.
aibration Equipment used (Mi	 E chibcal for calibration) 		
	ID #	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
rimary Standards	115	Cai Date (Calibrated by, Certificate No.) 12-Oct-04 (METAS, No. 251-00412)	Scheduled Calibration Oct-05
rimary Standards ower meter EPM E442 ower sensor HP 8481A	ID # GB37480704 US37292783	12-Oct-04 (METAS, No. 251-00412) 12-Oct-04 (METAS, No. 251-00412)	Oct-05 Oct-05
rimary Standards ower meter EPM E442 ower sensor HP 8481A eference 20 dB Attenuator	ID # GB37480704 US37292783 SN: 5085 (20g)	12-Oct-04 (METAS, No. 251-00412) 12-Oct-04 (METAS, No. 251-00412) 10-Aug-04 (METAS, No 251-00402)	Oct-05 Oct-05 Aug-05
rimary Standards ower meter EPM E442 ower sensor HP 8481A elerence 20 dB Attenuator elerence 10 dB Attenuator	ID # GB37480704 US37292783 SN: 5085 (20g) SN: 5047.2 (10r)	12-Oct-04 (METAS, No. 251-00412) 12-Oct-04 (METAS, No. 251-00412) 10-Aug-04 (METAS, No 251-00402) 10-Aug-04 (METAS, No 251-00402)	Oct-05 Oct-05 Aug-05 Aug-05
rimary Standards ower meter EPM E442 ower sensor HP 8481A eference 20 dB Attenuator eference 10 dB Attenuator eference Probe ES3DV2	ID # GB37480704 US37292783 SN: 5085 (20g) SN: 5047.2 (10r) SN 3025	12-Oct-04 (METAS, No. 251-00412) 12-Oct-04 (METAS, No. 251-00412) 10-Aug-04 (METAS, No 251-00402) 10-Aug-04 (METAS, No 251-00402) 28-Oct-04 (SPEAG, No. ES3-3025_Oct04)	Oct-05 Oct-05 Aug-05 Aug-05 Oct-05
rimary Standards ower meter EPM E442 ower sensor HP 8481A elerence 20 dB Attenuator elerence 10 dB Attenuator elerence Probe ES3DV2	ID # GB37480704 US37292783 SN: 5085 (20g) SN: 5047.2 (10r)	12-Oct-04 (METAS, No. 251-00412) 12-Oct-04 (METAS, No. 251-00412) 10-Aug-04 (METAS, No 251-00402) 10-Aug-04 (METAS, No 251-00402)	Oct-05 Oct-05 Aug-05 Aug-05
rrimary Standards Power meter EPM E442 Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ES3DV2 DAE4	ID # GB37480704 US37292783 SN: 5085 (20g) SN: 5047.2 (10r) SN 3025	12-Oct-04 (METAS, No. 251-00412) 12-Oct-04 (METAS, No. 251-00412) 10-Aug-04 (METAS, No 251-00402) 10-Aug-04 (METAS, No 251-00402) 28-Oct-04 (SPEAG, No. ES3-3025_Oct04)	Oct-05 Oct-05 Aug-05 Aug-05 Oct-05
Primary Standards Power meter EPM E442 Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ES3DV2 JAE4 Secondary Standards	ID # GB37480704 US37292783 SN: 5085 (20g) SN: 5047.2 (10r) SN 3025 SN 601	12-Oct-04 (METAS, No. 251-00412) 12-Oct-04 (METAS, No. 251-00412) 10-Aug-04 (METAS, No 251-00402) 10-Aug-04 (METAS, No 251-00402) 29-Oct-04 (SPEAG, No. ES3-3025_Oct04) 07-Jan-05 (SPEAG, No. DAE4-601_Jan05)	Oct-05 Oct-05 Aug-05 Aug-05 Oct-05 Jan-06
rimary Standards lower meter EPM E442 lower sensor HP 8481A leference 20 dB Attenuator leference 10 dB Attenuator leference Probe ES3DV2 VAE4 lecondary Standards lower sensor HP 8481A	ID # GB37480704 US37292783 SN: 5085 (20g) SN: 5047.2 (10r) SN 3025 SN 601 ID #	12-Oct-04 (METAS, No. 251-00412) 12-Oct-04 (METAS, No. 251-00412) 10-Aug-04 (METAS, No 251-00402) 10-Aug-04 (METAS, No 251-00402) 29-Oct-04 (SPEAG, No. ES3-3025_Oct04) 07-Jan-05 (SPEAG, No. DAE4-601_Jan05) Check Date (in house)	Oct-05 Oct-05 Aug-05 Aug-05 Oct-05 Jan-06 Scheduled Check
Primary Standards Power meter EPM E442 Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ES3DV2 DAE4 Recondary Standards Power sensor HP 8481A Ref generator R&S SML-03	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 3025 SN 601 ID # MY41092317	12-Oct-04 (METAS, No. 251-00412) 12-Oct-04 (METAS, No. 251-00412) 10-Aug-04 (METAS, No 251-00402) 10-Aug-04 (METAS, No 251-00402) 29-Oct-04 (SPEAG, No. ES3-3025_Oct04) 07-Jan-05 (SPEAG, No. DAE4-601_Jan05) Check Date (In house) 18-Oct-02 (SPEAG, in house check Oct-03)	Oct-05 Oct-05 Aug-05 Aug-05 Oct-05 Jan-06 Scheduled Check In house check: Oct-05
Calibration Equipment used (Mi Primary Standards Power meter EPM E442 Power sensor HP 8481A Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SML-03 letwork Analyzer HP 8753E	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5086 (20g) SN: 3005 SN 801 ID # MY41092317 100698 US37390585 54206	12-Oct-04 (METAS, No. 251-00412) 12-Oct-04 (METAS, No. 251-00412) 10-Aug-04 (METAS, No. 251-00402) 10-Aug-04 (METAS, No. 251-00402) 29-Oct-04 (SPEAG, No. ES3-3025_Oct04) 07-Jan-05 (SPEAG, No. DAE4-601_Jan05) Check Date (In house) 18-Oct-02 (SPEAG, In house check Oct-03) 27-Mar-02 (SPEAG, In house check Dec-03) 18-Oct-01 (SPEAG, In house check Nov-04)	Oct-05 Oct-05 Aug-05 Oct-05 Jan-06 Scheduled Check In house check: Oct-05 In house check: Dec-05 In house check: Nav-05
Primary Standards Power meter EPM E442 Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SML-03 letwork Analyzer HP 8753E	ID # GB37480704 US37292783 SN: 5085 (20g) SN: 5047.2 (10r) SN 3025 SN 601 ID # MY41092317 100598 US37390585 S4206 Name	12-Oct-04 (METAS, No. 251-00412) 12-Oct-04 (METAS, No. 251-00412) 10-Aug-04 (METAS, No. 251-00402) 10-Aug-04 (METAS, No. 251-00402) 29-Oct-04 (SPEAG, No. ES3-3025_Oct04) 07-Jan-05 (SPEAG, No. DAE4-601_Jan05) Check Date (In house) 18-Oct-02 (SPEAG, In house check Oct-03) 27-Mar-02 (SPEAG, In house check Oct-03) 18-Oct-01 (SPEAG, In house check Nov-04) Function	Oct-05 Oct-05 Aug-05 Oct-05 Jan-06 Scheduled Check In house check: Oct-05 In house check: Dec-05 In house check: Nov-05 Signature
rimary Standards lower meter EPM E442 ower sensor HP 8481A leterence 20 dB Attenuator leterence 10 dB Attenuator leterence Probe ES3DV2 WAE4 econdary Standards lower sensor HP 8481A if generator R&S SML-03 letwork Analyzer HP 8753E	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5086 (20g) SN: 3005 SN 801 ID # MY41092317 100698 US37390585 54206	12-Oct-04 (METAS, No. 251-00412) 12-Oct-04 (METAS, No. 251-00412) 10-Aug-04 (METAS, No. 251-00402) 10-Aug-04 (METAS, No. 251-00402) 29-Oct-04 (SPEAG, No. ES3-3025_Oct04) 07-Jan-05 (SPEAG, No. DAE4-601_Jan05) Check Date (In house) 18-Oct-02 (SPEAG, In house check Oct-03) 27-Mar-02 (SPEAG, In house check Dec-03) 18-Oct-01 (SPEAG, In house check Nov-04)	Oct-05 Oct-05 Aug-05 Oct-05 Jan-06 Scheduled Check In house check: Oct-05 In house check: Dec-05 In house check: Nav-05
Primary Standards Power meter EPM E442 Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ES3DV2 JAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SML-03 Network Analyzer HP 8753E	ID # GB37480704 US37292783 SN: 5085 (20g) SN: 5047.2 (10r) SN 3025 SN 601 ID # MY41092317 100698 US37390585 S4206 Name Mike Melli	12-Oct-04 (METAS, No. 251-00412) 12-Oct-04 (METAS, No. 251-00412) 10-Aug-04 (METAS, No. 251-00402) 10-Aug-04 (METAS, No. 251-00402) 29-Oct-04 (SPEAG, No. ES3-3025_Oct04) 07-Jan-05 (SPEAG, No. DAE4-601_Jan05) Check Date (In house) 18-Oct-02 (SPEAG, in house check Oct-03) 27-Mar-02 (SPEAG, in house check Oct-03) 18-Oct-01 (SPEAG, in house check Nov-04) Function Laboratory Technician	Oct-05 Oct-05 Aug-05 Aug-05 Oct-05 Jan-06 Scheduled Check In house check: Oct-05 In house check: Dec-05 In house check: Nov-05 Signature
Primary Standards Power meter EPM E442 Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SML-03 letwork Analyzer HP 8753E	ID # GB37480704 US37292783 SN: 5085 (20g) SN: 5047.2 (10r) SN 3025 SN 601 ID # MY41092317 100598 US37390585 S4206 Name	12-Oct-04 (METAS, No. 251-00412) 12-Oct-04 (METAS, No. 251-00412) 10-Aug-04 (METAS, No. 251-00402) 10-Aug-04 (METAS, No. 251-00402) 29-Oct-04 (SPEAG, No. ES3-3025_Oct04) 07-Jan-05 (SPEAG, No. DAE4-601_Jan05) Check Date (In house) 18-Oct-02 (SPEAG, In house check Oct-03) 27-Mar-02 (SPEAG, In house check Oct-03) 18-Oct-01 (SPEAG, In house check Nov-04) Function	Oct-05 Oct-05 Aug-05 Oct-05 Jan-06 Scheduled Check In house check: Oct-05 In house check: Dec-05 In house check: Nov-05 Signature

Certificate No: D2450V2-736_Jul05

Page 1 of 9

©2006 SPORTON International Inc. SAR Testing Lab

This report shall not be reproduced except in full, without the written approval of Sporton.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

С

s

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques*, December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D2450V2-736 Jul05

Page 2 of 9

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY4	V4.6
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Area Scan resolution	dx, dy = 15 mm	
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.5 ± 6 %	1.73 mho/m ± 6 %
Head TSL temperature during test	(22.0 ± 0.2) *C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	condition	
SAR measured	250 mW input power	13.1 mW / g
SAR normalized	normalized to 1W	52.4 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	52.8 mW / g ± 17.0 % (k=2)
SAR averaged over 10 cm ² (10 g) of Head TSL	condition	
SAR averaged over 10 cm ² (10 g) of Head TSL SAR measured	condition 250 mW input power	6.13 mW / g
		6.13 mW /g 24.5 mW /g

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Certificate No: D2450V2-736_Jul05

Page 3 of 9

Body TSL parameters

The following parameters and calculations were applied.

4

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.2 ± 0.2) °C	52.5 ± 6 %	2.02 mho/m ± 8 %
Body TSL temperature during test	(22.2 ± 0.2) *C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	condition	
SAR measured	250 mW input power	13.5 mW / g
SAR normalized	normalized to 1W	54.0 mW / g
SAR for nominal Body TSL parameters 2	normalized to 1W	52.8 mW/g±17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.26 mW / g
SAR normalized	normalized to 1W	25.0 mW / g
SAR for nominal Body TSL parameters 2	normalized to 1W	24.5 mW / g ± 16.5 % (k=2)

² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Certificate No: D2450V2-736_Jul05

Page 4 of 9

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.6 Ω + 3.7 jΩ	
Return Loss	-26.0 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.9 Ω + 5.3 jΩ	
Return Loss	- 25.5 dB	

General Antenna Parameters and Design

4

Electrical Delay (one direction)	1.157 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	August 26, 2003	

Certificate No: D2450V2-736_Jul05

Page 5 of 9

This report shall not be reproduced except in full, without the written approval of Sporton.

DASY4 Validation Report for Head TSL

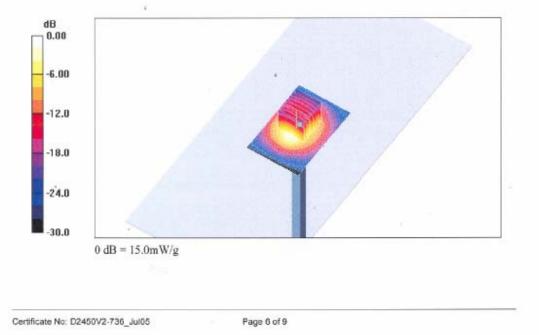
Date/Time: 12.07.2005 12:53:00

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN736

Communication System: CW-2450; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: HSL U10 BB Medium parameters used: f = 2450 MHz; σ = 1.73 mho/m; ϵ_e = 38.5; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment)

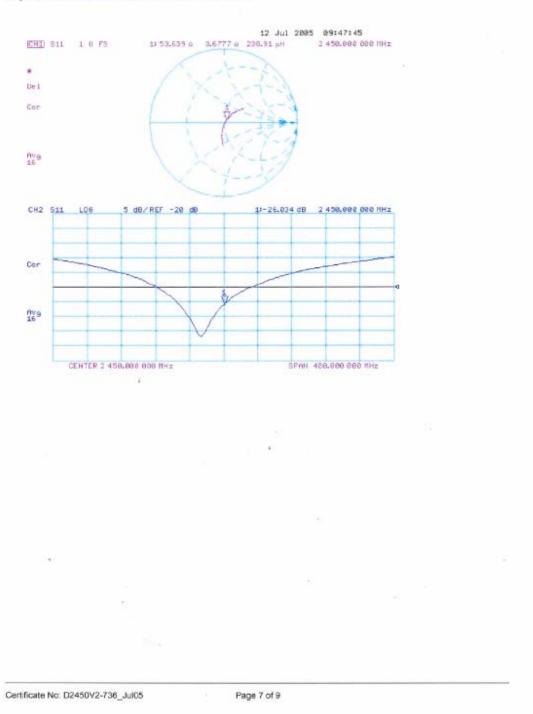
DASY4 Configuration:


- Probe: ES3DV2 SN3025; ConvF(4.4, 4.4, 4.4); Calibrated: 29.10.2004
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 22.07.2004
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA
- Measurement SW: DASY4, V4.5 Build 30; Postprocessing SW: SEMCAD, V1.8 Build 149

Pin = 250 mW; d = 10 mm 2/Area Scan (41x61x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 16.6 mW/g


Pin = 250 mW; d = 10 mm 2/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 91.6 V/m; Power Drift = 0.077 dB Peak SAR (extrapolated) = 27.0 W/kg SAR(1 g) = 13.1 mW/g; SAR(10 g) = 6.13 mW/g Maximum value of SAR (measured) = 15.0 mW/g

This report shall not be reproduced except in full, without the written approval of Sporton.

Impedance Measurement Plot for Head TSL

DASY4 Validation Report for Body TSL

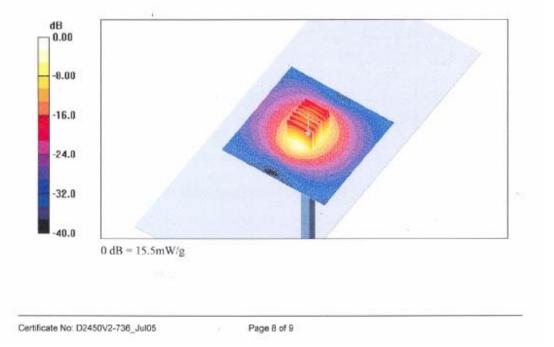
Date/Time: 11.07.2005 17:33:35

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN736

Communication System: CW-2450; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: MSL 2450 Medium parameters used: f = 2450 MHz; σ = 2.02 mho/m; ϵ_r = 52.5; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

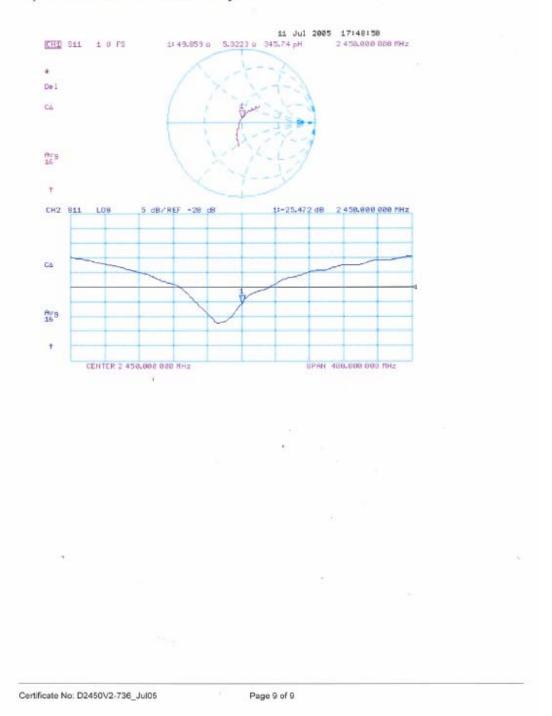

- Probe: ES3DV2 SN3025; ConvF(4.13, 4.13, 4.13); Calibrated: 29.10.2004
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601: Calibrated: 22.07.2004
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA
- Measurement SW: DASY4, V4.6 Build 4; Postprocessing SW: SEMCAD, V1.8 Build 149

Pin = 250 mW; d = 10 mm/Area Scan (81x81x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 15.8 mW/g

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx-5mm, dy-5mm, dz-5mm Reference Value = 85.9 V/m; Power Drift = 0.160 dB Peak SAR (extrapolated) = 27.6 W/kg SAR(1 g) = 13.5 mW/g; SAR(10 g) = 6.26 mW/g Maximum value of SAR (measured) = 15.5 mW/g



©2006 SPORTON International Inc. SAR Testing Lab

This report shall not be reproduced except in full, without the written approval of Sporton.

Impedance Measurement Plot for Body TSL

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zuric	r y of .h, Switzerland		chweizerischer Kalibrierdienst ervice suisse d'étalonnage ervizio svizzero di taratura wiss Calibration Service				
Accredited by the Swiss Federal (The Swiss Accreditation Servic	김 사람이 잘 다 바다 아파가 같이 집에 가지 않는다.		.: SCS 108				
Multilateral Agreement for the r	ecognition of calibratio	n certificates	T2 4707 May 06				
Client Sporton (Aude			ET3-1787_May06				
CALIBRATION C	ERTIFICAT	E					
Object	ET3DV6 - SN: 1	787					
Calibration procedure(s)	QA CAL-01.v5 Calibration proc	edure for dosimetric E-field probes					
Calibration date:	May 31, 2006	May 31, 2006					
Condition of the collected item	ndition of the calibrated item In Tolerance						
CONDITION OF THE CARD ALEO RETT	III I DIGIGITUG						
This calibration certificate docum	ents the traceability to na	ational standards, which realize the physical units o probability are given on the following pages and ar	같은 사람이 가지 못했다. 것은 것은 것은 것이 같은 것이 같이 없다. 것이 같이 많이 많이 많이 많이 없다. 것이 같이 많이 많이 없다. 나는 것이 없는 것이 없다. 것이 없는 것이 없는 것이 없다. 것이 없는 것이 없는 것이 없다. 것이 없는 것이 없는 것이 없는 것이 없는 것이 없다. 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없다. 것이 없는 것이 없다. 것이 없는 것이 없 않은 것이 없는 것이 없는 것이 없는 것이 않는 것이 없는 것이 않이				
This calibration certificate docum The measurements and the unce	ents the traceability to na stainties with confidence cted in the closed laborat	probability are given on the following pages and ar ory facility: environment temperature (22 ± 3)°C ar	re part of the certificate.				
This calibration certificate docum The measurements and the unce All calibrations have been conduc	ents the traceability to na stainties with confidence cted in the closed laborat	probability are given on the following pages and ar ory facility: environment temperature (22 ± 3)°C ar	re part of the certificate.				
This calibration certificate docum The measurements and the unce All calibrations have been bondur Calibration Equipment used (M& Primary Standards Power meter E44198	tents the traceability to ne entaintiles with confidence cted in the closed laborat TE-critical for calibration)	probability are given on the following pages and an ory facility: environment temperature (22 ± 3)°C ar Cal Date (Calibrated by, Certificate No.) 5-Apr-06 (METAS, No. 251-00557)	re part of the certificate. Ind humicity < 70%. Scheduled Celibration Apr-07				
This calibration certificate docum The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A	ents the traceability to na rtaintiles with confidence cted in the closed laboral TE-critical for calibration) ID # GB41293874 MY41495277	probability are given on the following pages and an ory facility: environment temperature (22 ± 3)°C an Cal Date (Calibrated by, Certificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557)	e part of the certificate. Ind humicity < 70%. Scheduled Celibration Apr-07 Apr-07				
This calibration certificate docum The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A	ents the traceability to ne entaintiles with confidence cted in the closed laborat TE-critical for celibration) ID # GB41293874 MY41495277 MY41498087	probability are given on the following pages and ar ory facility: environment temperature (22 ± 3)°C ar Cal Date (Calibrated by, Certificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557)	scheduled Celibration Apr-07 Apr-07 Apr-07				
This calibration certificate docum The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator	ents the traceability to na intaintiles with confidence cted in the closed laborat TE-critical for calibration) ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c)	probability are given on the following pages and ar ory facility: environment temperature (22 ± 3)°C ar Cal Date (Calibrated by, Certificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 11-Aug-05 (METAS, No. 251-00499)	set part of the certificate. ad humicity < 70%.				
This calibration certificate docum The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator	ents the traceability to na intainties with confidence cted in the closed laborat TE-critical for calibration) ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b)	probability are given on the following pages and ar ory facility: environment temperature (22 ± 3)°C ar Cal Date (Calibrated by, Certificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 11-Aug-05 (METAS, No. 251-00558)	separt of the certificate. ad humicity < 70%.				
This calibration certificate docum The measurements and the unce All calibrations have been bondur Calibration Equipment used (M& Primary Standards Power sensor E44198 Power sensor E4419A Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator	ents the traceability to na intaintiles with confidence cted in the closed laborat TE-critical for calibration) ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c)	probability are given on the following pages and ar ory facility: environment temperature (22 ± 3)°C ar Cal Date (Calibrated by, Certificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 11-Aug-05 (METAS, No. 251-00499)	set part of the certificate. ad humicity < 70%.				
This calibration certificate docum The measurements and the unce All calibrations have been bondur Calibration Equipment used (M& Primary Standards Power sensor E44198 Power sensor E4419A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2	ID # GB41293874 MY41495277 MY41495277 MY4149887 SN: \$5054 (3c) SN: \$5086 (20b) SN: \$5129 (30b)	probability are given on the following pages and ar ory facility: environment temperature (22 ± 3)°C ar Cal Date (Calibrated by, Certificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 11-Aug-05 (METAS, No. 251-00568) 11-Aug-05 (METAS, No. 251-00568) 11-Aug-05 (METAS, No. 251-00568)	e part of the certificate. Ind humicity < 70%. Scheduled Celibration Apr-07 Apr-07 Apr-07 Aug-06 Apr-07 Aug-06				
This calibration certificate docum The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power sensor E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards	ents the traceability to na intaintiles with confidence cted in the closed laborat TE-critical for calibration) B# GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5056 (20b) SN: S5129 (30b) SN: 3013 SN: 654 ID #	probability are given on the following pages and ar ory facility: environment temperature (22 ± 3)°C ar Cal Date (Calibrated by, Certificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-0057) 11-Aug-05 (METAS, No. 251-0058) 11-Aug-05 (METAS, No. 251-0058) 11-Aug-05 (METAS, No. 251-0058) 11-Aug-05 (METAS, No. 251-00500) 2-Jan-06 (SPEAG, No. ES3-3013_Jan06) 2-Feb-06 (SPEAG, No. DAE4-654_Feb06) Check Date (in house)	re part of the certificate. ad humicity < 70%. Scheduled Celibration Apr-07 Apr-07 Apr-07 Aug-06 Apr-07 Aug-06 Jan-07 Feb-07 Scheduled Check				
This calibration certificate docum The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power sensor E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 700 B Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	ID # GB41293874 MY41495277 MY41495277 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5129 (30b) SN: S129 (30b) SN: 3013 SN: 654 ID # US3642U01700	probability are given on the following pages and ar ory facility: environment temperature (22 ± 3)*C ar Cal Date (Calibrated by, Certificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 11-Aug-05 (METAS, No. 251-00568) 11-Aug-05 (METAS, No. 251-00568) 11-Aug-05 (METAS, No. 251-00568) 11-Aug-05 (METAS, No. 251-00568) 2-Jan-06 (SPEAG, No. ES3-3013_Jan06) 2-Feb-06 (SPEAG, No. DAE4-654_Feb06) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05)	re part of the certificate. ad humicity < 70%. Scheduled Calibration Apr-07 Apr-07 Aug-06 Apr-07 Aug-06 Jan-07 Feb-07 Scheduled Check In house check: Nov-07				
This calibration certificate docum The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 700 B Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	ents the traceability to na intaintiles with confidence cted in the closed laborat TE-critical for calibration) B# GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5056 (20b) SN: S5129 (30b) SN: 3013 SN: 654 ID #	probability are given on the following pages and ar ory facility: environment temperature (22 ± 3)°C ar Cal Date (Calibrated by, Certificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-0057) 11-Aug-05 (METAS, No. 251-0058) 11-Aug-05 (METAS, No. 251-0058) 11-Aug-05 (METAS, No. 251-0058) 11-Aug-05 (METAS, No. 251-00500) 2-Jan-06 (SPEAG, No. ES3-3013_Jan06) 2-Feb-06 (SPEAG, No. DAE4-654_Feb06) Check Date (in house)	re part of the certificate. ad humicity < 70%. Scheduled Celibration Apr-07 Apr-07 Apr-07 Aug-06 Apr-07 Aug-06 Jan-07 Feb-07 Scheduled Check				
This calibration certificate docum The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 700 B Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	ID # GB41293874 MY41495277 MY41495277 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5129 (30b) SN: S129 (30b) SN: 3013 SN: 654 ID # US3642U01700	probability are given on the following pages and ar ory facility: environment temperature (22 ± 3)*C ar Cal Date (Calibrated by, Certificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 11-Aug-05 (METAS, No. 251-00568) 11-Aug-05 (METAS, No. 251-00568) 11-Aug-05 (METAS, No. 251-00568) 11-Aug-05 (METAS, No. 251-00568) 2-Jan-06 (SPEAG, No. ES3-3013_Jan06) 2-Feb-06 (SPEAG, No. DAE4-654_Feb06) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05)	re part of the certificate. ad humicity < 70%. Scheduled Calibration Apr-07 Apr-07 Aug-06 Apr-07 Aug-06 Jan-07 Feb-07 Scheduled Check In house check: Nov-07				
This calibration certificate docum The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	ID # GB41293874 MY41495277 MY41495277 MY4149887 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: S5129 (30b)	probability are given on the following pages and ar ory facility: environment temperature (22 ± 3)°C ar Cal Date (Calibrated by, Certificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 11-Aug-05 (METAS, No. 251-00558) 11-Aug-05 (METAS, No. 251-00558) 11-Aug-05 (METAS, No. 251-00558) 2-Jan-06 (SPEAG, No. 253-3013_Jan06) 2-Feb-06 (SPEAG, No. DE3-3013_Jan06) 2-Feb-06 (SPEAG, No. DAE4-654_Feb06) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Nov-05)	re part of the certificate. ad humicity < 70%. Scheduled Celibration Apr-07 Apr-07 Apr-07 Aug-06 Jan-07 Feb-07 Scheduled Check In house check: Nov-07 In house check: Nov 06				
This calibration certificate docum The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator	ents the traceability to ne entaintiles with confidence cted in the closed laborat TE-critical for celibration) ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5056 (20b) SN: S5056 (20b) SN: S5059 (30b) SN: S5129 (30b) SN: S5129 (30b) SN: 654 ID # US3642U01700 US37390585 Name	probability are given on the following pages and ar ony facility: environment temperature (22 ± 3)°C ar Cal Date (Calibrated by, Certificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 11-Aug-05 (METAS, No. 251-00568) 11-Aug-05 (METAS, No. 251-00500) 2-Jan-06 (METAS, No. 251-00500) 2-Jan-06 (SPEAG, No. ES3-3013_Jan06) 2-Feb-06 (SPEAG, No. DAE4-654_Feb06) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Nov-05) Function	re part of the certificate. ad humicity < 70%. Scheduled Celibration Apr-07 Apr-07 Apr-07 Aug-06 Jan-07 Feb-07 Scheduled Check In house check: Nov-07 In house check: Nov 06				

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 108

-

S

C

S

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid NORMx,y,z sensitivity in free space sensitivity in TSL / NORMx,y,z ConF DCP diode compression point Polarization (o rotation around probe axis 9 rotation around an axis that is in the plane normal to probe axis (at Polarization & measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001

Methods Applied and Interpretation of Parameters:

- NORMx, y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x, y, z = NORMx, y, z * frequency response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \le 800 \text{ MHz}$) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ET3-1787 May06

Page 2 of 9

ET3DV6 SN:1787

May 31, 2006

Probe ET3DV6

SN:1787

Manufactured: Last calibrated: Recalibrated:

ż

May 28, 2003 August 29, 2003 May 31, 2006

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: ET3-1787_May06

Page 3 of 9

©2006 SPORTON International Inc. SAR Testing Lab This report shall not be reproduced except in full, without the written approval of Sporton.

ET3DV6 SN:1787

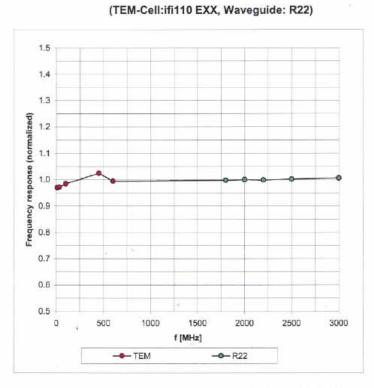
May 31, 2006

e 14

DASY - Parameters of Probe: ET3DV6 SN:1787

Sens	sitivity in Fre	e Space ^A		Diode	Compression	
	NormX	1.57 ± 10.1%	μ V/(V/m) ²	DCP X	94 mV	
	NormY	1.71 ± 10.1%	$\mu V/(V/m)^2$	DCP Y	94 mV	
	NormZ	2.09 ± 10.1%	μ V/(V/m) ²	DCP Z	94 mV	
Sens	sitivity in Tis	sue Simulating L	quid (Conver	sion Factor	s)	
Please	e see Page 8.					
Bour	ndary Effect					
TSL	9	00 MHz Typical S/	AR gradient: 5 % p	per mm		
	Sensor Cente	r to Phantom Surface D	istance	3.7 mm	4.7 mm	
	SAR _{be} [%]	Without Correction /	Ngorithm	7.2	3.8	
	SAR _{be} [%]	With Correction Algo	withm	0.0	0.2	
TSL	18	10 MHz Typical S/	AR gradient: 10 %	per mm		
	Sensor Cente	r to Phantom Surface D	istance	3.7 mm	4.7 mm	
	SAR _{be} [%]	Without Correction A	Algorithm	6.3	3.6	
	SAR _{be} [%]	With Correction Algo	prithm	0.1	0.3	
Sens	sor Offset		4			
	Probe Tip to Sensor Center			2.7 mm		
			v.	~		
	surement mult	rtainty of measurem iplied by the coverage coverage probability	ge factor k=2, wi	hich for a nor		

Certificate No: ET3-1787_May06


Page 4 of 9

©2006 SPORTON International Inc. SAR Testing Lab This report shall not be reproduced except in full, without the written approval of Sporton.

ET3DV6 SN:1787

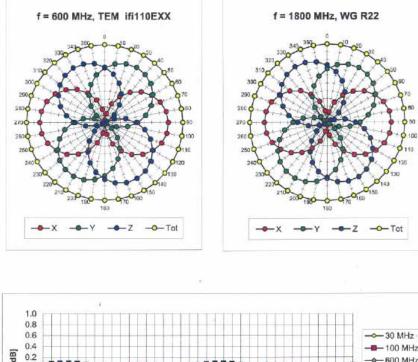
May 31, 2006

Frequency Response of E-Field

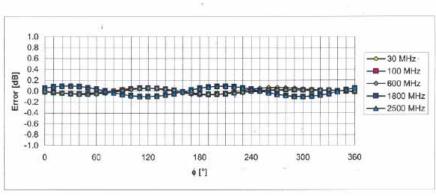
Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

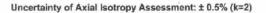
Certificate No: ET3-1787_May06

Page 5 of 9


©2006 SPORTON International Inc. SAR Testing Lab

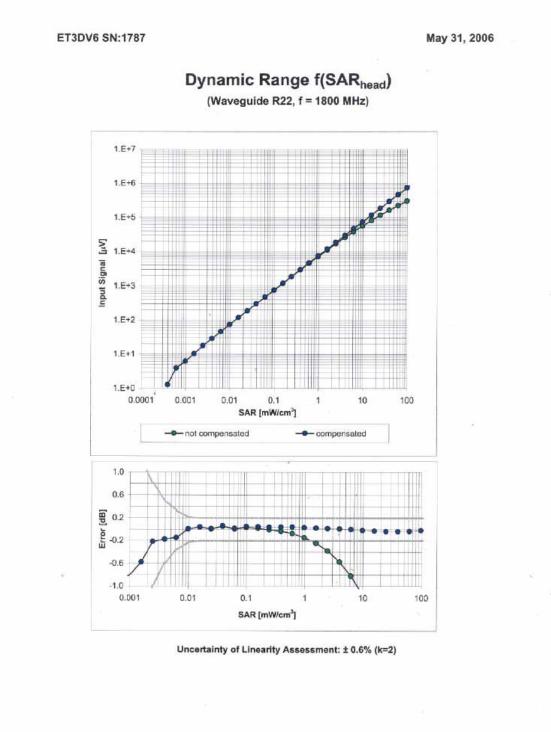
This report shall not be reproduced except in full, without the written approval of Sporton.




ET3DV6 SN:1787

May 31, 2006

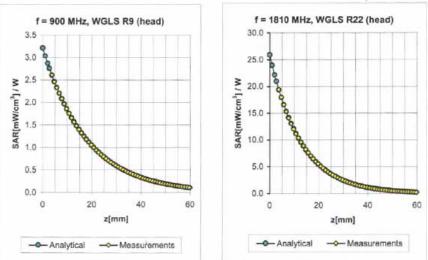
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$


Certificate No: ET3-1787_May06

Page 6 of 9

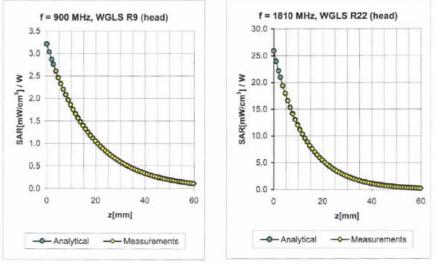
©2006 SPORTON International Inc. SAR Testing Lab

This report shall not be reproduced except in full, without the written approval of Sporton.



Certificate No: ET3-1787_May06

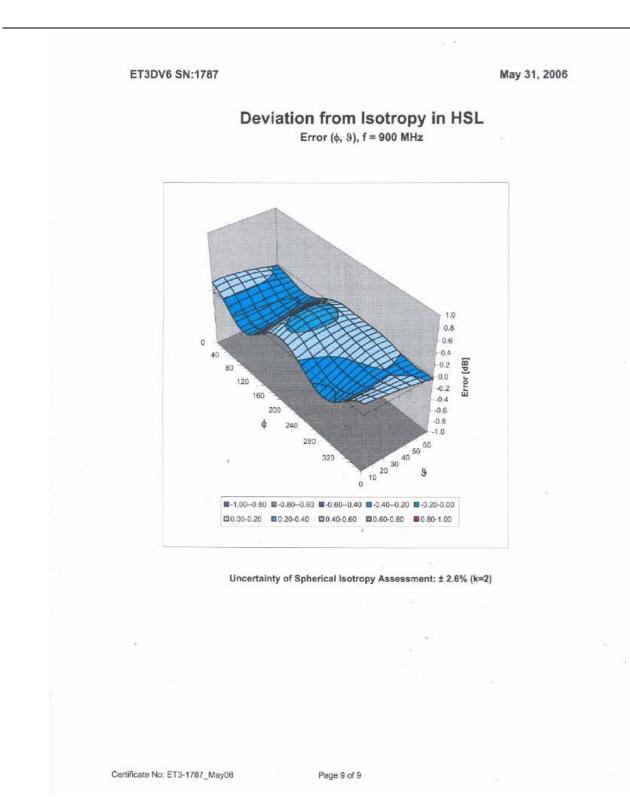
Page 7 of 9


©2006 SPORTON International Inc. SAR Testing Lab

ET3DV6 SN:1787

May 31, 2006

Conversion Factor Assessment


f [MHz]	Validity [MHz] ^c	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
900	± 50 / ± 100	Head	41.5 ± 5%	0.97 ± 5%	0.50	1.85	6.38 ± 11.0% (k=2)
1810	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.59	2.46	5.26 ± 11.0% (k=2)
900	± 50 / ± 100	Body	55.0 ± 5%	1.05 ± 5%	0.44	2.10	6.18 ± 11.0% (k=2)
1810	± 50 / ± 100	Body	$53.3\pm5\%$	1.52 ± 5%	0.62	2.44	4.66 ± 11.0% (k=2)
2450	± 50 / ± 100	Body	52.7 ± 5%	1.95 ± 5%	0.62	2.13	4.13 ± 11.8% (k=2)

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Certificate No: ET3-1787_May06

Page 8 of 9

he Swiss Accreditation Servic	e is one of the signator	ccreditation Accreditation No.	: SCS 108
		ies to the EA	
ultilateral Agreement for the r	ecognition of calibratio	n certificates	
lient (Aude	n)	Certificate No: E	X3-3578_Mar06
		-	
CALIBRATION	ERTIFICAT		
Object	EX3DV4 - SN:3	578	
enjeri	LNUD I HOILU		
Calibration procedure(s)	04 CAL 01 15	and QA CAL-14.v3	
cancration procedure(s)	Service and the service of the servi	edure for dosimetric E-field probes	
Calibration date:	March 20, 2006		
	11210120,2000		
Condition of the calibrated item	In Tolerance		an An 1995年4月1日
Il calibrations have been condu	cted in the closed laborat	lory facility: environment temperature (22 \pm 3)*C an	e part of the certificate. d humidity < 70%.
Calibration Equipment used (M&			
Calibration Equipment used (M& Primary Standards	TE oritical for calibration)		d humldity < 70%.
Calibration Equipment used (M& Primary Standards Power meter E44198	TE oritical for calibration)	Cal Date (Calibrated by, Certificate No.)	d humidity < 70%. Scheduled Calibration
Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A	TE gritical for calibration) ID # GB41293874 MY41495277 MY41498087	Cal Date (Calibrated by, Certificate No.) 3-May-05 (METAS, No. 251-00466)	d humidity < 70%. Scheduled Calibration May-06
Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator	TE gritical for calibration) ID # GB41293874 MY41495277 MY41498087 SN: \$5054 (3c)	Cal Date (Calibrated by, Certificate No.) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 11-Aug-05 (METAS, No. 251-00499)	d humldity < 70%. Scheduled Calibration May-06 May-06 May-06 Aug-06
Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator	TE gritical for calibration) ID # GB41293874 MY41495277 MY41496087 SN: S5054 (3c) SN: S5056 (20b)	Cal Date (Calibrated by, Certificate No.) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 11-Aug-05 (METAS, No. 251-00469) 3-May-05 (METAS, No. 251-00467)	d humldity < 70%. <u>Scheduled Calibration</u> May-06 May-06 Aug-06 Aug-06 May-06
Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator	TE gritical for calibration) ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5056 (20b) SN: S5129 (30b)	Cal Date (Calibrated by, Certificate No.) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 11-Aug-05 (METAS, No. 251-00467) 11-Aug-05 (METAS, No. 251-00467)	d humldity < 70%. Scheduled Calibration May-06 May-06 Aug-06 Aug-06 Aug-06
Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2	TE gritical for calibration) ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5056 (20b) SN: S5129 (30b) SN: 3013	Cal Date (Calibrated by, Certificate No.) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00467) 11-Aug-05 (METAS, No. 251-00467) 11-Aug-05 (METAS, No. 251-00500) 2-Jan-06 (SPEAG, No. ES3-3013_Jan05)	d humidity < 70%. Scheduled Calibration May-06 May-06 Aug-06 May-06 Aug-06 Jan-07
Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2	TE gritical for calibration) ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5056 (20b) SN: S5129 (30b)	Cal Date (Calibrated by, Certificate No.) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 11-Aug-05 (METAS, No. 251-00467) 11-Aug-05 (METAS, No. 251-00467)	d humldity < 70%. Scheduled Calibration May-06 May-06 Aug-06 Aug-06 Aug-06
Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference Probe E83DV2 DAE4	TE gritical for calibration) ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5056 (20b) SN: S5129 (30b) SN: 3013	Cal Date (Calibrated by, Certificate No.) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00467) 11-Aug-05 (METAS, No. 251-00467) 11-Aug-05 (METAS, No. 251-00500) 2-Jan-06 (SPEAG, No. ES3-3013_Jan05)	d humidity < 70%. Scheduled Calibration May-06 May-06 Aug-06 May-06 Aug-06 Jan-07
Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 70 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards	TE critical for calibration) ID # GB41293874 MY41495087 MY41498087 SN: \$5054 (3c) SN: \$5058 (20b) SN: \$5129 (30b) SN: \$5129 (30b) SN: 8512	Cal Date (Calibrated by, Certificate No.) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 11-Aug-05 (METAS, No. 251-00466) 11-Aug-05 (METAS, No. 251-00467) 11-Aug-05 (METAS, No. 251-00467) 11-Aug-05 (METAS, No. 251-00500) 2-Jan-06 (SPEAG, No. ES3-3013_Jan06) 2-Feb-06 (SPEAG, No. DAE4-854_Feb06)	d humidity < 70%. Scheduled Calibration May-06 May-06 May-06 May-06 May-06 Aug-06 Jan-07 Feb-07
Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference Probe E83DV2 DAE4 Secondary Standards RF generator HP 8648C	TE gritical for calibration) ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 85129 SN: 8512 SN: 854 ID #	Cal Date (Calibrated by, Cartificate No.) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 11-Aug-05 (METAS, No. 251-00466) 11-Aug-05 (METAS, No. 251-00499) 3-May-05 (METAS, No. 251-00467) 11-Aug-05 (METAS, No. 251-00500) 2-Jan-06 (SPEAG, No. ES3-3013_Jan05) 2-Feb-06 (SPEAG, No. DAE4-654_Feb06) Check Date (in house)	d humidity < 70%. Scheduled Calibration May-06 May-06 May-06 Aug-06 May-06 Aug-06 Jan-07 Feb-07 Scheduled Check
Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference Probe E83DV2 DAE4 Secondary Standards RF generator HP 8648C	TE gritical for calibration) ID # GB41293874 MY41495277 MY41496087 SN: S5054 (3c) SN: S5056 (20b) SN: S5129 (30b) SN: S5129 (30b) SN: 854 ID # US3642U01700 US37390585	Cal Date (Calibrated by, Certificate No.) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 11-Aug-05 (METAS, No. 251-00469) 3-May-05 (METAS, No. 251-00467) 11-Aug-05 (METAS, No. 251-00467) 11-Aug-05 (METAS, No. 251-00500) 2-Jan-06 (SPEAG, No. ES3-3013_Jan05) 2-Feb-06 (SPEAG, No. DAE4-854_Feb06) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Nov-05)	d humidity < 70%. <u>Scheduled Calibration</u> May-06 May-06 Aug-06 Aug-06 Aug-06 Jan-07 Feb-07 <u>Scheduled Check</u> In house check: Nov-07 In house check: Nov-06
Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 9 robe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	TE gritical for calibration) ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5056 (20b) SN: S5026 (20b) SN: S5129 (30b) SN: S5129 (30b) SN: S5129 (30b) SN: 654 ID # US3642U01700 US37390585 Name	Cal Date (Calibrated by, Certificate No.) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 11-Aug-05 (METAS, No. 251-00467) 11-Aug-05 (METAS, No. 251-00467) 11-Aug-05 (METAS, No. 251-00467) 2-Jan-06 (SPEAG, No. ES3-3013_Jan06) 2-Feb-06 (SPEAG, No. DAE4-854_Feb08) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Nov-05) Function	d humidity < 70%. <u>Scheduled Calibration</u> May-06 May-06 Aug-06 Aug-06 Jan-07 Feb-07 <u>Scheduled Check</u> In house check: Nov-07
Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 3 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	TE gritical for calibration) ID # GB41293874 MY41495277 MY41496087 SN: S5054 (3c) SN: S5056 (20b) SN: S5129 (30b) SN: S5129 (30b) SN: 854 ID # US3642U01700 US37390585	Cal Date (Calibrated by, Certificate No.) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 11-Aug-05 (METAS, No. 251-00469) 3-May-05 (METAS, No. 251-00467) 11-Aug-05 (METAS, No. 251-00467) 11-Aug-05 (METAS, No. 251-00500) 2-Jan-06 (SPEAG, No. ES3-3013_Jan05) 2-Feb-06 (SPEAG, No. DAE4-854_Feb06) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Nov-05)	d humidity < 70%. <u>Scheduled Calibration</u> May-06 May-06 Aug-06 Aug-06 Aug-06 Jan-07 Feb-07 <u>Scheduled Check</u> In house check: Nov-07 In house check: Nov-06
All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E Calibrated by:	TE gritical for calibration) ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5056 (20b) SN: S5026 (20b) SN: S5129 (30b) SN: S5129 (30b) SN: S5129 (30b) SN: 654 ID # US3642U01700 US37390585 Name	Cal Date (Calibrated by, Certificate No.) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 11-Aug-05 (METAS, No. 251-00469) 3-May-05 (METAS, No. 251-00467) 11-Aug-05 (METAS, No. 251-00467) 11-Aug-05 (METAS, No. 251-00467) 2-Jan-06 (SPEAG, No. ES3-3013_Jan06) 2-Feb-06 (SPEAG, No. DAE4-854_Feb06) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Nov-05) Function Technical Manager	d humidity < 70%. <table> Scheduled Calibration May-06 May-06 Aug-06 Aug-06 Jan-07 Feb-07 Scheduled Check In house check: Nov-07 In house check: Nov-05 Signature</table>
Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E Calibrated by:	TE critical for calibration) ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5056 (20b) SN: S5129 (30b) SN: S5129 (30b) SN: 3013 SN: 654 ID # US3642U01700 US3642U01700 US37390585 Name Katja Pokovic	Cal Date (Calibrated by, Certificate No.) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 11-Aug-05 (METAS, No. 251-00469) 3-May-05 (METAS, No. 251-00467) 11-Aug-05 (METAS, No. 251-00467) 11-Aug-05 (METAS, No. 251-00467) 2-Jan-06 (SPEAG, No. ES3-3013_Jan06) 2-Feb-06 (SPEAG, No. DAE4-854_Feb06) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Nov-05) Function Technical Manager	d humidity < 70%. <u>Scheduled Calibration</u> May-06 May-06 Aug-06 Aug-06 Aug-06 Jan-07 Feb-07 <u>Scheduled Check</u> In house check: Nov-07 In house check: Nov-06
Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe E83DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E Calibrated by:	TE critical for calibration) ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5056 (20b) SN: S5129 (30b) SN: S5129 (30b) SN: 3013 SN: 654 ID # US3642U01700 US3642U01700 US37390585 Name Katja Pokovic	Cal Date (Calibrated by, Certificate No.) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 11-Aug-05 (METAS, No. 251-00469) 3-May-05 (METAS, No. 251-00467) 11-Aug-05 (METAS, No. 251-00467) 11-Aug-05 (METAS, No. 251-00467) 2-Jan-06 (SPEAG, No. ES3-3013_Jan06) 2-Feb-06 (SPEAG, No. DAE4-854_Feb06) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Nov-05) Function Technical Manager	d humidity < 70%. <table> Scheduled Calibration May-06 May-06 Aug-06 Aug-06 Jan-07 Feb-07 Scheduled Check In house check: Nov-07 In house check: Nov-05 Signature</table>

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

CR D NO

S

S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura

Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:	
TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConF	sensitivity in TSL / NORM
DCP	diode compression point

 ConF
 sensitivity in TSL / NORMx,y,z

 DCP
 diode compression point

 Polarization φ
 φ rotation around probe axis

 Polarization 9
 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001

Methods Applied and Interpretation of Parameters:

- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of
 the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of
 power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are-used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a
 flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: EX3-3578_Mar06

Page 2 of 9

EX3DV4 SN:3578

March 20, 2006

Probe EX3DV4

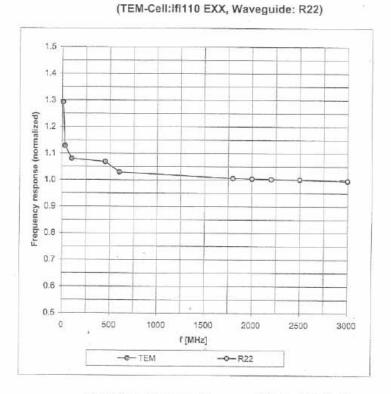
SN:3578

Manufactured: Calibrated: November 4, 2005 March 20, 2006

Calibrated for DASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: EX3-3578_Mar06

Page 3 of 9

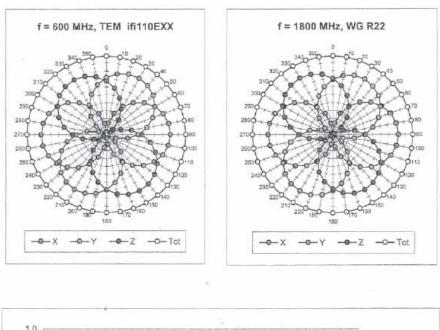


EX3DV4 SN:3578 March 20, 2006 DASY - Parameters of Probe: EX3DV4 SN:3578 Sensitivity in Free Space^A Diode Compression^B NormX μV/(V/m)2 DCP X 93 mV 0.500 ± 10.1% 0.506 ± 10.1% µV/(V/m)² NormY DCP Y 93 mV $\mu V/(V/m)^2$ NormZ 0.550 ± 10.1% DCP Z 93 mV Sensitivity in Tissue Simulating Liquid (Conversion Factors) Please see Page 8. Boundary Effect TSI 900 MHz Typical SAR gradient: 5 % per mm Sensor Center to Phantom Surface Distance 2.0 mm 3.0 mm SAR_{be} [%] Without Correction Algorithm 1.1 3.1 SARbe [%] 0.2 0.4 With Correction Algorithm 1750 MHz Typical SAR gradient: 10 % per mm TSL Sensor Center to Phantom Surface Distance 2.0 mm 3.0 mm 2.5 1.0 SAR_{be} [%] Without Correction Algorithm SAR_{be} [%] With Correction Algorithm 0.2 0.3 Sensor Offset Probe Tip to Sensor Center 1.0 mm The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8). ⁸ Numerical linearization parameter: uncertainty not required. Certificate No: EX3-3578_Mar06 Page 4 of 9

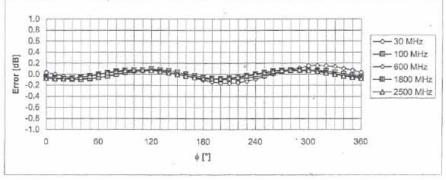
EX3DV4 SN:3578

March 20, 2006

Frequency Response of E-Field


Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Page 5 of 9



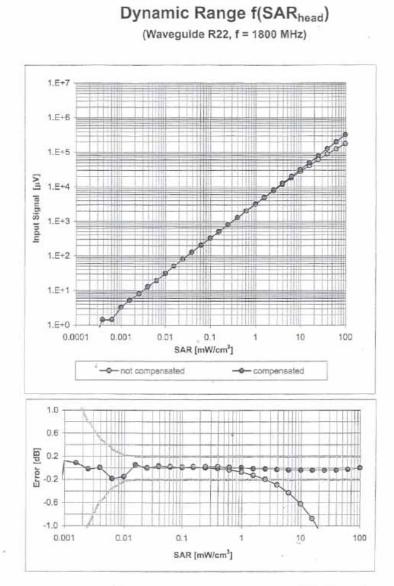
EX3DV4 SN:3578

March 20, 2006

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: EX3-3578_Mar06


Page 6 of 9

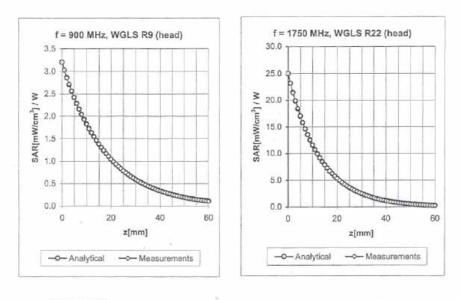
©2006 SPORTON International Inc. SAR Testing Lab

EX3DV4 SN:3578

March 20, 2006

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: EX3-3578_Mar06


Page 7 of 9

©2006 SPORTON International Inc. SAR Testing Lab

EX3DV4 SN:3578

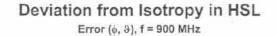
March 20, 2006

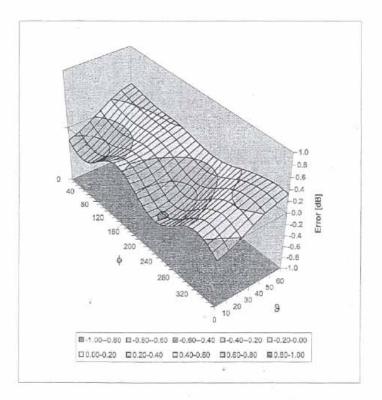
Conversion Factor Assessment

f [MHz]	Validity [MHz] ^C	_	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
900	± 50 / ± 100	÷	Head	41.5 ± 5%	0.97 ± 5%	0.66	0.66	8.38 ± 11.0% (k=2)
1750	± 50 / ± 100		Head	40.1 ± 5%	$1.37 \pm 5\%$	0.59	0.80	7.30 ± 11.0% (k=2)
1950	± 50 / ± 100		Head	40.0 ± 5%	$1.40 \pm 5\%$	0.59	0.80	6.98 ± 11.0% (k=2)
2450	± 50 / ± 100		Head	39.2 ± 5%	1.80 ± 5%	0.52	0.80	6.47 ± 11.8% (k=2)
							2	
900	± 50 / ± 100		Body	$55.0 \pm 5\%$	$1.05 \pm 5\%$	0.78	0.64	8.15 ± 11.0% (k=2)
1750	± 50 / ± 100		Body	53,4 ± 5%	$1.49 \pm 5\%$	0.63	0.68	7.03 ± 11.0% (k=2)
1950	± 50 / ± 100		Body	53.3±5%	$1.52 \pm 5\%$	0.42	0.87	6.75 ± 11.0% (k=2)
2450	± 50 / ± 100		Body	$52.7\pm5\%$	1.95 ± 5%	0.59	0.73	6.47 ± 11.8% (k=2)
5200	± 50 / ± 100		Body	$49.0\pm5\%$	5.30 ± 5%	0.35	1.75	4.11 ± 13.1% (k=2)
5800	± 50 / ± 100		Body	48.2 ± 5%	6.00 ± 5%	0.32	1.75	3.89 ± 13.1% (k=2)

^C The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Certificate No: EX3-3578_Mar06


Page 8 of 9


©2006 SPORTON International Inc. SAR Testing Lab

EX3DV4 SN:3578

March 20, 2006

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Page 9 of 9

Certificate No: EX3-3578_Mar06

Accredited by the Swiss Federal Off	ice of Metrology and Accr	editation Accreditation M	4o.: SCS 108
The Swiss Accreditation Service i	s one of the signatories	to the EA	
Multilateral Agreement for the rec			0450 FT7 N. 05
Client Sporton (Auden)		Certificate No:	DAE3-577_Nov05
CALIBRATION CI	ERTIFICATE		and the second second
01	DAE3 - SD 000 D	00 4 4 CNI 577	
Object	DAE3 - SD 000 D	U3 AA - SN: 577	
Calibration procedure(s)	QA CAL-06.v12		
		lure for the data acquisition election	ronics (DAE)
Calibration date:	November 11, 200	05	
Condition of the calibrated item	In Tolerance		
The measurements and the uncertain	ainties with confidence pro	nal standards, which realize the physical unit obability are given on the following pages and r facility: environment temperature (22 ± 3)°C	are part of the certificate.
The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE	ainties with confidence pro ed in the closed laboratory critical for calibration)	obability are given on the following pages and r facility: environment temperature (22 ± 3)°C	are part of the certificate. and humidity < 70%.
The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards	ainties with confidence provided in the closed laboratory critical for calibration)	bability are given on the following pages and racility: environment temperature (22 ± 3)°C Cal Date (Calibrated by, Certificate No.)	are part of the certificate. and humidity < 70%. Scheduled Calibration
The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE	ainties with confidence pro ed in the closed laboratory critical for calibration)	obability are given on the following pages and r facility: environment temperature (22 ± 3)°C	are part of the certificate. and humidity < 70%.
The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards	ainties with confidence provided in the closed laboratory critical for calibration)	obability are given on the following pages and racility: environment temperature (22 ± 3)°C Cal Date (Calibrated by, Certificate No.)	are part of the certificate. and humidity < 70%. Scheduled Calibration
The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Fluke Process Calibrator Type 702	ainties with confidence provided in the closed laboratory critical for calibration)	bability are given on the following pages and racility; environment temperature (22 ± 3)°C Cal Date (Calibrated by, Certificate No.) 7-Oct-05 (Sintrel, No.E-050073)	are part of the certificate. and humidity < 70%. Scheduled Calibration Oct-06
The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Fluke Process Calibrator Type 702 Secondary Standards	ainties with confidence provided in the closed laboratory critical for calibration)	bability are given on the following pages and facility: environment temperature (22 ± 3)°C Cal Date (Calibrated by, Certificate No.) 7-Oct-05 (Sintrel, No.E-050073) Check Date (in house)	are part of the certificate. and humidity < 70%. Scheduled Calibration Oct-06 Scheduled Check
The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Fluke Process Calibrator Type 702 Secondary Standards	ainties with confidence provided in the closed laboratory critical for calibration)	bability are given on the following pages and facility: environment temperature (22 ± 3)°C Cal Date (Calibrated by, Certificate No.) 7-Oct-05 (Sintrel, No.E-050073) Check Date (in house)	are part of the certificate. and humidity < 70%. Scheduled Calibration Oct-06 Scheduled Check
The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Fluke Process Calibrator Type 702 Secondary Standards	ainties with confidence provided in the closed laboratory critical for calibration)	bability are given on the following pages and facility: environment temperature (22 ± 3)°C Cal Date (Calibrated by, Certificate No.) 7-Oct-05 (Sintrel, No.E-050073) Check Date (in house)	are part of the certificate. and humidity < 70%. Scheduled Calibration Oct-06 Scheduled Check
The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Fluke Process Calibrator Type 702 Secondary Standards	ainties with confidence provided in the closed laboratory critical for calibration)	bability are given on the following pages and facility: environment temperature (22 ± 3)°C Cal Date (Calibrated by, Certificate No.) 7-Oct-05 (Sintrel, No.E-050073) Check Date (in house)	are part of the certificate. and humidity < 70%. Scheduled Calibration Oct-06 Scheduled Check
The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Fluke Process Calibrator Type 702 Secondary Standards	ainties with confidence provided in the closed laboratory critical for calibration) ID # SN: 6295803 ID # SE UMS 006 AB 1002	bability are given on the following pages and a facility: environment temperature (22 ± 3)°C <u>Cal Date (Calibrated by, Certificate No.)</u> 7-Oct-05 (Sintrel, No.E-050073) <u>Check Date (In house)</u> 29-Jun-05 (SPEAG, in house check)	are part of the certificate. and humidity < 70%. Scheduled Calibration Oct-06 Scheduled Check In house check Jun-06
The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Fluke Process Calibrator Type 702 Secondary Standards	ainties with confidence provided in the closed laboratory critical for calibration)	bability are given on the following pages and facility: environment temperature (22 ± 3)°C Cal Date (Calibrated by, Certificate No.) 7-Oct-05 (Sintrel, No.E-050073) Check Date (in house)	are part of the certificate. and humidity < 70%. Scheduled Calibration Oct-06 Scheduled Check In house check Jun-06
The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Fluke Process Calibrator Type 702 Secondary Standards Calibrator Box V1.1	ainties with confidence pro- ed in the closed laboratory critical for calibration) ID # SN: 6295803 ID # SE UMS 006 AB 1002 Name	Debability are given on the following pages and a facility: environment temperature (22 ± 3)°C Cal Date (Calibrated by, Certificate No.) 7-Oct-05 (Sintrel, No.E-050073) Check Date (In house) 29-Jun-05 (SPEAG, in house check) Function	are part of the certificate. and humidity < 70%. Scheduled Calibration Oct-06 Scheduled Check In house check Jun-06
The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Fluke Process Calibrator Type 702 Secondary Standards Calibrator Box V1.1	ainties with confidence pro- ed in the closed laboratory critical for calibration) ID # SN: 6295803 ID # SE UMS 006 AB 1002 Name	Cal Date (Calibrated by, Certificate No.) 7-Oct-05 (Sintrel, No.E-050073) Check Date (In house) 29-Jun-05 (SPEAG, in house check) Function Technician	are part of the certificate. and humidity < 70%. Scheduled Calibration Oct-06 Scheduled Check In house check Jun-06 Signature
The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Fluke Process Calibrator Type 702 Secondary Standards Calibrator Box V1.1	A series with confidence provided in the closed laboratory critical for calibration) ID # SN: 6295803 ID # SE UMS 006 AB 1002 Name Daniel Steinacher	Cal Date (Calibrated by, Certificate No.) 7-Oct-05 (Sintrel, No.E-050073) Check Date (In house) 29-Jun-05 (SPEAG, in house check) Function Technician	are part of the certificate. and humidity < 70%. Scheduled Calibration Oct-06 Scheduled Check In house check Jun-06

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

SWISS

BRA

S

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage С Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE Connector angle

data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters contain technical information as a result from the performance test and require no uncertainty.
- DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
- Common mode sensitivity: Influence of a positive or negative common mode voltage on the . differential measurement.
- Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
- AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
- Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
- Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
- Input resistance: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
- Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
- Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE3-577 Nov05

Page 2 of 5

DC Voltage Measurement

High Range:	1LSB =	6.1µV,	full range =	-100+300 mV
Low Range:	1LSB =	61nV .	full range =	-1+3mV

Calibration Factors	x	Y	Z
High Range	404.445 ± 0.1% (k=2)	403.896 ± 0.1% (k=2)	404.369 ± 0.1% (k=2)
Low Range	3.94241 ± 0.7% (k=2)	3.89919 ± 0.7% (k=2)	3.95427 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	130 ° ± 1 °
---	-------------

Certificate No: DAE3-577_Nov05

Page 3 of 5

Appendix

1. DC Voltage Linearity

High Range	Input (µV)	Reading (µV)	Error (%)
Channel X + Input	200000	199999.3	0.00
Channel X + Input	20000	20006.75	0.03
Channel X - Input	20000	-19997.90	-0.01
Channel Y + Input	200000	200000.3	0.00
Channel Y + Input	20000	20004.58	0.02
Channel Y - Input	20000	-20000.75	0.00
Channel Z + Input	200000	199999.6	0.00
Channel Z + Input	20000	20001.43	0.01
Channel Z - Input	20000	-20003.93	0.02

Low Range		Input (µV)	Reading (µV)	Error (%)
Channel X	+ Input	2000	2000.1	0.00
Channel X	+ Input	200	200.42	0.21
Channel X	- Input	200	-200.30	0.15
Channel Y	+ Input	2000	2000.1	0.00
Channel Y	+ Input	200	199.35	-0.32
Channel Y	- Input	200	-200.96	0.48
Channel Z	+ Input	2000	1999.9	0.00
Channel Z	+ Input	200	199.37	-0.31
Channel Z	- Input	200	-200.62	0.31

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (µV)
Channel X	200	13.40	12.55
	- 200	-12.29	-13.06
Channel Y	200	-6.93	-7.43
	- 200	6.72	6.47
Channel Z	200	0.71	0.36
	- 200	-1.67	-1.93

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (µV)
Channel X	200		1.59	0.08
Channel Y	200	1.69	-	3.62
Channel Z	200	-0.73	-1.49	-

Certificate No: DAE3-577_Nov05

Page 4 of 5

©2006 SPORTON International Inc. SAR Testing Lab

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15946	15679
Channel Y	15960	16151
Channel Z	16233	15968

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10 $M\Omega$

	Average (µV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (μV)
Channel X	0.08	-1.13	2.31	0.51
Channel Y	-0.35	-2.00	0.81	0.43
Channel Z	-0.38	-2.76	1.68	0.40

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance

	Zeroing (MOhm)	Measuring (MOhm)
Channel X	0.2000	200.8
Channel Y	0.2000	201.4
Channel Z	0.2001	200.3

8. Low Battery Alarm Voltage (verified during pre test)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (verified during pre test)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.0	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Certificate No: DAE3-577_Nov05

Page 5 of 5

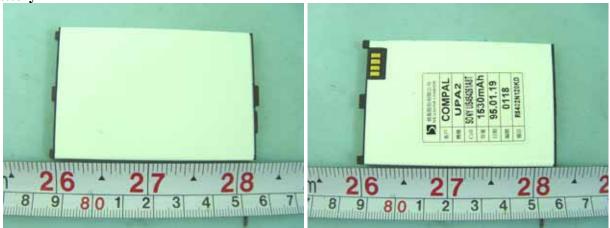
©2006 SPORTON International Inc. SAR Testing Lab

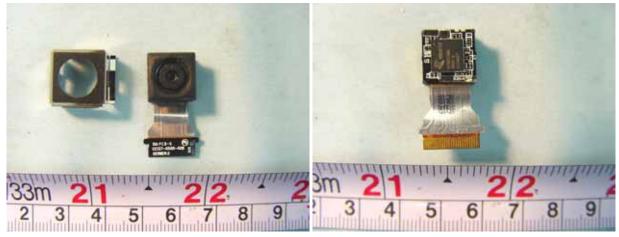
Appendix D – Product Photographs

Pocket LOOX T830

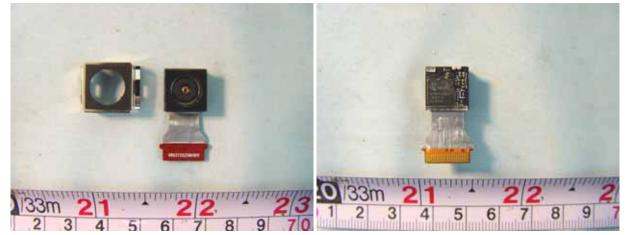
Pocket LOOX T810

Holster 1





Battery



Permier Camera Module

ABICO Camera Module

Appendix E – Test Setup Photo

Fig. 9.3 Right Cheek

Fig. 9.4 Right Tilted

Fig. 9.5 Left Cheek

Fig. 9.6 Left Tilted

Fig. 9.7 Keypad Up with Holster 1 Touch

Fig. 9.8 Keypad Down with Holster 1 Touch

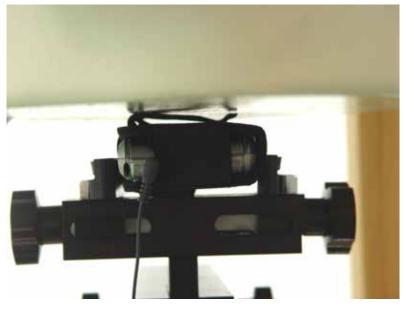


Fig. 9.9 Keypad Up with Holster 2 Touch

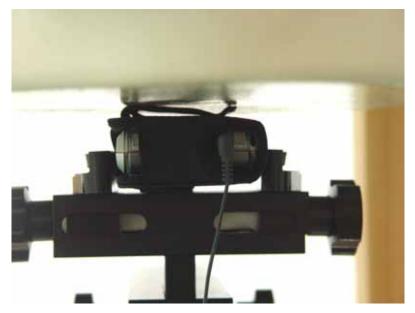


Fig. 9.10 Keypad Down with Holster 2 Touch