FCC PART 15, SUBPART B and C TEST REPORT

for

EZ CYCLE LITE

MODEL: 333

Prepared for

MAR-BRUC INC. 231 COZUMEL LAGUNA BEACH, CA 92651

Prepared by:_	
	MICHAEL CHRISTENSEN
Approved by	:
	KYLE FUJIMOTO

COMPATIBLE ELECTRONICS INC. 114 OLINDA DRIVE BREA, CALIFORNIA 92823 (714) 579-0500

DATE: NOVEMBER 12, 2002

	REPORT	APPENDICES				TOTAL	
	BODY	A	В	С	D	E	
PAGES	16	2	2	2	10	10	42

This report shall not be reproduced except in full, without the written approval of Compatible Electronics.

TABLE OF CONTENTS

Section / Title	PAGE
GENERAL REPORT SUMMARY	4
SUMMARY OF TEST RESULTS	4
1. PURPOSE	5
 2. ADMINISTRATIVE DATA 2.1 Location of Testing 2.2 Traceability Statement 2.3 Cognizant Personnel 2.4 Date Test Sample was Received 2.5 Disposition of the Test Sample 2.6 Abbreviations and Acronyms 3. APPLICABLE DOCUMENTS 	6 6 6 6 6 6
4. DESCRIPTION OF TEST CONFIGURATION 4.1 Description of Test Configuration - EMI 4.1.1 Cable Construction and Termination	8 8 9
 LISTS OF EUT, ACCESSORIES AND TEST EQUIPMENT EUT and Accessory List EMI Test Equipment 	10 10 11
 6. TEST SITE DESCRIPTION 6.1 Test Facility Description 6.2 EUT Mounting, Bonding and Grounding 	12 12 12
 7. TEST PROCEDURES 7.1 Radiated Emissions (Spurious and Harmonics) Test 7.2 Bandwidth of the Fundamental 	13 13 15
8 CONCLUSIONS	16

LIST OF APPENDICES

APPENDIX	TITLE		
A	Laboratory Recognitions		
В	Modifications to the EUT		
С	Additional Models Covered Under This Report		
D	Diagrams, Charts, and Photos		
	Test Setup Diagrams		
	Radiated Emissions Photos		
	Antenna and Effective Gain Factors		
Е	Data Sheets		

LIST OF FIGURES

FIGURE	TITLE
1	Plot Map And Layout of Test Site

Page 4 of 16

GENERAL REPORT SUMMARY

This electromagnetic emission test report is generated by Compatible Electronics Inc., which is an independent testing and consulting firm. The test report is based on testing performed by Compatible Electronics personnel according to the measurement procedures described in the test specifications given below and in the "Test Procedures" section of this report.

The measurement data and conclusions appearing herein relate only to the sample tested and this report may not be reproduced without the written permission of Compatible Electronics, unless done so in full.

This report must not be used to claim product endorsement by NVLAP or any other agency of the U.S. Government.

Device Tested: EZ Cycle Lite

Model: 333 S/N: N/A

Product Description: See Expository Statement.

Modifications: The EUT was not modified during the testing.

Manufacturer: Worldwide Manufacturing USA, Inc.

398 Beach Road, 2nd Floor Burlingame, CA 94010

Test Date: October 30, 2002

Test Specifications: EMI requirements

CFR Title 47, Part 15 Subpart B; and Subpart C, Sections 15.205, 15.209, and 15.231

Test Procedure: ANSI C63.4: 1992

Test Deviations: The test procedure was not deviated from during the testing.

SUMMARY OF TEST RESULTS

TEST	DESCRIPTION	RESULTS
1	Conducted RF Emissions, 450 kHz – 30 MHz	This test was not performed because the EUT operates on battery power only and cannot be plugged into the AC public mains.
2	Radiated RF Emissions, 10 kHz – 3850 MHz	Complies with the Class B limits of CFR Title 47, Part 15, Subpart B; and Subpart C, sections 15.205, 15.209, and 15.231.

FCC Part 15 Subpart B and FCC Section 15.231 Test Report EZ Cycle Lite

Model: 333

1. PURPOSE

This document is a qualification test report based on the Electromagnetic Interference (EMI) tests performed on the EZ Cycle Lite Model: 333. The EMI measurements were performed according to the measurement procedure described in ANSI C63.4: 1992. The tests were performed in order to determine whether the electromagnetic emissions from the equipment under test, referred to as EUT hereafter, are within the Class B specification limits defined by CFR Title 47, Part 15, Subpart B; and Subpart C, sections 15.205, 15.209, and 15.231.

2. ADMINISTRATIVE DATA

2.1 Location of Testing

The EMI tests described herein were performed at the test facility of Compatible Electronics, 114 Olinda Drive, Brea, California 92823.

2.2 Traceability Statement

The calibration certificates of all test equipment used during the test are on file at the location of the test. The calibration is traceable to the National Institute of Standards and Technology (NIST).

2.3 Cognizant Personnel

Mar-Bruc Inc.

Muriel Pories Owner
Marcus Escobosa Engineer

Compatible Electronics, Inc.

Michael Christensen Test Engineer Kyle Fujimoto Test Engineer

2.4 Date Test Sample was Received

The test sample was received on October 30, 2002.

2.5 Disposition of the Test Sample

The sample was returned to Mar-Bruc Inc. on October 30, 2002.

2.6 Abbreviations and Acronyms

The following abbreviations and acronyms may be used in this document.

RF Radio Frequency

EMI Electromagnetic Interference EUT Equipment Under Test

P/N Part Number S/N Serial Number HP Hewlett Packard

ITE Information Technology Equipment

CML Corrected Meter Limit

LISN Line Impedance Stabilization Network

3. APPLICABLE DOCUMENTS

The following documents are referenced or used in the preparation of this EMI Test Report.

SPEC	TITLE
CFR Title 47, Part 15	FCC Rules – Radio frequency devices (including digital devices)
ANSI C63.4 1992	Methods of measurement of radio-noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz.

4.

DESCRIPTION OF TEST CONFIGURATION

4.1 Description of Test Configuration - EMI

Setup and operation of the equipment under test.

Specifics of the EUT and Peripherals Tested

The EZ Cycle Lite Model: 333 (EUT) was tested as a stand alone unit and was continuously transmitting. The EUTs typical installation will be under a motorcycle seat. The EUT has a loop antenna that is soldered on the PCB.

Note: The EUT was continuously transmitting for testing purposes only. Under normal circumstances, the transmitter will not transmit for longer than 5 seconds even if a switch is in the on position.

The final radiated data was taken in the mode above. Please see Appendix E for the data sheets.

4.1.1 Cable Construction and Termination

There were no external cables connected to the EUT.

5. LISTS OF EUT, ACCESSORIES AND TEST EQUIPMENT

5.1 EUT and Accessory List

EQUIPMENT	MANUFACTURER	MODEL NUMBER	SERIAL NUMBER	FCC ID
EZ CYCLE LITE (EUT)	WORLDWIDE MANUFACTURING USA INC.	333	N/A	QQQ333
EZ CYCLE LITE (RECEIVER)	WORLDWIDE MANUFACTURING USA INC.	333	N/A	DoC

EMI Test Equipment 5.2

EQUIPMENT TYPE	MANUFACTURER	MODEL NUMBER	SERIAL NUMBER	CAL. DATE	CAL. DUE DATE
Radiate Emissions Data Capture Program	Compatible Electronics	2.0	N/A	N/A	N/A
Spectrum Analyzer – Main Section	Hewlett Packard	8566B	2727A04757	November 9, 2001	1 Year
Spectrum Analyzer – Display Section	Hewlett Packard	85662A	2648A15455	November 9, 2001	1 Year
Quasi-Peak Adapter	Hewlett Packard	85650A	3303A01688	November 9, 2001	1 Year
Preamplifier	Com Power	PA-102	1202	September 18, 2002	1 Year
Biconical Antenna	Com Power	AB-900	15011	July 15, 2002	1 Year
Log Periodic Antenna	Com Power	AL-100	01117	October 4, 2002	1 Year
Loop Antenna	Com Power	AL-130	17070	June 19, 2002	1 Year
Antenna Mast	Com Power	AM-100	N/A	N/A	N/A
Turntable	Com Power	TT-100	N/A	N/A	N/A
Computer	Hewlett Packard	4530	US91912319	N/A	N/A
Monitor	Hewlett Packard	D5258A	TW74500641	N/A	N/A
Horn Antenna	Com-Power	AH-118	10073	Jan. 21, 2002	1 Year
Microwave Preamplifier	Com-Power	PA-122	25195	Jan. 7, 2002	1 Year

FCC Part 15 Subpart B and FCC Section 15.231 Test Report EZ Cycle Lite

Model: 333

6. TEST SITE DESCRIPTION

6.1 Test Facility Description

Please refer to section 2.1 and 7.1 of this report for EMI test location.

6.2 EUT Mounting, Bonding and Grounding

The EUT was mounted on a 1.0 by 1.5 meter non-conductive table 0.8 meters above the ground plane.

The EUT was not grounded.

7. TEST PROCEDURES

The following sections describe the test methods and the specifications for the tests. Test results are also included in this section.

7.1 Radiated Emissions (Spurious and Harmonics) Test

The spectrum analyzer was used as a measuring meter along with the quasi-peak adapter. Amplifiers were used to increase the sensitivity of the instrument. The Com Power Preamplifier Model: PA-102 was used for frequencies from 30 MHz to 1 GHz, and the Com-Power Microwave Preamplifier Model: PA-122 was used for frequencies above 1 GHz. The spectrum analyzer was used in the peak detect mode with the "Max Hold" feature activated. In this mode, the spectrum analyzer records the highest measured reading over all the sweeps.

The measurement bandwidths and transducers used for the radiated emissions test were:

FREQUENCY RANGE	EFFECTIVE MEASUREMENT BANDWIDTH	TRANSDUCER
9 kHz to 150 kHz	200 Hz	Active Loop Antenna
150 kHz to 30 MHz	9 kHz	Active Loop Antenna
30 MHz to 300 MHz	120 kHz	Biconical Antenna
300 MHz to 1 GHz	120 kHz	Log Periodic Antenna
1 GHz to 9.3 GHz	1 MHz	Horn Antenna

The open field test site of Compatible Electronics, Inc. was used for radiated emission testing. This test site is set up according to ANSI C63.4: 1992. Please see section 6.2 of this report for mounting, bonding and grounding of the EUT. The turntable supporting the EUT is remote controlled using a motor. The turntable permits EUT rotation of 360 degrees in order to maximize emissions. Also, the antenna mast allows height variation of the antenna from 1 meter to 4 meters. Data was collected in the worst case (highest emission) configuration of the EUT. At each reading, the EUT was rotated 360 degrees and the antenna height was varied from 1 to 4 meters (for E field radiated field strength). The gunsight method was used when measuring with the horn antenna in order to ensure accurate results. The loop antenna was also rotated in the horizontal and vertical axis in order to ensure accurate results.

Radiated Emissions (Spurious and Harmonics) Test (con't)

The presence of ambient signals was verified by turning the EUT off. In case an ambient signal was detected, the measurement bandwidth was reduced temporarily and verification was made that an additional adjacent peak did not exist. This ensures that the ambient signal does not hide any emissions from the EUT. The EUT was tested at a 3 meter test distance to obtain final test data. The final qualification data sheets are located in Appendix E.

7.2

Bandwidth of the Fundamental

The -20 dB bandwidth was checked to see that it was within 0.25% of the fundamental frequency for the EUT. Photographs of the -20 dB bandwidth is located in Appendix D.

FCC Part 15 Subpart B and FCC Section 15.231 Test Report EZ Cycle Lite

Model: 333

8. CONCLUSIONS

The EZ Cycle Lite Model: 333 meets all of the Class B specification limits defined in CFR Title 47, Part 15, Subpart B; and Subpart C, sections 15.205, 15.209, and 15.231.

APPENDIX A

LABORATORY RECOGNITIONS

Z Cycie Lue Model: 333

LABORATORY RECOGNITIONS

Compatible Electronics has the following agency accreditations:

National Voluntary Laboratory Accreditation Program - Lab Code: 200528-0

Voluntary Control Council for Interference - Registration Numbers: R-983, C-1026, R-984 and C-1027

Bureau of Standards and Metrology Inspection - Reference Number: SL2-IN-E-1031

Conformity Assessment Body for the EMC Directive Under the US/EU MRA Appointed by NIST

Compatible Electronics is recognized or on file with the following agencies:

Federal Communications Commission

Industry Canada

Radio-Frequency Technologies (Competent Body)

APPENDIX B

MODIFICATIONS TO THE EUT

MODIFICATIONS TO THE EUT

The modifications listed below were made to the EUT to pass FCC Class B and FCC 15.231 specifications.

All the rework described below was implemented during the test in a method that could be reproduced in all the units by the manufacturer.

No modifications were made to the EUT during the testing.

APPENDIX C

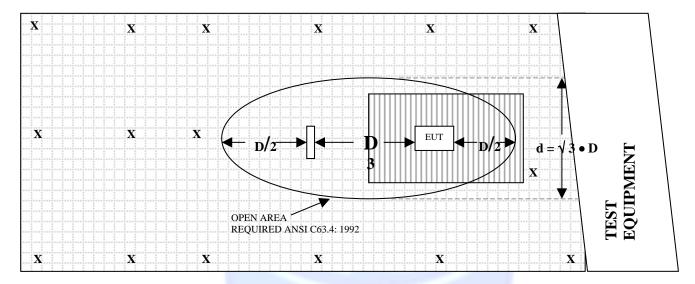
ADDITIONAL MODELS COVERED UNDER THIS REPORT

ADDITIONAL MODELS COVERED UNDER THIS REPORT

USED FOR THE PRIMARY TEST EZ CYCLE LITE

Model: 333 S/N: N/A

There were no additional models covered under this report.


APPENDIX D

DIAGRAMS, CHARTS, AND PHOTOS

OPEN LAND > 15 METERS

FIGURE 1: PLOT MAP AND LAYOUT OF RADIATED SITE

OPEN LAND > 15 METERS

OPEN LAND > 15 METERS

X = GROUND RODS = GROUND SCREEN

D = TEST DISTANCE (meters) = WOOD COVER

COM-POWER AB-900

BICONICAL ANTENNA

S/N: 15011

CALIBRATION DATE: JULY 15, 2002

FREQUENCY	FACTOR	FREQUENCY	FACTOR
(MHz)	(dB)	(MHz)	(dB)
30	11.30	120	14.10
35	10.40	125	13.20
40	11.80	140	12.20
45	13.10	150	12.00
50	12.30	160	13.50
60	12.10	175	15.60
70	8.10	180	16.30
80	6.50	200	16.70
90	9.50	250	16.50
100	11.40	300	19.30

COM-POWER AL-100

LOG PERIODIC ANTENNA

S/N: 01117

CALIBRATION DATE: OCTOBER 4, 2002

FREQUENCY (MHz)	FACTOR (dB)	FREQUENCY (MHz)	FACTOR (dB)
300	13.80	700	19.50
350	15.40	750	20.70
400	15.80	800	22.00
450	16.00	850	21.90
500	17.20	900	22.50
550	17.00	950	23.40
600	18.40	1000	25.60

COM-POWER PA-102

PREAMPLIFIER

S/N: 1202

CALIBRATION DATE: SEPTEMBER 18, 2002

FREQUENCY	FACTOR	FREQUENCY	FACTOR
(MHz)	(dB)	(MHz)	(dB)
30	35.4	300	34.9
40	35.4	350	34.7
50	35.5	400	34.8
60	35.5	450	34.7
70	35.5	500	33.9
80	35.6	550	34.5
90	35.8	600	34.3
100	35.8	650	34.0
125	35.6	700	33.9
150	35.3	750	34.1
175	35.0	800	34.0
200	35.1	850	33.8
225	35.1	900	33.7
250	35.3	950	32.9
275	35.3	1000	33.8

COM-POWER PA-122

MICROWAVE PREAMPLIFIER

S/N: 25195

CALIBRATION DATE: JANUARY 7, 2002

FREQUENCY	FACTOR	FREQUENCY	FACTOR
(GHz)	(dB)	(GHz)	(dB)
1.0	33.7	9.5	31.8
1.1	33.4	10.0	32.2
1.2	33.1	11.0	31.4
1.3	33.1	12.0	30.2
1.4	33.2	13.0	32.9
1.5	32.5	14.0	33.9
1.6	32.7	15.0	32.4
1.7	32.3	16.0	32.2
1.8	32.3	17.0	31.5
1.9	31.4	18.0	32.2
2.0	32.8	19.0	31.2
2.5	33.3	20.0	31.3
3.0	31.7	21.0	31.7
3.5	31.6	22.0	29.7
4.0	31.2		
4.5	31.2		
5.0	31.0		
5.5	31.3		
6.0	32.1		
6.5	32.1		
7.0	31.8		
7.5	32.0		
8.0	33.1		
8.5	32.0		
9.0	30.8		

COM-POWER AH-118

HORN ANTENNA

S/N: 10073

CALIBRATION DATE: JANUARY 21, 2002

FREQUENCY (GHz)	FACTOR (dB)	FREQUENCY (GHz)	FACTOR (dB)		
1.0	26.6	9.5	41.4		
1.5	29.2	10.0	41.8		
2.0	32.4	10.5	40.4		
2.5	32.3	11.0	37.5		
3.0	31.4	11.5	42.2		
3.5	31.8	12.0	40.4		
4.0	31.1	12.5	43.6		
4.5	32.0	13.0	44.2		
5.0	33.9	13.5	41.8		
5.5	32.0	14.0	43.3		
6.0	37.8	14.5	47.0		
6.5	36.8	15.0	49.4		
7.0	42.4	15.5	49.9		
7.5	39.5	16.0	49.9		
8.0	41.3	16.5	48.2		
8.5	40.3	17.0	44.0		
9.0	39.5	17.5	44.8		
		18.0	44.7		

COM-POWER AL-130

LOOP ANTENNA

S/N: 17070

CALIBRATION DATE: JUNE 19, 2002

FREQUENCY	MAGNETIC	ELECTRIC
(MHz)	(dB/m)	(dB/m)
0.009	-40.4	11.1
0.01	-40.3	11.2
0.02	-41.2	10.3
0.05	-41.6	9.9
0.07	-41.4	10.1
0.1	-41.7	9.8
0.2	-44.0	7.5
0.3	-41.6	9.9
0.5	-41.3	10.2
0.7	-41.4	10.1
1	-40.9	10.6
2	-40.6	10.9
3	-40.5	11.0
4	-40.8	10.7
5	-40.2	11.3
10	-40.7	10.8
15	-41.4	10.1
20	-41.6	9.9
25	-41.7	9.8
30	-42.9	8.6

FRONT VIEW

MAR-BRUC INC. EZ CYCLE LITE MODEL: 333

FCC SUBPART B AND C - RADIATED EMISSIONS - 10-30-02

PHOTOGRAPH SHOWING THE EUT CONFIGURATION FOR MAXIMUM EMISSIONS

REAR VIEW

MAR-BRUC INC. EZ CYCLE LITE

MODEL: 333

FCC SUBPART B AND C - RADIATED EMISSIONS - 10-30-02

PHOTOGRAPH SHOWING THE EUT CONFIGURATION FOR MAXIMUM EMISSIONS

APPENDIX E

DATA SHEETS

RADIATED EMISSIONS

DATA SHEETS

COMPANY	MAR-BRUC INC.	DATE	10/30/02	
EUT	EZ CYCLE LITE	DUTY CYCLE	50	%
MODEL	333	PEAK TO AVG	-6.02059991	dB
S/N	N/A	TEST DIST.	3	Meters
TEST ENGINEER	MICHAEL CHRISTENSEN	LAB	A	

Frequency	Peak Reading	Average (A) or Quasi-	Antenna Polar.	Antenna Height	EUT Azimuth	EUT Axis	EUT Tx	Antenna Factor	Cable Loss	Amplifier Gain	Distance Factor	Mixer Factor	*Corrected Reading	Delta **	Spec Limit	
MHz	(dBuV)	Peak (QP)	(V or H)	(meters)	(degrees)	(X,Y,Z)	Channel	(dB)	(dB)	(dB)	(dB)	(dB)	(dBuV/m)	(dB)	(dBuV/m)	Comments
384.0000	83.6	A	Н	1.0	270			15.7	2.4	34.8	0.0	0.0	66.9	-12.1	79.0	
384.0000	74.9	A	V	1.5	0			15.7	2.4	34.8	0.0	0.0	58.2	-20.8	79.0	

^{*} CORRECTED READING = METER READING + ANTENNA FACTOR + CABLE LOSS - AMPLIFIER GAIN

^{**} DELTA = SPEC LIMIT - CORRECTED READING

COMPANY	MAR-BRUC INC.	DATE	10/30/02	
EUT	EZ CYCLE LITE	DUTY CYCLE	50	%
MODEL	333	PEAK TO AVG	-6.02059991	dB
S/N	N/A	TEST DIST.	3	Meters
TEST ENGINEER	MICHAEL CHRISTENSEN	LAB	A	

Frequency	Peak Reading	Average (A) or Quasi-	Antenna Polar.	Antenna Height	EUT Azimuth	EUT Axis	EUT Tx	Antenna Factor	Cable Loss	Amplifier Gain	Distance Factor	Mixer Factor	*Corrected Reading	Delta **	Spec Limit	
MHz	(dBuV)	Peak (QP)	(V or H)	(meters)	(degrees)	(X,Y,Z)	Channel	(dB)	(dB)	(dB)	(dB)	(dB)	(dBuV/m)	(dB)	(dBuV/m)	Comments
768.0000	68.4	62.4 A	Н	1.0	270			21.2	4.0	34.1	0.0	0.0	53.5	-5.5	59.0	
768.0000	60.8	A	V	2.0	225			21.2	4.0	34.1	0.0	0.0	51.9	-7.1	59.0	
													2.27			

^{*} CORRECTED READING = METER READING + ANTENNA FACTOR + CABLE LOSS - AMPLIFIER GAIN

^{**} DELTA = SPEC LIMIT - CORRECTED READING

COMPANY	MAR-BRUC INC.	DATE	10/30/02	
EUT	EZ CYCLE LITE	DUTY CYCLE	50	%
MODEL	333	PEAK TO AVG	-6.02059991	dB
S/N	N/A	TEST DIST.	3	Meters
TEST ENGINEER	MICHAEL CHRISTENSEN	LAB	A	

Frequency	Peak Reading	Average (A) or Quasi-	Antenna Polar.	Antenna Height	EUT Azimuth	EUT Axis	EUT Tx	Antenna Factor	Cable Loss	Amplifier Gain	Distance Factor	Mixer Factor	*Corrected Reading	Delta **	Spec Limit	
MHz	(dBuV)	Peak (QP)	(V or H)	(meters)	(degrees)	(X,Y,Z)	Channel	(dB)	(dB)	(dB)	(dB)	(dB)	(dBuV/m)	(dB)	(dBuV/m)	Comments
1152.0000	44.8	A	Н	1.0	135			27.4	2.8	33.2	0.0	0.0	41.7	-12.3	54.0	
1152.0000	43.5	A	V	1.0	0			27.4	2.8	33.2	0.0	0.0	40.4	-13.6	54.0	
1132.0000	43.3	А	•	1.0	U			27.4	2.6	33.2	0.0	0.0	70.7	-13.0	34.0	

^{*} CORRECTED READING = METER READING + ANTENNA FACTOR + CABLE LOSS - AMPLIFIER GAIN

^{**} DELTA = SPEC LIMIT - CORRECTED READING

COMPANY	MAR-BRUC INC.	DATE	10/30/02	
EUT	EZ CYCLE LITE	DUTY CYCLE	50	%
MODEL	333	PEAK TO AVG	-6.02059991	dB
S/N	N/A	TEST DIST.	3	Meters
TEST ENGINEER	MICHAEL CHRISTENSEN	LAB	A	

Frequency	Peak	Average (A)		Antenna		EUT	EUT	Antenna	Cable	Amplifier		Mixer	*Corrected	Delta	Spec	
MHz	Reading (dBuV)		Polar.	_	Azimuth		Channel	Factor (dB)	Loss (dB)	Gain (dB)	Factor (dB)	Factor (dB)	Reading (dBuV/m)	** (dB)	Limit (dBuV/m)	Comments
		Peak (QP)				(Λ, Υ, L)	Channel	` ′		` /			,			
1536.0000	47.3	A	Н	2.0	90			29.4	3.3	32.6	0.0	0.0	47.4	-6.6		NO EMISSIONS FOUND
																AFTER 4 TH HARMONIC
1536.0000	49.1	A	V	1.5	0			29.4	3.3	32.6	0.0	0.0	49.2	-4.8	54.0	NO EMISSIONS FOUND
																AFTER 4 TH HARMONIC

^{*} CORRECTED READING = METER READING + ANTENNA FACTOR + CABLE LOSS - AMPLIFIER GAIN

^{**} DELTA = SPEC LIMIT - CORRECTED READING

Test Location : Compatible Electronics Page : 1/1

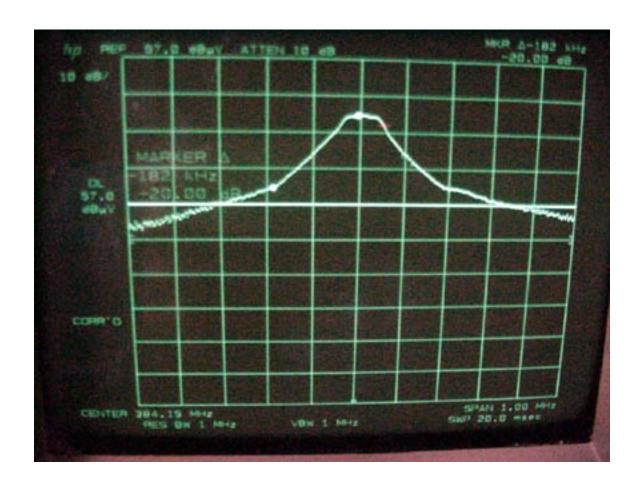
Customer : MAR-BRUC INC. Date : 10/30/2002

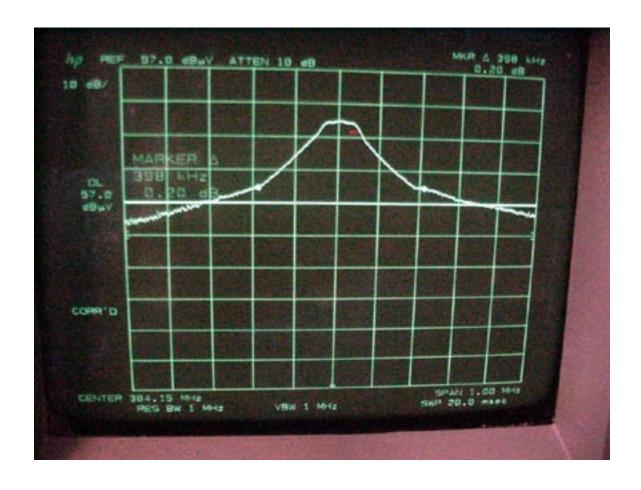
Manufacturer : WORLDWIDE MANUFACTURING USA, INC. Time : 15:03:12

Serial # :

Specification : FCC Class B

Distance correction factor (20 * log(test/spec) : 0.00


Test Mode : TESTED BY


MICHAEL CHRISTENSEN

Pol	Freq	Rdng	Cable loss	Ant factor	Amp gain	Cor'd rdg = R	Limit = L	Delta R-L
	MHz	dBuV	dB	dB	dВ	dBuV	dBuV/m	dB
1H	382.661	54.50	2.40	15.67	34.77	37.80	46.00	-8.20
2H	383.386	57.30	2.40	15.67	34.77	40.60	46.00	-5.40
3H	384.883	57.00	2.40	15.68	34.77	40.31	46.00	-5.69
4 H	385.641	53.50	2.40	15.69	34.77	36.82	46.00	-9.18
5H	766.741	44.60	4.03	21.14	34.07	35.71	46.00	-10.29
6H	767.452	47.20	4.04	21.16	34.06	38.33	46.00	-7.67
7H	769.005	46.70	4.04	21.20	34.06	37.88	46.00	-8.12
8H	769.709	42.60	4.04	21.22	34.06	33.80	46.00	-12.20
9V	383.388	49.00	2.40	15.67	34.77	32.30	46.00	-13.70
10V	384.903	49.30	2.40	15.68	34.77	32.61	46.00	-13.39

-20 dB BANDWIDTH

DATA SHEETS

