

Test Report S/N:	102203-436QPU
Test Date(s):	October 22, 2003
Test Type:	FCC SAR Evaluation

DECLARATION OF COMPLIANCE SAR RF EXPOSURE EVALUATION

Test Lab

CELLTECH LABS INC.

Testing and Engineering Services 1955 Moss Court Kelowna, B.C. Canada V1Y 9L3

Phone: 250-448-7047
Fax: 250-448-7046
e-mail: info@celltechlabs.com
web site: www.celltechlabs.com

Applicant Information

SYCHIP INC.

2805 N. Dallas Parkway Plano, TX 75093

Rule Part(s): FCC 47 CFR §2.1093; IC RSS-102 Issue 1 (Provisional) Test Procedure(s): FCC OET Bulletin 65, Supplement C (Edition 01-01)

Equipment Classification: Digital Transmission System (DTS)

EUT Type: DSSS WLAN Modem Card for Handheld PDAs Host PDA: ViewSonic Pocket PC (Model: VSMW25410)

EUT FCC ID: QPUWLAN6060SD Model(s): WLAN6065SD

Modulation: Direct Sequence Spread Spectrum (DSSS)

Tx Frequency Range: 2412 - 2462 MHz

Max. RF Output Power Tested: 15.0 dBm Conducted (2437 MHz)

Antenna Type(s): Embedded

Power Supply: 3.7V Lithium-ion Battery (from host PDA)

Max. SAR Measured: 0.772 W/kg (1g average)

Class II Permissive Change(s): 1. Added New Model: WLAN6065SD

Added Shield over VCO
 Added a Transistor

4. Changed Baseband Dice from 0.35μm to 0.18μm

Celltech Labs Inc. declares under its sole responsibility that this wireless portable device was compliant with the Specific Absorption Rate (SAR) RF exposure requirements specified in FCC 47 CFR §2.1093 and Health Canada's Safety Code 6. The device was tested in accordance with the measurement standards and procedures specified in FCC OET Bulletin 65, Supplement C, Edition 01-01 and Industry Canada RSS-102 Issue 1 (Provisional) for the General Population / Uncontrolled Exposure environment. All measurements were performed in accordance with the SAR system manufacturer recommendations.

I attest to the accuracy of data. All measurements were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

This test report shall not be reproduced partially, or in full, without the prior written approval of Celltech Labs Inc. The results and statements contained in this report pertain only to the device(s) evaluated.

Russell Pipe

Senior Compliance Technologist

July W. Ryse

Celltech Labs Inc.

© 2003 Celltech Labs Inc. 1 of 22

	TABLE OF CONTENTS				
1.0	INTRODUCTION	3			
2.0	DESCRIPTION OF EUT	3			
3.0	SAR MEASUREMENT SYSTEM	4			
4.0	MEASUREMENT SUMMARY	5			
4.0	WLASUKLINI SUMMAKI	<u> </u>			
5.0	DETAILS OF SAR EVALUATION	6			
		-			
6.0	EVALUATION PROCEDURES	6- 7			
7.0	SYSTEM PERFORMANCE CHECK	8			
0.0	FOUNTAL ENT TICCUES	0			
8.0	EQUIVALENT TISSUES	9			
9.0	SAR LIMITS	9			
3.0	OAK EIMITO				
10.0	SYSTEM SPECIFICATIONS	10			
11.0	PROBE SPECIFICATION	11			
12.0	SAM PHANTOM	11			
13.0	DEVICE HOLDER	11			
13.0	DEVICE HOLDER				
14.0	TEST EQUIPMENT LIST	12			
15.0	MEASUREMENT UNCERTAINTIES	13-14			
16.0	REFERENCES	15			
ADDENIE	DIV A CAR MEAGUREMENT DATA	40			
	DIX A - SAR MEASUREMENT DATADIX B - SYSTEM PERFORMANCE CHECK DATA	16 17			
	DIX C - SYSTEM VALIDATION	18			
APPENDIX C - STSTEM VALIDATION					
APPENDIX E - MEASURED FLUID DIELECTRIC PARAMETERS					
APPENDIX F - SAM PHANTOM CERTIFICATE OF CONFORMITY					
APPEND	DIX G - SAR TEST SETUP & EUT PHOTOGRAPHS	22			

© 2003 Celltech Labs Inc. 2 of 22

Test Report S/N:	102203-436QPU
Test Date(s):	October 22, 2003
Test Type:	FCC SAR Evaluation

1.0 INTRODUCTION

This measurement report demonstrates that the SyChip Inc. Model: WLAN6065SD DSSS WLAN Modem Card FCC ID: QPUWLAN6060SD (for Handheld PDAs), with the Class II Permissive Change(s) described in this report, complies with the SAR (Specific Absorption Rate) RF exposure requirements specified in FCC 47 CFR §2.1093 (see reference [1]), and Health Canada's Safety Code 6 (see reference [2]) for the General Population / Uncontrolled Exposure environment. The test procedures described in FCC OET Bulletin 65, Supplement C, Edition 01-01 (see reference [3]) and IC RSS-102 Issue 1 (Provisional) (see reference [4]), were employed. A description of the product, operating configuration, detailed summary of the test results, methodology and procedures used in the evaluation, equipment used, and the various provisions of the rules are included within this test report.

2.0 DESCRIPTION OF EQUIPMENT UNDER TEST (EUT)

FCC Rule Part(s)	47 CFR §2.1093				
IC Rule Part(s)	RSS-102 Issue 1 (Provisional)				
Test Procedure(s)	FCC OET Bulletin 65, Supplement C (01-01)				
FCC Equipment Classification	Digital Transmission System (DTS)				
Equipment Type	DSSS WLAN Modem Card for Handheld PDAs				
Host PDA	ViewSonic Pocket PC (Model: VSMW25410)				
EUT FCC ID	QPUWLAN6060SD				
Model(s)	WLAN6065SD				
Serial No.	394				
Modulation	Direct Sequence Spread Spectrum (DSSS)				
Tx Frequency Range	2412 - 2462 MHz				
Max. RF Output Power Tested	15.0 dBm Conducted (2437 MHz)				
Antenna Type(s)	Embedded				
Power Supply	3.7V Lithium-ion Battery (from host PDA)				
Class II Permissive Change(s)	1. Added New Model: WLAN6065SD 2. Added Shield over VCO 3. Added a Transistor 4. Changed Baseband Dice from 0.35μm to 0.18μm				

Test Report S/N:	102203-436QPU
Test Date(s):	October 22, 2003
Test Type:	FCC SAR Evaluation

3.0 SAR MEASUREMENT SYSTEM

Celltech Labs Inc. SAR measurement facility utilizes the Dosimetric Assessment System (DASY™) manufactured by Schmid & Partner Engineering AG (SPEAG™) of Zurich, Switzerland. The DASY4 measurement system is comprised of the measurement server, robot controller, computer, near-field probe, probe alignment sensor, specific anthropomorphic mannequin (SAM) phantom, and various planar phantoms for brain and/or body SAR evaluations. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and remote control, is used to drive the robot motors. The Staubli robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electrooptical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the DASY4 measurement server. The DAE4 utilizes a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16-bit AD-converter and a command decoder and control logic unit. Transmission to the DASY4 measurement server is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe-mounting device includes two different sensor systems for frontal and sidewise probe contacts. The sensor systems are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.

DASY4 Measurement System with SAM Phantom

DASY4 Measurement System with SAM Phantom

Test Report S/N:	102203-436QPU
Test Date(s):	October 22, 2003
Test Type:	FCC SAR Evaluation

4.0 MEASUREMENT SUMMARY

The measurement results were obtained with the EUT tested in the conditions described in this report. Detailed measurement data and plots showing the maximum SAR location of the EUT are reported in Appendix A.

	BODY SAR MEASUREMENT RESULTS									
Freq.	Chan.	Test	Power	Conducted Power (dBm)		Phantom	EUT Position	Separation Distance to Planar	Measured SAR 1g	
(MHz)	Ondin.	Mode	Supply	Before	After	Section	to Planar Phantom	Phantom (cm)	(W/kg)	
2437	6	DSSS	Host PDA	14.9	15.0	Planar	Back Side	0.0	0.772	
2437	2437 6 DSSS Host		Host PDA	15.0	14.8	Planar	Left Side	0.0	0.0758	
2437	0	D333	1103t1 DA	2 nd	Maximum	i iaiiai	Left Side	0.0	0.0657	
2437	6	DSSS	Host PDA	14.9	14.8	Planar	Right Side	0.0	0.0600	
2437	6	DSSS	Host PDA	15.0	14.9	Planar	Top End	1.5	0.0257	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT BODY SAR: 1.6 W/kg (averaged over 1 gram) Spatial Peak - Uncontrolled Exposure / General Population									
To	est Date(s	s)		10/22/0	3	Relat	ive Humidity	5	53 %	
Measur	Measured Mixture Type 24		450MHz Body		Atmosp	Atmospheric Pressure		101.5 kPa		
Diele	Dielectric Constant		IEEE Targ	arget Measured		Ambier	Ambient Temperature		.6 °C	
	ε _r		52.7 ±10°	51.1		Fluid	Fluid Temperature		3.7 °C	
	onductivit	-	IEEE Targ	jet	Measured	FI	uid Depth	≥ .	≥ 15 cm	
C	(mho/m)		1.95 ±5%	6	2.02		ρ (Kg /m³)		1000	

Note(s):

- If the SAR measurements performed at the middle channel were ≥ 3dB below the SAR limit; SAR evaluation for the low and high channels was optional (per FCC OET Bulletin 65, Supplement C, Edition 01-01 (see reference [3]).
- 2. Secondary peak SAR locations within 2dB of the primary were evaluated and reported as shown in the table above and Appendix A (SAR Test Plots).
- 3. The ambient and fluid temperatures were measured prior to, and during, the fluid dielectric parameter check and the SAR evaluation. The temperatures listed were consistent for all measurement periods.
- The dielectric properties of the simulated body fluid were measured prior to the evaluation using an 85070C Dielectric Probe Kit and an 8753E Network Analyzer (see Appendix E for printout of measured fluid dielectric parameters).

Test Report S/N:	102203-436QPU
Test Date(s):	October 22, 2003
Test Type:	FCC SAR Evaluation

5.0 DETAILS OF SAR EVALUATION

The SyChip Inc. Model: WLAN6065SD DSSS WLAN Modem Card FCC ID: QPUWLAN6060SD (for Handheld PDAs), with the Class II Permissive Change(s) described in this report, was found to be compliant for localized Specific Absorption Rate based on the test provisions and conditions described below. Detailed photographs of the measurement setup are shown in Appendix G.

- 1. The EUT was tested for body SAR installed in the ViewSonic Pocket PC with the back of the EUT and host PDA facing parallel to the outer surface of the SAM phantom (planar section). A 0.0 cm separation distance from the back of the PDA to the outer surface of the SAM phantom (planar section) was maintained for the duration of the tests. The distance between the back of the EUT and the SAM phantom (planar section) was 0.5 mm.
- 2. The EUT was tested for body SAR with the left side of the EUT and host PDA placed parallel to the outer surface of the SAM phantom (planar section). A 0.0 cm separation distance from the left side of the PDA to the outer surface of the SAM phantom (planar section) was maintained for the duration of the tests. The distance between the left side of the EUT and the SAM phantom (planar section) was 26.0 mm.
- 3. The EUT was tested for body SAR with the right side of the EUT and host PDA placed parallel to the outer surface of the SAM phantom (planar section). A 0.0 cm separation distance from the right side of the PDA to the outer surface of the SAM phantom (planar section) was maintained for the duration of the tests. The distance between the right side of the EUT and the SAM phantom (planar section) was 26.8 mm.
- 4. The EUT was tested for body SAR with the top end of the EUT and host PDA placed parallel to the outer surface of the SAM phantom (planar section). A 1.5 cm separation distance from the top end of the EUT to the outer surface of the SAM phantom (planar section) was maintained for the duration of the tests.
- 5. The conducted power levels were measured before and after each test using a Gigatronics 8652A Universal Power Meter according to the procedures described in FCC 47 CFR §2.1046.
- 6. The EUT was controlled in test mode via internal software from the host PDA.
- 7. The EUT was tested at maximum power in modulated DSSS continuous transmit mode.
- 8. The EUT was tested with a fully charged Lithium-ion battery in the host PDA.

6.0 EVALUATION PROCEDURES

- a. (i) The evaluation was performed in the applicable area of the phantom depending on the type of device being tested. For devices held to the ear during normal operation, both the left and right ear positions were evaluated using the SAM phantom.
 - (ii) For body-worn and face-held devices a planar phantom was used.
- b. The SAR was determined by a pre-defined procedure within the DASY4 software. Upon completion of a reference and optical surface check, the exposed region of the phantom was scanned near the inner surface with a grid spacing of 15mm x 15mm.

An area scan was determined as follows:

- c. Based on the defined area scan grid, a more detailed grid is created to increase the points by a factor of 10. The interpolation function then evaluates all field values between corresponding measurement points.
- d. A linear search is applied to find all the candidate maxima. Subsequently, all maxima are removed that are >2 dB from the global maximum. The remaining maxima are then used to position the cube scans.

A 1g and 10g spatial peak SAR was determined as follows:

- Extrapolation is used to find the points between the dipole center of the probe and the surface of the phantom.
 This data cannot be measured, since the center of the dipoles is 2.7 mm away form the tip of the probe and the
 distance between the surface and the lowest measuring point is 1.4 mm (see probe calibration document in
 Appendix D). The extrapolation was based on trivariate quadratics computed from the previously calculated 3D
 interpolated points nearest the phantom surface.
- 2. Interpolated data is used to calculate the average SAR over 1g and 10g cubes by spatially discretizing the entire measured cube. The volume used to determine the averaged SAR is a 1mm grid (42875 interpolated points).

Test Report S/N:	102203-436QPU
Test Date(s):	October 22, 2003
Test Type:	FCC SAR Evaluation

EVALUATION PROCEDURES (Cont.)

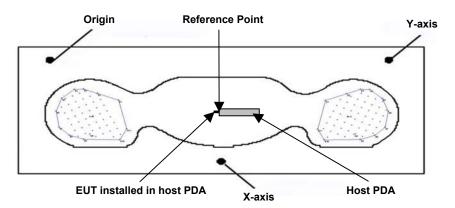


Figure 1. Phantom Reference Point & EUT Positioning – Left/Right Sides of EUT

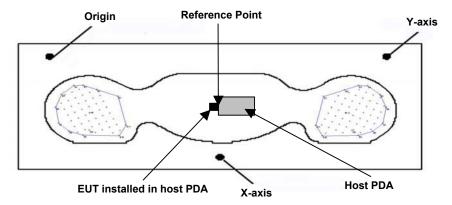


Figure 2. Phantom Reference Point & EUT Positioning - Back Side of EUT

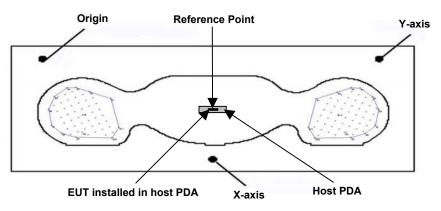
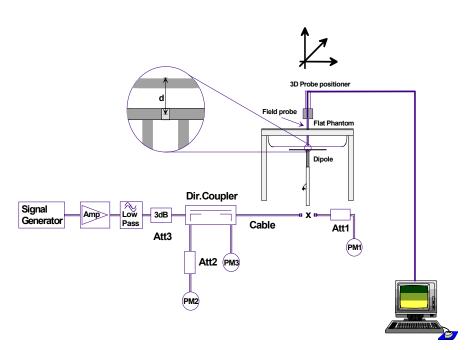
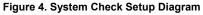


Figure 3. Phantom Reference Point & EUT Positioning - Top End of EUT




Test Report S/N:	102203-436QPU
Test Date(s):	October 22, 2003
Test Type:	FCC SAR Evaluation

7.0 SYSTEM PERFORMANCE CHECK

Prior to the SAR evaluation a system check was performed in the planar section of the SAM phantom with a 2450MHz dipole (see Appendix C for system validation procedures). The dielectric parameters of the simulated brain tissue were measured using an 85070C Dielectric Probe Kit and an 8753E Network Analyzer (see Appendix E for printout of measured fluid dielectric parameters). A forward power of 250 mW was applied to the dipole and the system was verified to a tolerance of $\pm 10\%$ (see Appendix B for system check test plot).

	SYSTEM PERFORMANCE CHECK										
Test	Equiv. Tissue	SAR 1g (W/kg)		Dielectric Constant ε _r		Conductivity σ (mho/m)		ρ (K g/m³)	Ambient	Fluid	Fluid
Date	(2450MHz)	IEEE Target	Measured	IEEE Target	Measured	IEEE Target	Measured	p (itg/iii)	Temp.	Temp.	Depth
10/22/03	Brain	13.1 ±10%	14.2	39.2 ±10%	37.4	1.80 ±5%	1.89	1000	21.6 °C	23.5 °C	≥ 15 cm

2450MHz Dipole Setup

Test Report S/N:	102203-436QPU
Test Date(s):	October 22, 2003
Test Type:	FCC SAR Evaluation

8.0 SIMULATED EQUIVALENT TISSUES

The 2450MHz brain and body simulated tissue mixtures consist of Glycol-monobutyl, water, and salt (body mixture only). The fluid was prepared according to standardized procedures and measured for dielectric parameters (permittivity and conductivity).

SIMULATED TISSUE MIXTURES				
INGREDIENT	2450MHz Brain (System Check)	2450MHz Body (EUT Evaluation)		
Water	55.20 %	69.95 %		
Glycol Monobutyl	44.80 %	30.00 %		
Salt	-	0.05 %		

9.0 SAR SAFETY LIMITS

	SAR (W/kg)		
EXPOSURE LIMITS	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)	
Spatial Average (averaged over the whole body)	0.08	0.4	
Spatial Peak (averaged over any 1 g of tissue)	1.60	8.0	
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	4.0	20.0	

Notes

- 1. Uncontrolled environments are defined as locations where there is potential exposure of individuals who have no knowledge or control of their potential exposure.
- 2. Controlled environments are defined as locations where there is potential exposure of individuals who have knowledge of their potential exposure and can exercise control over their exposure.

Test Report S/N:	102203-436QPU
Test Date(s):	October 22, 2003
Test Type:	FCC SAR Evaluation

10.0 ROBOT SYSTEM SPECIFICATIONS

Specifications

POSITIONER: Stäubli Unimation Corp. Robot Model: RX60L

Repeatability: 0.02 mm

No. of axis: 6

Data Acquisition Electronic (DAE) System

Cell Controller

Processor: AMD Athlon XP 2400+

Clock Speed: 2.0 GHz

Operating System: Windows XP Professional

Data Converter

Features: Signal Amplifier, multiplexer, A/D converter, and control logic

Software: DASY4 software

Connecting Lines: Optical downlink for data and status info.

Optical uplink for commands and clock

DASY4 Measurement Server

Function: Real-time data evaluation for field measurements and surface detection

Hardware: PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM Connections: COM1, COM2, DAE, Robot, Ethernet, Service Interface

E-Field Probe

Model: ET3DV6 Serial No.: 1387

Construction: Triangular core fiber optic detection system

Frequency: 10 MHz to 6 GHz

Linearity: ± 0.2 dB (30 MHz to 3 GHz)

Phantom(s)

Validation & Evaluation Phantom

Type:SAM V4.0CShell Material:FiberglassThickness: $2.0 \pm 0.1 \text{ mm}$ Volume:Approx. 20 liters

Test Report S/N:	102203-436QPU
Test Date(s):	October 22, 2003
Test Type:	FCC SAR Evaluation

11.0 PROBE SPECIFICATION (ET3DV6)

Construction: Symmetrical design with triangular core

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, e.g. glycol)

Calibration: In air from 10 MHz to 2.5 GHz

In brain simulating tissue at frequencies of 900 MHz

and 1.8 GHz (accuracy ± 8%)

Frequency: 10 MHz to >6 GHz; Linearity: ± 0.2 dB

(30 MHz to 3 GHz)

Directivity: ± 0.2 dB in brain tissue (rotation around probe axis)

 ± 0.4 dB in brain tissue (rotation normal to probe axis)

Dynamic Range: $5 \mu W/g$ to >100 mW/g; Linearity: $\pm 0.2 dB$

Surface Detect. ±0.2 mm repeatability in air and clear liquids over

diffuse reflecting surfaces

Dimensions: Overall length: 330 mm

Tip length: 16 mm Body diameter: 12 mm Tip diameter: 6.8 mm

Distance from probe tip to dipole centers: 2.7 mm

Application: General dosimetry up to 3 GHz

Compliance tests of mobile phone

ET3DV6 E-Field Probe

12.0 SAM PHANTOM V4.0C

The SAM phantom V4.0C is a fiberglass shell phantom with a 2.0 mm shell thickness for left and right head and flat planar area integrated in a wooden table. The shape of the fiberglass shell corresponds to the phantom defined by SCC34-SC2. The device holder positions are adjusted to the standard measurement positions in the three sections.

SAM Phantom

13.0 DEVICE HOLDER

The DASY4 device holder has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65° . The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections.

Device Holder

14.0 TEST EQUIPMENT LIST

TEST EQUIPMENT	SERIAL NO.	CALIBRATION DATE
Schmid & Partner DASY4 System	-	-
DASY4 Measurement Server	1078	N/A
-Robot	599396-01	N/A
-ET3DV6 E-Field Probe	1387	Feb 2003
-300MHz Validation Dipole	135	Oct 2003
-450MHz Validation Dipole	136	Oct 2003
-900MHz Validation Dipole	054	June 2003
-1800MHz Validation Dipole	247	June 2003
-2450MHz Validation Dipole	150	Sept 2003
-SAM Phantom V4.0C	1033	N/A
-Barski Planar Phantom	N/A	N/A
HP 85070C Dielectric Probe Kit	N/A	N/A
Gigatronics 8651A Power Meter	8650137	April 2003
Gigatronics 8652A Power Meter	1835267	April 2003
Power Sensor 80701A	1833542	Feb 2003
Power Sensor 80701A	1833699	April 2003
HP E4408B Spectrum Analyzer	US39240170	Dec 2002
HP 8594E Spectrum Analyzer	3543A02721	April 2003
HP 8753E Network Analyzer	US38433013	May 2003
HP 8648D Signal Generator	3847A00611	May 2003
Amplifier Research 5S1G4 Power Amplifier	26235	N/A

 Test Report S/N:
 102203-436QPU

 Test Date(s):
 October 22, 2003

 Test Type:
 FCC SAR Evaluation

15.0 MEASUREMENT UNCERTAINTIES

UNCERTAINTY BUDGET FOR DEVICE EVALUATION						
Error Description	Uncertainty Value ±%	Probability Distribution	Divisor	c _i 1g	Standard Uncertainty ±% (1g)	V _i or V _{eff}
Measurement System						
Probe calibration	± 4.8	Normal	1	1	± 4.8	∞
Axial isotropy of the probe	± 4.7	Rectangular	√3	(1-c _p)	± 1.9	∞
Spherical isotropy of the probe	± 9.6	Rectangular	√3	(C _p)	± 3.9	∞
Spatial resolution	± 0.0	Rectangular	√3	1	± 0.0	∞
Boundary effects	± 5.5	Rectangular	√3	1	± 3.2	∞
Probe linearity	± 4.7	Rectangular	√3	1	± 2.7	∞
Detection limit	± 1.0	Rectangular	√3	1	± 0.6	∞
Readout electronics	± 1.0	Normal	1	1	± 1.0	∞
Response time	± 0.8	Rectangular	√3	1	± 0.5	∞
Integration time	± 1.4	Rectangular	√3	1	± 0.8	∞
RF ambient conditions	± 3.0	Rectangular	√3	1	± 1.7	∞
Mech. constraints of robot	± 0.4	Rectangular	√3	1	± 0.2	∞
Probe positioning	± 2.9	Rectangular	√3	1	± 1.7	∞
Extrapolation & integration	± 3.9	Rectangular	√3	1	± 2.3	∞
Test Sample Related						
Device positioning	± 6.0	Normal	√3	1	± 6.7	12
Device holder uncertainty	± 5.0	Normal	√3	1	± 5.9	8
Power drift	± 5.0	Rectangular	√3		± 2.9	∞
Phantom and Setup						
Phantom uncertainty	± 4.0	Rectangular	√3	1	± 2.3	∞
Liquid conductivity (target)	± 5.0	Rectangular	√3	0.6	± 1.7	∞
Liquid conductivity (measured)	± 5.0	Rectangular	√3	0.6	± 1.7	∞
Liquid permittivity (target)	± 5.0	Rectangular	√3	0.6	± 1.7	∞
Liquid permittivity (measured)	± 5.0	Rectangular	√3	0.6	± 1.7	∞
Combined Standard Uncertaint	ту				± 13.3	
Expanded Uncertainty (k=2)					± 26.6	

Measurement Uncertainty Table in accordance with IEEE Standard 1528-200X (Draft - see reference [5])

MEASUREMENT UNCERTAINTIES (Cont.)

Error Description	Uncertainty Value ±%	Probability Distribution	Divisor	c _i 1g	Standard Uncertainty ±% (1g)	V _i or V _{eff}
Measurement System						
Probe calibration	± 4.8	Normal	1	1	± 4.8	∞
Axial isotropy of the probe	± 4.7	Rectangular	√3	(1-c _p)	± 1.9	∞
Spherical isotropy of the probe	± 9.6	Rectangular	√3	(C _p)	± 3.9	∞
Spatial resolution	± 0.0	Rectangular	√3	1	± 0.0	∞
Boundary effects	± 5.5	Rectangular	√3	1	± 3.2	∞
Probe linearity	± 4.7	Rectangular	√3	1	± 2.7	∞
Detection limit	± 1.0	Rectangular	√3	1	± 0.6	∞
Readout electronics	± 1.0	Normal	1	1	± 1.0	∞
Response time	± 0.8	Rectangular	√3	1	± 0.5	∞
Integration time	± 1.4	Rectangular	√3	1	± 0.8	∞
RF ambient conditions	± 3.0	Rectangular	√3	1	± 1.7	∞
Mech. constraints of robot	± 0.4	Rectangular	√3	1	± 0.2	∞
Probe positioning	± 2.9	Rectangular	√3	1	± 1.7	∞
Extrapolation & integration	± 3.9	Rectangular	√3	1	± 2.3	∞
Dipole						
Dipole Axis to Liquid Distance	± 2.0	Rectangular	√3	1	± 1.2	∞
Input Power	± 4.7	Rectangular	√3	1	± 2.7	∞
Phantom and Setup						
Phantom uncertainty	± 4.0	Rectangular	√3	1	± 2.3	∞
Liquid conductivity (target)	± 5.0	Rectangular	√3	0.6	± 1.7	∞
Liquid conductivity (measured)	± 5.0	Rectangular	√3	0.6	± 1.7	∞
Liquid permittivity (target)	± 5.0	Rectangular	√3	0.6	± 1.7	∞
Liquid permittivity (measured)	± 5.0	Rectangular	√3	0.6	± 1.7	∞
Combined Standard Uncertaint	y				± 9.9	
Expanded Uncertainty (k=2)					± 19.8	

Measurement Uncertainty Table in accordance with IEEE Standard 1528-200X (Draft - see reference [5])

Test Report S/N:	102203-436QPU
Test Date(s):	October 22, 2003
Test Type:	FCC SAR Evaluation

16.0 REFERENCES

- [1] Federal Communications Commission, "Radiofrequency radiation exposure evaluation: portable devices", Rule Part 47 CFR §2.1093: 1999.
- [2] Health Canada, "Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz", Safety Code 6.
- [3] Federal Communications Commission, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields", OET Bulletin 65, Supplement C (Edition 01-01), FCC, Washington, D.C.: June 2001.
- [4] Industry Canada, "Evaluation Procedure for Mobile and Portable Radio Transmitters with respect to Health Canada's Safety Code 6 for Exposure of Humans to Radio Frequency Fields", Radio Standards Specification RSS-102 Issue 1 (Provisional): September 1999.
- [5] IEEE Standards Coordinating Committee 34, Std 1528-200X, "DRAFT Recommended Practice for Determining the Spatial-Peak Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques".
- [6] W. Gander, Computermathematick, Birkhaeuser, Basel: 1992.

Test Report S/N:	102203-436QPU
Test Date(s):	October 22, 2003
Test Type:	FCC SAR Evaluation

APPENDIX A - SAR MEASUREMENT DATA

Test Report S/N:	102203-436QPU
Test Date(s):	October 22, 2003
Test Type:	FCC SAR Evaluation

Date Tested: 10/22/03

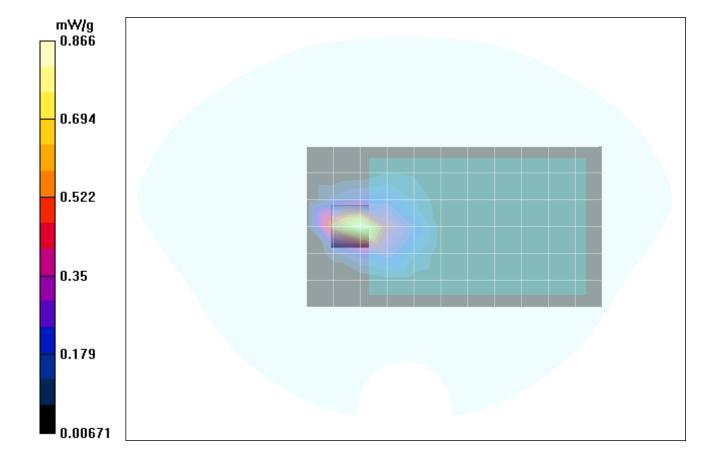
Power Drift = 0.01

DUT: SyChip Inc. Model: WLAN6065SD; Type: 802.11b Wireless Modern Card in ViewSonic VSMW25410 PDA; Serial: 394

Ambient Temp: 21.6°C; Fluid Temp: 23.7°C; Barometric Pressure: 101.5 kPa; Humidity: 53%

Communication System: DSSS

RF Output Power: 15.0 dBm (Conducted)


Frequency: 2437 MHz; Channel 6; Duty Cycle: 1:1

Medium: M2450 (σ = 2.02 mho/m, ε_r = 51.1, ρ = 1000 kg/m³)

- Probe: ET3DV6 SN1387; ConvF(4.6, 4.6, 4.6); Calibrated: 26/02/2003
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn370; Calibrated: 19/05/2003 - Phantom: SAM front; Type: SAM 4.0; Serial: 1033
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 116

Back of EUT / PDA - 0 cm - Mid Ch/Area Scan (7x12x1): Measurement grid: dx=15mm, dy=15mm

Back of EUT / PDA - 0 cm - Mid Ch/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Peak SAR (extrapolated) = 2 W/kg SAR(1 g) = 0.772 mW/g; SAR(10 g) = 0.359 mW/g Reference Value = 12.6 V/m

Date Tested: 10/22/03

DUT: SyChip Inc. Model: WLAN6065SD; Type: 802.11b Wireless Modem Card in ViewSonic VSMW25410 PDA; Serial: 394

Ambient Temp: 21.6°C; Fluid Temp: 23.7°C; Barometric Pressure: 101.5 kPa; Humidity: 53%

Communication System: DSSS

RF Output Power: 15.0 dBm (Conducted)

Frequency: 2437 MHz; Channel 6; Duty Cycle: 1:1

Medium: M2450 (σ = 2.02 mho/m, ε_r = 51.1, ρ = 1000 kg/m³)

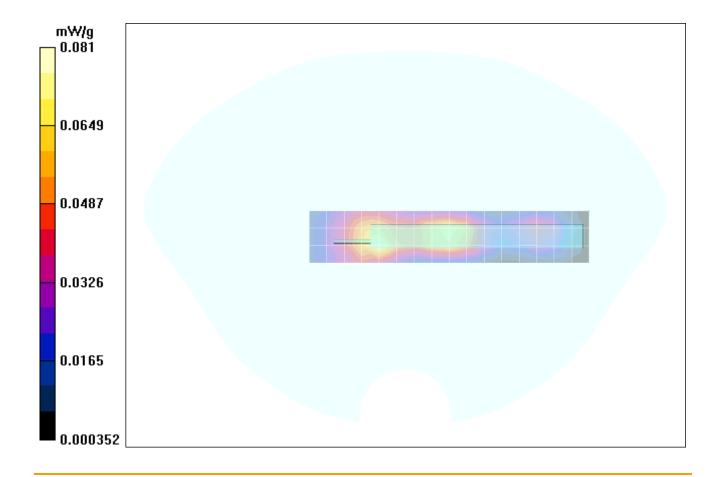
- Probe: ET3DV6 SN1387; ConvF(4.6, 4.6, 4.6); Calibrated: 26/02/2003
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn370; Calibrated: 19/05/2003
- Phantom: SAM front; Type: SAM 4.0; Serial: 1033
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 116

Left Side of EUT / PDA - 0 cm - Mid Ch/Area Scan (4x17x1): Measurement grid: dx=10mm, dy=10mm

Left Side of EUT / PDA - 0 cm - Mid Ch/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Peak SAR (extrapolated) = 0.173 W/kg

SAR(1 g) = 0.0758 mW/g; SAR(10 g) = 0.0362 mW/g


Reference Value = 5.69 V/m

Power Drift = -0.2 dB

Left Side of EUT / PDA - 0 cm - Mid Ch/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Peak SAR (extrapolated) = 0.146 W/kg

SAR(1 g) = 0.0657 mW/g; SAR(10 g) = 0.0339 mW/g

Test Report S/N:	102203-436QPU
Test Date(s):	October 22, 2003
Test Type:	FCC SAR Evaluation

Date Tested: 10/22/03

DUT: SyChip Inc. Model: WLAN6065SD; Type: 802.11b Wireless Modem Card in ViewSonic VSMW25410 PDA; Serial: 394

Ambient Temp: 21.6°C; Fluid Temp: 23.7°C; Barometric Pressure: 101.5 kPa; Humidity: 53%

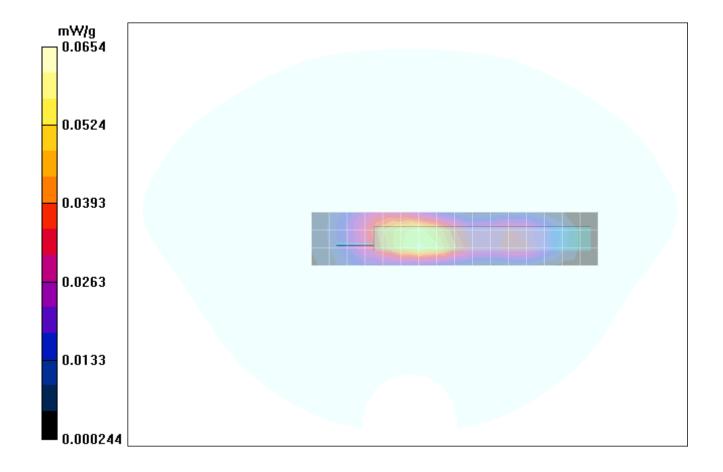
Communication System: DSSS

RF Output Power: 14.9 dBm (Conducted)

Frequency: 2437 MHz; Channel 6; Duty Cycle: 1:1

Medium: M2450 (σ = 2.02 mho/m, ϵ_r = 51.1, ρ = 1000 kg/m³)

- Probe: ET3DV6 SN1387; ConvF(4.6, 4.6, 4.6); Calibrated: 26/02/2003
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn370; Calibrated: 19/05/2003
- Phantom: SAM front; Type: SAM 4.0; Serial: 1033
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 116


Right Side of EUT / PDA - 0 cm - Mid Ch/Area Scan (4x17x1): Measurement grid: dx=10mm, dy=10mm

Right Side of EUT / PDA - 0 cm - Mid Ch/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Peak SAR (extrapolated) = 0.125 W/kg

SAR(1 g) = 0.06 mW/g; SAR(10 g) = 0.0297 mW/g

Reference Value = 6.01 V/m Power Drift = -0.10 dB

Test Report S/N:	102203-436QPU
Test Date(s):	October 22, 2003
Test Type:	FCC SAR Evaluation

Date Tested: 10/22/03

DUT: SyChip Inc. Model: WLAN6065SD; Type: 802.11b Wireless Modem Card in ViewSonic VSMW25410 PDA; Serial: 394

Ambient Temp: 21.6°C; Fluid Temp: 23.7°C; Barometric Pressure: 101.5 kPa; Humidity: 53%

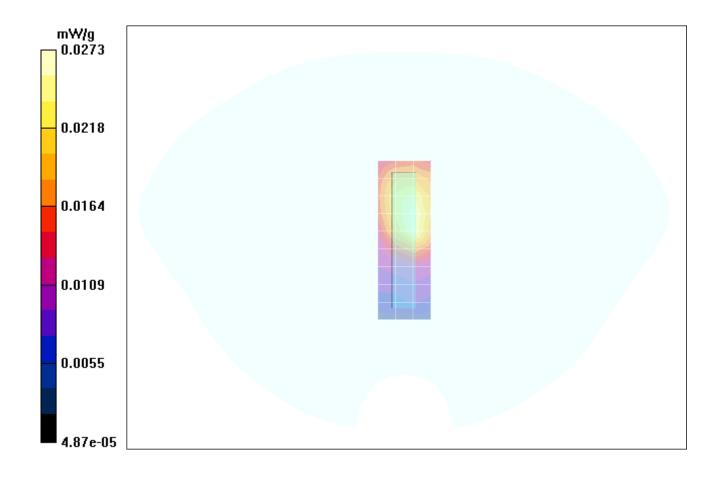
Communication System: DSSS

RF Output Power: 15.0 dBm (Conducted)

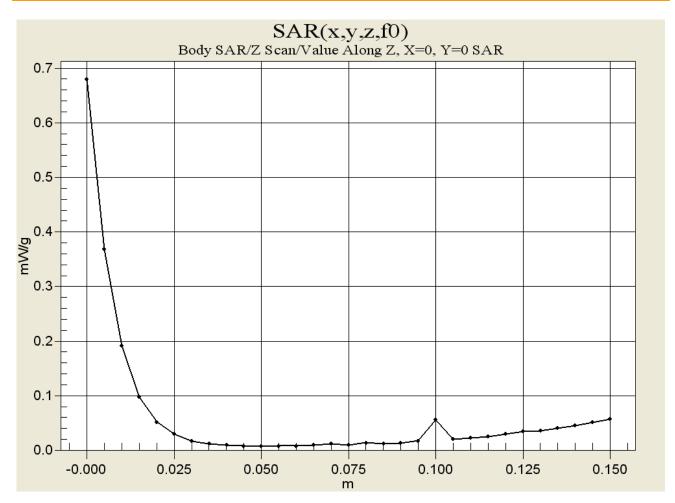
Frequency: 2437 MHz; Channel 6; Duty Cycle: 1:1

Medium: M2450 (σ = 2.02 mho/m, ϵ_r = 51.1, ρ = 1000 kg/m³)

- Probe: ET3DV6 SN1387; ConvF(4.6, 4.6, 4.6); Calibrated: 26/02/2003
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn370; Calibrated: 19/05/2003
- Phantom: SAM front; Type: SAM 4.0; Serial: 1033
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 116


Top of EUT / PDA - 1.5 cm - Mid Ch/Area Scan (10x4x1): Measurement grid: dx=10mm, dy=10mm

Top of EUT / PDA - 1.5 cm - Mid Ch/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Peak SAR (extrapolated) = 0.0531 W/kg

SAR(1 g) = 0.0257 mW/g; SAR(10 g) = 0.0148 mW/g

Reference Value = 3.4 V/m Power Drift = -0.10 dB

Back of Device - 0 cm - Mid Ch

Test Report S/N:	102203-436QPU
Test Date(s):	October 22, 2003
Test Type:	FCC SAR Evaluation

APPENDIX B - SYSTEM PERFORMANCE CHECK DATA

Date Tested: 10/22/03

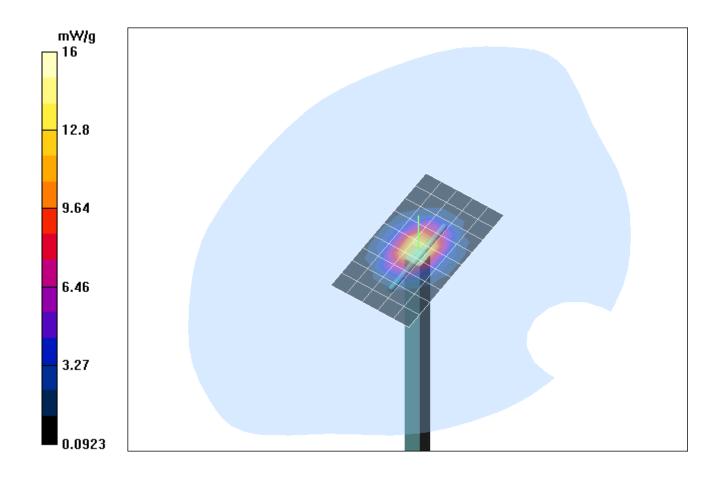
DUT: Dipole 2450 MHz; Model: D2450V2; Type: System Performance Check; SN: 150

Ambient Temp: 21.6°C; Fluid Temp: 23.5°C Barometric Pressure: 101.5 kPa; Humidity: 53%

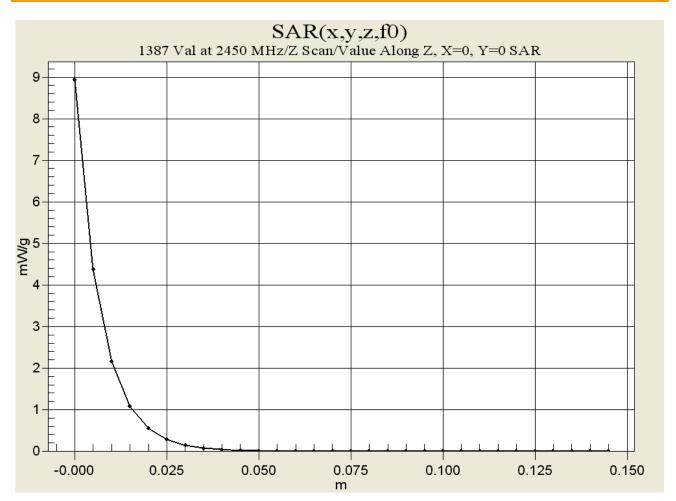
Communication System: CW Forward Conducted Power: 250 mW Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: HSL2450 (σ = 1.89 mho/m, ϵ_r = 37.4, ρ = 1000 kg/m³)

- Probe: ET3DV6 SN1387; ConvF(5, 5, 5); Calibrated: 26/02/2003
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn370; Calibrated: 19/05/2003 - Phantom: SAM front; Type: SAM 4.0; Serial: 1033
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 116


1387 Validation at 2450 MHz/Area Scan (6x10x1): Measurement grid: dx=10mm, dy=10mm

1387 Validation at 2450 MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Peak SAR (extrapolated) = 29.9 W/kg

SAR(1 g) = 14.2 mW/g; SAR(10 g) = 6.42 mW/g

Reference Value = 97.8 V/m Power Drift = -0.03 dB

 Test Report S/N:
 102203-436QPU

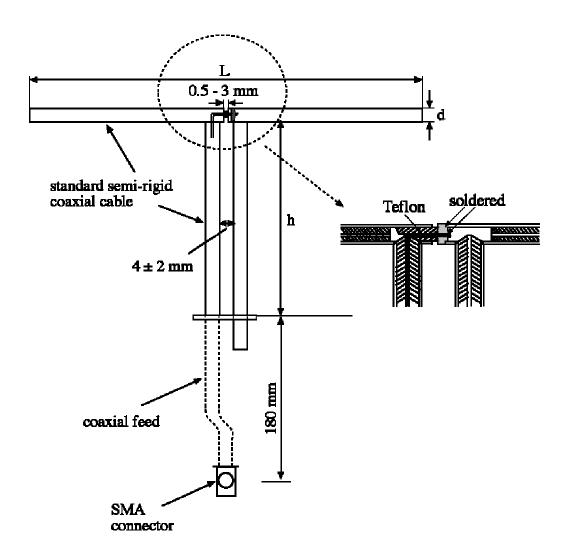
 Test Date(s):
 October 22, 2003

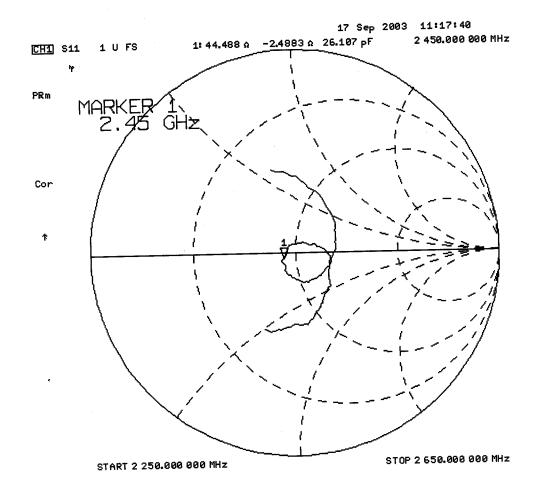
 Test Type:
 FCC SAR Evaluation

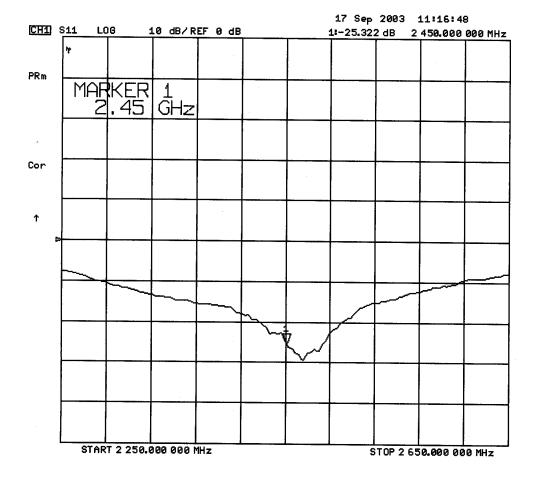
APPENDIX C - SYSTEM VALIDATION

2450MHz SYSTEM VALIDATION DIPOLE

Type:	2450MHz Validation Dipole	
Serial Number:	150	
Place of Calibration:	Celltech Labs Inc.	
Date of Calibration:	September 17, 2003	
Celltech Labs Inc. hereby certifies that this of	device has been calibrated on the date indicated a	above.
Calibrated by:	Spenier Watson	
Approved by:	Kussell W. Ryse	


1. Dipole Construction & Electrical Characteristics


The validation dipole was constructed in accordance with the IEEE Std "Recommended Practice for Determining the Spatial-Peak Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques". The electrical properties were measured using an HP 8753E Network Analyzer. The network analyzer was calibrated to the validation dipole N-type connector feed point using an HP85032E Type N calibration kit. The dipole was placed parallel to a planar phantom at a separation distance of 10.0mm from the simulating fluid using a loss-less dielectric spacer. The measured input impedance is:


Feed point impedance at 2450MHz $Re{Z} = 44.488\Omega$

 $Im{Z} = -2.4883\Omega$

Return Loss at 2450MHz -25.322 dB

Validation Dipole Dimensions

Frequency (MHz)	L (mm)	h (mm)	d (mm)	
300	420.0	250.0	6.2	
450	288.0	167.0	6.2	
835	161.0	89.8	3.6	
900	149.0	83.3	3.6	
1450	89.1	51.7	3.6	
1800	72.0	41.7	3.6	
1900	68.0	39.5	3.6	
2000	64.5	37.5	3.6	
2450	51.8	30.6	3.6	
3000	41.5	25.0 3.6		

2. Validation Phantom

The validation phantom is the SAM (Specific Anthropomorphic Mannequin) phantom manufactured by Schmid & Partner Engineering AG. The SAM phantom is a Fiberglass shell integrated in a wooden table. The shape of the shell corresponds to the phantom defined by SCC34-SC2. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

Shell Thickness: $2.0 \pm 0.1 \text{ mm}$ Filling Volume: Approx. 20 liters

Dimensions: 50 cm (W) x 100 cm (L)

2450MHz Dipole Calibration

2450MHz Dipole Calibration

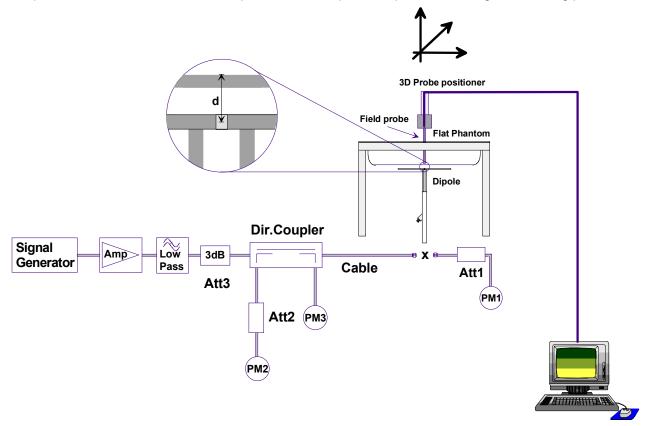
3. Measurement Conditions

The planar phantom was filled with brain simulating tissue having the following electrical parameters at 2450MHz:

Relative Permittivity: 37.3

Conductivity: 1.88 mho/m

Ambient Temperature: 21.6 °C Fluid Temperature: 23.9 °C Fluid Depth: \geq 15cm


The 2450MHz simulating tissue consists of the following ingredients:

Ingredient	Percentage by weight		
Water	52.00%		
Glycol Monobutyl	48.00%		
Target Dielectric Parameters at 22°C	$\varepsilon_{\rm r}$ = 39.2 (+/-5%) σ = 1.80 S/m (+/-5%)		

4. SAR Measurement

The SAR measurement was performed with the E-field probe in mechanical detection mode only. The setup and determination of the forward power into the dipole was performed using the following procedures.

First, the power meter PM1 (including attenuator Att1) is connected to the cable to measure the forward power at the location of the dipole connector (X). The signal generator is adjusted for the desired forward power at the dipole connector (taking into account the attenuation of Att1) as read by power meter PM2. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter PM2. If the signal generator does not allow adjustment in 0.01dB steps, the remaining difference at PM2 must be taken into consideration. PM3 records the reflected power from the dipole to ensure that the value is not changed from the previous value. The reflected power should be 20dB below the forward power.

Ten SAR measurements were performed in order to achieve repeatability and to establish an average target value.

Validation Dipole SAR Test Results

Validation Measurement	SAR @ 0.25W Input averaged over 1g	SAR @ 1W Input averaged over 1g	SAR @ 0.25W Input averaged over 10g	SAR @ 1W Input averaged over 10g	Peak SAR @ 0.25W Input
Test 1	13.9	55.6	6.27	25.08	29.5
Test 2	13.9	55.6	6.25	25.00	29.1
Test 3	13.9	55.6	6.24	24.96	28.9
Test 4	14.0	56.0	6.31	25.24	29.1
Test 5	14.0	56.0	6.27	25.08	29.7
Test 6	13.8	55.2	6.25	25.00	29.3
Test 7	13.9	55.6	6.22	24.88	29.3
Test 8	13.9	55.6	6.24	24.96	29.4
Test 9	14.0	56.0	6.29	25.16	30.0
Test10	13.8	55.2	6.17	24.68	29.3
Average Value	13.91	55.64	6.251	25.00	29.36

The results have been normalized to 1W (forward power) into the dipole.

Averaged over 1cm (1g) of tissue: 55.64 mW/g

Averaged over 10cm (10g) of tissue: 25.00 mW/g

Test Date: 09/17/03

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:150

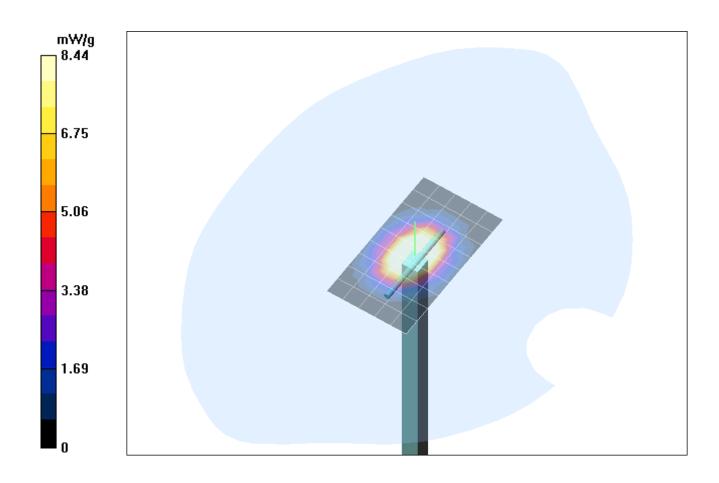
Ambient Temp: 22.2C; Fluid Temp: 23.8C Barometric Pressure: 101.9 kPa; Humidity: 52%

Communication System: CW

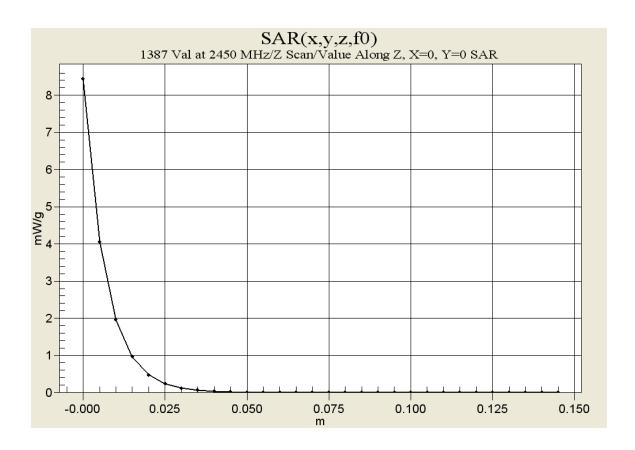
Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: HSL2450 (σ = 1.88 mho/m, ε_r = 37.3, ρ = 1000 kg/m³)

- Probe: ET3DV6 SN1387; ConvF(5, 5, 5); Calibrated: 26/02/2003
 Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn370; Calibrated: 19/05/2003Phantom: SAM front; Type: SAM 4.0; Serial: 1033
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 116


Probe SN1387 Validation at 2450 MHz/Area Scan (6x10x1): Measurement grid: dx=10mm, dy=10mm

Probe SN1387 Validation at 2450 MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Peak SAR (extrapolated) = 29.5 W/kg

SAR(1 g) = 13.9 mW/g; SAR(10 g) = 6.27 mW/g

Reference Value = 96.7 V/m Power Drift = -0.08 dB

2450MHz System Validation Measured Fluid Dielectric Parameters (Brain) September 17, 2003

e'	e"
37.7457	13.5170
37.7101	13.5534
37.6951	13.5903
37.6613	13.6228
37.6411	13.6368
37.5853	13.6598
37.5236	13.6742
37.4573	13.7091
37.4063	13.7484
37.3419	13.7798
37.2875	13.8226
37.2447	13.8618
37.2198	13.8951
37.1940	13.9293
37.1679	13.9423
37.1333	13.9571
37.0990	13.9745
37.0410	14.0116
36.9938	14.0375
36.9185	14.0546
36.8657	14.0912
	37.7457 37.7101 37.6951 37.6613 37.6411 37.5853 37.5236 37.4573 37.4573 37.4063 37.3419 37.2875 37.2447 37.2198 37.1940 37.1679 37.1333 37.0990 37.0410 36.9938 36.9185

 Test Report S/N:
 102203-436QPU

 Test Date(s):
 October 22, 2003

 Test Type:
 FCC SAR Evaluation

APPENDIX D - PROBE CALIBRATION

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Client

Celltech Labs

CALIBRATION CERTIFICATE

Object(s) ET3DV6 - SN:1387

Calibration procedure(s) QA CAL-01.v2

Calibration procedure for dosimetric E-field probes

Calibration date: February 26, 2003

Condition of the calibrated item In Tolerance (according to the specific calibration document)

This calibration statement documents traceability of M&TE used in the calibration procedures and conformity of the procedures with the ISO/IEC 17025 international standard.

All calibrations have been conducted in the closed laboratory facility: environment temperature 22 +/- 2 degrees Celsius and humidity < 75%.

Calibration Equipment used (M&TE critical for calibration)

Model Type	ID#	Cal Date	Scheduled Calibration
RF generator HP 8684C	US3642U01700	4-Aug-99 (in house check Aug-02)	In house check: Aug-05
Power sensor E4412A	MY41495277	8-Mar-02	Mar-03
Power sensor HP 8481A	MY41092180	18-Sep-02	Sep-03
Power meter EPM E4419B	GB41293874	13-Sep-02	Sep-03
Network Analyzer HP 8753E	US38432426	3-May-00	In house check: May 03
Fluke Process Calibrator Type 702	SN: 6295803	3-Sep-01	Sep-03

Name Function Signature
Calibrated by: Nico Vetterli Technician

Approved by: Katja Pokovic Laboratory Director /// 10.4-

Date issued: February 26, 2003

This calibration certificate is issued as an intermediate solution until the accreditation process (based on ISO/IEC 17025 International Standard) for Calibration Laboratory of Schmid & Partner Engineering AG is completed.

880-KP0301061-A Page 1 (1)

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

Probe ET3DV6

SN:1387

Manufactured: September 21, 1999
Last calibration: February 22, 2002
Recalibrated: February 26, 2003

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

DASY - Parameters of Probe: ET3DV6 SN:1387

Sensitivity in Free Space

Diode Compression

NormX	1.55 μV/(V/m) ²	DCP X	92	mV
NormY	1.65 μV/(V/m) ²	DCP Y	92	mV
NormZ	1.64 μV/(V/m) ²	DCP Z	92	mV

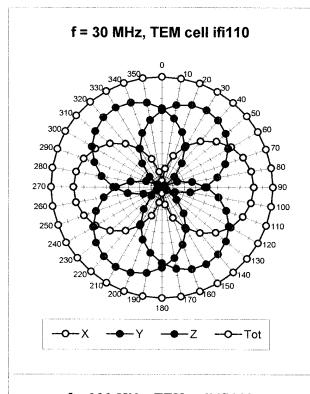
Sensitivity in Tissue Simulating Liquid

Head Head	900 MHz 835 MHz	$ \varepsilon_{\rm r} = 41.5 \pm 5\% $ $ \varepsilon_{\rm r} = 41.5 \pm 5\% $	σ = 0.97 ± 5% mho/m σ = 0.90 ± 5% mho/m
	ConvF X	6.6 ± 9.5% (k=2)	Boundary effect:
	ConvF Y	6.6 ± 9.5% (k=2)	Alpha 0.37
	ConvF Z	6.6 ± 9.5% (k=2)	Depth 2.61
Head Head	1800 MHz 1900 MHz	$\varepsilon_{\rm r}$ = 40.0 ± 5% $\varepsilon_{\rm r}$ = 40.0 ± 5%	σ = 1.40 ± 5% mho/m σ = 1.40 ± 5% mho/m
		•	
	1900 MHz	$\varepsilon_{\rm r}$ = 40.0 ± 5%	σ = 1.40 ± 5% mho/m

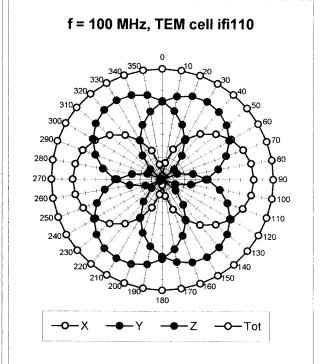
Boundary Effect

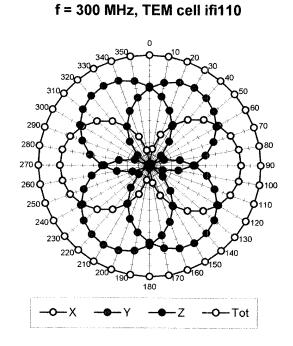
Head 900 MH	Typical SAR gradient: 5 % per mm
-------------	----------------------------------

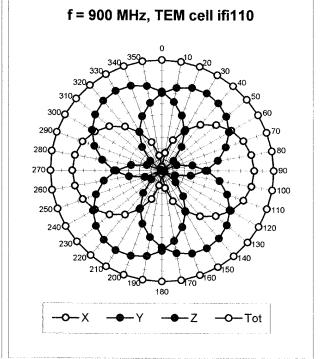
Probe Tip to Boundary		1 mm	2 mm
SAR _{be} [%]	Without Correction Algorithm	10.2	5.9
SAR _{be} [%]	With Correction Algorithm	0.4	0.6

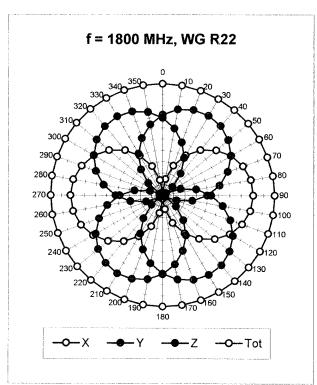

Head 1800 MHz Typical SAR gradient: 10 % per mm

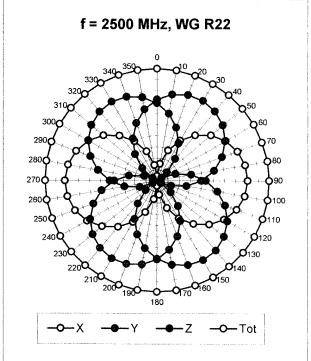
Probe Tip to Boundary		1 mm	2 mm
SAR _{be} [%]	Without Correction Algorithm	14.6	9.8
SAR _{be} [%]	With Correction Algorithm	0.2	0.0

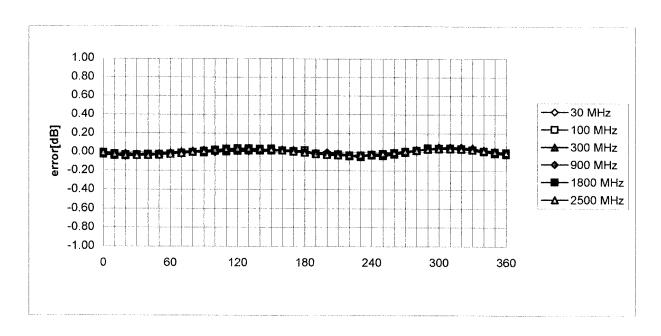

Sensor Offset

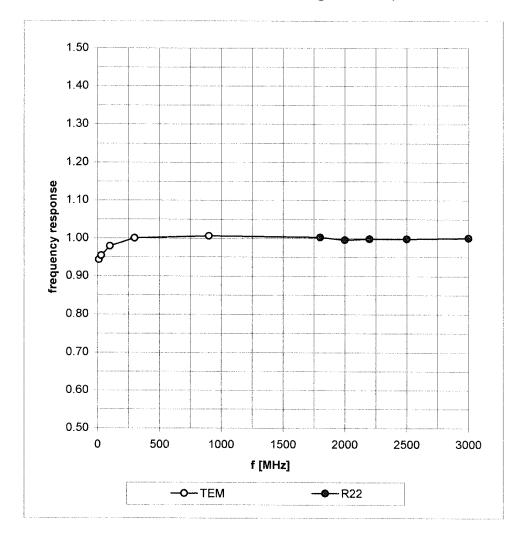

Probe Tip to Sensor Center	2.7	mm
Optical Surface Detection	1.4 ± 0.2	mm


Receiving Pattern (ϕ), θ = 0°

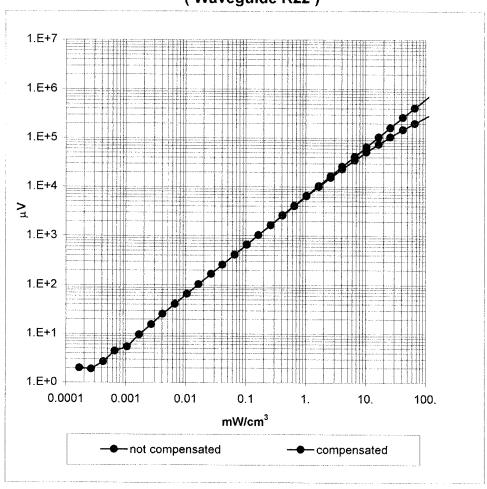


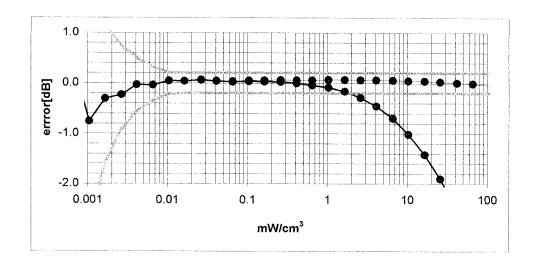

ET3DV6 SN:1387

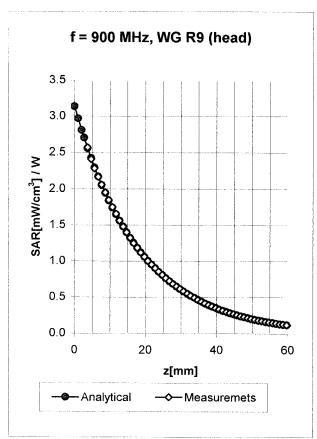


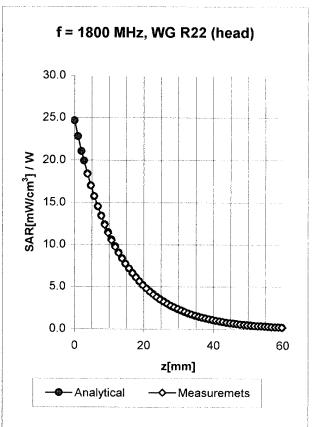


Isotropy Error (ϕ), θ = 0°

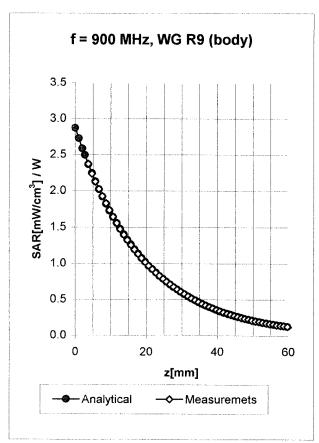

Frequency Response of E-Field

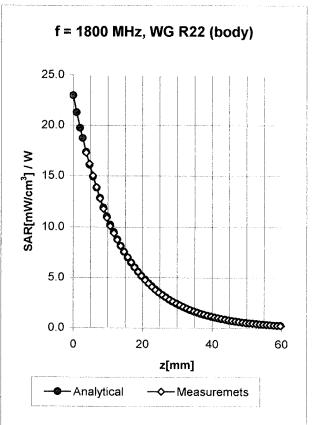

(TEM-Cell:ifi110, Waveguide R22)


Dynamic Range f(SAR_{brain})


(Waveguide R22)

Conversion Factor Assessment

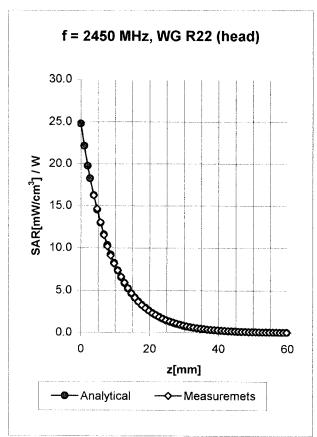


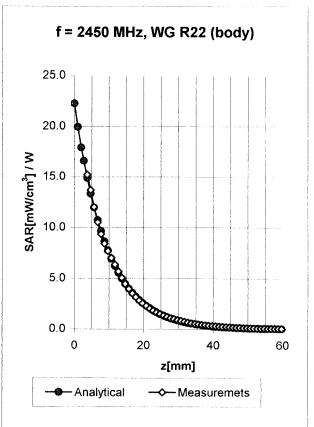


Head	900 MHz	$\varepsilon_{\rm r}$ = 41.5 ± 5%	σ = 0.97 ± 5% mho/m
Head	835 MHz	$\varepsilon_{\rm r}$ = 41.5 ± 5%	σ = 0.90 ± 5% mho/m
	ConvF X	6.6 \pm 9.5% (k=2)	Boundary effect:
	ConvF Y	6.6 ± 9.5% (k=2)	Alpha 0.37
	ConvF Z	6.6 ± 9.5% (k=2)	Depth 2.61

Head	1800 MHz	$\varepsilon_{\rm r}$ = 40.0 ± 5%	σ = 1.40 ± 5% mho/m
Head	1900 MHz	ϵ_r = 40.0 ± 5%	σ = 1.40 ± 5% mho/m
	ConvF X	5.2 ± 9.5% (k=2)	Boundary effect:
	ConvF Y	5.2 ± 9.5% (k=2)	Alpha 0.50
	ConvF Z	5.2 ± 9.5% (k=2)	Depth 2.73

Conversion Factor Assessment





Body	900 MHz	$\epsilon_{\rm r}$ = 55.0 ± 5%	σ = 1.05 ± 5% mho/m
Body	835 MHz	$\varepsilon_{\rm r}$ = 55.2 ± 5%	σ = 0.97 ± 5% mho/m
	ConvF X	6.4 ± 9.5% (k=2)	Boundary effect:
	ConvF Y	6.4 ± 9.5% (k=2)	Alpha 0.45
	ConvF Z	6.4 ± 9.5% (k=2)	Depth 2.35

Body	1800 MHz	$\varepsilon_{\rm r}$ = 53.3 ± 5%	σ = 1.52 ± 5% mh	no/m
Body	1900 MHz	$\varepsilon_{\rm r}$ = 53.3 ± 5%	σ = 1.52 ± 5% mh	io/m
	ConvF X	4.9 ± 9.5% (k=2)	Boundary effe	ect:
	ConvF Y	4.9 ± 9.5% (k=2)	Alpha	0.60
	ConvF Z	4.9 ± 9.5% (k=2)	Depth	2.59

Conversion Factor Assessment

Head	2450	MHz	$\varepsilon_{\rm r}$ = 39.2 ± 5%	σ = 1.80 ± 5% mhd	o/m
	ConvF X	!	5.0 ± 8.9% (k=2)	Boundary effec	ot:
	ConvF Y		5.0 ± 8.9% (k=2)	Alpha	1.04
	ConvF Z		5.0 ± 8.9% (k=2)	Depth	1.85
Body	2450	MHz	$\varepsilon_{\rm r}$ = 52.7 ± 5%	σ = 1.95 ± 5% mhd	o/m
	ConvF X	4	4.6 ± 8.9% (k=2)	Boundary effect	et:
	ConvF Y	•	4.6 ± 8.9% (k=2)	Alpha	1.20
	ConvF Z	•	4.6 ± 8.9% (k=2)	Depth	1.60

Deviation from Isotropy in HSL

Error (θ, ϕ) , f = 900 MHz

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

Additional Conversion Factors

for Dosimetric E-Field Probe

Type:	ET3DV6
Serial Number:	1387
Place of Assessment:	Zurich
Date of Assessment:	February 28, 2003
Probe Calibration Date:	February 26, 2003

Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. Since the evaluation is coupled with measured conversion factors, it has to be recalculated yearly, i.e., following the re-calibration schedule of the probe. The uncertainty of the numerical assessment is based on the extrapolation from measured value at 900 MHz or at 1800 MHz.

Assessed by:

Dosimetric E-Field Probe ET3DV6 SN:1387

Conversion factor (± standard deviation)

150 MHz	ConvF	$9.1\pm8\%$	$\varepsilon_r = 52.3$
			$\sigma = 0.76 \text{ mho/m}$
			(head tissue)
300 MHz	ConvF	$7.9 \pm 8\%$	$\varepsilon_r = 45.3$
			$\sigma = 0.87 \text{ mho/m}$
			(head tissue)
450 MHz	ConvF	$7.5 \pm 8\%$	$\varepsilon_{\rm r} = 43.5$
450 WIIIZ	Convi	7.3 ± 6 70	$\sigma = 0.87 \text{ mho/m}$
			(head tissue)
			(nead tissue)
150 MHz	ConvF	$8.8 \pm 8\%$	$\varepsilon_r = 61.9$
			$\sigma = 0.80 \text{ mho/m}$
			(body tissue)
300 MHz	ConvF	$8.0 \pm 8\%$	$\varepsilon_{\rm r} = 58.2$
			$\sigma = 0.92 \text{ mho/m}$
			(body tissue)
450 MHz	ConvF	$7.7 \pm 8\%$	$\varepsilon_{\rm r} = 56.7$
	JOM . 1	, ma O /V	$\sigma = 0.94 \text{ mho/m}$
			(body tissue)
			(oddy dissue)

Test Report S/N:	102203-436QPU
Test Date(s):	October 22, 2003
Test Type:	FCC SAR Evaluation

APPENDIX E - MEASURED FLUID DIELECTRIC PARAMETERS

2450MHz System Performance Check Measured Fluid Dielectric Parameters (Brain) October 22, 2003

Frequency	e'	e"
2.350000000 GHz	37.8997	13.5816
2.360000000 GHz	37.8626	13.6158
2.370000000 GHz	37.8346	13.6568
2.380000000 GHz	37.8074	13.6837
2.390000000 GHz	37.7702	13.6967
2.400000000 GHz	37.7332	13.7125
2.410000000 GHz	37.6706	13.7326
2.420000000 GHz	37.6022	13.7822
2.430000000 GHz	37.5444	13.8128
2.440000000 GHz	37.5036	13.8602
2.450000000 GHz	37.4393	13.8804
2.460000000 GHz	37.3954	13.9147
2.470000000 GHz	37.3644	13.9469
2.480000000 GHz	37.3307	13.9680
2.490000000 GHz	37.3075	13.9944
2.500000000 GHz	37.2951	13.9932
2.510000000 GHz	37.2376	14.0155
2.520000000 GHz	37.2012	14.0425
2.530000000 GHz	37.1328	14.0692
2.540000000 GHz	37.0869	14.1154
2.550000000 GHz	37.0440	14.1380

2450MHz EUT Evaluation (Body) Measured Fluid Dielectric Parameters (Muscle) October 22, 2003

Frequency	e'	e"
2.350000000 GHz	51.4853	14.4059
2.360000000 GHz	51.4545	14.4403
2.370000000 GHz	51.4384	14.4981
2.380000000 GHz	51.4287	14.5413
2.390000000 GHz	51.4040	14.5737
2.400000000 GHz	51.3423	14.6108
2.410000000 GHz	51.3142	14.6560
2.420000000 GHz	51.2585	14.6985
2.430000000 GHz	51.2326	14.7609
2.440000000 GHz	51.1834	14.7970
2.450000000 GHz	51.1446	14.8583
2.460000000 GHz	51.1025	14.8946
2.470000000 GHz	51.0694	14.9429
2.480000000 GHz	51.0467	14.9863
2.490000000 GHz	51.0234	15.0161
2.500000000 GHz	50.9899	15.0485
2.510000000 GHz	50.9557	15.0673
2.520000000 GHz	50.8892	15.1244
2.530000000 GHz	50.8561	15.1770
2.540000000 GHz	50.8001	15.2224
2.550000000 GHz	50.7488	15.2702

 Test Report S/N:
 102203-436QPU

 Test Date(s):
 October 22, 2003

 Test Type:
 FCC SAR Evaluation

APPENDIX F - SAM PHANTOM CERTIFICATE OF CONFORMITY

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

Certificate of conformity / First Article Inspection

Item	SAM Twin Phantom V4.0
Type No	QD 000 P40 BA
Series No	TP-1002 and higher
Manufacturer / Origin	Untersee Composites Hauptstr. 69 CH-8559 Fruthwilen Switzerland

Tests

The series production process used allows the limitation to test of first articles. Complete tests were made on the pre-series Type No. QD 000 P40 AA, Serial No. TP-1001 and on the series first article Type No. QD 000 P40 BA, Serial No. TP-1006. Certain parameters have been retested using further series units (called samples).

Test	Requirement	Details	Units tested
Shape	Compliance with the geometry according to the CAD model.	IT'IS CAD File (*)	First article, Samples
Material thickness	Compliant with the requirements according to the standards	2mm +/- 0.2mm in specific areas	First article, Samples
Material parameters	Dielectric parameters for required frequencies	200 MHz – 3 GHz Relative permittivity < 5 Loss tangent < 0.05.	Material sample TP 104-5
Material resistivity	The material has been tested to be compatible with the liquids defined in the standards	Liquid type HSL 1800 and others according to the standard.	Pre-series, First article

Standards

- [1] CENELEC EN 50361
- [2] IEEE P1528-200x draft 6.5
- [3] IEC PT 62209 draft 0.9
- (*) The IT'IS CAD file is derived from [2] and is also within the tolerance requirements of the shapes of [1] and [3].

Conformity

Based on the sample tests above, we certify that this item is in compliance with the uncertainty requirements of SAR measurements specified in standard [1] and draft standards [2] and [3].

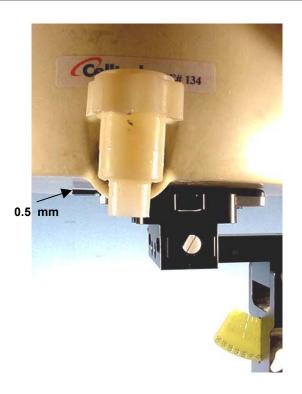
Date

18.11.2001

Signature / Stamp

Schmid & Partner Fin Boulott

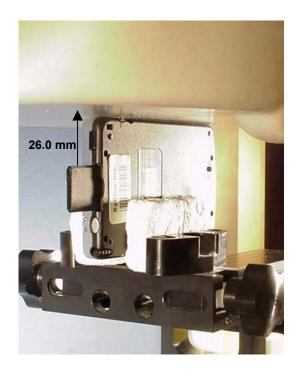
Zeughausstrasse 43, CH-8004 Zurich Tel. +41 1 245 97 00, Fax +41 1 245 97 79


Test Report S/N:	102203-436QPU
Test Date(s):	October 22, 2003
Test Type:	FCC SAR Evaluation

APPENDIX G - SAR TEST SETUP & EUT PHOTOGRAPHS

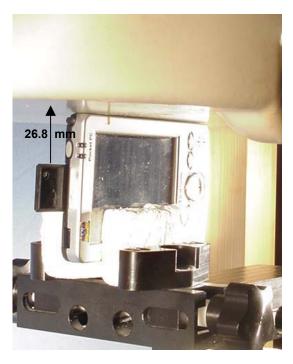
Test Report S/N:	102203-436QPU
Test Date(s):	October 22, 2003
Test Type:	FCC SAR Evaluation

Back Side of EUT - 0.5 mm Distance from Planar Phantom (Back Side of Host PDA Touching Planar Phantom)



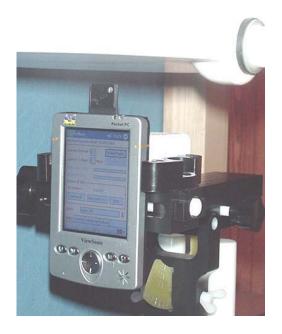
Test Report S/N:	102203-436QPU
Test Date(s):	October 22, 2003
Test Type:	FCC SAR Evaluation

Left Side of EUT - 26.0 mm Distance from Planar Phantom (Left Side of Host PDA Touching Planar Phantom)

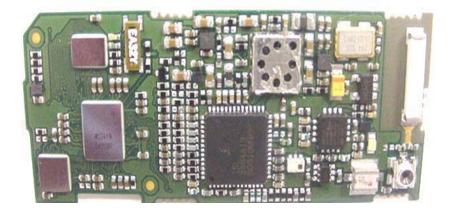


Test Report S/N:	102203-436QPU
Test Date(s):	October 22, 2003
Test Type:	FCC SAR Evaluation

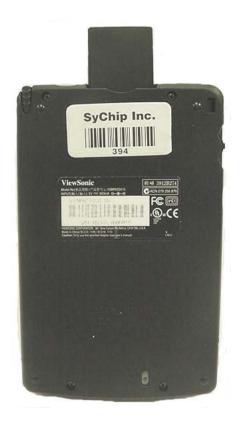
Right Side of EUT - 26.8 mm Distance from Planar Phantom (Right Side of Host PDA Touching Planar Phantom)

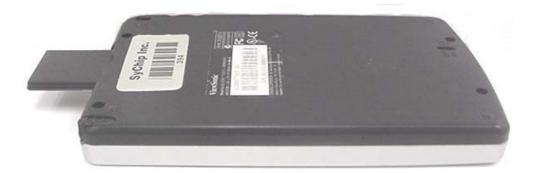

Test Report S/N:	102203-436QPU
Test Date(s):	October 22, 2003
Test Type:	FCC SAR Evaluation

Top End of EUT - 1.5 cm Separation Distance from Planar Phantom


Test Report S/N:	102203-436QPU
Test Date(s):	October 22, 2003
Test Type:	FCC SAR Evaluation

Front Side of EUT


Back Side of EUT



Test Report S/N:	102203-436QPU
Test Date(s):	October 22, 2003
Test Type:	FCC SAR Evaluation

Test Report S/N:	102203-436QPU
Test Date(s):	October 22, 2003
Test Type:	FCC SAR Evaluation

Test Report S/N:	102203-436QPU
Test Date(s):	October 22, 2003
Test Type:	FCC SAR Evaluation

