

MET Laboratories, Inc. *safety Certification - EMI - Telecom Environmental Simulation* 914 WEST PATAPSCO AVENUE • BALTIMORE, MARYLAND 21230-3432 • PHONE (410) 354-3300 • FAX (410) 354-3313 33439 WESTERN AVENUE • UNION CITY, CALIFORNIA 94587 • PHONE (510) 489-6300 • FAX (510) 489-6372 3162 BELICK STREET • SANTA CLARA, CA 95054 • PHONE (408) 748-3585 • FAX (510) 489-6372 13301 MCCALLEN PASS • AUSTIN, TX 78753 • PHONE (512) 287-2500 • FAX (512) 287-2513

July 3, 2013

SyChip, LLC 4441 Sigma Rd. Dallas, TX 75244

Dear Michael Feng,

Enclosed is the EMC Wireless Class II Permissive Change test report for compliance testing of the SyChip, LLC, WiFi Module, SN8200UFL as tested to the requirements of Title 47 of the CFR, Ch. 1 (10-1-06 ed.), Part 15, Subpart C and RSS-210, Issue 8, Dec. 2010 for Intentional Radiators.

Thank you for using the services of MET Laboratories, Inc. If you have any questions regarding these results or if MET can be of further service to you, please feel free to contact me.

Sincerely yours, MET LABORATORIES, INC.

Jennifer Warnell Documentation Department

Reference: (\SyChip, LLC\EMCA38795-FCC247 Rev. 3)

Certificates and reports shall not be reproduced except in full, without the written permission of MET Laboratories, Inc.

Electromagnetic Compatibility Criteria Class II Permissive Change Test Report

for the

SyChip, LLC WiFi Module, SN8200UFL

Tested under

the FCC Certification Rules contained in Title 47 of the CFR, Parts 15 Subpart C & RSS-210, Issue 8, Dec. 2010 for Intentional Radiators

MET Report: EMCA38795-FCC247 Rev. 3

July 3, 2013

Prepared For:

SyChip, LLC 4441 Sigma Rd. Dallas, TX 75244

> Prepared By: MET Laboratories, Inc. 914 W. Patapsco Ave Baltimore, MD 21230

Electromagnetic Compatibility Criteria Class II Permissive Change Test Report

for the

SyChip, LLC WiFi Module, SN8200UFL

Tested under the FCC Certification Rules contained in Title 47 of the CFR, Parts 15 Subpart C & RSS-210, Issue 8, Dec. 2010 for Intentional Radiators

Erik Ray, Project Engineer Electromagnetic Compatibility Lab

Juife Daul

Jennifer Warnell Documentation Department

Engineering Statement: The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements of the FCC Rules Part 15.247 and Industry Canada standard RSS-210, Issue 8, Dec. 2010 under normal use and maintenance.

a Bajina.

Asad Bajwa, Director, Electromagnetic Compatibility Lab

Report Status Sheet

Revision	Report Date	Reason for Revision	
Ø	June 18, 2013 Initial Issue.		
1	June 21, 2013 Revised to reflect customer corrections.		
2	June 27, 2013 Revised to reflect customer address.		
3	July 3, 2013	Revised to add RF Exposure.	

Table of Contents

I.	Executive Summary	1
	A. Purpose of Test	2
	B. Executive Summary	
II.	Equipment Configuration	
	A. Överview	
	B. References	5
	C. Test Site	5
	D. Description of Test Sample	
	E. Equipment Configuration	
	F. Support Equipment	8
	G. Ports and Cabling Information	8
	H. Mode of Operation	9
	I. Method of Monitoring EUT Operation	9
	J. Modifications	
	a) Modifications to EUT	9
	b) Modifications to Test Standard	9
	K. Disposition of EUT	9
III.	Electromagnetic Compatibility Criteria for Intentional Radiators	10
	§ 15.203 Antenna Requirement	
	§ 15.247(d) Radiated Spurious Emissions Requirements and Band Edge	
IV.	Test Equipment	33
v.	Certification & User's Manual Information	35
	A. Certification Information	36
	B. Label and User's Manual Information	
VI.	ICES-003 Procedural & Labeling Requirements	42

DOC-EMC702 6/18/2009

List of Tables

Table 1. Executive Summary of EMC Part 15.247 ComplianceTesting	2
Fable 2. EUT Summary Table	
Fable 3. References	
Fable 4. Equipment Configuration	8
Fable 5. Support Equipment	8
Table 6. Ports and Cabling Information	
Fable 7. Antenna List	11
Cable 8. Restricted Bands of Operation	12
Fable 9. Radiated Emissions Limits Calculated from FCC Part 15, § 15.209 (a)	
Fable 10. Test Equipment List	34

List of Plots

Plot 1. Radiated Spurious Emissions, 802.11b, Low Channel, 30 MHz – 1 GHz	14
Plot 2. Radiated Spurious Emissions, 802.11b, Low Channel, 1 GHz – 18 GHz	
Plot 3. Radiated Spurious Emissions, 802.11b, Low Channel, 18 GHz – 26.5 GHz.	
Plot 4. Radiated Spurious Emissions, 802.11b, Mid Channel, 30 MHz – 1 GHz	
Plot 5. Radiated Spurious Emissions, 802.11b, Mid Channel, 1 GHz – 18 GHz	
Plot 6. Radiated Spurious Emissions, 802.11b, Mid Channel, 18 GHz – 26.5 GHz	
Plot 7. Radiated Spurious Emissions, 802.11b, High Channel, 30 MHz - 1 GHz	16
Plot 8. Radiated Spurious Emissions, 802.11b, High Channel, 1 GHz – 18 GHz	16
Plot 9. Radiated Spurious Emissions, 802.11b, High Channel, 18 GHz – 26.5 GHz	16
Plot 10. Radiated Spurious Emissions, 802.11g, Low Channel, 30 MHz - 1 GHz	17
Plot 11. Radiated Spurious Emissions, 802.11g, Low Channel, 1 GHz – 18 GHz	17
Plot 12. Radiated Spurious Emissions, 802.11g, Low Channel, 18 GHz – 26.5 GHz	17
Plot 13. Radiated Spurious Emissions, 802.11g, Mid Channel, 30 MHz - 1 GHz	18
Plot 14. Radiated Spurious Emissions, 802.11g, Mid Channel, 1 GHz – 18 GHz	18
Plot 15. Radiated Spurious Emissions, 802.11g, Mid Channel, 18 GHz – 26.5 GHz	18
Plot 16. Radiated Spurious Emissions, 802.11g, High Channel, 30 MHz - 1 GHz	19
Plot 17. Radiated Spurious Emissions, 802.11g, High Channel, 1 GHz – 18 GHz	19
Plot 18. Radiated Spurious Emissions, 802.11g, High Channel, 18 GHz – 26.5 GHz	19
Plot 19. Radiated Spurious Emissions, 802.11n, Low Channel, 30 MHz - 1 GHz	
Plot 20. Radiated Spurious Emissions, 802.11n, Low Channel, 1 GHz - 18 GHz	20
Plot 21. Radiated Spurious Emissions, 802.11n, Low Channel, 18 GHz – 26.5 GHz	
Plot 22. Radiated Spurious Emissions, 802.11n, Mid Channel, 30 MHz - 1 GHz	
Plot 23. Radiated Spurious Emissions, 802.11n, Mid Channel, 1 GHz – 18 GHz	
Plot 24. Radiated Spurious Emissions, 802.11n, Mid Channel, 18 GHz – 26.5 GHz	
Plot 25. Radiated Spurious Emissions, 802.11n, High Channel, 30 MHz - 1 GHz	
Plot 26. Radiated Spurious Emissions, 802.11n, High Channel, 1 GHz – 18 GHz	
Plot 27. Radiated Spurious Emissions, 802.11n, High Channel, 18 GHz – 26.5 GHz	22
Plot 28. Radiated Restricted Band, 802.11b, Low Channel, Peak	
Plot 29. Radiated Restricted Band, 802.11b, Low Channel, Average	
Plot 30. Radiated Restricted Band, 802.11b, High Channel, Peak	
Plot 31. Radiated Restricted Band, 802.11b, High Channel, Average	
Plot 32. Radiated Restricted Band, 802.11g, Low Channel, Peak	
Plot 33. Radiated Restricted Band, 802.11g, Low Channel, Average	
Plot 34. Radiated Restricted Band, 802.11g, High Channel, Peak	
Plot 35. Radiated Restricted Band, 802.11g, High Channel, Average	
Plot 36. Radiated Restricted Band, 802.11n, Low Channel, Peak	
Plot 37. Radiated Restricted Band, 802.11n, Low Channel, Average	27

Plot 38.	Radiated Restricted Band,	802.11n,	High Channel,	Peak2	28
Plot 39.	Radiated Restricted Band,	802.11n,	High Channel,	Average2	28

List of Figures

Figure 1.	Block Diagram of Test Configuration	/
0	5 5	

List of Photographs

Photograph 1.	SyChip, LLC WiFi Module, SN8200UFL	6
Photograph 2.	Radiated Spurious Emissions, Test Setup, 30 MHz – 1 GHz	.29
Photograph 3.	Radiated Spurious Emissions, Test Setup, 1 GHz – 18 GHz	.29
Photograph 4.	Radiated Spurious Emissions, Test Setup, 18 GHz – 26.5 GHz	.30
Photograph 5.	Radiated Spurious Emissions, Test Setup, Rear	.30
Photograph 6.	Radiated Restricted Band, Test Setup	.31

ACFAntenna Correction FactorCalCalibrationdCalibrationdDecibelsdBµADecibels above one microwampdBµADecibels above one microwoltdBµADecibels above one microwoltdBµADecibels above one microwolt per meterdBµADecibels above one microwolt per meterdBµVDecibels above one microwolt per meterdBµVDirect CurrentFCElectric FieldStateElectrostatic DischargeFUTEquipment Under TestfFequencyFCCFederal Comminations CommissionGRPGond Reference PlaneHCMagnetic FieldHZHertzFLCIdeixational Electrotechnical CommissionKPKilovatiKPKilovatiMagnetic FieldHZHertzFLCReferace PlaneItMagnetic FieldKPKilovatiKPKilovatiKPKilovatiKPKilovatiKPKilovatiKPNegacalKPNegacalKPNeitorechnical CommissionKILNegacalKPNegacalKILNegacalKILNegacalKILNegacalKILNegacalKILNegacalKILNegacalKILNegacalKILNewo Equipment-Building SystemPRFNeito FieuqencyKIN	10	
CalCalibrationdMeasurement DistancedBµADecibelsdBµADecibels above one microampdBµADecibels above one microamp per meterdBµA/mDecibels above one microamp per meterdBµA/mDicent CurrontFElectrostatic DischargeEUTEquipment Under Testf/FequencyfCCFederal Communications CommissionGRPGond Reference PlaneHZMagnetic FieldHZHertzHZInternational Electrotechnical CommissionKHzKioherzkIzMicroatalkIyKiohortLISNLine Impedance Stabilization NetworkHIzMagnetic FieldµMicroatalµMicroatalµMicroatalµMicroatalRESNetwork Equipment-Building System <td>AC</td> <td>Alternating Current</td>	AC	Alternating Current
dMeasurement DistancedBDecibelsdBµADecibels above one microampdBµADecibels above one microamp per meterdBµA/mDecibels above one microamp per meterdBµVmDecibels above one microwolt per meterdBµVmDecibels above one microwolt per meterDCDirect CurrentEElectric FieldDSLDigital Subscriber LineESDElectrostatic DischargeFUTEquipment Under TestfFrequencyFCCFederal Communications CommissionGRPGround Reference PlaneHMagnetic FieldHCPHorizontal Coupling PlaneHzkilohertzkIvAkilohertzkIvAkilohertzkIvAkilohertzMHzMegahertzMHzMegahertzµHmicrohennyµmicrohennyµmicrohennyµRedrade Stabilization NetworkMEBSNetwork Equipment-Building SystemPRFPulse Repetition FrequencyRFRadio FrequencyRFRadio FrequencyVinVolts per meter		
dB Decibels dBμA Decibels above one microamp dBμV Decibels above one microamp per meter dBμV/m Decibels above one microamp per meter dBμV/m Decibels above one microamp per meter DC Direct Current E Electric Field DSL Digital Subscriber Line ESD Electrostatic Discharge EUT Equipment Under Test f Frequency FCC Federal Communications Commission GRP Ground Reference Plane H Magnetic Field HCP Horizontal Coupling Plane HZ Kilobertz KPa Kilobarza Line Impedance Stabilization Network Magnetic Field HIZ Megabertz µH microsconds MIZ Megabertz RPA Kilobard Line Impedance Stabilization Network Magnetic Field HEZ Meconds MHZ Megabertz pLine Grouterad Microsconds <t< th=""><td></td><td></td></t<>		
dBμADecibels above one microanpdBμVDecibels above one microavoltdBμA/mDecibels above one microavolt per meterdBμV/mDecibels above one microavolt per meterdBμV/mDecibels above one microavolt per meterdBμVDirect CurrentEElectric FieldSSLDigital Subscriber LineESDElectrostatic DischargeEUTEquipment Under TestfFrequencyFCCFederal Communications CommissionGRPGround Reference PlaneHMagnetic FieldHCPHorizontal Coupling PlaneHzkiloherizkRakiloherizkRakiloherizkRakiloherizhttpmicrofaradμμmicrofaradμβNetwork Equipment-Building SystemPRFPulse Repetition FrequencyRfRadio FrequencyKYNetwork Equipment-Building SystemPRFPulse Repetition FrequencyKYTaveling Wave TubeVinVolts per meter	d	
dBμVDecibels above one microvoltdBμA/mDecibels above one microvalt per meterdBμV/mDecibels above one microvolt per meterdBμV/mDecibels above one microvolt per meterdBμV/mDecibels above one microvolt per meterdBμVDecibels above one microvolt per meterdBμVDecibels above one microvolt per meterdBμDecibels above one microvolt per meterdBμElectric FieldDCElectric FieldESDElectroistaic DischargeFUTEquipment Under TestfFrequencyFCCFederal Communications CommissionGRPGround Reference PlaneHMagnetic FieldHCPHorizontal Coupling PlaneHzHerzkIboerzkIboSiloherzkIboKiloherzkIboKiloherzkIpascalKilonerzhtraMagnetic Stabilization NetworkMHzMeghertzμHmicrofaradμsmicrofaradμsNetwork Equipment-Building SystemPKFPulse Repetition FrequencyRFRado-FrequencyRFRado-FrequencyKMSRoot-Maen-SquareVinVins per meter	dB	
dBµA/nDecibels above one microamp per meterdBµV/mDecibels above one microvolt per meterdBµV/mDecibels above one microvolt per meterDCDirect CurrentEElectric FieldDSLDigital Subscriber LineESDElectrostatic DischargeEUTEquipment Under TestfFrequencyFCCFederal Communications CommissionGRPGround Reference PlaneHMagnetic FieldHZHerzIECInternational Electrostation CommissionKk2kilopascalkk1Magnetic FieldHZHerzIECInternational Electrostation CommissionkHzkilopascalkVkilopascalkVMagnetic FieldJBANDirecfaradµHMegahertzµHmicrofaradµBmicrofaradµFPalse Repetition FrequencyRFRadio FrequencyRFRadio FrequencyRFRadio FrequencyNtTTraveling Wave TubeV/mVolts per meter	dBμA	Decibels above one microamp
dBµV/nDecibels above one microvolt per meterDCDirect CurrentEElectric FieldDSLDigital Subscriber LineESDElectrostatic DischargeEUTEquipment Under TestfFrequencyFCCFederal Communications CommissionGRPGround Reference PlaneHMagnetic FieldHZHertzIECInternational Electrotechnical CommissionKIZKiloparcalkIZHorizontal Coupling PlaneHzHertzIECInternational Electrotechnical CommissionKIZkiloparcalkIyoalkiloparcalkIyoalmicrofaradMBAMagnetic FieldKPakiloparcalkIpoaccalKuroutkIpoaccalKuroutKVkiloparcalMHZMergahertzµHmicrofaradµLmicrofaradNEBSNetwork Equipment-Building SystemPRFPale Repetition FrequencyKNSRoot-Mean-SquareTWTTraveling Wave TubeVinVolts per meter	dBμV	Decibels above one microvolt
DCDirect CurrentEElectric FieldDSLDigital Subscriber LineFSDElectrostatic DischargeEUTEquipment Under TestfFrequencyFCCFederal Communications CommissionGRPGround Reference PlaneHMagnetic FieldHCPHorizontal Coupling PlaneHZHertzIECInternational Electrotechnical CommissionKHzkilopascalkilopascalKilopascalMHzMegnetrizJUNNLine Impedance Stabilization NetworkMHzMergenerusμ4microhenryμmicrohenryμMicrosecondsNEBSNetwork Equipment-Building SystemPRFPales Repatition FrequencyRMSRoot-Mean-SquareTWTVolts per meter	dBμA/m	Decibels above one microamp per meter
EElectric FieldDSLDigital Subscriber LineESDElectrostatic DischargeEUTEquipment Under TestfFrequencyFCCFederal Communications CommissionGRPGround Reference PlaneHMagnetic FieldHCPHorizontal Coupling PlaneHZHertzIECInternational Electrotechnical CommissionKHzkilohertzkPankilopascalKVkilovoltLISNLine Impedance Stabilization NetworkMHzMegahertzμmicrofaradμsmicrofaradPRFPulse Repetition FrequencyFFRadio FrequencyRMSRoot-Mean-SquareTWTTraveling Wave TubeV/mVolts per meter	dBμV/m	Decibels above one microvolt per meter
DSLDigital Subscriber LineESDElectrostatic DischargeEUTEquipment Under TestfFrequencyFCCFederal Communications CommissionGRPGround Reference PlaneHMagnetic FieldHCPHorizontal Coupling PlaneHzHertzIECCInternational Electrotechnical CommissionkHzkilohertzkPakilopascalkVkilovoltLISNLine Impedance Stabilization NetworkMHzMegahertzμ4microfaradμsmicrosecondsNEBSNetwork Equipment-Building SystemPRFPulse Repetition FrequencyKFRadio FrequencyKMSRoot-Mean-SquareYumVolts per meter	DC	Direct Current
ESDElectrostatic DischargeEUTEquipment Under TestfFrequencyFCCFederal Communications CommissionGRPGround Reference PlaneHMagnetic FieldHorizontal Coupling PlaneHZHertzIECInternational Electrotechnical CommissionKHzkilohertzklupascalklupascalMHzDispascalMHzMegahertzµHMeirofardµfmicrofaradµsmicrofaradNEBSNetwork Equipment-Building SystemPRFPulse Repetition FrequencyRMSRoi-Mean-SquareYmVis per meter	Е	Electric Field
EUTEquipment Under TestfFrequencyFCCFrequencyFCCFederal Communications CommissionGRPGround Reference PlaneHMagnetic FieldHCPHorizontal Coupling PlaneHZHertzIECInternational Electrotechnical CommissionKHzkilohertzKPakilopascalKVkilopascalMIZMegahertzMHZMegahertzMESmicrofaradμHmicrofaradpsmicrofaradKBSNetwork Equipment-Building SystemRKfRadio FrequencyKMSRot-Mean-SquareV/mVolts per meter	DSL	Digital Subscriber Line
fFrequencyFCCFederal Communications CommissionGRPGround Reference PlaneHMagnetic FieldHCPHorizontal Coupling PlaneHzHertzIECInternational Electrotechnical CommissionKHzkilohertzklapascalkilopascalkVkilopascalJLSNKilopascalµHmicrohenryµLmicrohenryµLmicrohenryµLMicroscondsNEBSNetwork Equipment-Building SystemPRFRadio FrequencyRMSRot-Mean-SquareV/mVols per meter	ESD	Electrostatic Discharge
FCCFederal Communications CommissionGRPGround Reference PlaneHMagnetic FieldHCPHorizontal Coupling PlaneHzHertzIECInternational Electrotechnical CommissionkHzkilohertzkPakilopascalkVkilovoltLISNLine Impedance Stabilization NetworkMHzMegahertzμmicrofenardμmicrofaradμSNetwork Equipment-Building SystemPRFPulse Repetition FrequencyRMSRoot-Mean-SquareTWTTraveling Wave TubeV/mVolts per meter	EUT	Equipment Under Test
GRPGround Reference PlaneHMagnetic FieldHCPHorizontal Coupling PlaneHzHertzIECInternational Electrotechnical CommissionkHzkilohertzkPakilopascalkVkilovoltLISNLine Impedance Stabilization NetworkMHzMegahertzµHmicrohenryµSmicrosecondsNEBSNetwork Equipment-Building SystemPRFPulse Repetition FrequencyRMSRoot-Mean-SquareTWTTraveling Wave TubeV/mVolts per meter	f	Frequency
HMagnetic FieldHCPHorizontal Coupling PlaneHzHertzIECInternational Electrotechnical CommissionkHzkilohertzkPakilohertzkPakilopascalkVkilovoltLISNLine Impedance Stabilization NetworkMHzMegahertzµHmicrohenryµmicrofaradNEBSNetwork Equipment-Building SystemPRFPulse Repetition FrequencyRFRadio FrequencyRMSRoot-Mean-SquareTWTVolts per meter	FCC	Federal Communications Commission
HCPHorizontal Coupling PlaneHzHertzIECInternational Electrotechnical CommissionKHzkilohertzkBakilohertzkPakilopascalkVkilopascalkIkilopascal	GRP	Ground Reference Plane
HzHertzIECInternational Electrotechnical CommissionkHzkilohertzkPakilopascalkVkilovoltLISNLine Impedance Stabilization NetworkMHzMegahertzµHmicrohenryμmicrofaradµsmicrosecondsNEBSNetwork Equipment-Building SystemPRFPulse Repetition FrequencyRFRadio FrequencyRMSRoot-Mean-SquareTWTTraveling Wave TubeV/mVolts per meter	Н	Magnetic Field
IECInternational Electrotechnical CommissionkHzkilohertzkPakilopascalkVkilovoltLISNLine Impedance Stabilization NetworkMHzMegahertzµHmicrohenryµmicrofaradµSSNetwork Equipment-Building SystemPRFPulse Repetition FrequencyRMSRoot-Mean-SquareTWTTraveling Wave TubeV/mVolts per meter	НСР	Horizontal Coupling Plane
kHzkilohertzkPakilopascalkVkilovoltLISNLine Impedance Stabilization NetworkMHzMegahertzμHmicrohenryμmicrofaradμsmicrosecondsNEBSNetwork Equipment-Building SystemPRFPulse Repetition FrequencyRMSRoot-Mean-SquareTWTTraveling Wave TubeV/mVolts per meter	Hz	Hertz
kPakilopascalkVkilopascalkVkilovoltLISNLine Impedance Stabilization NetworkMHzMegahertzμHmicrohenryμmicrofaradμssmicrosecondsNEBSNetwork Equipment-Building SystemPRFPulse Repetition FrequencyRFRadio FrequencyRMSRoot-Mean-SquareTWTTraveling Wave TubeV/mVolts per meter	IEC	International Electrotechnical Commission
kVkilooltLISNLine Impedance Stabilization NetworkMHzMegahertzμHmicrohenryμmicrofaradμsmicrosecondsNEBSNetwork Equipment-Building SystemPRFPulse Repetition FrequencyRFRadio FrequencyRMSRoot-Mean-SquareTWTTraveling Wave TubeV/mVolts per meter	kHz	kilohertz
LISNLine Impedance Stabilization NetworkMHzMegahertzμHmicrohenryμmicrofaradμsmicrosecondsNEBSNetwork Equipment-Building SystemPRFPulse Repetition FrequencyRFRadio FrequencyRMSRoot-Mean-SquareTWTVing Wave TubeV/mVolts per meter	kPa	kilopascal
MHzMegahertzμHmicrohenryμmicrofaradμsmicrosecondsNEBSNetwork Equipment-Building SystemPRFPulse Repetition FrequencyRFRadio FrequencyRMSRoot-Mean-SquareTWTTraveling Wave TubeV/mVolts per meter	kV	kilovolt
μHmicrohenryμmicrofaradμsmicrosecondsNEBSNetwork Equipment-Building SystemPRFPulse Repetition FrequencyRFRadio FrequencyRMSRoot-Mean-SquareTWTTraveling Wave TubeV/mVolts per meter	LISN	Line Impedance Stabilization Network
μmicrofaradμsmicrosecondsNEBSNetwork Equipment-Building SystemPRFPulse Repetition FrequencyRFRadio FrequencyRMSRoot-Mean-SquareTWTTraveling Wave TubeV/mVolts per meter	MHz	Megahertz
μsmicrosecondsNEBSNetwork Equipment-Building SystemPRFPulse Repetition FrequencyRFRadio FrequencyRMSRoot-Mean-SquareTWTTraveling Wave TubeV/mVolts per meter	μΗ	microhenry
NEBSNetwork Equipment-Building SystemPRFPulse Repetition FrequencyRFRadio FrequencyRMSRoot-Mean-SquareTWTTraveling Wave TubeV/mVolts per meter	μ	microfarad
PRFPulse Repetition FrequencyRFRadio FrequencyRMSRoot-Mean-SquareTWTTraveling Wave TubeV/mVolts per meter	μ s	microseconds
RF Radio Frequency RMS Root-Mean-Square TWT Traveling Wave Tube V/m Volts per meter	NEBS	Network Equipment-Building System
RMS Root-Mean-Square TWT Traveling Wave Tube V/m Volts per meter	PRF	Pulse Repetition Frequency
TWT Traveling Wave Tube V/m Volts per meter	RF	Radio Frequency
V/m Volts per meter	RMS	Root-Mean-Square
V/m Volts per meter	TWT	Traveling Wave Tube
	V/m	
VCP Vertical Coupling Plane	VCP	

List of Terms and Abbreviations

I. Executive Summary

A. Purpose of Test

An EMC evaluation was performed to determine Class II Permissive Change compliance of the SyChip, LLC WiFi Module, SN8200UFL, with the requirements of Part 15, §15.247. All references are to the most current version of Title 47 of the Code of Federal Regulations in effect. In accordance with §2.1033, the following data is presented in support of the Certification of the WiFi Module, SN8200UFL. SyChip, LLC should retain a copy of this document which should be kept on file for at least two years after the manufacturing of the WiFi Module, SN8200UFL, has been **permanently** discontinued.

B. Executive Summary

The following tests were conducted on a sample of the equipment for the purpose of demonstrating Class II Permissive Change compliance with Part 15, §15.247, in accordance with RF Monolithics, purchase order number 50886. All tests were conducted using measurement procedure ANSI C63.4-2003.

FCC Reference 47 CFR Part 15.247:2005	IC Reference RSS-210 Issue 8: 2010; RSS-GEN Issues 3: 2010	Description	Compliance
Title 47 of the CFR, Part 15 §15.203	N/A	Antenna Requirement	Compliant
Title 47 of the CFR, Part 15 §15.247(d); §15.209; §15.205	RSS-210(A8.5)	Radiated Spurious Emissions	Compliant

 Table 1. Executive Summary of EMC Part 15.247 ComplianceTesting

II. Equipment Configuration

A. Overview

MET Laboratories, Inc. was contracted by SyChip, LLC to perform testing on the WiFi Module, SN8200UFL, under RF Monolithics' purchase order number 50886.

This document describes the test setups, test methods, required test equipment, and the test limit criteria used to perform compliance testing of the SyChip, LLC, WiFi Module, SN8200UFL.

Model(s) Tested:	WiFi Module, SN8200UF	L		
Model(s) Covered:	WiFi Module, SN8205UF	L and SN8206UFL		
	Primary Power: 3.6 V FCC ID: QPU8200 IC: 4523A-SN8200			
EUT	Type of Modulations:	DSSS, OFDM		
Specifications:	Equipment Code:	DTS		
	Peak RF Output Power:	802.11g, High Channel (2462MHz) 22.1dBm		
	EUT Frequency Ranges: 2412 MHz to 2462 MHz			
Analysis:	The results obtained relate	e only to the item(s) tested.		
	Temperature: 15-35° C			
Environmental Test Conditions:	Relative Humidity: 30-60%			
	Barometric Pressure: 860-1060 mbar			
Evaluated by:	Erik Ray			
Report Date(s):	July 3, 2013	July 3, 2013		

The results obtained relate only to the item(s) tested.

 Table 2. EUT Summary Table

B. References

CFR 47, Part 15, Subpart C	Federal Communication Commission, Code of Federal Regulations, Title 47, Part 15: General Rules and Regulations, Allocation, Assignment, and Use of Radio Frequencies	
RSS-210, Issue 8, Dec. 2010	Low-power Licence-exempt Radiocommunications Devices (All Frequency Bands): Category I Equipment	
RSS-GEN, Issue 3, Dec. 2010	General Requirements and Information for the Certification of Radio Apparatus	
ANSI C63.4:2003	Methods and Measurements of Radio-Noise Emissions from Low-Voltage Electrical And Electronic Equipment in the Range of 9 kHz to 40 GHz	
ISO/IEC 17025:2005	General Requirements for the Competence of Testing and Calibration Laboratories	
ANSI C63.10-2009	American National Standard for Testing Unlicensed Wireless Devices	

Table 3. References

C. Test Site

All testing was performed at MET Laboratories, Inc., 13301 McCallen Pass, Austin, TX 78753. All equipment used in making physical determinations is accurate and bears recent traceability to the National Institute of Standards and Technology.

Radiated Emissions measurements were performed in a 10 meter semi-anechoic chamber (equivalent to an Open Area Test Site). In accordance with §2.948(a)(3), a complete site description is contained at MET Laboratories.

D. Description of Test Sample

The SyChip, LLC WiFi Module, SN8200UFL, Equipment Under Test (EUT), is a complete low power selfcontained embedded wireless solution to address the connectivity demand in M2M applications. It integrates micro-controller, Wi-Fi BB/MAC/RF IC, RF front end, clocks, and on-board antenna into a small form factor module. SN8200 can be controlled by a host device through a serial interface; it can also serve as a standalone Wi-Fi station or network controller. Thus, it can be used to enable wireless connectivity to the simplest products with minimal engineering resources.

The SN8200 provides standard IEEE802.11 b/g/n functions. The integrated MCU supports Broadcom WICED[™] software. It can be used for a variety of different applications, such as wireless sensor node, serial to Wi-Fi transceiver, Wi-Fi network controller, Wi-Fi gateway/bridges plus internet server.

Photograph 1. SyChip, LLC WiFi Module, SN8200UFL

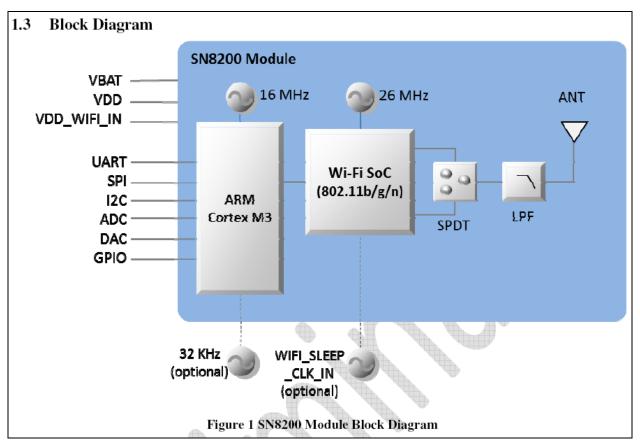


Figure 1. Block Diagram of Test Configuration

E. Equipment Configuration

The EUT was set up as outlined in Figure 1, Block Diagram of Test Setup. All cards, racks, etc., incorporated as part of the EUT is included in the following list.

Ref. ID	Name / Description	Model Number	Serial Number
1	SN8200 WiFi module	SN8200UFL	MAC: 000B6C41932F
3	Omni-directional antenna for FCC	TRF1002 Gain: 5 dBi	

Table 4. Equipment Configuration

F. Support Equipment

Support equipment necessary for the operation and testing of the EUT is included in the following list.

Ref. ID	Name / Description	Manufacturer
1	Laptop	DELL
2	USB cable	

 Table 5.
 Support Equipment

G. Ports and Cabling Information

Ref. ID	Port Name on EUT	Cable Description	Qty.	Length (m)	Shielded (Y/N)	Termination Point
1	UFL on module	For antenna connection	1			
2	SMA on carrier	For conducted measure	1			
3	USB on carrier	For command & DC pwr	1			

 Table 6. Ports and Cabling Information

H. Mode of Operation

SN8200, a WiFi module, operates in 802.11b, g and n modes. The operation is controlled by the command set provided (in the Laptop). The commands are explained in a separate file.

I. Method of Monitoring EUT Operation

- 1. A Spectrum Analyzer can be used to monitor the RF performance.
- 2. A set of terminals on carrier board , marked I-mA, can be used to plot the DC current on a scope.
- 3. The interactive Command screen shows the status of command execution.

J. Modifications

- a) Modifications to EUT No modifications were made to the EUT.
- b) Modifications to Test Standard No modifications were made to the test standard.

K. Disposition of EUT

The test sample including all support equipment submitted to the Electro-Magnetic Compatibility Lab for testing was returned to SyChip, LLC upon completion of testing.

III. Electromagnetic Compatibility Criteria for Intentional Radiators

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.203 Antenna Requirement

Test Requirement: § 15.203: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

The structure and application of the EUT were analyzed to determine compliance with Section 15.203 of the Rules. Section 15.203 states that the subject device must meet at least one of the following criteria:

- a.) Antenna must be permanently attached to the unit.
- b.) Antenna must use a unique type of connector to attach to the EUT.
- c.) Unit must be professionally installed. Installer shall be responsible for verifying that the correct antenna is employed with the unit.
- **Results:** The EUT as tested is compliant the criteria of §15.203. The antenna has a unique UFL connector to attach to the EUT.

Test Engineer(s): Erik Ray

Test Date(s): 06/11/13

Gai	n	Туре	Model	Manufacturer
5dE	Bi	Omni- Directional	TRF1002	MicroChip

 Table 7. Antenna List

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.247(d) Radiated Spurious Emissions Requirements and Band Edge

Test Requirements: §15.247(d); §15.205: Emissions outside the frequency band.

§15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a).

§15.205(a): Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42–16.423	399.9–410	4.5–5.15
¹ 0.495–0.505	16.69475-16.69525	608–614	5.35-5.46
2.1735–2.1905	16.80425-16.80475	960–1240	7.25–7.75
4.125-4.128	25.5–25.67	1300–1427	8.025-8.5
4.17725-4.17775	37.5–38.25	1435–1626.5	9.0–9.2
4.20725-4.20775	73–74.6	1645.5–1646.5	9.3–9.5
6.215-6.218	74.8–75.2	1660–1710	10.6–12.7
6.26775–6.26825	108–121.94	1718.8–1722.2	13.25–13.4
6.31175–6.31225	123–138	2200–2300	14.47–14.5
8.291-8.294	149.9–150.05	2310–2390	15.35–16.2
8.362-8.366	156.52475-156.52525	2483.5–2500	17.7–21.4
8.37625-8.38675	156.7–156.9	2655–2900	22.01–23.12
8.41425-8.41475	162.0125–167.17	3260–3267	23.6–24.0
12.29–12.293	167.72–173.2	3332–3339	31.2–31.8
12.51975–12.52025	240–285	3345.8–3358 36.	43–36.5
12.57675–12.57725	322–335.4	3600-4400	(²)

Table 8. Restricted Bands of Operation

¹ Until February 1, 1999, this restricted band shall be 0.490 - 0.510 MHz.

² Above 38.6

Test Requirement(s): § 15.209 (a): Except as provided elsewhere in this subpart, the emissions from an intentional

radiator shall not exceed the field strength levels specified in Table 9.

Frequency (MHz)	§ 15.209(a), Radiated Emission Limits	
	(dBµV) @ 3m	
30 - 88	40.00	
88 - 216	43.50	
216 - 960	46.00	
Above 960	54.00	

 Table 9. Radiated Emissions Limits Calculated from FCC Part 15, § 15.209 (a)

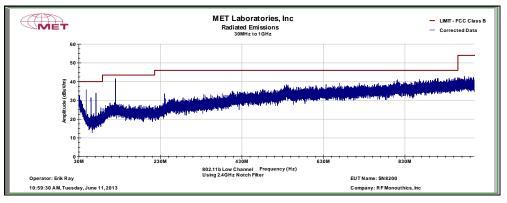
Test Procedure: The transmitter was set to the mid channel at the highest output power and placed on a 0.8 m high acrylic table inside in a semi-anechoic chamber. Measurements were performed with the EUT rotated 360 degrees and varying the adjustable antenna mast with 1 m to 4 m height to determine worst case orientation for maximum emissions. Measurements were repeated at the low and highest channels.

For frequencies from 30 MHz to 1 GHz, measurements were made using a quasi-peak detector with a 120 kHz RBW bandwidth. For frequencies above 1GHz, peak measurements were made using a 1MHz RBW and 3MHz VBW. Average measurements above 1GHz were made using a1MHz RBW and 10Hz VBW.

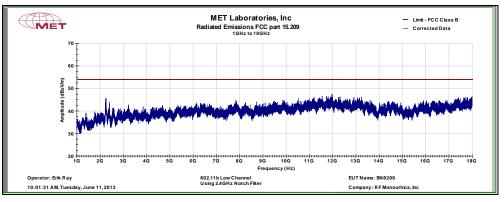
For intentional radiators with a digital device portion which operates below 10 GHz, the spectrum was investigated as per \$15.33(a)(1) and \$15.33(a)(4); i.e., the lowest RF signal generated or used in the device up to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

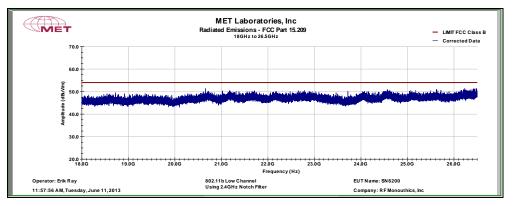
In accordance with §15.35(b) the limit on the radio frequency emissions as measured using instrumentation with a peak detector function shall be 20 dB above the maximum permitted average limit for the frequency being investigated unless a different peak emission limit is otherwise specified in the rules.

EUT Field Strength Final Amplitude = Raw Amplitude – Preamp gain + Antenna Factor + Cable Loss – Distance Correction Factor

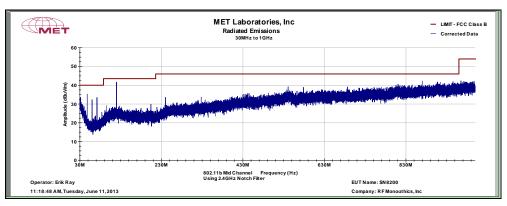

Test Results: The EUT was compliant with the Radiated Spurious Emission limits of §15.247(d).

Test Engineer(s): Erik Ray

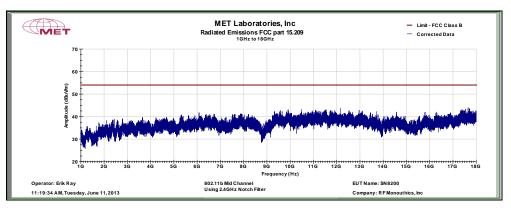

Test Date(s): 06/11/13


Radiated Spurious Emissions Test Results

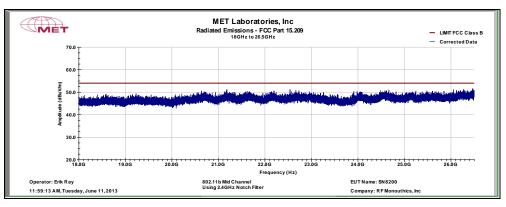
Plot 1. Radiated Spurious Emissions, 802.11b, Low Channel, 30 MHz - 1 GHz



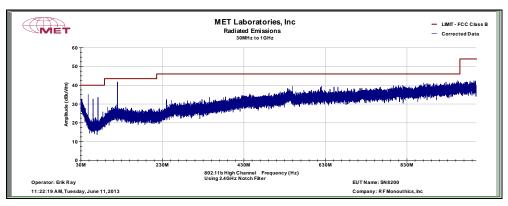
Plot 2. Radiated Spurious Emissions, 802.11b, Low Channel, 1 GHz – 18 GHz



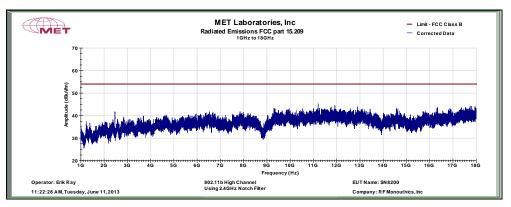
Plot 3. Radiated Spurious Emissions, 802.11b, Low Channel, 18 GHz – 26.5 GHz



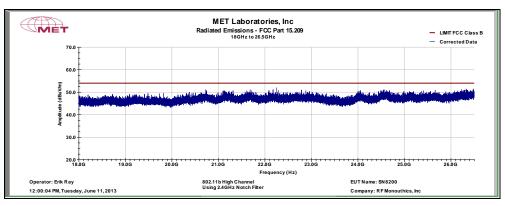
Plot 4. Radiated Spurious Emissions, 802.11b, Mid Channel, 30 MHz - 1 GHz



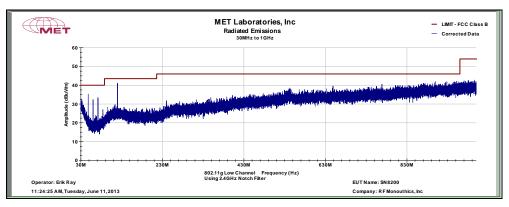
Plot 5. Radiated Spurious Emissions, 802.11b, Mid Channel, 1 GHz – 18 GHz



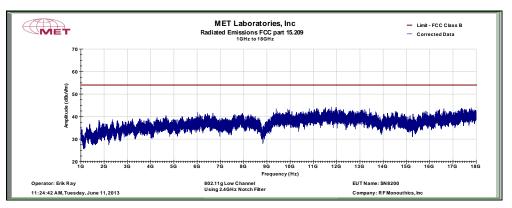
Plot 6. Radiated Spurious Emissions, 802.11b, Mid Channel, 18 GHz – 26.5 GHz



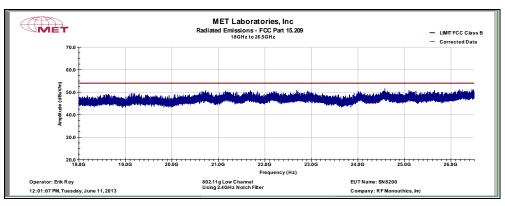
Plot 7. Radiated Spurious Emissions, 802.11b, High Channel, 30 MHz - 1 GHz



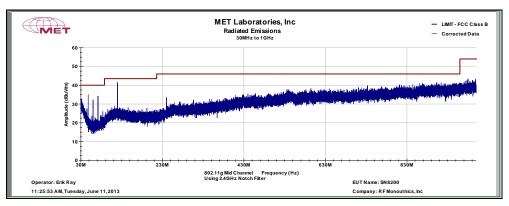
Plot 8. Radiated Spurious Emissions, 802.11b, High Channel, 1 GHz – 18 GHz



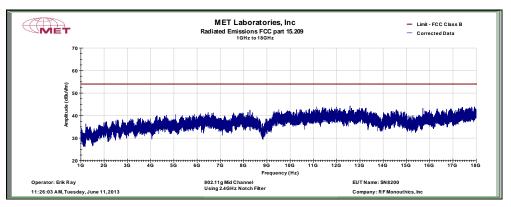
Plot 9. Radiated Spurious Emissions, 802.11b, High Channel, 18 GHz – 26.5 GHz



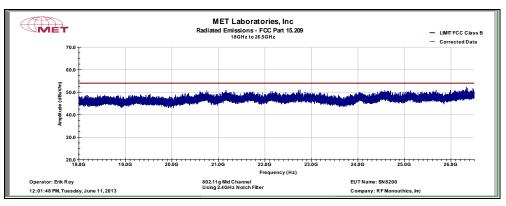
Plot 10. Radiated Spurious Emissions, 802.11g, Low Channel, 30 MHz - 1 GHz



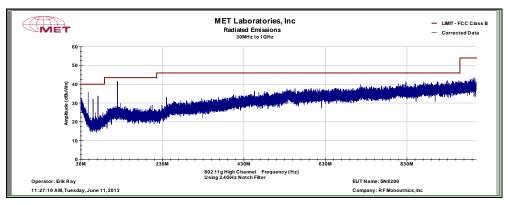
Plot 11. Radiated Spurious Emissions, 802.11g, Low Channel, 1 GHz – 18 GHz



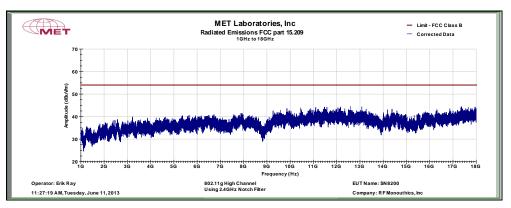
Plot 12. Radiated Spurious Emissions, 802.11g, Low Channel, 18 GHz – 26.5 GHz



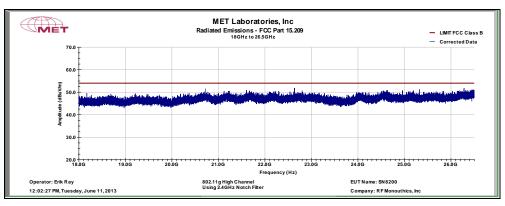
Plot 13. Radiated Spurious Emissions, 802.11g, Mid Channel, 30 MHz - 1 GHz



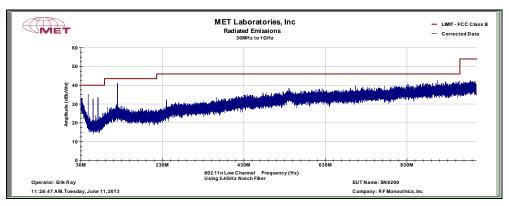
Plot 14. Radiated Spurious Emissions, 802.11g, Mid Channel, 1 GHz – 18 GHz



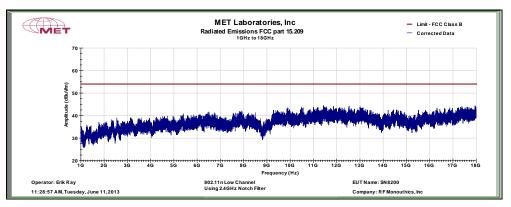
Plot 15. Radiated Spurious Emissions, 802.11g, Mid Channel, 18 GHz – 26.5 GHz



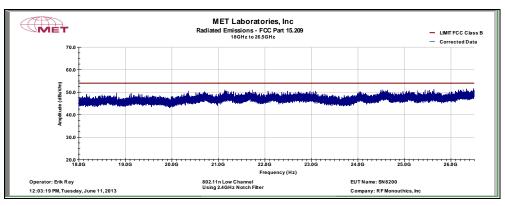
Plot 16. Radiated Spurious Emissions, 802.11g, High Channel, 30 MHz - 1 GHz



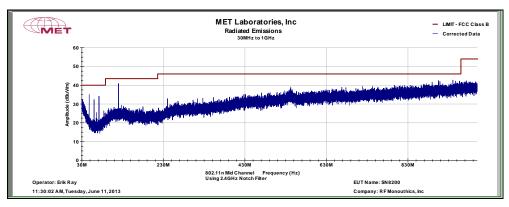
Plot 17. Radiated Spurious Emissions, 802.11g, High Channel, 1 GHz – 18 GHz



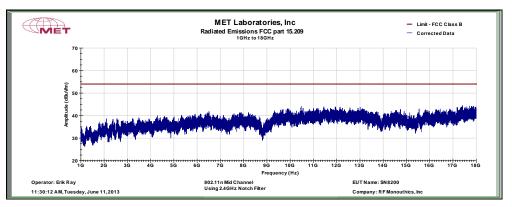
Plot 18. Radiated Spurious Emissions, 802.11g, High Channel, 18 GHz – 26.5 GHz



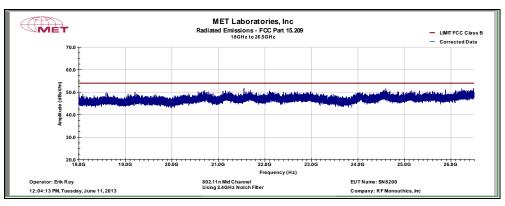
Plot 19. Radiated Spurious Emissions, 802.11n, Low Channel, 30 MHz - 1 GHz



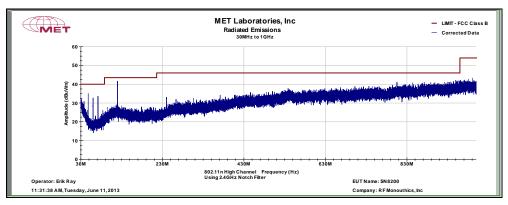
Plot 20. Radiated Spurious Emissions, 802.11n, Low Channel, 1 GHz – 18 GHz



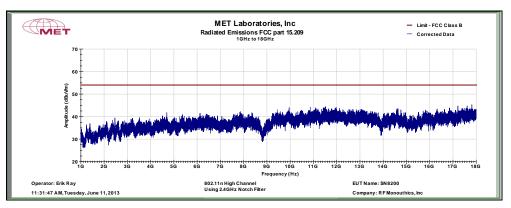
Plot 21. Radiated Spurious Emissions, 802.11n, Low Channel, 18 GHz – 26.5 GHz



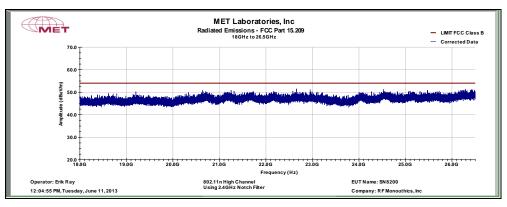
Plot 22. Radiated Spurious Emissions, 802.11n, Mid Channel, 30 MHz - 1 GHz



Plot 23. Radiated Spurious Emissions, 802.11n, Mid Channel, 1 GHz – 18 GHz

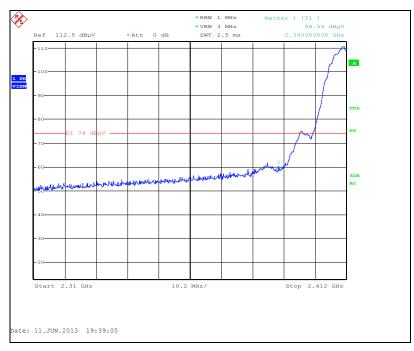


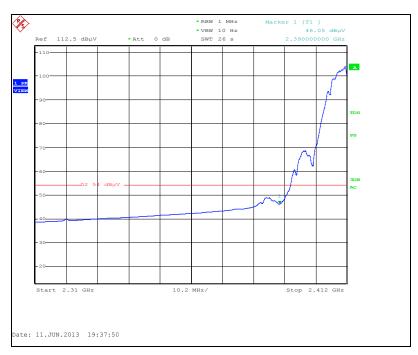
Plot 24. Radiated Spurious Emissions, 802.11n, Mid Channel, 18 GHz – 26.5 GHz



Plot 25. Radiated Spurious Emissions, 802.11n, High Channel, 30 MHz - 1 GHz

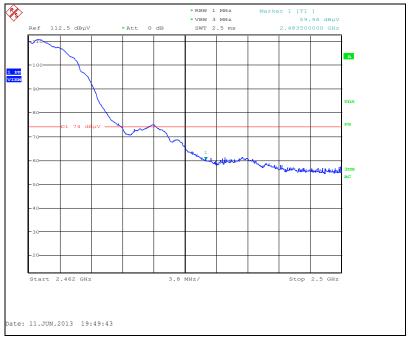
Plot 26. Radiated Spurious Emissions, 802.11n, High Channel, 1 GHz – 18 GHz


Plot 27. Radiated Spurious Emissions, 802.11n, High Channel, 18 GHz – 26.5 GHz


Radiated Band Edge Measurements

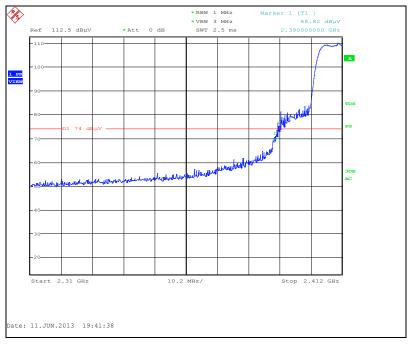
Test Procedures:

The transmitter was turned. Measurements were performed of the low and high Channels. The EUT was rotated orthogonally through all three axes. Plots shown are corrected for both antenna correction factor and distance.

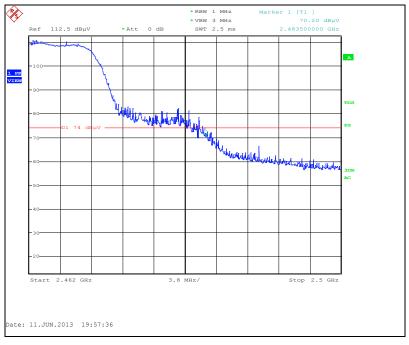


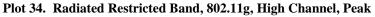

Plot 28. Radiated Restricted Band, 802.11b, Low Channel, Peak

Plot 29. Radiated Restricted Band, 802.11b, Low Channel, Average

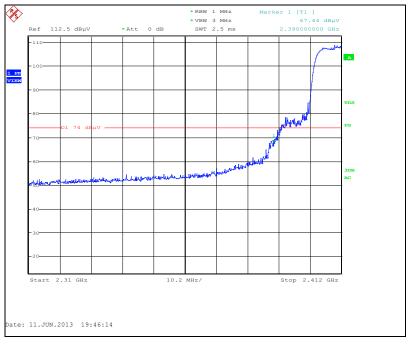


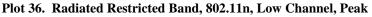
Plot 31. Radiated Restricted Band, 802.11b, High Channel, Average



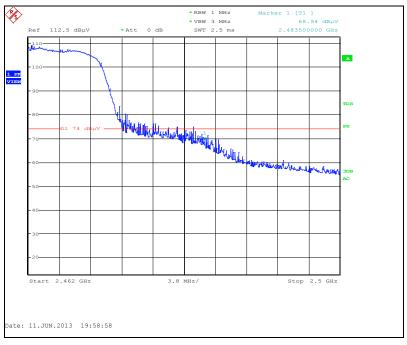


Plot 33. Radiated Restricted Band, 802.11g, Low Channel, Average



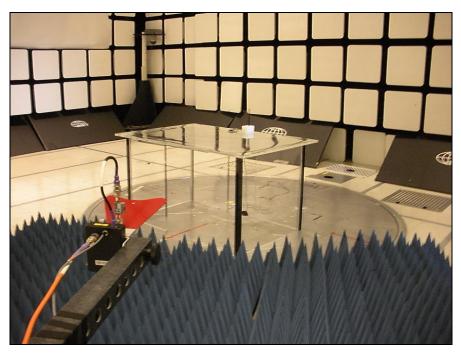


Plot 35. Radiated Restricted Band, 802.11g, High Channel, Average

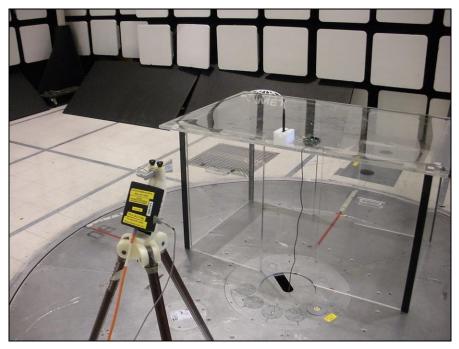


Plot 37. Radiated Restricted Band, 802.11n, Low Channel, Average

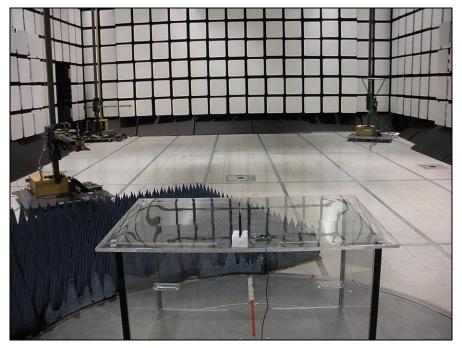
Plot 38. Radiated Restricted Band, 802.11n, High Channel, Peak


Plot 39. Radiated Restricted Band, 802.11n, High Channel, Average

Radiated Spurious Emissions Test Setup



Photograph 2. Radiated Spurious Emissions, Test Setup, 30 MHz – 1 GHz



Photograph 3. Radiated Spurious Emissions, Test Setup, 1 GHz – 18 GHz

Photograph 4. Radiated Spurious Emissions, Test Setup, 18 GHz – 26.5 GHz

Photograph 5. Radiated Spurious Emissions, Test Setup, Rear

Photograph 6. Radiated Restricted Band, Test Setup

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.247(i) Maximum Permissible Exposure

- **RF Exposure Requirements:** §1.1307(b)(1) and §1.1307(b)(2): Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines.
- **RF Radiation Exposure Limit: §1.1310:** As specified in this section, the Maximum Permissible Exposure (MPE) Limit shall be used to evaluate the environmental impact of human exposure to radiofrequency (RF) radiation as specified in Sec. 1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of Sec. 2.1093 of this chapter.
- **Test Results:** The EUT was compliant with the requirements of this section.

Antenna gain = 5 dBi = 3.16 Power = 173 mW (from original filing)

2.4 GHz Band

 $S = PG/4\pi R^2$

 $\frac{S = (173 \text{mW})(3.16)}{4\pi (20)^2}$

 $S = 0.109 \text{ mW/cm}^2$

Test Engineer(s): Erik Ray

IV. Test Equipment

Test Equipment

Calibrated test equipment utilized during testing was maintained in a current state of calibration per the requirements of ISO/IEC 17025:2005.

Test Name: Radiated Emissions Test Date(s): 6-11-13 to 6-12-13					
MET Asset #	Nomenclature	Manufacturer	Model	Last Cal Date	Cal Due Date
1A1083	EMI TEST RECEIVER	ROHDE & SCHWARZ	ESU40	5-31-13	5-31-14
1A1088	PRE-AMP	RHODE & SCHWARZ	TS-PR1	SEE NOTE	
1A1141	SPECTRUM ANALYZER	HEWLETT PACKARD	E4407B	5-3-13	5-3-14
1A1113	PRE-AMP	MINI-CIRCUIT	ZVA-183+	SEE NOTE	
1A1072	PRE-AMP	MITEQ	AFS5-01001800-25-8P- 6-PS	SEE NOTE	
1A1047	HORN ANTENNA	ETS	3117	4-3-12	10-3-13
1A1026	18-26.5GHZ ANTENNA	ETS	011777-002	5-9-12	11-9-13
1A1050	BI-CONILOG ANTENNA (30MHZ TO 1GHZ)	SCHAFFNER	CBL6112D	6-4-12	12-4-13
1A1106	10M CHAMBER	ETS	SEMI-ANECHOIC	9-12-12	3-12-14

Table 10. Test Equipment List

Note: Functionally tested equipment is verified using calibrated instrumentation at the time of testing.

A. Certification Information

The following is extracted from Title 47 of the Code of Federal Regulations, Part 2, Subpart I — Marketing of Radio frequency devices:

§ 2.801 Radio-frequency device defined.

As used in this part, a radio-frequency device is any device which in its operation is capable of Emitting radio-frequency energy by radiation, conduction, or other means. Radio- frequency devices include, but are not limited to:

- (a) The various types of radio communication transmitting devices described throughout this chapter.
- (b) The incidental, unintentional and intentional radiators defined in Part 15 of this chapter.
- (c) The industrial, scientific, and medical equipment described in Part 18 of this chapter.
- (d) Any part or component thereof which in use emits radio-frequency energy by radiation, conduction, or other means.

§ 2.803 Marketing of radio frequency devices prior to equipment authorization.

- (a) Except as provided elsewhere in this chapter, no person shall sell or lease, or offer for sale or lease (including advertising for sale or lease), or import, ship or distribute for the purpose of selling or leasing or offering for sale or lease, any radio frequency device unless:
 - (1) In the case of a device subject to certification, such device has been authorized by the Commission in accordance with the rules in this chapter and is properly identified and labeled as required by §2.925 and other relevant sections in this chapter; or
 - (2) In the case of a device that is not required to have a grant of equipment authorization issued by the Commission, but which must comply with the specified technical standards prior to use, such device also complies with all applicable administrative (including verification of the equipment or authorization under a Declaration of Conformity, where required), technical, labeling and identification requirements specified in this chapter.
- (d) Notwithstanding the provisions of paragraph (a) of this section, the offer for sale solely to business, commercial, industrial, scientific or medical users (but not an offer for sale to other parties or to end users located in a residential environment) of a radio frequency device that is in the conceptual, developmental, design or preproduction stage is permitted prior to equipment authorization or, for devices not subject to the equipment authorization requirements, prior to a determination of compliance with the applicable technical requirements *provided* that the prospective buyer is advised in writing at the time of the offer for sale that the equipment is subject to the FCC rules and that the equipment will comply with the appropriate rules before delivery to the buyer or to centers of distribution.

- (e)(1) Notwithstanding the provisions of paragraph (a) of this section, prior to equipment authorization or determination of compliance with the applicable technical requirements any radio frequency device may be operated, but not marketed, for the following purposes and under the following conditions:
 - (i) Compliance testing;
 - (ii) Demonstrations at a trade show provided the notice contained in paragraph (c) of this section is displayed in a conspicuous location on, or immediately adjacent to, the device;
 - (iii) Demonstrations at an exhibition conducted at a business, commercial, industrial, scientific or medical location, but excluding locations in a residential environment, provided the notice contained in paragraphs (c) or (d) of this section, as appropriate, is displayed in a conspicuous location on, or immediately adjacent to, the device;
 - (iv) Evaluation of product performance and determination of customer acceptability, provided such operation takes place at the manufacturer's facilities during developmental, design or pre-production states; or
 - (v) Evaluation of product performance and determination of customer acceptability where customer acceptability of a radio frequency device cannot be determined at the manufacturer's facilities because of size or unique capability of the device, provided the device is operated at a business, commercial, industrial, scientific or medical user's site, but not at a residential site, during the development, design or pre-production stages.
- (e)(2) For the purpose of paragraphs (e)(1)(iv) and (e)(1)(v) of this section, the term *manufacturer's facilities* includes the facilities of the party responsible for compliance with the regulations and the manufacturer's premises, as well as the facilities of other entities working under the authorization of the responsible party in connection with the development and manufacture, but not the marketing, of the equipment.
- (f) For radio frequency devices subject to verification and sold solely to business, commercial, industrial, scientific and medical users (excluding products sold to other parties or for operation in a residential environment), parties responsible for verification of the devices shall have the option of ensuring compliance with the applicable technical specifications of this chapter at each end user's location after installation, provided that the purchase or lease agreement includes a proviso that such a determination of compliance be made and is the responsibility of the party responsible for verification of the equipment.

The following is extracted from Title 47 of the Code of Federal Regulations, Part 2, Subpart J — Equipment Authorization Procedures:

§ 2.901 Basis and Purpose

- (a) In order to carry out its responsibilities under the Communications Act and the various treaties and international regulations, and in order to promote efficient use of the radio spectrum, the Commission has developed technical standards for radio frequency equipment and parts or components thereof. The technical standards applicable to individual types of equipment are found in that part of the rules governing the service wherein the equipment is to be operated.¹ In addition to the technical standards provided, the rules governing the service may require that such equipment be verified by the manufacturer or importer, be authorized under a Declaration of Conformity, or receive an equipment authorization from the Commission by one of the following procedures: certification or registration.
- (b) The following sections describe the verification procedure, the procedure for a Declaration of Conformity, and the procedures to be followed in obtaining certification from the Commission and the conditions attendant to such a grant.

§ 2.907 Certification.

- (a) Certification is an equipment authorization issued by the Commission, based on representation and test data submitted by the applicant.
- (b) Certification attaches to all units subsequently marketed by the grantee which are identical (see Section 2.908) to the sample tested except for permissive changes or other variations authorized by the Commission pursuant to Section 2.1043.

 $^{^{1}}$ In this case, the equipment is subject to the rules of Part 15. More specifically, the equipment falls under Subpart B (of Part 15), which deals with unintentional radiators.

§ 2.948 Description of measurement facilities.

(a) Each party making measurements of equipment that is subject to an equipment authorization under Part 15 or Part 18 of this chapter, regardless of whether the measurements are filed with the Commission or kept on file by the party responsible for compliance of equipment marketed within the U.S. or its possessions, shall compile a description of the measurement facilities employed.

(1) If the measured equipment is subject to the verification procedure, the description of the measurement facilities shall be retained by the party responsible for verification of the equipment.

- (i) If the equipment is verified through measurements performed by an independent laboratory, it is acceptable for the party responsible for verification of the equipment to rely upon the description of the measurement facilities retained by or placed on file with the Commission by that laboratory. In this situation, the party responsible for the verification of the equipment is not required to retain a duplicate copy of the description of the measurement facilities.
- (ii) If the equipment is verified based on measurements performed at the installation site of the equipment, no specific site calibration data is required. It is acceptable to retain the description of the measurement facilities at the site at which the measurements were performed.
- (2) If the equipment is to be authorized by the Commission under the certification procedure, the description of the measurement facilities shall be filed with the Commission's Laboratory in Columbia, Maryland. The data describing the measurement facilities need only be filed once but must be updated as changes are made to the measurement facilities or as otherwise described in this section. At least every three years, the organization responsible for filing the data with the Commission shall certify that the data on file is current.

1. Label and User's Manual Information

The following is extracted from Title 47 of the Code of Federal Regulations, Part 15, Subpart A — General:

§ 15.19 Labeling requirements.

- (a) In addition to the requirements in Part 2 of this chapter, a device subject to certification or verification shall be labeled as follows:
 - (1) Receivers associated with the operation of a licensed radio service, e.g., FM broadcast under Part 73 of this chapter, land mobile operation under Part 90, etc., shall bear the following statement in a conspicuous location on the device:

This device complies with Part 15 of the FCC Rules. Operation is subject to the condition that this device does not cause harmful interference.

(2) A stand-alone cable input selector switch, shall bear the following statement in a conspicuous location on the device:

This device is verified to comply with Part 15 of the FCC Rules for use with cable television service.

(3) All other devices shall bear the following statement in a conspicuous location on the device:

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

- (4) Where a device is constructed in two or more sections connected by wires and marketed together, the statement specified under paragraph (a) of this section is required to be affixed only to the main control unit.
- (5) When the device is so small or for such use that it is not practicable to place the statement specified under paragraph (a) of this section on it, the information required by this paragraph shall be placed in a prominent location in the instruction manual or pamphlet supplied to the user or, alternatively, shall be placed on the container in which the device is marketed. However, the FCC identifier or the unique identifier, as appropriate, must be displayed on the device.

§ 15.21 Information to user.

The users manual or instruction manual for an intentional or unintentional radiator shall caution the user that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

The following is extracted from Title 47 of the Code of Federal Regulations, Part 15, Subpart B — Unintentional Radiators:

§ 15.105 Information to the user.

(a) For a Class A digital device or peripheral, the instructions furnished the user shall include the following or similar statement, placed in a prominent location in the text of the manual:

Note: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at own expense.

(b) For a Class B digital device or peripheral, the instructions furnished the user shall include the following or similar statement, placed in a prominent location in the text of the manual:

Note: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a residential environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

ICES-003 Procedural & Labeling Requirements

From the Industry Canada Electromagnetic Compatibility Advisory Bulletin entitled, "Implementation and Interpretation of the Interference-Causing Equipment Standard for Digital Apparatus, ICES-003" (EMCAB-3, Issue 2, July 1995):

"At present, CISPR 22: 2002 and ICES technical requirements are essentially equivalent. Therefore, if you have CISPR 22: 2002 approval by meeting CISPR Publication 22, the only additional requirements are: to attach a note to the report of the test results for compliance, indicating that these results are deemed satisfactory evidence of compliance with ICES-003 of the Canadian Interference-Causing Equipment Regulations; to maintain these records on file for the requisite five year period; and to provide the device with a notice of compliance in accordance with ICES-003."

Procedural Requirements:

According to Industry Canada's Interference Causing Equipment Standard for Digital Apparatus ICES-003 Issue 4, February 2004:

- Section 6.1: A record of the measurements and results, showing the date that the measurements were completed, shall be retained by the manufacturer or importer for a period of at least five years from the date shown in the record and made available for examination on the request of the Minister.
- Section 6.2: A written notice indicating compliance must accompany each unit of digital apparatus to the end user. The notice shall be in the form of a label that is affixed to the apparatus. Where because of insufficient space or other constraints it is not feasible to affix a label to the apparatus, the notice may be in the form of a statement in the user's manual.

Labeling Requirements:

The suggested text for the notice, in English and in French, is provided below, from the Annex of ICES-003:

This Class [²] digital apparatus complies with Canadian ICES-003.

Cet appareil numérique de la classe [¹] est conforme à la norme NMB-003 du Canada.

² Insert either A or B but not both as appropriate for the equipment requirements.

End of Report