

Nemko Test Report:

Nemko Test Report	: 10219979RUS1
Applicant:	SyChip LLC 2805 N. Dallas Parkway, Ste 400 Plano, TX 75093 USA
Equipment Under T	est: SN2100
(E.U.T.)	FCC ID.: QPU2100 IC: 4523A-SN2100
In Accordance With	FCC Part 15, Subpart C, 15.247 and Industry Canada RSS-210, Issue 8 Frequency Hopping Transmitters
Tested By:	Nemko USA Inc. 802 N. Kealy Lewisville, Texas 75057-3136
	111
TESTED BY:	David Light, Senior Wireless Engineer DATE: 20 February 2012
APPROVED BY:	Michael Cantwell DATE: 27-February 2012
	Total Number of Pages: 42

Table of Contents

SECTION 1.	SUMMARY OF TEST RESULTS	3
SECTION 2.	EQUIPMENT UNDER TEST (E.U.T.)	5
SECTION 3.	CHANNEL SEPARATION	6
SECTION 4.	TIME OF OCCUPANCY	11
SECTION 6.	PEAK POWER OUTPUT	15
SECTION 6.	SPURIOUS EMISSIONS (ANTENNA CONDUCTED)	17
SECTION 7.	SPURIOUS EMISSIONS (RADIATED)	22
SECTION 8.	POWERLINE CONDUCTED EMISSIONS	27
SECTION 9.	TEST EQUIPMENT LIST	30
ANNEX A - TE	ST DETAILS	31
ANNEX B - TE	ST DIAGRAMS	40

FCC PART 15, Subpart C and RSS-210 Frequency Hopping Transmitters PROJECT NO.:10219979RUS1

EQUIPMENT: SN2100

Section 1. Summary of Test Results

Manufacturer: Sychip LLC

Model No.: SN2100

Serial No.: None

General: All measurements are traceable to national standards.

These tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with Part 15, Subpart C, Paragraph 15.247 and Industry Canada RSS-210, Issue 8 for Frequency Hopping Spread Spectrum devices. Radiated tests were conducted is accordance with ANSI C63.4-2003. Radiated emissions are made on an open area test site. A description of the test facility is on file with the FCC and Industry Canada.

New Submission	Production Unit
Class II Permissive Change	Pre-Production Unit

THIS TEST REPORT RELATES ONLY TO THE ITEM(S) TESTED.

THE FOLLOWING DEVIATIONS FROM, ADDITIONS TO, OR EXCLUSIONS FROM THE TEST SPECIFICATIONS HAVE BEEN MADE.

See "Summary of Test Data".

Nemko USA, Inc. authorizes the above named company to reproduce this report provided it is reproduced in its entirety, for use by the company's employees only.

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government. Nemko USA, Inc. is a NVLAP accredited laboratory.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko USA, Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This report applies only to the items tested.

Summary Of Test Data

NAME OF TEST	PARA. NO.	RESULT
Powerline Conducted Emissions	15.207(a) / RSS-Gen 7.2.4	Complies
Channel Separation	15.247(a)(1) / RSS-210 A8.1(b)	Complies
Time of Occupancy	15.247(a)(1) / RSS-210 A8.1(d)	Complies
20 dB Occupied Bandwidth	15.247(a)(1) / RSS-210 A8.1(a)	Complies
Peak Power Output	15.247(b) / RSS-210 A8.4(2)	Complies
Spurious Emissions (Antenna Conducted)	15.247(d) / RSS-210 A8.5	Complies
Spurious Emissions (Radiated)	15.247(d) / RSS-Gen 7.2.2	Complies

Footnotes:

FCC PART 15, Subpart C and RSS-210 Frequency Hopping Transmitters PROJECT NO.:10219979RUS1

EQUIPMENT: SN2100

General Equipment Information

Frequency Band:	 □ 902 – 928 MHz □ 2400 – 2483.5 MHz □ 5725 – 5850 MHz
Operating Frequency Range:	2402 to 2480 MHz
Number of Channels:	79
Channel Spacing:	1 MHz

Description of EUT

User Frequency Adjustment:

SN2100 is a complete industrial grade high power (class 1) Bluetooth® module with onboard antenna for M2M application. It integrates Bluetooth® IC, PA, RF front end, TCXO and chip antenna into a small LGA form factor and can be simply dropped into the OEM's design.

Software controlled

FCC PART 15, Subpart C and RSS-210 Frequency Hopping Transmitters PROJECT NO.:10219979RUS1

EQUIPMENT: SN2100

Section 3. Channel Separation

NAME OF TEST: Channel Separation PARA. NO.: FCC 15.247(a)(1)

RSS-210 A8.1(b)

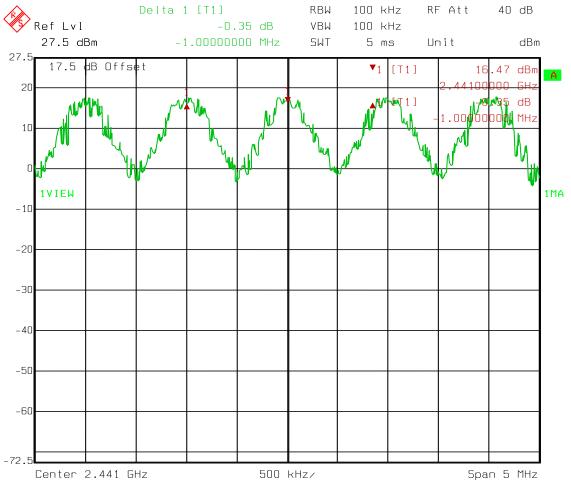
TESTED BY: David Light DATE: 20 February 2012

Test Results: Complies.

Measurement Data: See 20 dB BW plot

Measured 20 dB bandwidth: 942 kHz Channel Separation: 1 MHz

Equipment Used: 1082-1472-1036


Measurement Uncertainty: 1X10⁻⁷ppm

Temperature: 23 °C

Relative Humidity: 49 %

PROJECT NO.:10219979RUS1

Test Data – Channel Separation

-40

-50

-60

-72.5

Frequency Hopping Transmitters PROJECT NO.:10219979RUS1

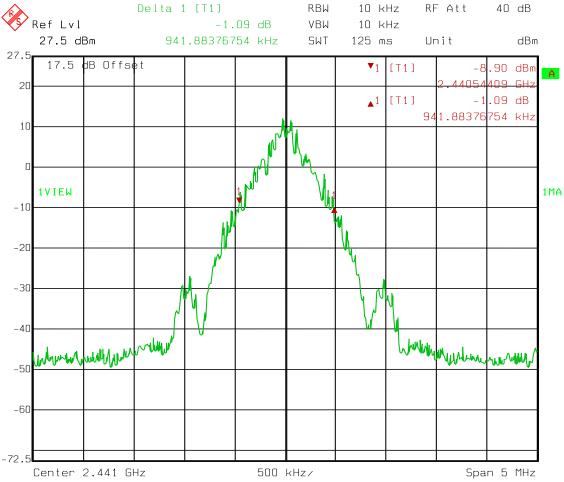
hameland of the second of the

Span 5 MHz

Test Data – 20 dB Bandwidth

Date: 20.FEB.2012 07:54:52

Center 2.402 GHz

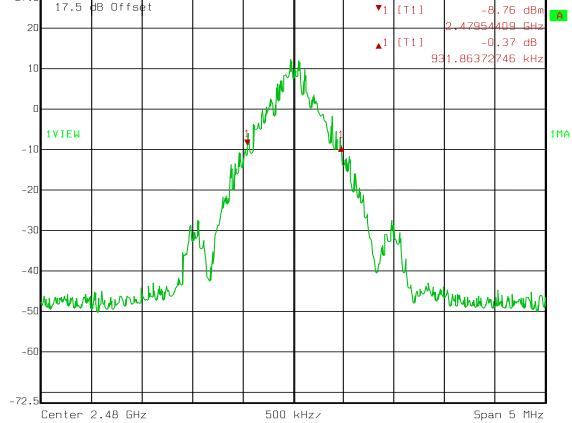

duruh mulum Manud

500 kHz/

Frequency Hopping Transmitters PROJECT NO.:10219979RUS1

Test Data – 20 dB Bandwidth

Mid Channel



Date: 20.FEB.2012 08:04:50

Frequency Hopping Transmitters PROJECT NO.:10219979RUS1

Test Data – 20 dB Bandwidth

High Channel Delta 1 [T1] RBW 10 kHz RF Att 40 dB Ref Lvl VBW -0.37 dB 10 kHz 27.5 dBm 931.86372746 kHz SWT 125 ms Unit dBm 17.5 dB Offset **▼**1 [T1] 20 .37 dB [T1] 931.86372746 kHz 10

Date: 20.FEB.2012 08:07:32

FCC PART 15, Subpart C and RSS-210 Frequency Hopping Transmitters PROJECT NO.:10219979RUS1

EQUIPMENT: SN2100

Section 4. Time of Occupancy

NAME OF TEST: Time of Occupancy PARA. NO.: FCC 15.247(a)(1)

RSS-210 A8.1(d)

TESTED BY: David Light DATE: 20 February 2012

Test Results: Complies.

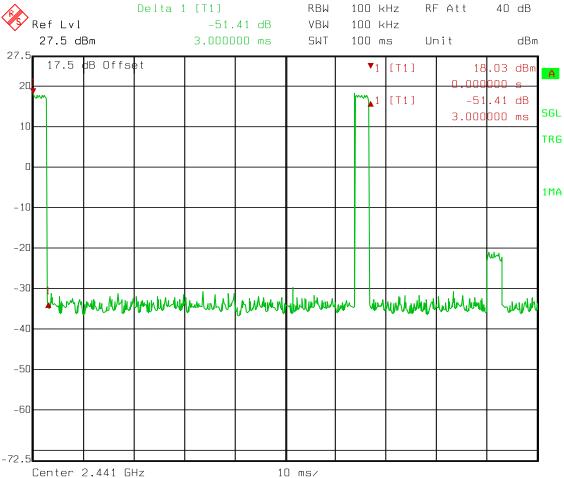
Measurement Data:

Maximum Dwell Time On Any Channel: 0.300 seconds in 31.6

seconds

Equipment Used: 1082-1472-1036

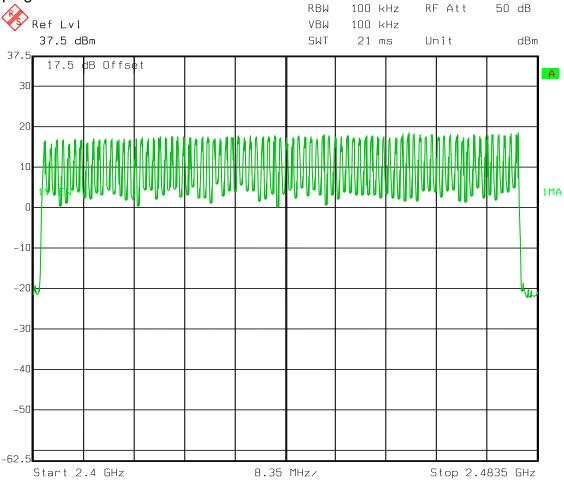
Measurement Uncertainty: <u>1X10⁻⁷ppm</u>


Temperature: 23 °C

Relative Humidity: 49 %

Frequency Hopping Transmitters PROJECT NO.:10219979RUS1

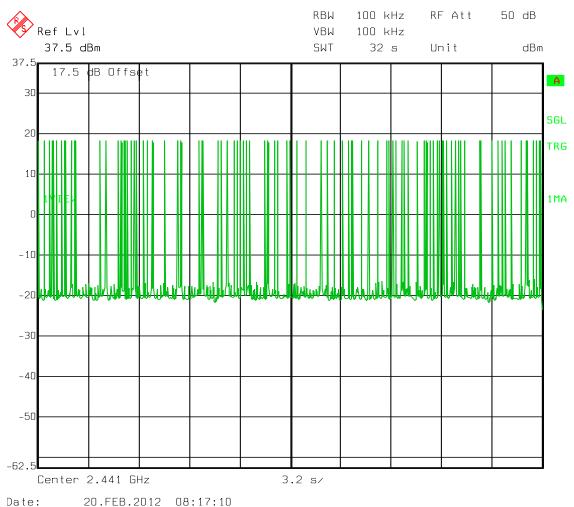
Test Data – Time of Occupancy



Date: 20.FEB.2012 08:12:17

PROJECT NO.:10219979RUS1

Test Data – Time of Occupancy


Hopping Channels = 79

Date: 20.FEB.2012 08:14:28

PROJECT NO.:10219979RUS1

Test Data – Time of Occupancy

20.11 25.2012 00.11.10

100 Hops @ 3 ms each = 300 ms in 31.6 seconds

Limit = <400 ms

FCC PART 15, Subpart C and RSS-210 Frequency Hopping Transmitters PROJECT NO.:10219979RUS1

EQUIPMENT: SN2100

Section 6. Peak Power Output

NAME OF TEST: Peak Power Output PARA. NO.: FCC 15.247 (b) RSS-210 A8.4(2)

TESTED BY: David Light DATE: 20 February 2012

Test Results: Complies.

Measurement Data: See attached plots.

Frequency (MHz)	Peak Power (dBm)	Peak Power (W)	Antenna Type	Gain (dBi)	E.I.R.P. (dBm)	E.I.R.P. (W)				
2402	18.0	0.063	Chip	-1.7	16.3	0.043				
2441	18.6	0.072	Chip	-1.7	16.9	0.049				
2480	18.9	0.078	Chip	-1.7	17.2	0.052				
Maximum EIRP (W): 0.052										

\boxtimes	This device was tested at +/- 15% input power per 15.31(e), with no variation in
	output power.

For battery powered equipment, the device was tested with a fresh battery per 15.31(e).

The device was tested on three channels per 15.31(I).

This test was performed radiated.

Spectrum analyzer settings:

RBW: 10 MHz VBW: 10 MHz Detector: Peak

Equipment Used: 1036-1082-1472

Measurement Uncertainty: 1.7 dB

FCC PART 15, Subpart C and RSS-210 Frequency Hopping Transmitters PROJECT NO.:10219979RUS1

EQUIPMENT: SN2100

Temperature: 23 °C

Relative Humidity: 49 %

FCC PART 15, Subpart C and RSS-210 Frequency Hopping Transmitters PROJECT NO.:10219979RUS1

EQUIPMENT: SN2100

Section 6. Spurious Emissions (Conducted)

NAME OF TEST: Spurious Emissions (Conducted) PARA. NO.: FCC 15.247(d)

RSS-210 A8.5

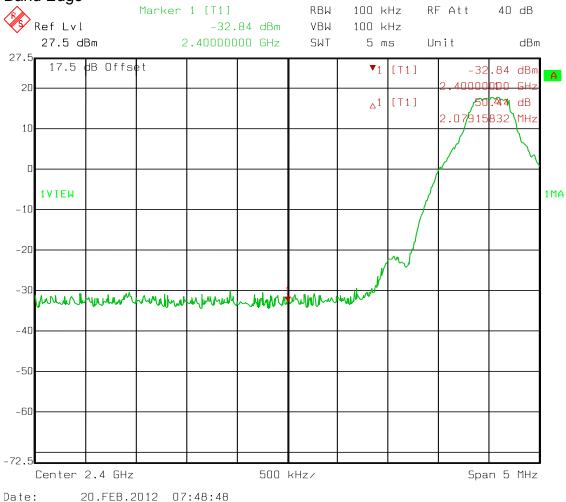
TESTED BY: David Light DATE: 20 February 2012

Test Results: Complies.

Measurement Data: See attached plots.

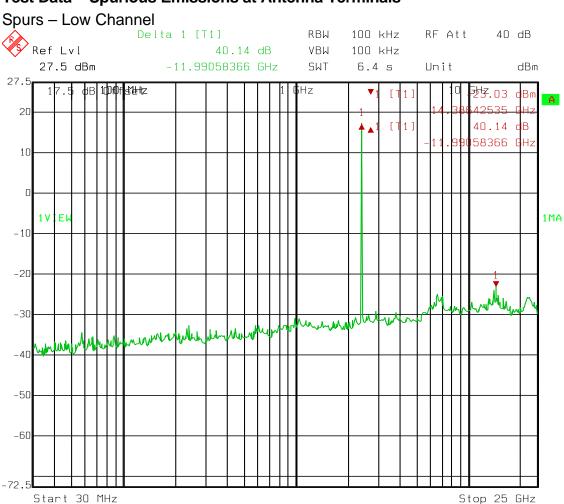
Equipment Used: 1036-1082-1472

Measurement Uncertainty: 1X10⁻⁷ppm


Temperature: 23 °C

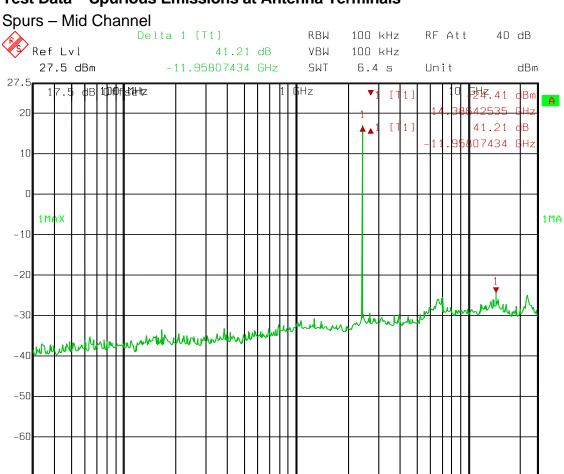
Relative Humidity: 49 %

PROJECT NO.:10219979RUS1


Test Data – Spurious Emissions at Antenna Terminals

Lower Band Edge

PROJECT NO.:10219979RUS1

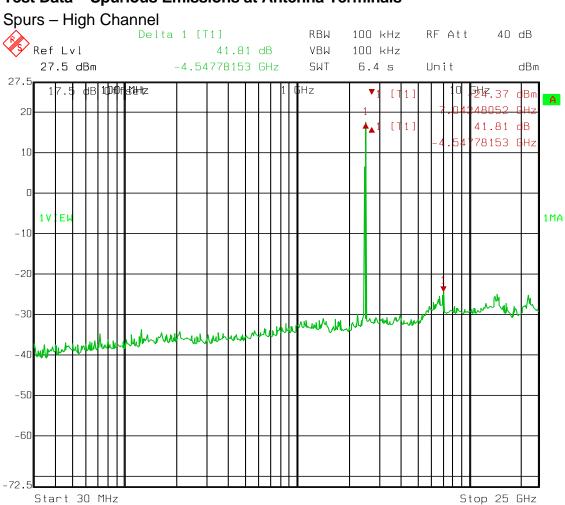

Test Data - Spurious Emissions at Antenna Terminals

Date: 20.FEB.2012 07:49:47

Stop 25 GHz

Test Data – Spurious Emissions at Antenna Terminals

Date: 20.FEB.2012 08:03:37


Start 30 MHz

PROJECT NO.:10219979RUS1

Date:

20.FEB.2012 08:08:13

Test Data – Spurious Emissions at Antenna Terminals

Frequency Hopping Transmitters PROJECT NO.:10219979RUS1

Section 7. Spurious Emissions (Radiated)

NAME OF TEST: Spurious Emissions (Radiated)

RSS-Gen 7.2.2

TESTED BY: David Light

PARA. NO.: FCC 15.247(d)

RSS-Gen 7.2.2

DATE: 20 February 2012

Test Results: Complies. The worst case emission was 51.0 dBµV/m

at 4882 MHz. This is 3 dB below the specification limit

of 54.0 dBµV/m. This was a peak measurement.

Measurement Data: See attached table.

Duty Cycle Calculation:

Duty Cycle correction factor(dB) = $20 \log (rf_{ON} \text{ in ms}/100\text{ms}) = 20 \log (6/100) = -24.4 \text{ dB}$

Notes:

For handheld devices, the EUT was tested on three orthogonal axis'

The device was tested from 30 MHz to the tenth harmonic of the highest fundamental frequency per 15.33

The device was tested on three channels per 15.31(I).

No emissions were detected within 20 dB of the specification limit therefore none are reported per 15.31(o). Band edge data is presented below.

Equipment Used: 1464-1480-993-1016-1025-1783

Measurement Uncertainty: +/-3.6 dB

Temperature: 23 °C

Relative Humidity: 49 %

Test Data - Radiated Emissions

Low Channel

Meas.	Ant.	Duty	Meter	Antenna	Path	RF	Corrected	Spec.	CR/SL	Pass	
Freq.	Pol.	Cycle	Reading	Factor	Loss	Gain	Reading	limit	Diff.	Fail	
(MHz)	(H/V)	(dB)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Unc.	Comment
											Tx 2402 MHz
4804.0	V	0	42.0	33.8	4.3	32.1	48.0	54.0	-6.0	Pass	Noise floor
7206.0	V	0	40.0	35.9	5.3	31.8	49.4	54.0	-4.6	Pass	Noise floor
9608.0	V	0	41.0	37.2	6.2	35.0	49.4	54.0	-4.6	Pass	Noise floor
12010.0	V	0	47.0	40.3	7.3	34.0	60.6	74.0	-13.4	Pass	
12010.0	V	-24.4	45.0	40.3	7.3	34.0	34.2	54.0	-19.8	Pass	
14412.0	V	0	40.0	40.6	7.3	32.3	55.6	74.0	-18.4	Pass	Noise floor
14412.0	V	-24.4	40.0	40.6	7.3	32.3	31.2	54.0	-22.8	Pass	Noise floor
16814.0	V	0	39.0	41.5	8.4	33.5	55.4	74.0	-18.6	Pass	Noise floor
16814.0	V	-24.4	39.0	41.5	8.4	33.5	31.0	54.0	-23.0	Pass	Noise floor
4804.0	Н	0	42.0	33.8	4.3	32.1	48.0	54.0	-6.0	Pass	Noise floor
7206.0	Н	0	40.0	35.9	5.3	31.8	49.4	54.0	-4.6	Pass	Noise floor
9608.0	Н	0	41.0	37.2	6.2	35.0	49.4	54.0	-4.6	Pass	Noise floor
12010.0	Н	0	45.0	40.3	7.3	34.0	58.6	74.0	-15.4	Pass	
12010.0	Н	-24.4	45.0	40.3	7.3	34.0	34.2	54.0	-19.8	Pass	
14412.0	Н	0	40.0	40.6	7.3	32.3	55.6	74.0	-18.4	Pass	Noise floor
14412.0	Н	-24.4	40.0	40.6	7.3	32.3	31.2	54.0	-22.8	Pass	Noise floor
16814.0	Н	0	39.0	41.5	8.4	33.5	55.4	74.0	-18.6	Pass	Noise floor
16814.0	Н	-24.4	39.0	41.5	8.4	33.5	31.0	54.0	-23.0	Pass	Noise floor
					•						

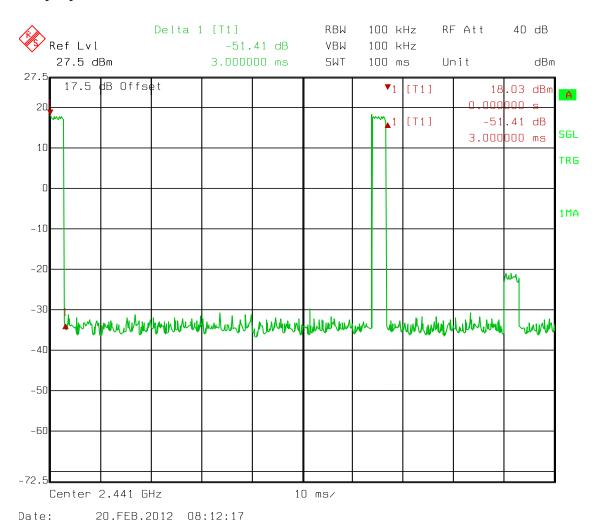
Note: All measurements are peak unless otherwise stated.

Measurements <1000 MHz RBW=VBW=100 kHz Peak detector

Measurements >1000 MHz RBW=VBW=1 MHz Peak detector

Test Data - Radiated Emissions

Mid Channel


Meas.	Ant.	Duty	Meter	Antenna	Path	RF	Corrected	Spec.	CR/SL	Pass	
Freq.	Pol.	Cycle	Reading	Factor	Loss	Gain	Reading	limit	Diff.	Fail	
(MHz)	(H/V)	(dB)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Unc.	Comment
											Tx 2441 MHz
4882.0	V	0	44.5	33.8	4.3	32.1	50.5	54.0	-3.5	Pass	
7323.0	V	0	41.5	35.9	5.3	31.8	50.9	54.0	-3.1	Pass	Noise floor
9764.0	V	0	46.7	37.2	6.2	35.0	55.1	74.0	-18.9	Pass	
9764.0	V	-24.4	46.7	37.2	6.2	35.0	30.7	54.0	-23.3	Pass	
12205.0	V	0	46.8	40.3	7.3	34.0	60.4	74.0	-13.6	Pass	
12205.0	V	-24.4	46.8	40.3	7.3	34.0	36.0	54.0	-18.0	Pass	
14646.0	V	0	46.0	40.6	7.3	32.3	61.6	74.0	-12.4	Pass	
14646.0	V	-24.4	46.0	40.6	7.3	32.3	37.2	54.0	-16.8	Pass	
17087.0	V	0	45.0	41.5	8.4	33.5	61.4	74.0	-12.6	Pass	
17087.0	V	-24.4	45.0	41.5	8.4	33.5	37.0	54.0	-17.0	Pass	
2483.5	Н	0	58.5	29.0	3.1	33.0	57.6	74.0	-16.4	Pass	
4882.0	Н	0	45.0	33.8	4.3	32.1	51.0	54.0	-3.0	Pass	
7323.0	Н	0	41.5	35.9	5.3	31.8	50.9	54.0	-3.1	Pass	Noise floor
9764.0	Η	0	46.3	37.2	6.2	35.0	54.7	74.0	-19.3	Pass	
9764.0	Н	-24.4	46.3	37.2	6.2	35.0	30.3	54.0	-23.7	Pass	
12205.0	Η	0	46.0	40.3	7.3	34.0	59.6	74.0	-14.4	Pass	
12205.0	Н	-24.4	46.0	40.3	7.3	34.0	35.2	54.0	-18.8	Pass	
14646.0	Н	0	43.0	40.6	7.3	32.3	58.6	74.0	-15.4	Pass	
14646.0	Н	-24.4	43.0	40.6	7.3	32.3	34.2	54.0	-19.8	Pass	
17087.0	Н	0	41	41.5	8.4	33.5	57.4	74.0	-16.6	Pass	Noise floor
17087.0	Н	-24.4	41	41.5	8.4	33.5	33.0	54.0	-21.0	Pass	
	,										
	,										

Test Data - Radiated Emissions

High Channel

Meas.	Ant.	Duty	Meter	Antenna	Path	RF	Corrected	Spec.	CR/SL	Pass	
Freq.	Pol.	Cycle	Reading	Factor	Loss	Gain	Reading	limit	Diff.	Fail	
(MHz)	(H/V)	(dB)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Unc.	Comment
											Tx 2480 MHz
2483.5	V	0	61.1	29.0	3.1	33.0	60.2	74.0	-13.8	Pass	
2483.5	V	-24.4	61.1	29.0	3.1	33.0	35.8	54.0	-18.2	Pass	
4960.0	V	0	44.0	33.8	4.3	32.1	50.0	54.0	-4.0	Pass	
7440.0	V	0	41.0	35.9	5.3	31.8	50.4	54.0	-3.6	Pass	Noise floor
9920.0	V	0	43.0	37.2	6.2	35.0	51.4	54.0	-2.6	Pass	Noise floor
12400.0	V	0	42.0	40.3	7.3	34.0	55.6	74.0	-18.4	Pass	Noise floor
12400.0	V	-24.4	42.0	40.3	7.3	34.0	31.2	54.0	-22.8	Pass	Noise floor
14880.0	V	0	41.0	40.6	7.3	32.3	56.6	74.0	-17.4	Pass	Noise floor
14880.0	V	-24.4	41.0	40.6	7.3	32.3	32.2	54.0	-21.8	Pass	Noise floor
17360.0	V	0	40.0	41.5	8.4	33.5	56.4	74.0	-17.6	Pass	Noise floor
17360.0	V	-24.4	40.0	41.5	8.4	33.5	32.0	54.0	-22.0	Pass	Noise floor
2483.5	Н	0	60.8	29.0	3.1	33.0	59.9	74.0	-14.1	Pass	
2484.5	Н	-24.4	60.8	29.0	3.1	33.0	35.5	54.0	-18.5	Pass	
4960.0	Н	0	45.0	33.8	4.3	32.1	51.0	54.0	-3.0	Pass	
7440.0	Н	0	41.0	35.9	5.3	31.8	50.4	54.0	-3.6	Pass	Noise floor
9920.0	Н	0	46.1	37.2	6.2	35.0	54.5	74.0	-19.5	Pass	
9920.0	Н	-24.4	46.1	37.2	6.2	35.0	30.1	54.0	-23.9	Pass	
12400.0	Н	0	44.5	40.3	7.3	34.0	58.1	74.0	-15.9	Pass	
12400.0	Н	-24.4	44.5	40.3	7.3	34.0	33.7	54.0	-20.3	Pass	
14880.0	Н	0	42.0	40.6	7.3	32.3	57.6	74.0	-16.4	Pass	Noise floor
14880.0	Н	-24.4	42.0	40.6	7.3	32.3	33.2	54.0	-20.8	Pass	Noise floor
17360.0	Н	0	41.3	41.5	8.4	33.5	57.7	74.0	-16.3	Pass	
17360.0	Н	-24.4	41.3	41.5	8.4	33.5	33.3	54.0	-20.7	Pass	

Duty Cycle Correction

 $20 \log (6/100) = -24.4 dB$

FCC PART 15, Subpart C and RSS-210

Frequency Hopping Transmitters

EQUIPMENT: SN2100 PROJECT NO.:10219979RUS1

Section 8. Powerline Conducted Emissions

NAME OF TEST: Powerline Conducted Emissions PARA. NO.: FCC 15.207(a)

RSS-Gen 7.2.4

TESTED BY: David Light DATE: 21 February 2012

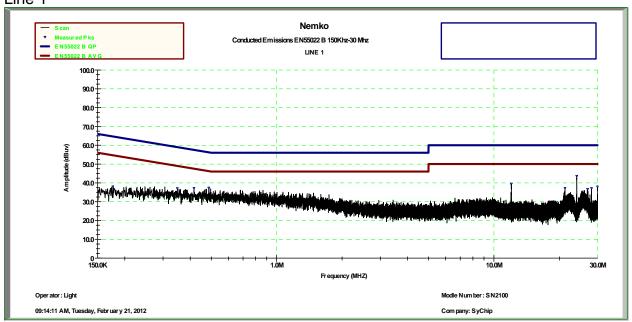
Test Results: Complies. The worst case emission was 43.6 dBµV at

24.06 MHz. This is 6.4 dB below the quasi-peak

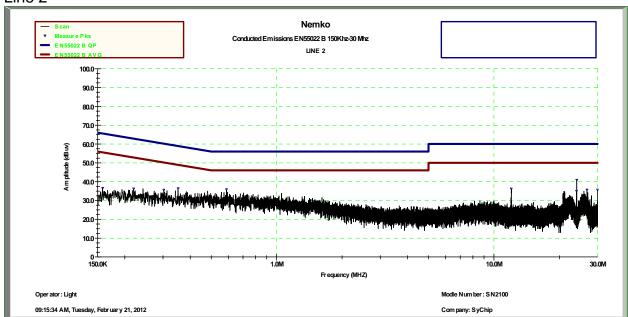
specification limit of 50.0 dBµV.

Test Data: Refer to attached plots

Equipment Used: 1188-1992-1555-1924-674-1659


Measurement Uncertainty: +/- 1.7 dB

Temperature: 23 °C


Relative Humidity: 49 %

Test Data – Powerline Conducted Emissions

Line 1

Line 2

Test Data – Powerline Conducted Emissions

Model Number:

Operator: Light SN2100

Company: SyChip

Tuesday, February 21, 2012

Line 1

	Peak	Avg			
Freq.	Rdng	Limit	QP Limit	Avg	QP
(MHz)	(dBuV)	(dBuV)	(dBuV)	Margin	Margin
0.18	38.0	55.3	65.3	-17.2	-27.2
0.35	37.1	50.3	60.3	-13.2	-23.2
0.42	37.1	48.4	58.4	-11.3	-21.3
0.49	37.4	46.4	56.4	-9.0	-19.0
12.03	39.4	50.0	60.0	-10.6	-20.6
21.23	37.1	50.0	60.0	-12.9	-22.9
24.06	43.6	50.0	60.0	-6.4	-16.4
27.00	36.7	50.0	60.0	-13.3	-23.3
28.12	37.1	50.0	60.0	-12.9	-22.9
30.00	38.0	50.0	60.0	-12.0	-22.0

Line 2

Freq. (MHz)	Peak Rdng (dBuV)	Avg Limit (dBuV)	QP Limit (dBuV)	Avg Margin	QP Margin
0.16	36.6	55.8	65.8	-19.2	-29.2
0.22	36.3	54.0	64.0	-17.7	-27.7
0.30	35.6	51.6	61.6	-16.0	-26.0
0.35	36.4	50.2	60.2	-13.8	-23.8
0.59	35.9	46.0	56.0	-10.1	-20.1
12.03	36.2	50.0	60.0	-13.8	-23.8
24.00	35.0	50.0	60.0	-15.0	-25.0
24.06	40.9	50.0	60.0	-9.1	-19.1
26.83	35.7	50.0	60.0	-14.3	-24.3
30.00	35.7	50.0	60.0	-14.3	-24.3

Section 9. Test Equipment List

Asset Tag	Description	Manufacturer	Model	Serial #	Last Cal	Next Cal
674	Limiter	Hewlett Packard	11947A	3107A02200	01-Nov-2011	01-Nov-2012
993	Antenna, Horn	A.H. Systems	SAS-200/571	162	22-Sep-2011	22-Sep-2013
1016	Preamplifier	Hewlett Packard	8449A	2749A00159	20-Jul-2011	20-Jul-2012
1025	Preamplifier, 25dB	Nemko USA, Inc.	LNA25	399	23-Feb-2011	23-Feb-2012
1036	Spectrum Analyzer	Rohde & Schwartz	FSEK30	830844/006	23-Dec-2011	23-Dec-2013
1082	Cable, 2m	Astrolab	32027-2- 29094-72TC		VB4 Use	NR
1188	LISN	EMCO	3825/2	1214	22-Nov-2011	22-Nov-2012
1464	Spectrum Analyzer	Hewlett Packard	8563E	3551A04428	16-May-2011	16-May-2013
1472	Attenuator, 20dB,	Omni Spectra	20600-20db		Verify before use	NR
1555	High Pass Filter	Solar Electronics	7930-5.0	933125	19-May-2011	19-May-2012
1663	Spectrum Analyzer	Rohde & Schwartz	FSP3	100073	02-Sep-2011	02-Sep-2013
1480	Antenna, Bilog	Schaffner	CBL 6111D	2572	07-Feb-2012	07-Feb-2012
1783	Cable Assy,	Nemko	Chamber		26-Sep-2011	26-Sep-2012
1659	Spectrum Analyzer	R&S	FSP3	973353	27-Sept-2010	27-Sept-2012

FCC PART 15, Subpart C and RSS-210 Frequency Hopping Transmitters PROJECT NO.:10219979RUS1

EQUIPMENT: SN2100

ANNEX A - TEST DETAILS

NAME OF TEST: Powerline Conducted Emissions PARA. NO.: 15.207(a)

Minimum Standard: §15.207 Conducted limits.

(a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 mH/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Frequency of Conducted	Limit (dBmV)
Emission (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

^{*} Decreases with the logarithm of the frequency.

- (b) The limit shown in paragraph (a) of this section shall not apply to carrier current systems operating as intentional radiators on frequencies below 30 MHz. In lieu thereof, these carrier current systems shall be subject to the following standards:
- (1) For carrier current systems containing their fundamental emission within the frequency band 535-1705 kHz and intended to be received using a standard AM broadcast receiver: no limit on conducted emissions.
- (2) For all other carrier current systems: 1000 mV within the frequency band 535-1705 kHz, as measured using a 50 mH/50 ohms LISN.
- (3) Carrier current systems operating below 30 MHz are also subject to the radiated emission limits as provided in §15.205 and §\$15.209, 15.221, 15.223, 15.225 or 15.227, as appropriate.
- (c) Measurements to demonstrate compliance with the conducted limits are not required for devices which only employ battery power for operation and which do not operate from the AC power lines or contain provisions for operation while connected to the AC power lines. Devices that include, or make provision for, the use of battery chargers which permit operating while charging, AC adaptors or battery eliminators or that connect to the AC power lines indirectly, obtaining their power through another device which is connected to the AC power lines, shall be tested to demonstrate compliance with the conducted limits.

FCC PART 15, Subpart C and RSS-210 Frequency Hopping Transmitters PROJECT NO.:10219979RUS1

EQUIPMENT: SN2100

NAME OF TEST: Channel Separation PARA. NO.: 15.247(a)(1)

Minimum Standard:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output

power no greater than 125 mW.

NAME OF TEST: Time of Occupancy	PARA. NO.: 15.247(a)(1)
---------------------------------	-------------------------

Minimum Standard:

Frequency Band	20 dB	No. of	Average Time of Occupancy
(MHz)	Bandwidth	Hopping	
		Channels	
902 - 928	<250 kHz	50	=<0.4 sec. in 20 sec.
902 – 928	=>250 kHz	25	=<0.4 sec. in 10 sec.
			=<0.4 sec. in 0.4 seconds
2400 - 2483.5		75	multiplied by the number of
			hopping channels employed.
5725 – 5850		75	=<0.4 sec. in 30 sec.

Method Of Measurement:

The spectrum analyzer is set as follows:

RBW: 1 MHz VBW: = RBW Span: 0 Hz

LOG dB/div.: 10 dB

Sweep: Sufficient to see one hop time sequence.

Trigger: Video

The occupancy time of one hop is measured as above. The average time of occupancy is calculated over the appropriate period of time from above table

Avg. time of occupancy = (period from table/duration of one hop)/no. of channels multiplied by the duration of one hop.

For instance:

If a 2.4 GHz system has a measured hop duration time of 1 msec. and uses 75 channels, then the average time of occupancy would be:

(30 sec./.001 sec.)/75 chan. = 400 x 1 msec. = 400 msec. or 0.4 sec. in 30 sec.

NAME OF TEST: Occupied Bandwidth PARA. NO.: 15.247(a)(1)

Minimum Standard:

Frequency Band (MHz)	Maximum 20 dB Bandwidth
902 - 928	500 kHz
2400 – 2483.5	Not defined
5725 – 5850	1 MHz

Method Of Measurement:

The spectrum analyzer is set as follows:

RBW: At least 1% of span/div.

VBW: >RBW

Span: Sufficient to display 20 dB bandwidth

LOG dB/div.: 10 dB

Sweep: Auto

Tuning range	Number of channels tested	Channel location in band
1 MHz or less	1	middle
1 to 10 MHz	2	top and bottom
more than 10 MHz	3	top, middle, bottom

NAME OF TEST: Peak Power Output PARA. NO.: 15.247(b)

Minimum Standard:

Frequency	No. of	Maximum Peak
Band	Hopping	Power Output at
(MHz)	Channels	Antenna Port
902 - 928	at least 50	1 watt
902 – 928	25 - 49	0.25 watts
2400 –	75	1 watt
2483.5		
5725 – 5850	75	1 watt

If transmitting antennas of directional gain greater than 6 dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Systems operating in the 2400-2483.5 MHz band that are used exclusively for fixed, point to point operation may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum peak output power is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceed 6 dBi.

Systems operating in the 5725 – 5850 MHz band that are used exclusively for fixed, point-to-point operation may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter peak output power.

Direct Measurement Method For Detachable Antennas:

If the antenna is detachable, a peak power meter is used to measure the power output with the transmitter operating into a 50 ohm load. The dBi gain of the antenna(s) employed shall be reported.

Calculation Of EIRP For Integral Antenna:

If the antenna is not detachable from the circuit then the Peak Power Output is derived from the peak radiated field strength of the fundamental emission by using the plane wave relation $GP/4\pi R^2 = E^2/120\pi$ and proceeding as follows:

$$P = \frac{E^2 R^2}{30G} = \frac{E^2 3^2}{30G}$$

where,

P = the equivalent isotropic radiated power in watts

E = the maximum measured field strength in V/m

R = the measurement range (3 meters)

G = the numeric gain of the transmit antenna in relation to an isotropic radiator

The RBW of the spectrum analyzer shall be set to a value greater than the measured 20 dB occupied bandwidth of the E.U.T.

Tuning range	Number of channels tested	Channel location in band
1 MHz or less	1	middle
1 to 10 MHz	2	top and bottom
more than 10 MHz	3	top, middle, bottom

NAME OF TEST: Spurious Emissions at Antenna Terminals PARA. NO.: 15.247(d)

Minimum Standard: In any 100kHz bandwidth outside the frequency band in which the

transmitter is operating, emissions shall be at least 20 dB below the fundamental emission or shall not exceed the following field strength limits. Emissions falling in the

restricted bands of 15.205 shall not exceed the following field

strength limits:

Frequency (MHz)	Field Strength (μV/m @ 3m)	Field Strength (dB @ 3m)
30 - 88	100	40.0
88 - 216	150	43.5
216 - 960	200	46.0
Above 960	500	54.0

THE SPECTRUM WAS SEARCHED TO THE 10th HARMONIC

Method Of Measurement:

30 MHz - 10th harmonic plot

RBW: 100 kHz VBW: 300 kHz Sweep: Auto Display line: -20 dBc

Lower Band Edge

RBW: At least 1% of span/div.

VBW: >RBW

Span: As necessary to display any spurious at band edge.

Sweep: Auto

Center Frequency: 902 MHz, 2400 MHz, or 5725 MHz

Marker: Peak of fundamental emission

Marker Δ : Peak of highest spurious level below center frequency.

Upper Band Edge

RBW: At least 1% of span/div.

VBW: >RBW

Span: As necessary to display any spurious at band edge.

Sweep: Auto

Center Frequency: 928 MHz, 2483.5 MHz, or 5850 MHz

Marker: Peak of fundamental emission

Marker Δ : Peak of highest spurious level above center frequency.

Tuning range	Number of channels tested	Channel location in band
1 MHz or less	1	middle
1 to 10 MHz	2	top and bottom
more than 10 MHz	3	top, middle, bottom

NAME OF TEST: Radiated Spurious Emissions PARA. NO.: 15.247(d)

Minimum Standard: In any 100kHz bandwidth outside the frequency band in which the transmitter is operating, emissions shall be at least 20 dB below the fundamental emission or shall not exceed the following field strength limits:

Emissions falling in the restricted bands of 15.205 shall not exceed the following field strength limits:

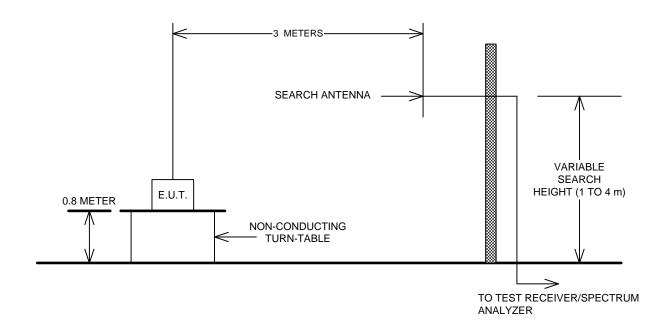
Frequency (MHz)	Field Strength (μV/m @ 3m)	Field Strength (dB @ 3m)
30 - 88	100	40.0
88 - 216	150	43.5
216 - 960	200	46.0
Above 960	500	54.0

THE SPECTRUM WAS SEARCHED TO THE 10th HARMONIC

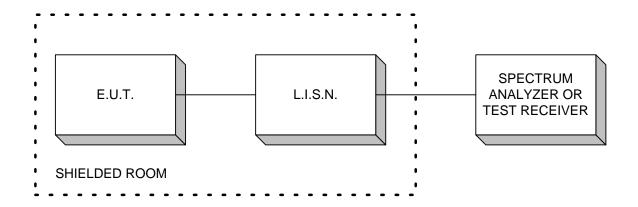
15.205 Restricted Bands

MHz	MHz	MHz	GHz
0.09-0.11	16.42-16.423	399.9-410	4.5-5.25
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.125-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2655-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41	1718		

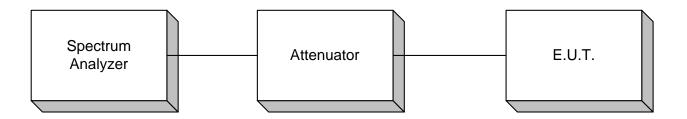
Tuning range	Number of channels tested	Channel location in band
1 MHz or less	1	middle
1 to 10 MHz	2	top and bottom
more than 10 MHz	3	top, middle, bottom


FCC PART 15, Subpart C and RSS-210
Frequency Hopping Transmitters
PROJECT NO.:10219979RUS1

EQUIPMENT: SN2100


ANNEX B - TEST DIAGRAMS

Frequency Hopping Transmitters PROJECT NO.:10219979RUS1


Test Site For Radiated Emissions

Conducted Emissions

Peak Power at Antenna Terminals

