

Smart Wires, Inc. RF Exposure Exhibit

SCOPE OF WORK EMC TESTING – SmartBypass™ Model: SmartBypass 2000-63

REPORT NUMBER 103948971MPK-001B

ISSUE DATE January 17, 2020 **REVISED DATE** N/A

PAGES

10

DOCUMENT CONTROL NUMBER

Non-Specific Radio Report Shell Rev. December 2017 MPK @ 2017 INTERTEK

RF Exposure Exhibit (Fixed Devices)

Report Number: 103948971MPK-001B Project Number: G103948971

Report Issue Date: January 17, 2020

Testing performed on the SmartBypass™

Model Number: SmartBypass 2000-63

FCC ID: QPS01008 IC ID: 22326-01008

> to 47CFR 2.1091 RSS-102 Issue 5

for Smart Wires, Inc.

Tested by:

Intertek 1365 Adams Court Menlo Park, CA 94025 USA

Report prepared by:

Anderson Soungpanya / Project Engineer

Client:

Smart Wires, Inc. 655 Eisenhower Dr Owatonna, MN 55060 USA

Report reviewed by:

Krishna Vemuri / Engineering Team Lead

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

Non-Specific Radio Report Shell Rev. December 2017 MPK EMC Report for Smart Wires, Inc. on the SmartBypass™

Issued: January 17, 2020

Report No. 103948971MPK-001B				
Equipment Under Test:	SmartBypass™			
Trade Name:	Smart Wires, Inc.			
Model(s) Tested:	SmartBypass 2000-63			
Applicant:	Smart Wires, Inc.			
Contact:	Karamjit Singh			
Address:	Smart Wires, Inc. 3292 Whipple Rd. Union City, CA 94587			
Country:	USA			
Tel. Number:	(510) 952-2668			
Email:	karamjit.singh@smartwires.com			
Applicable Regulation:	47CFR 2.1091 RSS-102 Issue 5			

Issued: January 17, 2020

TABLE OF CONTENTS

Smart	Wires, Inc	. 1
1.0	RF Exposure Summary	. 5
2.0	RF Exposure Limits	
3.0	Test Results (Fixed Configuration)	. 7
Appe	endix A: Power Density Calculation	. 9
	Document History	

1.0 RF Exposure Summary

Test	Reference FCC	Reference Industry Canada	Result
Radio frequency Radiation Exposure Evaluation	47 CFR§2.1093	RSS-102 Issue 5	Complies

2.0 RF Exposure Limits

In this document, we evaluate the RF Exposure to human body due the intentional transmission from the transmitter (EUT). The limits for Maximum Permissible Exposure (MPE) specified in FCC 1.1310 and RSS-102 are followed.

2.1 FCC Limits

According to FCC 1.1310 table 1: The criteria listed in the following table shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in 1.1307(b)

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm²)	Average Time (minutes)				
	(A)Limits For	Occupational / Cont	rol Exposures					
0.3 – 3.0	614	1.63	*100	6				
3.0 - 30	1842/f	4.89/f	*900/f ²	6				
30-300	61.4	0.163	1.0	6				
300 - 1500			F/300	6				
1500 - 100,000			5	6				
	(B)Limits For General Population / Uncontrolled Exposure							
0.3 – 1.34	614	1.63	*100	30				
1.34 – 30	824/f	2.19/f	*180/f ²	30				
30 – 300	27.5	0.073	0.2	30				
300 - 1500			F/1500	30				
1500 - 100,000			1.0	30				

LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

F = Frequency in MHz

* = plane wave equivalent density

2.2 Industry Canada Limits

According to RSS-102, Industry Canada has adopted the SAR and RF field strength limits established in Health Canada's RF exposure guideline, Safety Code 6.

Frequency Range	Electric Field	Magnetic Field	Power Density	Reference Period
(MHz)	(V/m rms)	(A/m rms)	(W/m²)	(minutes)
0.003-10	83	90	-	Instantaneous'
0.1-10	-	0.73/ f	-	6**
1.1-10	87/ f ^{0.5}	-	-	6**
10-20	27.46	0.0728	-2	6
20-48	58.07/ f ^{0.25}	0.1540/ f ^{0.25}	8.944/ f0.5	6
48-300	22.06	0.05852	1.291	6
300-6000	3.142 f ^{0.3417}	0.008335 f ^{0.3417}	0.02619 f ^{0.6834}	6
6000-15000	61.4	0.163	10	6
15000-150000	61.4	0.163	10	616000/ f ^{1.2}
150000-300000	0.158 <i>f</i> ^{0.5}	4.21 x 10-4 f ^{0.5}	6.67 x 10 ⁻⁵ f	616000/f ^{1.2}

** Based on specific absorption rate (SAR).

3.0 Test Results (Fixed Configuration)

3.1 Classification

Radio is installed inside a fixed host device. The antenna of the product, under normal use condition, is at least 20 cm away from the body of the user and accessible to the end user. Warning statement to the user for keeping at least 20 cm or more separation distance with the antenna should be included in user's manual.

3.2 EIRP calculations

The SmartBypass™, Model: SmartBypass 2000-63 consists of two radios: FHSS in the 900 MHz and 2.4 GHz Unlicensed Bands.

3.3 Maximum RF Power

Frequency Range (MHz)	RF Output (dBm)	Antenna Gain ¹ (dBi)	Note
902.4 - 926.944	22.46	1.15	Conducted power measurements were taken from Report # 103948971MPK-001.
2436.0 - 2463.921747	16.40	4.42	Conducted power measurements were taken from Report # 103948971MPK-002.

¹As declared by the manufacturer.

Issued: January 17, 2020

3.4 **RF Exposure Calculation**

3.4.1 RF Exposure calculation for 900 MHz and 2.4 GHz FHSS Radio

Calculations for this report are based on highest power measured for each band.

Frequency Range (MHz)	EIRP (dBm)	EIRP (mW)	Power Density (W/m ²) @20 cm	RSS Limit (W/m²)	MPE Ratio	Sum of MPE Ratios
902.4 - 926.944	23.61	229.6149	0.4568	2.7890	0.1638	0.2083
2436.0 – 2463.921747	20.82	120.7814	0.2403	5.4020	0.0445	0.2003

Frequency Range (MHz)	EIRP (dBm)	EIRP (mW)	Power Density (mW/cm ²) @20 cm	FCC Limit (mW/cm²)	MPE Ratio	Sum of MPE Ratios
902.4 - 926.944	23.61	229.6149	0.0457	0.601	0.0760	0.1000
2436.0 – 2463.921747	20.82	120.7814	0.0240	1	0.0240	0.1000

Note: Antenna gains below 0 are considered as 0dBi.

The summation of the MPE ratio is less than 1, therefore, the EUT complies for the MPE requirement of simultaneous transmission.

Issued: January 17, 2020

Appendix A: Power Density Calculation

The Power Density can be calculated using the formula

 $S = EIRP/4\pi D^2$

Where: S is Power Density in mW/cm² D is the distance from the antenna in cm.

Total Quality. Assured.

REPORT NUMBER: 103948971MPK-001B

Issued: January 17, 2020

4.0 Document History

Revision/ Job Number	Writer Initials	Reviewers Initials	Date	Change
01/ G103948971	AS	KV	January 17, 2020	Original document