

TEST REPORT

Report Number: 103539437MPK-001 Project Number: G103539437 June 25, 2018

Testing performed on the Power Guardian System

Power Guardian[™] Model: 390-850 & PowerLine Coordinator[™] Model: P105467

> FCC ID: QPS01004 IC: 22326-01004

To FCC Part 15 Subpart C (15.247) Industry Canada RSS-247 Issue 2 FCC Part 15 Subpart B Industry Canada ICES-003

For

Smart Wires, Inc.

Test Performed by: Intertek 1365 Adams Court Menlo Park, CA 94025 USA Test Authorized by: Smart Wires, Inc. 3292 Whipple Rd. Union City, CA 94587 USA

Prepared by:

Anderson Soungpanya

Date: June 25, 2018

Reviewed by:

Krishna K Vemuri

Date: June 25, 2018

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to copy or distribute this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program. This report must not be used to claim product endorsement by A2LA, NIST nor any other agency of the U.S. Government.

Report No. 103539437MPK-001

Equipment Under Test: Trade Name: Model Number(s):

Applicant:

Contact:

Address:

Country

Email:

Tel. Number:

Date of Test:

Applicable Regulation:

Power Guardian System Smart Wires, Inc. Power GuardianTM Model: 390-850 & PowerLine CoordinatorTM Model: P105467

Smart Wires, Inc. Karamjit Singh Smart Wires, Inc. 3292 Whipple Rd. Union City, CA 94587 USA

(510) 952-2668 karamjit.singh@smartwires.com

FCC Part 15 Subpart C (15.247) Industry Canada RSS-247 Issue 2 FCC Part 15, Subpart B Industry Canada ICES-003 Issue 6

June 7 - 25, 2018

We attest to the accuracy of this report:

Anderson Soungpanya Project Engineer

1C

Krishna K Vemuri Engineering Team Lead

TABLE OF CONTENTS

1.0	Introduction			
	1.1	Summary of Tests	.5	
2.0	Gene	al Description	.6	
	2.1	Product Description	.6	
	2.2	Related Submittal(s) Grants	.7	
	2.3	Test Methodology	.7	
	2.4	Test Facility	.7	
3.0	Syste	n Test Configuration	.8	
	3.1	Support Equipment	.8	
	3.2	Block Diagram of Test Setup	. 8	
	3.3	Justification	0	
	3.4	Mode of Operation During Test1	0	
	3.5	Modifications Required for Compliance1	0	
	3.6	Additions, Deviations and Exclusions from Standards1		
4.0	Emis	ons Measurement Results1	1	
	4.1	20dB Bandwidth, and 99% Occupied Bandwidth1		
		4.1.1 Procedure		
		4.1.2 Test Result		
	4.2	Conducted Output Power at Antenna Terminals	6	
		4.2.1 Requirement		
		4.2.2 Procedure		
		4.3.3 Test Result	17	
	4.3	Carrier Frequency Separation	21	
		4.3.1 Requirement	21	
		4.3.2 Procedure	21	
		4.3.3 Test Result	22	
	4.4	Number of Channels	23	
		4.4.1 Requirement	23	
		4.4.2 Procedure	23	
		4.4.3 Test Result	24	
	4.5	Average Channel Occupancy Time	26	
		4.5.1 Requirement	26	
		4.5.2 Procedure	26	
		4.5.3 Test Results	27	
	4.6	Out-of-Band Conducted Emissions	29	
		4.6.1 Requirement	29	
		4.6.2 Procedure	29	
		4.6.3 Test Result	30	
	4.7	Transmitter Radiated Emissions	37	
		4.7.1 Requirement	37	
		4.7.2 Procedure	37	
		4.7.3 Field Strength Calculation	38	
		4.7.4 Test Results	38	
		4.7.5 Test Setup Photographs	15	
	4.8	Digital Radiated Emissions	18	

6.0	Docur	nent His	tory	78
5.0	List of	f Test E	uipment and Software	77
		4.9.4	Test Configuration Photographs	74
		4.9.3	Test Results	
		4.9.2	Procedure	58
		4.9.1	Requirement	57
	4.9		ne Conducted Emission	57
		4.8.4	Test Configuration Photographs	
		4.8.3	Test Results	49
		4.8.2	Procedures	
		4.8.1	Requirement	48

1.0 Introduction

This report is designed to show compliance of the 900 MHz transceiver with the requirements of FCC Part 15 Subpart C (15.247) and RSS-247. This test report covers only the FHSS radio.

1.1 Summary of Tests

TEST	Reference FCC	Reference Industry Canada	RESULTS
RF Output Power	15.247(b)	RSS-247, 5.4.2	Complies
20-dB Bandwidth	15.247(a)(1)	RSS-247, 5.1.1	Complies
Channel Separation	15.247(a)(1)	RSS-247, 5.1.2	Complies
Number of Hopping Channels	15.247(a)(1)	RSS-247, 5.14	Complies
Average Channel Occupancy Time	15.247(a)(1)	RSS-247, 5.14	Complies
Out-of-Band Antenna Conducted Emission	15.247(d)	RSS-247, 5.5	Complies
Transmitter Radiated Emissions	15.247(d), 15.209, 15.205	RSS-GEN	Complies
RF Exposure	15.247(i)	RSS-102	Complies
AC Conducted Emission	15.207	RSS-GEN	Complies
Antenna Requirement	15.203	RSS-GEN	Complies (Professional Installation)
Radiated Emission	15.109	RSS-GEN	Complies
AC Line Conducted Emission	15.107	RSS-GEN	Complies

2.0 General Description

2.1 Product Description

Smart Wires, Inc. supplied the following description of the EUT:

The Power Guardian[™] builds upon the proven success of its predecessor, the PowerLine Guardian®. The Power Guardian injects a reactance in series with the line to increase the line's total reactance. A fleet of deployed units provides a nearly continuous range of reactance from zero up to the collective rating of the fleet, enabling real-time control of power flow. This product provides immense value to electric utilities pursuing a dynamic high-voltage grid.

The PowerLine Coordinator is a rugged and reliable communication device that serves as an intermediary between the Smart Wires Field Devices (SWFDs) for power flow control and the PowerLine Gateway TM. It is responsible for managing the industrial Scientific and Medical (ISM) mesh and communication with the PowerLine Gateway for control and status reporting. The communication with PowerLine Gateway is done via proprietary and secure, authenticated protocol over TCP/IP. The PowerLine Coordinator is a robust and reliable communication device that acts on behalf of PowerLine Gateway TM.

For more information, see user's manual provided by the manufacturer.

Applicant	Smart Wires, Inc.
Model No.	Power Guardian [™] Model: 390-850 &
	PowerLine Coordinator [™] Model: P105467
FCC Identifier	QPS01004
IC Identifier	22326-01004
Type of Transmission	Frequency Hopping Spread Spectrum
Rated RF Output	19.48 dBm
Antenna(s) & Gain	Power Guardian [™] – Internal Antenna, Gain: 1.15 dBi
	PowerLine Coordinator [™] - External Antenna, Gain: 5.00 dBi
Frequency Range	902.400 – 926.944 MHz
Number of Channel(s)	64
Modulation Type	2-FSK
Applicant Name &	Smart Wires, Inc.
Address	3292 Whipple Rd.
	Union City, CA 94587
	USA
EUT receive date:	June 01, 2018
EUT receive condition:	The pre-production version of the EUT was received in good condition
	with no apparent damage. As declared by the Applicant, it is identical to
	the production units.
Test start date:	June 07, 2018

Information about the 900 MHz radio is presented below:

The test results in this report pertain only to the item tested.

Test completion date:

June 25, 2018

2.2 Related Submittal(s) Grants

None.

2.3 Test Methodology

Antenna conducted measurements were performed according to the procedure from ANSI C63.10:2013 for Frequency Hopping Spread Spectrum Systems

Radiated emissions measurements were performed according to the procedures in ANSI C63.10: 2013. Radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the **''Data Sheet''** of this Application.

All other measurements were made in accordance with the procedures in part 2 of CFR 47.

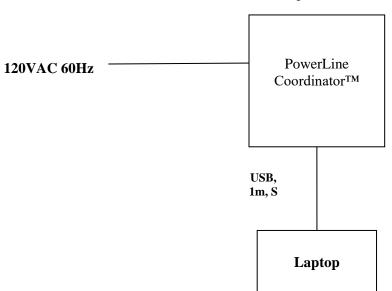
Following is the channel test plan:

Channels in 900 MHz band				
Test C	hannel	Frequency, MHz	Tested	
Low 0		902.400		
Middle	32	914.867		
High	63	926.944		

2.4 Test Facility

The test site used to collect the radiated data is site 1 (10-m semi-anechoic chamber). This test facility and site measurement data have been fully placed on file with the FCC, IC and A2LA accredited.

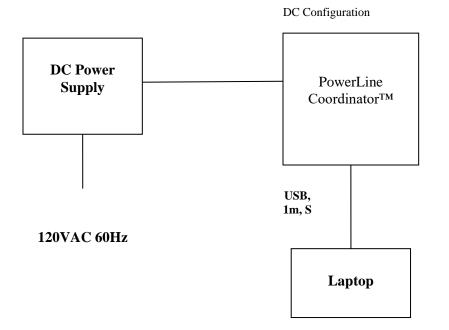
3.0 System Test Configuration


3.1 Support Equipment

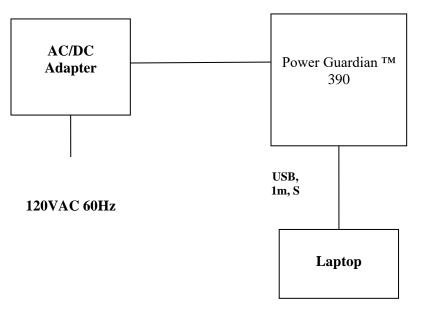
Description	Manufacturer	Model Number
Laptop	DELL	Latitude 5480
AC/DC Adapter	SL Power Electronics Corp.	TE240A2451F01
DC Power Supply	HP	6012B

3.2 Block Diagram of Test Setup

Equipment Under Test					
Description	Serial Number				
Communication Device	Smart Wires, Inc.	Power Guardian [™] 390	MPK1806131147-001		
Communication Device	Smart Wires, Inc.	PowerLine Coordinator™	13718-006-AD-0C-S-00		


Antenna was removed and co-axial connector with a cable was installed for Conducted Measurements.

AC Configuration



Antenna was removed and co-axial connector with a cable was installed for Conducted Measurements.

Antenna was removed and co-axial connector with a cable was installed for Conducted Measurements.

$\mathbf{S} = $ Shielded	$\mathbf{F} = $ With Ferrite
$\mathbf{U} = \mathbf{U}$ nshielded	\mathbf{m} = Length in Meters

3.3 Justification

For radiated emission measurements the EUT is placed on a non-conductive table. The EUT is attached to peripherals and they are connected and operational (as typical as possible). The EUT is wired to transmit full power. During testing, all cables are manipulated to produce worst-case emissions.

The Power Guardian[™] 390's size and weight was excessive (over 1000 pounds) to safely lift onto a 1.5m table for testing above 1GHz. Arrangements were made to safely put on a table 1.1m above the ground plane for radiated testing.

The Power Guardian and PowerLine Coordinator utilize the same 900MHz Radios. Antenna port conducted testing was performed on only the PowerLine Coordinator. The Antenna port data collected on the PowerLine Coordinator is representative of the Power Guardian. Radiated testing was performed on both the Power Guardian and PowerLine Controller with their respective antenna's in place.

3.4 Mode of Operation During Test

During transmitter testing, the transmitter was setup to transmit continuously at maximum RF power on the low channel, middle channel, high channel and with hopping channels enabled.

The Maximum power allowed by the manufacturer's provided GUI is RF Power = 19

3.5 Modifications Required for Compliance

Intertek installed no modifications during compliance testing in order to bring the product into compliance.

3.6 Additions, Deviations and Exclusions from Standards

No additions, deviations or exclusions from the standard were made.

4.0 Emissions Measurement Results

4.1 20dB Bandwidth, and 99% Occupied Bandwidth FCC Rule 15.247(a)(1)

4.1.1 Procedure

The Procedure described in the ANSI C63.10:2013 for Frequency Hopping Spread Spectrum Systems was used to determine the 20dB bandwidth.

- Span = Approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel
- RBW = 1% of the 20 dB bandwidth
- $VBW = 3 \times RBW$
- Sweep = Auto
- Detector function = Peak
- Trace = Max hold

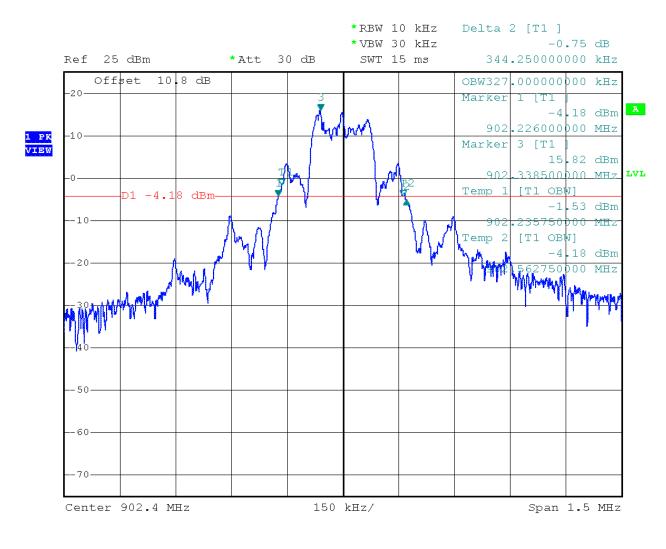
The EUT should be transmitting at its maximum data rate. Allow the trace to stabilize. Use the marker-topeak function to set the marker to the peak of the emission. Use the marker delta function to measure 20 dB down one side of the emission. Reset the marker-delta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 20 dB bandwidth of the emission. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).

For 99% power bandwidth measurement, the bandwidth was determined by using the built-in 99% occupied bandwidth function of the spectrum analyzer.

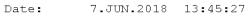
The antenna port of the EUT was connected to the input of a spectrum analyzer (SA). For each RF output channel investigated, the spectrum analyzer center frequency was set to the channel carrier. A Peak output reading was taken, a Display line was drawn for 20dB lower than Peak level. The 20dB bandwidth was determined from where the channel output spectrum intersected the display line.

Tested By	Test Date
Anderson Soungpanya	June 7, 2018

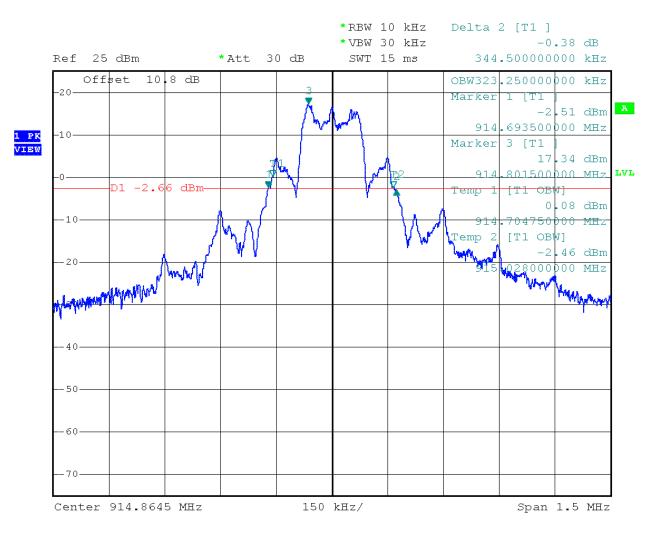
4.1.2 Test Result


Frequency MHz	20 dB FCC Bandwidth, MHz	99% Bandwidth, MHz	Plot #
902.400	0.34425	0.32700	1.1
914.867	0.34450	0.32325	1.2
926.944	0.34125	0.32250	1.3

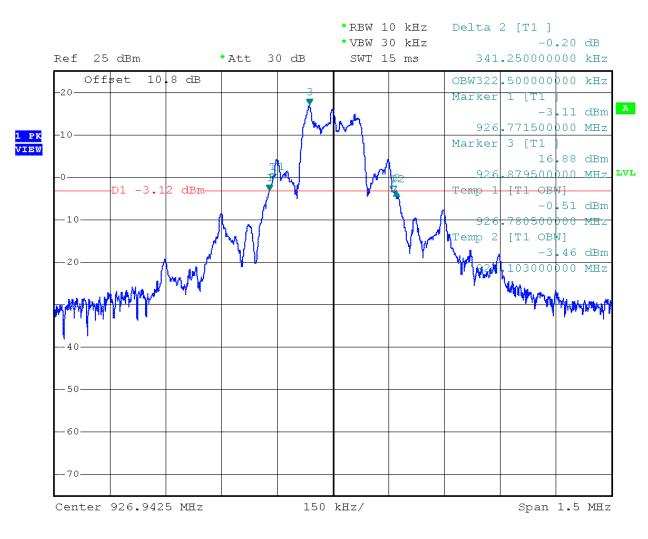
For frequency hopping systems operating in the 902-928 MHz band, the maximum allowed 20 dB bandwidth of the hopping channel is 0.500 MHz.


Results

Complies



Plot 1. 1 – 20dB Bandwidth and 99% Bandwidth Low Channel



Plot 1. 2 – 20dB Bandwidth and 99% Bandwidth Middle Channel

Date: 7.JUN.2018 14:03:00

Plot 1. 3 – 20dB Bandwidth and 99% Bandwidth High Channel

Date: 7.JUN.2018 14:21:04

4.2 Conducted Output Power at Antenna Terminals FCC Rule 15.247(b)(1)

4.2.1 Requirement

For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels

4.2.2 Procedure

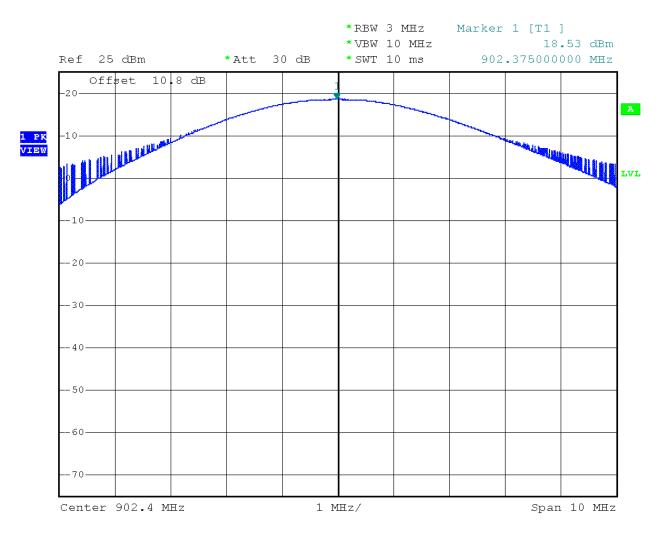
The Procedure described in the ANSI C63.10:2013 for Frequency Hopping Spread Spectrum Systems was used to determine the RF Output Power.

- Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel
- RBW > the 20 dB bandwidth of the emission being measured
- $VBW = 3 \times RBW$
- Sweep = auto
- Detector function = peak
- Trace = max hold

Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power (see the NOTE above regarding external attenuation and cable loss). The limit is specified in one of the subparagraphs of this Section. Submit this plot.

The antenna port of the EUT was connected to the input of a spectrum analyzer. Power was read directly from the spectrum analyzer and cable loss correction was added to the reading to obtain the power at the antenna terminals.

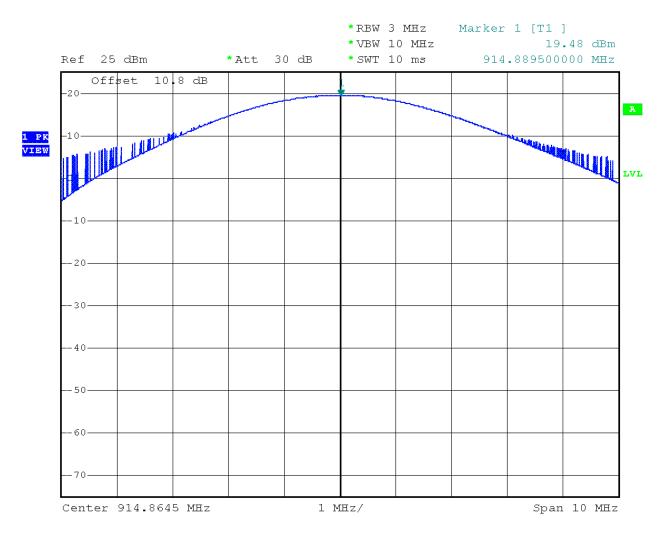
Tested By	Test Date
Anderson Soungpanya	June 7, 2018



4.3.3 Test Result

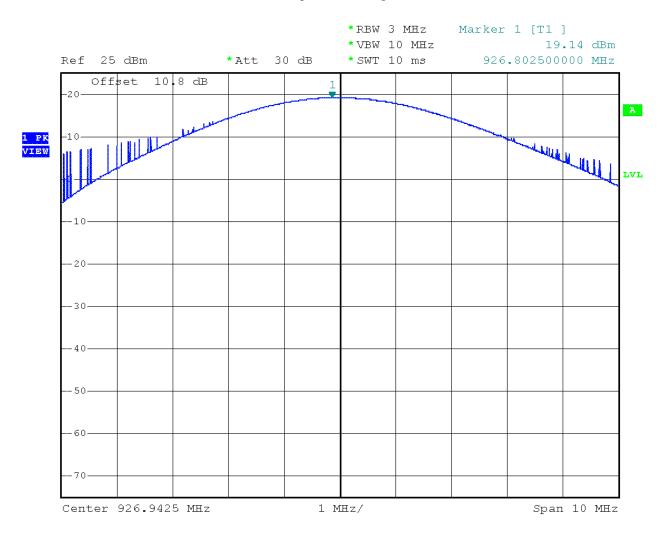
Refer to the following plots for the test result:

Frequency MHz	Conducted Peak Power dBm	Conducted Peak Power mW	Plot #
902.400	18.93	78.163	2.1
914.867	19.48	88.716	2.2
926.944	19.14	82.035	2.3


Results Complies

Plot 2. 2 – Output Power Low Channel

Date: 7.JUN.2018 14:44:50



Plot 2. 2 – Output Power Middle Channel

Date: 7.JUN.2018 14:49:34

Plot 2. 3 – Output Power High Channel

Date: 7.JUN.2018 14:40:06

4.3 Carrier Frequency Separation FCC 15.247 (a)(1)

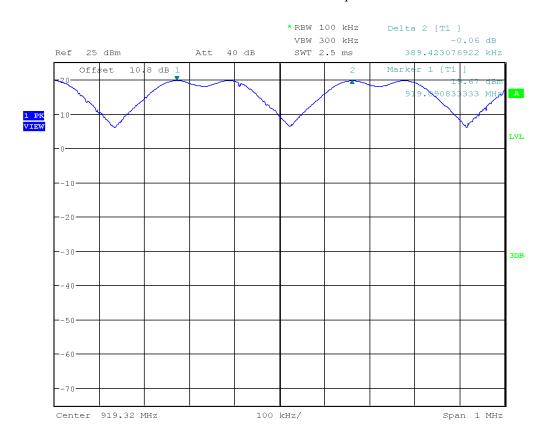
4.3.1 Requirement

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

4.3.2 Procedure

The Procedure described in the ANSI C63.10:2013 for Frequency Hopping Spread Spectrum Systems was used to determine the Carrier Frequency Separation.

- The EUT must have its hopping function enabled
- Span = wide enough to capture the peaks of two adjacent channels
- Resolution (or IF) Bandwidth (RBW) = 1% of the span
- Video (or Average) Bandwidth (VBW) = 3 x RBW
- Sweep = auto
- Detector function = peak
- Trace = max hold


Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels.

Tested By	Test Date
Anderson Soungpanya	June 25, 2018

4.3.3 Test Result

The worst case 20dB Bandwidth is 344.5 kHz, therefore the minimum Carrier Frequency Separation shall be greater than 344.5 kHz. The measured channel separation is 389.42 kHz. Carrier Frequency Separation meets the minimum requirement. Please refer to spectrum analyzer Plot 3.1 below for the test result.

Plot 3.1– Channel Separation

Date: 25.JUN.2018 12:00:26

Results

Complies

4.4 Number of Channels FCC 15.247 (a)(1)(iii)

4.4.1 Requirement

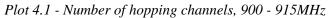
For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

4.4.2 Procedure

The Procedure described in the ANSI C63.10:2013 for Frequency Hopping Spread Spectrum Systems was used to determine the Number of Channels.

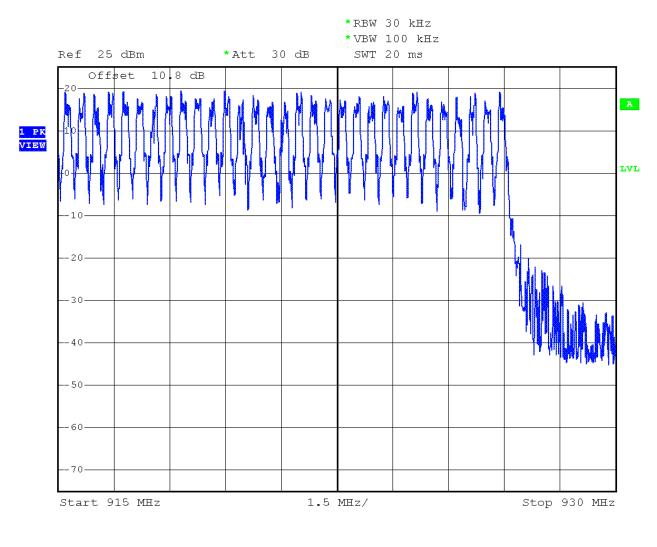
- The EUT must have its hopping function enabled.
- Span = the frequency band of operation
- RBW = 1% of the span
- $VBW = 3 \times RBW$
- Sweep = auto
- Detector function = peak
- Trace = max hold

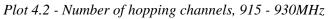
Allow the trace to stabilize. It may prove necessary to break the span up to sections, in order to clearly show all of the hopping frequencies.


With the analyzer set to MAX HOLD, readings were taken once channels were filled in. The channel peaks were recorded and compared to the minimum number of channels required in the regulation.

Tested By	Test Date
Anderson Soungpanya	June 7, 2018

4.4.3 Test Result





Date: 7.JUN.2018 12:44:10

4.4.3 Test Result (Continued)

Date: 7.JUN.2018 13:03:11

Results

Complies, 64 Channels

4.5 Average Channel Occupancy Time FCC 15.247(a)(1)

4.5.1 Requirement

For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

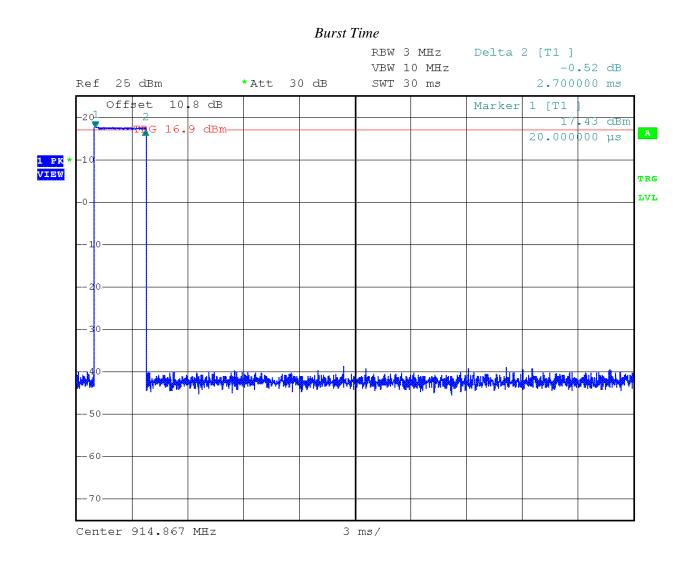
4.5.2 Procedure

The Procedure described in the ANSI C63.10:2013 for Frequency Hopping Spread Spectrum Systems was used to determine the Average Channel Occupancy Time.

- The EUT must have its hopping function enabled.
- Span = zero span, centered on a hopping channel
- RBW = 1 MHz
- VBW = $3 \times RBW$
- Sweep = as necessary to capture the entire dwell time per hopping channel
- Detector function = peak
- Trace = max hold

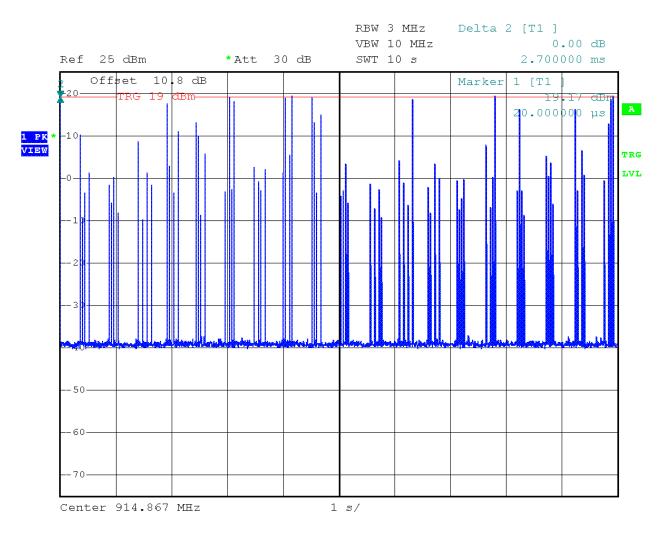
If possible, use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. An oscilloscope may be used instead of a spectrum analyzer.

The spectrum analyzer center frequency was set to one of the known hopping channels, the SPAN was set to ZERO SPANS, and the TRIGGER was set to VIDEO. The time duration of the transmission so captured was measured with the MARKER DELTA function.


Tested By	Test Date
Anderson Soungpanya	June 7, 2018

4.5.3 Test Results

No. of Burst in 10 seconds	Burst On Time (ms)	Dwell Time (ms)	Dwell Time limit (ms)
9	2.7	24.3	400


The 20-dB bandwidth of the hopping channel is greater than 250 kHz, the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period.

Date: 7.JUN.2018 15:32:40

4.5.3 Test Results (Continued)

Number of Burst in 10 seconds

Date: 7.JUN.2018 15:35:00

Results

Complies

4.6 Out-of-Band Conducted Emissions FCC 15.247(d)

4.6.1 Requirement

In any 100 kHz bandwidths outside the EUT pass-band, the RF power shall be at least 20dB (peak) or 30 dB (average) below that of the maximum in-band 100 kHz emissions.

4.6.2 Procedure

The Procedure described in the ANSI C63.10:2013 for Frequency Hopping Spread Spectrum Systems was used to determine the Out-of-Band Conducted Emissions.

- Span = wide enough to capture the peak level of the in-band emission and all spurious emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th harmonic.
- RBW = 100 kHz
- $VBW = 3 \times RBW$
- Sweep = auto
- Detector function = peak
- Trace = max hold

Allow the trace to stabilize. Set the marker on the peak of any spurious emission recorded. The level displayed must comply with the limit specified in this Section.

A spectrum analyzer was connected to the antenna port of the transmitter. Analyzer Resolution Bandwidth was set to 100 kHz. For each channel investigated, the in-band and out-of-band emission measurements were performed. The out-of-band emissions were measured from 30 MHz to 26 GHz.

Tested By	Test Date
Anderson Soungpanya	June 7, 2018

4.6.3 Test Result

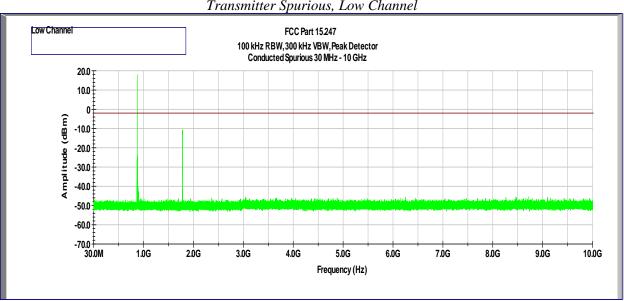
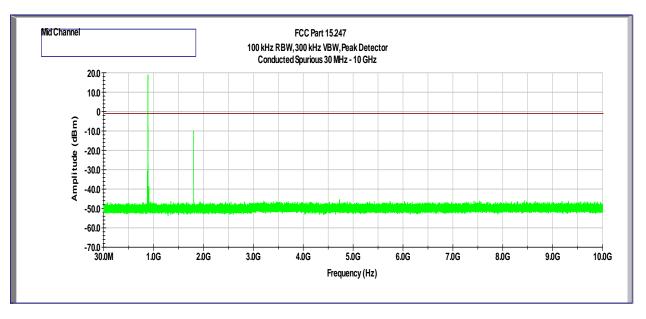

Refer to the following plots and out-of-band conducted spurious emissions at the Band-Edge, Table 4.1 & 4.2 for the test results:

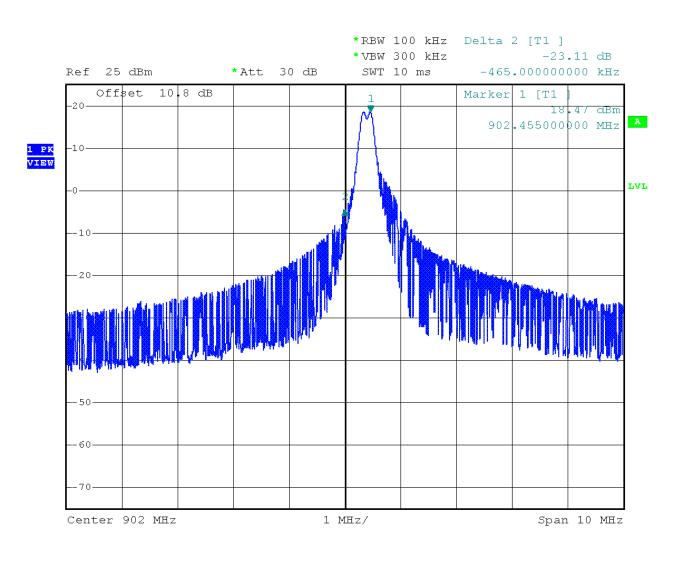
Table 4.1		
Frequency MHz	Description	Plot #
902.400	Scan 30 MHz – 26 GHz	4.1
914.867	Scan 30 MHz – 26 GHz	4.2
926.944	Scan 30 MHz – 26 GHz	4.3

Out-of-Band Conducted Spurious Emissions at the Band-Edge:

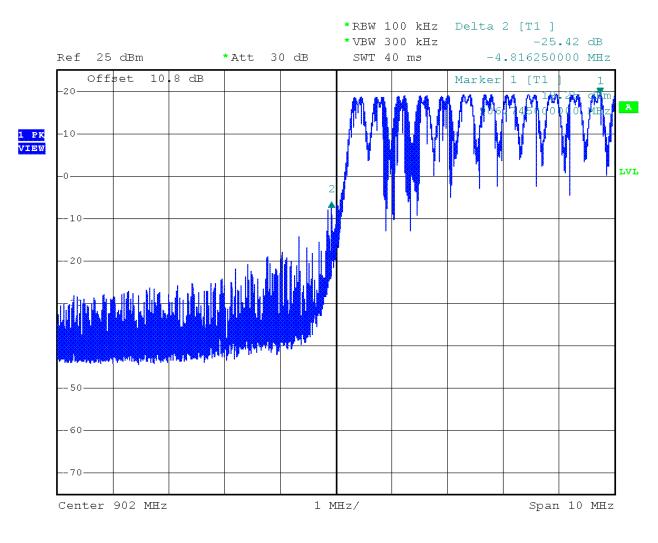

Table 4.2			
Channel	Frequency MHz	Out-band emissions margin to In-band emissions	Plot #
0	902.400	Complies	4.4
Hopping	Low Band Edge	Complies	4.5
63	926.944	Complies	4.6
Hopping	High Band Edge	Complies	4.7


Plot 4.1 Transmitter Spurious, Low Channel

Plot 4.2 Transmitter Spurious, Middle Channel

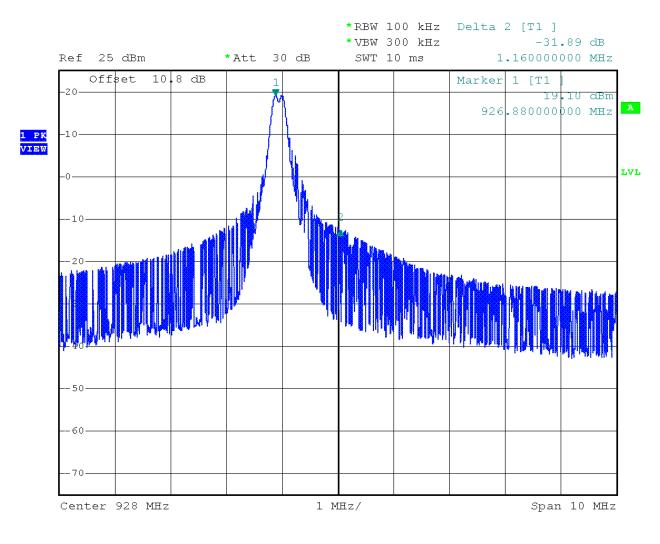


Plot 4.3 Transmitter Spurious, High Channel



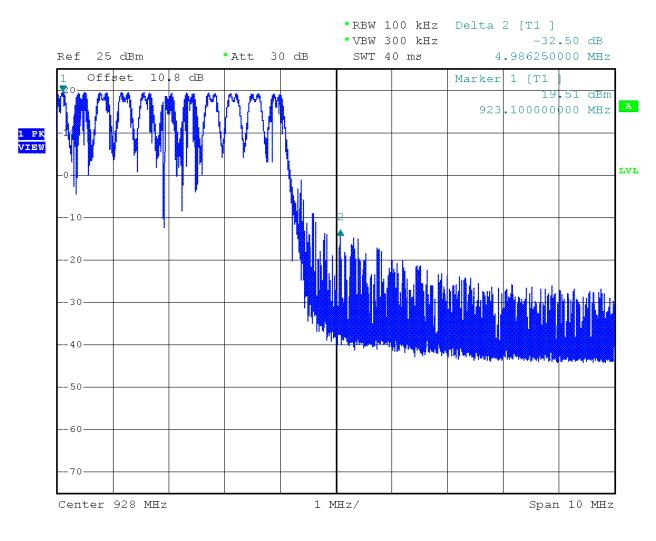
Plot 4.4 Conducted Band Edge, Low Channel

Date: 7.JUN.2018 13:20:29



Plot 4.11 Conducted Band Edge (Hopping)

Date: 7.JUN.2018 11:35:13



Plot 4.12 Conducted Band Edge, High Channel

Date: 7.JUN.2018 13:11:25

Plot 4.13 Conducted Band Edge (Hopping)

Date: 7.JUN.2018 12:14:03

Results

Complies

4.7 Transmitter Radiated Emissions FCC Rule 15.247(d), 15.209, 15.205

4.7.1 Requirement

Radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

For out of band radiated emissions (except for frequencies in restricted bands), in any 100 kHz bandwidths outside the EUT pass-band, the RF power shall be at least 20dB (peak) or 30 dB (average) below that of the maximum in-band 100 kHz emissions.

4.7.2 Procedure

Radiated emission measurements were performed from 30 MHz to 10,000 MHz. Spectrum Analyzer Resolution Bandwidth is 100 kHz or greater for frequencies 30 MHz to 1000 MHz, 1 MHz for frequencies above 1000 MHz.

The EUT is placed on a plastic turntable that is 1.5 m in height above 1 GHz and 80cm below 1GHz. If the EUT attaches to peripherals, they are connected and operational (as typical as possible). During testing, all cables were manipulated to produce worst-case emissions. The signal is maximized through rotation. The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters. Radiated emissions are taken at 3 meters

All measurements were made with a Peak Detector and compared to QP limits for 30MHz - 1GHz and Average or Peak limits for 1GHz - 10GHz where applicable.

Data is included of the worst-case configuration (the configuration which resulted in the highest emission levels).

EUT was tested with Antenna in place.

4.7.3 Field Strength Calculation

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CF - AG; if measurement is performed at a distance other than specified in the rule, a Distance Correction Factor (DCF) shall be added.

Where FS = Field Strength in $dB(\mu V/m)$

 $RA = Receiver Amplitude (including preamplifier) in dB(\mu V); AF = Antenna Factor in dB(1/m) CF = Cable Attenuation Factor in dB; AG = Amplifier Gain in dB$

Assume a receiver reading of 52.0 dB(μ V) is obtained. The antennas factor of 7.4 dB(1/m) and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving field strength of 32 dB(μ V/m). This value in dB(μ V/m) was converted to its corresponding level in μ V/m.

$$\begin{split} &RA = 52.0 \ dB(\mu V) \\ &AF = 7.4 \ dB(1/m) \\ &CF = 1.6 \ dB \\ &AG = 29.0 \ dB \\ &FS = 52.0 + 7.4 + 1.6 - 29.0 = 32 \ dB(\mu V/m). \\ &Level \ in \ \mu V/m = Common \ Antilogarithm \ [(32 \ dB\mu V/m)/20] = 39.8 \ \mu V/m. \end{split}$$

4.7.4 Test Results

The data on the following pages list the significant emission frequencies, the limit and the margin of compliance.

Radiated emission measurements were performed up to 10GHz. No other emissions were detected above the noise floor which is at least 10 dB below the limit.

Tested By	Test Date			
Anderson Soungpanya	June 7 & June 15, 2018			

4.7.4.1 Test Results: PowerLine Coordinator™

15.209 Out-of-Band Radiated Spurious Emissions, 902.400MHz

Frequency (MHz)	Channel No.	Measured Data (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Polarization	Turntable Degree	Antenna Height (cm)
83.673	0	22.51	29.5	-6.99	QP	V	282	192
99.970	0	29.75	33.0	-3.25	QP	Н	64	368
105.693	0	28.03	33.0	-4.97	QP	V	212	100
113.129	0	27.61	33.0	-5.39	QP	V	96	102
350.003	0	28.61	35.5	-6.89	QP	Н	308	212
10/1 000	0	29.85	54	-24.15	AVE	N/	151	115
1061.800	0	37.97	74	-36.03	РК	V	151	115
1804.800*	0	83.23	99.23 (20 dBc)	-16.00	РК	V	12	175
2707.200	0	33.01	54	-20.99	AVE	V	125	211
2707.200	0	42.34	74	-31.66	РК	v	125	211
3609.600	0	37.73	54	-16.27	AVE	v	238	139
3009.000	0	47.35	74	-26.65	РК	v		
4512,000	0	34.42	54	-19.58	AVE	V	1.4	246
4512.000	0	48.48	74	-25.52	РК	v	14	246
5414 400	0	37.42	54	-16.58	AVE	V	261	140
5414.400	0	49.65	74	-24.35	РК	v	261	149
6316.800	0	38.36	54	-15.64	AVE	V	159	139
0310.800	0	51.83	74	-22.17	РК	v	159	139
7210 200	0	41.40	54	-12.60	AVE	N/	201	201
7219.200	0	54.79	74	-19.21	РК	V	301	201
9121 600	0	42.14	54	-11.86	AVE	v	155	140
8121.600	U	55.57	74	-18.43	РК		155	140
0024.000	0	42.55	54	-11.45	AVE	V	02	177
9024.000	U	56.86	74	-17.14	РК	v	92	177

Radiated Spurious Emissions 30 MHz – 10 GHz

*Spurious emission frequencies does not fall under the restricted bands of 15.205, therefore the 15.209 limits does not apply to these frequencies.

Results

4.7.4.1 Test Results: PowerLine Coordinator[™] (Continued)

Test Results: 15.209 Out-of-Band Radiated Spurious Emissions, 914.867 MHz

Raulateu	Spurious El	missions 30 N	112 - 10001	L				
Frequency (MHz)	Channel No.	Measured Data (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Polarization	Turntable Degree	Antenna Height (cm)
83.641	32	22.44	29.5	-7.06	QP	V	161	100
100.001	32	31.18	33.0	-1.82	QP	Н	108	114
103.623	32	29.92	33.0	-3.08	QP	V	321	100
112.676	32	30.29	33.0	-2.71	QP	V	76	100
350.003	32	28.73	35.5	-6.77	QP	Н	308	213
1829.734*	32	85.69	99.23 (20 dBc)	-13.54	РК	V	27	272
2744 (01 22	32	30.44	54	-23.56	AVE	V	05	165
2744.601	32	43.36	74	-30.64	РК	v	85	165
2650 469	22	33.99	54	-20.01	AVE	V	100	237
3659.468	32	45.86	74	-28.14	РК		100	
4574.335	32	34.25	54	-19.75	AVE	V	239	199
43/4.555	52	47.38	74	-26.62	РК	v		
5489.202	32	37.30	54	-16.70	AVE	V	112	176
5489.202	52	50.89	74	-23.11	РК	v	112	176
6404.069	32	38.15	54	-15.85	AVE	V	174	140
0404.009	52	53.49	74	-20.51	РК	v	1/4	140
7219.026	22	41.47	54	-12.53	AVE	V	222	210
7318.936	32	54.92	74	-19.08	РК	v	223	219
0000 000	22	42.69	54	-11.31	AVE	N/	107	145
8233.803	32	55.45	74	-18.55	РК	V	187	145
0149 (70	22	43.28	54	-10.72	AVE	N/	250	150
9148.670	32	56.17	74	-17.83	РК	V	350	159

Radiated Spurious Emissions 30 MHz – 10 GHz

*Spurious emission frequencies does not fall under the restricted bands of 15.205, therefore the 15.209 limits does not apply to these frequencies.

Results

4.7.4.1 Test Results: PowerLine Coordinator[™] (Continued)

Test Results: 15.209 Out-of-Band Radiated Spurious Emissions, 926.944 MHz

Frequency (MHz)	Channel No.	Measured Data (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Polarization	Turntable Degree	Antenna Height (cm)
57.257	63	22.70	29.5	-6.80	QP	V	121	375
83.738	63	22.93	29.5	-6.57	QP	V	19	100
99.970	63	30.11	33.0	-2.89	QP	Н	334	112
350.003	63	29.11	35.5	-6.39	QP	Н	305	200
1853.888*	63	80.12	99.23 (20 dBc)	-19.11	РК	V	237	159
2700 022	62	34.17	54	-19.83	AVE	V	160	150
2780.832	63	44.73	74	-29.27	РК	v	169	159
2707 776	(2)	34.26	54	-19.74	AVE	N/	10	250
3707.776	63	46.25	74	-27.75	РК	- V	10	230
4624 720	(2)	34.12	54	-19.88	AVE		335	143
4634.720	63	47.28	74	-26.72	РК	V		
55(1)(()	(2)	37.75	54	-16.25	AVE	V	55	100
5561.664	63	49.72	74	-24.28	РК	v	55	190
(100 (00	(2)	40.23	54	-13.77	AVE	X.	122	150
6488.608	63	52.23	74	-21.77	РК	V	132	156
7415 550	(2)	41.77	54	-12.23	AVE	N.	2(0	200
7415.552	63	54.87	74	-19.13	РК	V	269	200
9242 406	(2)	42.54	54	-11.46	AVE	N/	70	221
8342.496	63	55.60	74	-18.40	РК	V	72	221
0260 440	(2)	42.97	54	-11.03	AVE		42	126
9269.440	63	55.32	74	-18.68	РК	V	43	136

Radiated Spurious Emissions 30 MHz – 10 GHz

*Spurious emission frequencies does not fall under the restricted bands of 15.205, therefore the 15.209 limits does not apply to these frequencies.

Results

4.7.4.2 Test Results: Power Guardian[™]

15.209 Out-of-Band Radiated Spurious Emissions, 902.400MHz

Frequency (MHz)	Channel No.	Measured Data (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Polarization	Turntable Degree	Antenna Height (cm)
78.500	0	22.88	29.5	-6.62	QP	V	48	212
182.031	0	19.11	33.0	-13.89	QP	V	90	113
233.991	0	26.80	35.5	-8.70	QP	V	93	105
1853.888*	0	70.45	99.23 (20 dBc)	-28.78	РК	V	5	180
2707 200	0	37.43	54	-16.57	AVE	V	137	192
2707.200	0	39.82	74	-34.18	РК	v	157	
2600.600	0	31.31	54	-22.69	AVE	V	347	155
3609.600	0	42.83	74	-31.17	РК	•	347	155
4512.00	0	32.53	54	-21.47	AVE	v	22	146
4512.00	0	46.10	74	-27.90	РК	v	33	
5414.400	0	35.77	54	-18.23	AVE	V	152	166
3414.400	0	46.60	74	-27.40	РК	v	132	100
6316.800	0	39.18	54	-14.82	AVE	V	155	150
0310.800	0	49.42	74	-24.58	РК	v	155	150
7219.200	0	39.52	54	-14.48	AVE	V	281	174
7219.200	U	52.15	74	-21.85	РК	v	201	1/4
8121.600	0	40.55	54	-13.45	AVE	V	122	149
0121.000	U	52.93	74	-21.07	РК		123	148
9024.000	0	40.88	54	-13.12	AVE	N/	56	150
9024.000	U	53.20	74	-20.80	РК	V	56	159

Radiated Spurious Emissions 30 MHz – 10 GHz

*Spurious emission frequencies does not fall under the restricted bands of 15.205, therefore the 15.209 limits does not apply to these frequencies.

Results

4.7.4.2 Test Results: Power Guardian[™] (Continued)

Test Results: 15.209 Out-of-Band Radiated Spurious Emissions, 914.867 MHz

Frequency (MHz)	Channel No.	Measured Data (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Polarization	Turntable Degree	Antenna Height (cm)
78.500	32	20.54	29.5	-8.96	QP	V	48	251
167.029	32	21.79	33.0	-11.21	QP	V	11	200
183.131	32	20.95	33.0	-12.05	QP	V	54	214
441.991	32	26.11	35.5	-9.39	QP	Н	133	100
1829.734*	32	71.47	99.23 (20 dBc)	-27.76	РК	V	354	198
2744 (01	22	28.53	54	-25.47	AVE	N/	144	145
2744.601	32	39.39	74	-34.61	РК	V	144	145
2650 469	22	30.57	54	-23.43	AVE	v	10	132
3659.468	32	42.66	74	-31.34	РК		10	132
4574 225	22	32.81	54	-21.19	AVE	N.	126	135
4574.335	32	44.81	74	-29.19	РК	V		
5480 202	22	35.60	54	-18.40	AVE	V	212	226
5489.202	32	48.14	74	-25.86	РК	v	313	236
6404.060	22	39.36	54	-14.64	AVE	V	200	250
6404.069	32	49.53	74	-24.47	РК	v	288	356
7210.026	22	39.54	54	-14.46	AVE	17	240	101
7318.936	32	52.04	74	-21.96	РК	V	248	121
0222 002	22	40.02	54	-13.98	AVE	V	200	160
8233.803	32	52.33	74	-21.67	РК	V	299	169
0149 (70	22	41.03	54	-12.97	AVE	Υ.	247	100
9148.670	32	53.67	74	-20.33	РК	V	347	189

Radiated Spurious Emissions 30 MHz – 10 GHz

*Spurious emission frequencies does not fall under the restricted bands of 15.205, therefore the 15.209 limits does not apply to these frequencies.

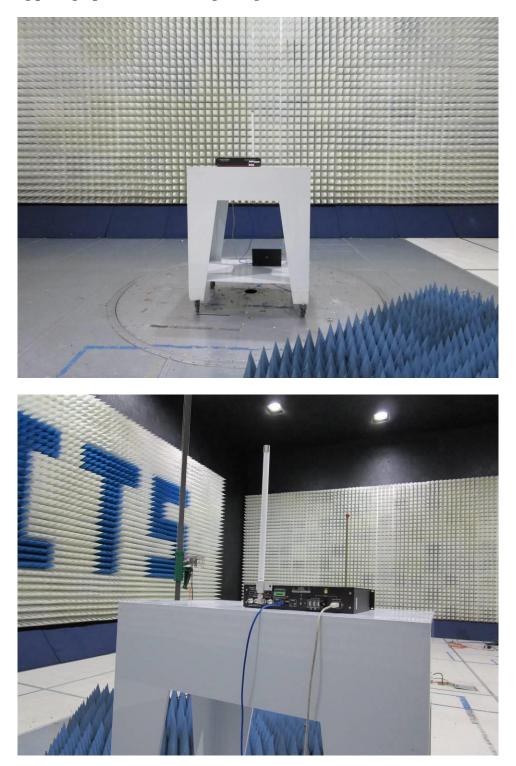
Results

4.7.4.2 Test Results: Power Guardian[™] (Continued)

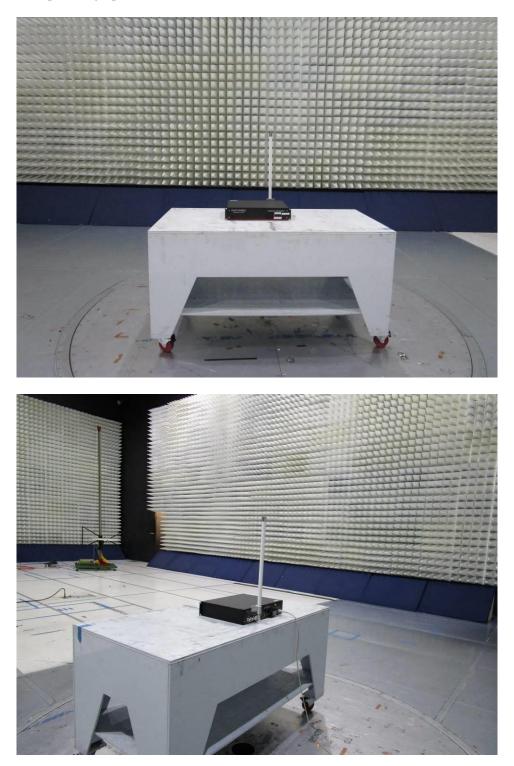
Test Results: 15.209 Out-of-Band Radiated Spurious Emissions, 926.944 MHz

Frequency (MHz)	Channel No.	Measured Data (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Polarization	Turntable Degree	Antenna Height (cm)
79.340	63	23.11	29.5	-6.39	QP	V	42	289
167.029	63	21.66	33.0	-11.34	QP	V	55	220
183.131	63	21.57	33.0	-11.43	QP	V	122	125
1853.888*	63	71.58	99.23 (20 dBc)	-27.65	РК	V	12	167
2700 022	\mathcal{O}	29.88	54	-24.12	AVE	V	154	178
2780.832	63	39.42	74	-34.58	РК	v	154	170
2707 776	(2)	31.15	54	-22.85	AVE	V	298	162
3707.776	63	42.94	74	-31.06	РК	v	298	163
4624 720	(2)	32.48	54	-21.52	AVE	- v	222	172
4634.720	63	45.93	74	-28.07	РК	v	333	
5561.664	63	35.39	54	-18.61	AVE	V	145	122
3301.004	05	48.28	74	-25.72	РК	v	145	122
C100 C00	(2)	39.58	54	-14.42	AVE	V	160	147
6488.608	63	50.33	74	-23.67	РК	v	169	147
7415 550	(2)	40.04	54	-13.96	AVE	V	211	166
7415.552	63	51.85	74	-22.15	РК	v	311	166
9242 406	62	40.74	54	-13.26	AVE	v	244	160
8342.496	63	52.38	74	-21.62	РК		344	160
0260 440	(2)	40.81	54	-13.19	AVE	N/	1.4	155
9269.440	63	53.94	74	-20.06	РК	V	14	155

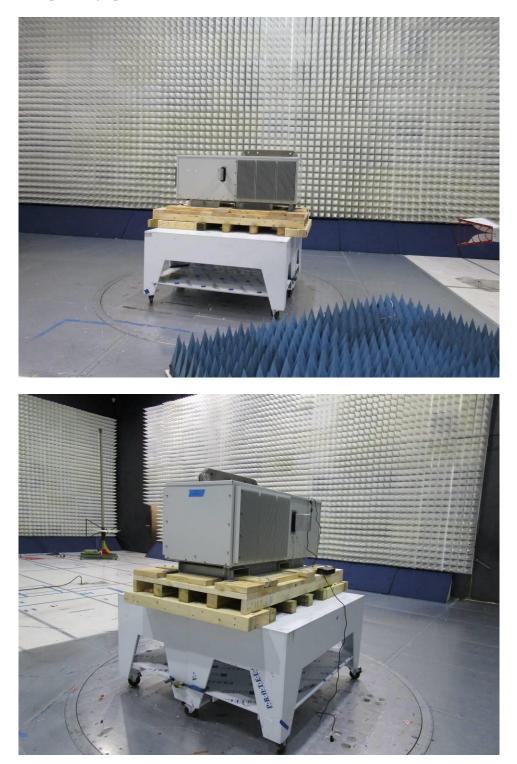
Radiated Spurious Emissions 30 MHz – 10 GHz


*Spurious emission frequencies does not fall under the restricted bands of 15.205, therefore the 15.209 limits does not apply to these frequencies.

Results


4.7.5 Test Setup Photographs

The following photographs show the testing configurations used.



4.7.5 Test Setup Photographs (Continued)

4.7.5 Test Setup Photographs (Continued)

4.8 Digital Radiated Emissions

FCC Ref: 15.109, ICES 003

4.8.1 Requirement

Limits for Electromagnetic Radiated Emissions FCC Section 15.109(b), ICES 003*, RSS GEN

Frequency (MHz)	Class A at 10m dB(µV/m)	Class B at 3m dB(µV/m)
30-88	39	40.0
88-216	43.5	43.5
216-960	46.4	46.0
Above 960	49.5	54.0

* According to FCC Part 15.109(g) an alternative to the radiated emission limits shown above, digital devices may be shown to comply with the limit of CISPR Pub. 22

4.8.2 Procedures

Measurements are conducted with a quasi-peak detector instrument in the frequency range of 30 MHz to 1000 MHz and with the average detector instrument in the frequency range above 1000 MHz. The measuring receiver meets the requirements of Section One of CISPR 16 and the measuring antenna correlates to a balanced dipole.

Measurements of the radiated field are made with the antenna located at a distance of 10 meters from the EUT. If the field-strength measurements at 10m cannot be made because of high ambient noise level or for other reasons, measurements of Class B equipment may be made at a closer distance, for example 3m. An inverse proportionality factor of 20 dB per decade should be used to normalize the measured data or limit line to the specified distance for determining compliance.

The antenna is adjusted between 1m and 4m in height above the ground plane for maximum meter reading at each test frequency.

The antenna-to-EUT azimuth is varied during the measurement to find the maximum field-strength readings.

The antenna-to-EUT polarization (horizontal and vertical) is varied during the measurements to find the maximum field-strength readings.

The EUT, where intended for tabletop use, is placed on a table whose top is 0.8m above the ground plane. The table is constructed of non-conductive materials. Its dimensions are 1m by 1.5m, but may be extended for a larger EUT.

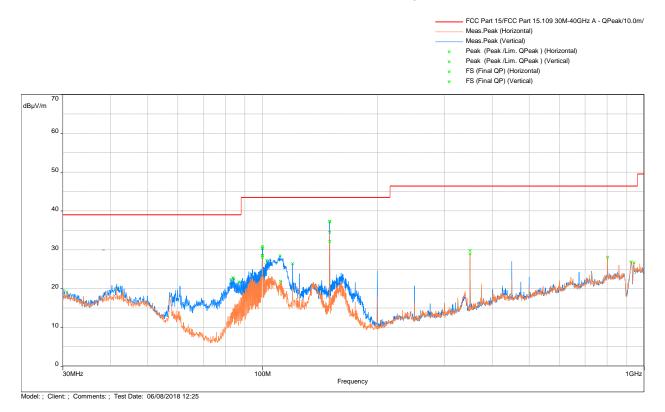
Floor standing EUT are placed on a horizontal metal ground plane and isolated from the ground plane by resting on an insulating material.

Equipment setup for radiated disturbance tests followed the guidelines of ANSI C63.4: 2014

4.8.3 Test Results

Radiated emission measurements were performed from 30 MHz to 1000 MHz. The data on the following pages list the significant emission frequencies, the limit and the margin of compliance.

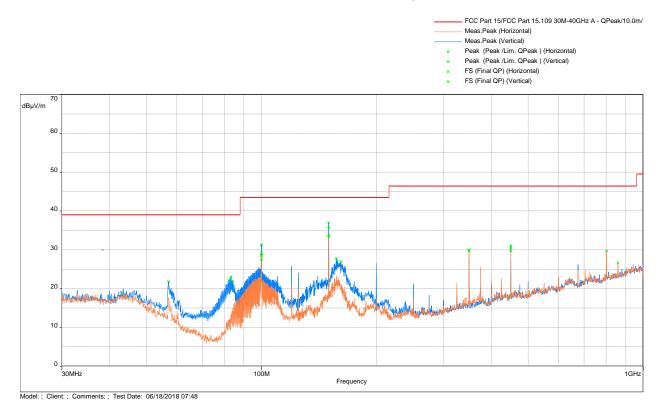
An inverse proportionality factor of 20 dB per decade was used to normalize the limit line of 30MHz to 1000MHz to the specified distance for determining compliance


Note: Radiated emission measurements were performed up to 18GHz.

Tested By	Test Date			
Anderson Soungpanya	June 8 - 18, 2018			

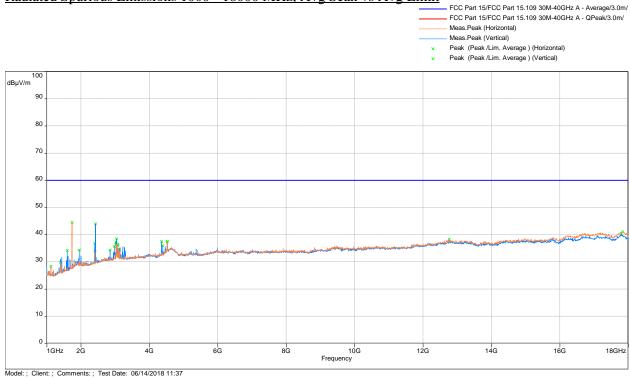
4.8.3.1 Test Results: PowerLine Coordinator™

Radiated Emissions 30 MHz - 1000, Tested with AC Power Configuration



Frequency MHz	FS dBµV/m	Limit dBuV/m	Margin (dB)	Azimuth (deg)	Height (m)	Polarity	RA (dBuV)	Correction (dB)	
99.996	28.03	43.5	-15.47	70	4.00	Horizontal	42.98	-14.95	
149.992	32.16	43.5	-11.34	231	3.84	Horizontal	50.38	-18.22	
350.008	29.78	46.4	-16.62	100	2.33	Horizontal	41.04	-11.26	
100.004	30.84	43.5	-12.66	223	1.08	Vertical	45.79	-14.95	
111.620	21.89	43.5	-21.61	144	1.00	Vertical	37.87	-15.98	
149.995	37.17	43.5	-6.33	360	1.04	Vertical	55.39	-18.22	
Result: Complies by 6.33 dB									

4.8.3.1 Test Results: PowerLine CoordinatorTM (Continued)


Radiated Emissions 30 MHz – 1000, Tested with DC Power Configuration

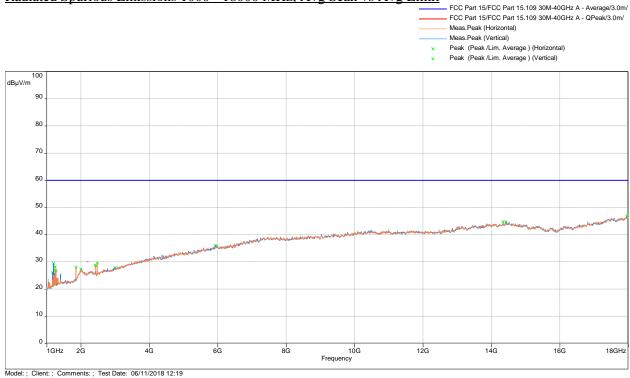
Frequency MHz	FS dBµV/m	Limit dBuV/m	Margin (dB)	Azimuth (deg)	Height (m)	Polarity	RA (dBuV)	Correction (dB)	
99.996	29.18	43.5	-14.32	334.75	1.04	Vertical	44.14	-14.95	
99.996	27.33	43.5	-16.17	84.25	4.00	Horizontal	42.29	-14.95	
150.001	35.71	43.5	-7.79	281.5	1.00	Vertical	53.93	-18.22	
150.010	33.27	43.5	-10.23	254.75	3.92	Horizontal	51.5	-18.22	
350.004	29.77	46.4	-16.63	116.25	2.42	Horizontal	41.03	-11.26	
449.995	30.46	46.4	-15.94	312.5	3.80	Vertical	39.07	-8.61	
Result: Complies by 7.79 dB									

4.8.3.1 Test Results: PowerLine Coordinator[™] (Continued)

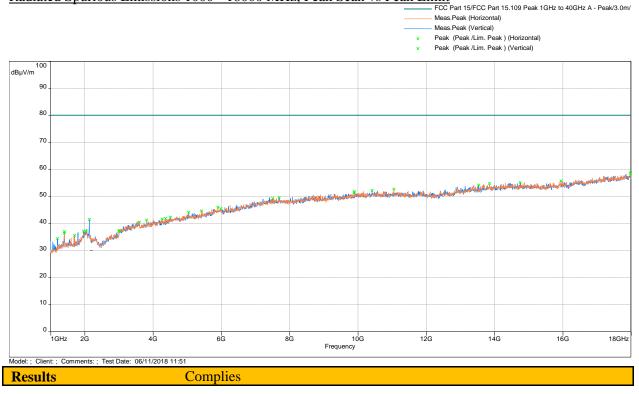
Radiated Spurious Emissions 1000 - 18000 MHz, Avg Scan vs Avg Limit

Radiated Spurious Emissions 1000 - 18000 MHz, Peak Scan vs Peak Limit

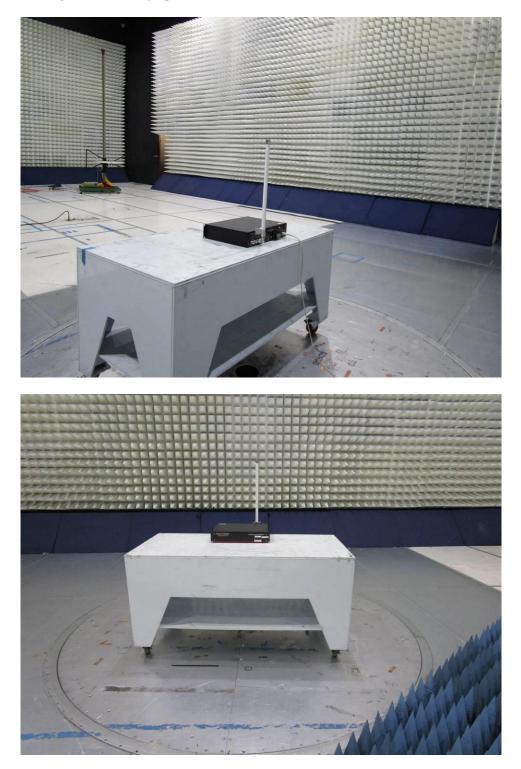
4.8.3.2 Test Results: Power Guardian[™] 390


Radiated Emissions 30 MHz – 1000, Tested with AC/DC Power Adapter

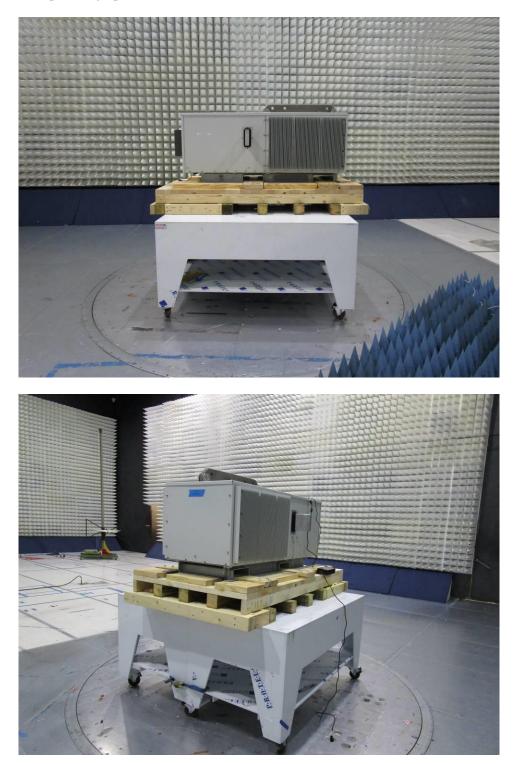
Frequency MHz	FS dBµV/m	Limit dBuV/m	Margin (dB)	Azimuth (deg)	Height (m)	Polarity	RA (dBuV)	Correction (dB)	
441.984	27.19	46.4	-19.21	251	1.12	Horizontal	36.03	-8.83	
801.826	28.46	46.4	-17.94	41	1.57	Horizontal	31.95	-3.49	
74.4550	18.93	39	-20.07	349	2.11	Vertical	39.17	-20.32	
76.296	18.46	39	-20.54	348	1.67	Vertical	38.84	-20.39	
165.303	21.98	43.5	-21.52	88	1.00	Vertical	39.38	-17.40	
182.650	22.38	43.5	-21.12	87	1.00	Vertical	39.43	-17.09	
Result: Complies by 17.94 dB									



4.8.3.2 Test Results: Power Guardian[™] 390 (Continued)


Radiated Spurious Emissions 1000 - 18000 MHz, Avg Scan vs Avg Limit

Radiated Spurious Emissions 1000 - 18000 MHz, Peak Scan vs Peak Limit



4.8.4 Test Configuration Photographs

4.8.4 Test Setup Photographs (Continued)

4.9 AC Line Conducted Emission FCC: 15.207, 15.107; RSS-GEN;

4.9.1 Requirement

Frequency Band Class B Li		nit dB(µV)	Class A Li	mit dB(µV)
MHz	Quasi-Peak	Average	Quasi-Peak	Average
0.15-0.50	66 to 56 *	56 to 46 *	79	66
0.50-5.00	56	46	73	60
5.00-30.00	60	50	73	60

*Note: *Decreases linearly with the logarithm of the frequency At the transition frequency the lower limit applies.*

4.9.2 Procedure

Measurements are carried out using quasi-peak and average detector receivers in accordance with CISPR 16. An AMN is required to provide a defined impedance at high frequencies across the power feed at the point of measurement of terminal voltage and also to provide isolation of the circuit under test from the ambient noise on the power lines. An AMN as defined in CISPR 16 shall be used.

The EUT is located so that the distance between the boundary of the EUT and the closest surface of the AMN is 0.8m.

Where a flexible mains cord is provided by the manufacturer, this shall be 1m long or if in excess of 1m, the excess cable is folded back and forth as far as possible so as to form a bundle not exceeding 0.4m in length.

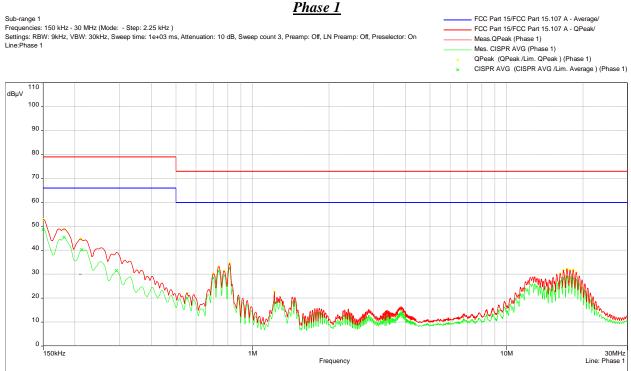
The EUT is arranged and connected with cables terminated in accordance with the product specification.

Conducted disturbance is measured between the phase lead and the reference ground, and between the neutral lead and the reference ground. Both measured values are reported.

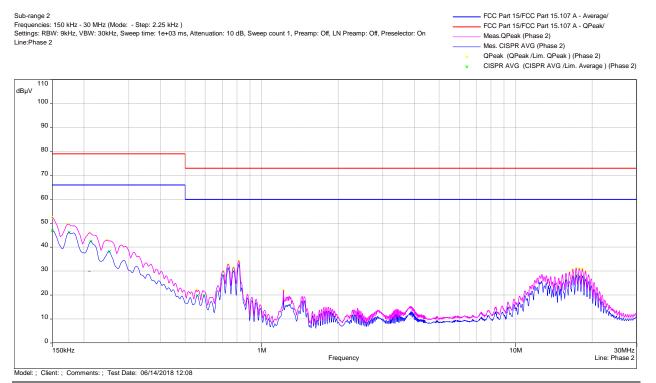
The EUT, where intended for tabletop use, is placed on a table whose top is 0.8m above the ground plane. A vertical, metal reference plane is placed 0.4m from the EUT. The vertical metal reference-plane is at least 2m by 2m. The EUT shall be kept at least 0.8m from any other metal surface or other ground plane not being part of the EUT. The table is constructed of non-conductive materials. Its dimensions are 1m by 1.5m, but may be extended for larger EUT.

Floor standing EUT are placed on a horizontal metal ground plane and isolated from the ground plane by resting on an insulating material. The metal ground plane extends at least 0.5m beyond the boundaries of the EUT and has minimum dimensions of 2m by 2m.

Equipment setup for conducted disturbance tests followed the guidelines of ANSI C63.4:2014 and ANSI C63.10:2013.


4.9.3 Test Results

Tested By	Test Date
Anderson Soungpanya	June 11 - 18, 2018


4.9.3.1 Test Results: PowerLine Coordinator™

15.107: Conducted Emissions 120VAC 60Hz, Tested with AC Power Configuration

Model: ; Client: ; Comments: ; Test Date: 06/14/2018 12:08

Phase 2

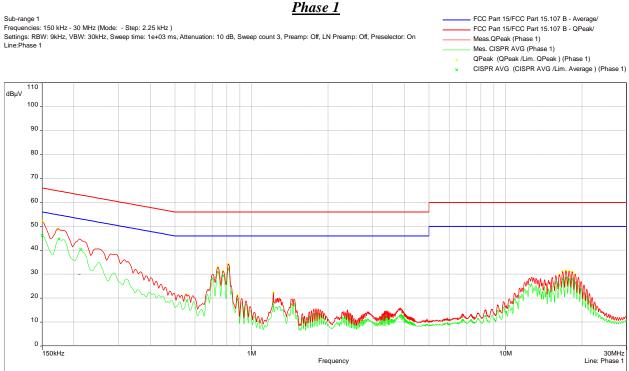
EMC Report for Smart Wires, Inc. on the Power Guardian System File: 103539437MPK-001

4.9.3.1 Test Results: PowerLine CoordinatorTM (Continued)

15.107: Conducted Emissions 120VAC 60Hz, Tested with AC Power Configuration

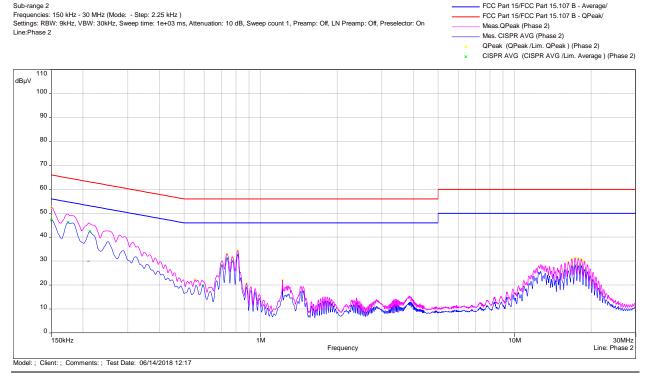
	Quasi Peak Table						
Frequency (MHz)	QPeak (dBµV)	Lim. QPeak (dBµV)	QPeak-Lim (dB)	Phase	Correction (dB)		
0.150	52.89	79.00	-26.11	Phase 1	11.51		
0.150	52.37	79.00	-26.63	Phase 2	11.51		
0.173	49.66	79.00	-29.34	Phase 2	11.52		
0.182	48.90	79.00	-30.10	Phase 1	11.53		
0.211	44.72	79.00	-34.28	Phase 1	11.55		
0.211	46.06	79.00	-32.94	Phase 2	11.55		
0.247	42.95	79.00	-36.05	Phase 2	11.55		
0.553	22.12	73.00	-50.88	Phase 1	11.59		
0.553	22.07	73.00	-50.93	Phase 2	11.59		
0.701	30.20	73.00	-42.80	Phase 1	11.60		
0.708	30.02	73.00	-42.98	Phase 2	11.61		
0.737	33.17	73.00	-39.83	Phase 1	11.61		
0.740	32.85	73.00	-40.15	Phase 2	11.61		
0.773	31.30	73.00	-41.70	Phase 1	11.62		
0.776	31.49	73.00	-41.51	Phase 2	11.62		
0.814	34.33	73.00	-38.67	Phase 2	11.62		
0.814	34.46	73.00	-38.54	Phase 1	11.62		
1.219	22.63	73.00	-50.37	Phase 1	11.62		
1.221	21.99	73.00	-51.01	Phase 2	11.62		
16.294	30.22	73.00	-42.78	Phase 1	11.93		
16.314	29.53	73.00	-43.47	Phase 2	11.93		
16.773	31.67	73.00	-41.33	Phase 1	11.93		
16.807	30.74	73.00	-42.26	Phase 2	11.93		
17.284	32.18	73.00	-40.82	Phase 1	11.92		
17.331	31.16	73.00	-41.84	Phase 2	11.92		
17.797	31.71	73.00	-41.29	Phase 1	11.93		
17.831	30.97	73.00	-42.03	Phase 2	11.93		
18.314	31.79	73.00	-41.21	Phase 1	11.93		
18.317	30.86	73.00	-42.14	Phase 2	11.93		
18.827	30.78	73.00	-42.22	Phase 1	11.94		
18.845	29.90	73.00	-43.10	Phase 2	11.94		

4.9.3.1 Test Results: PowerLine Coordinator[™] (Continued)


15.107: Conducted Emissions 120VAC 60Hz, Tested with AC Power Configuration

	Average Table						
Frequency (MHz)	AVG (dBµV)	Lim. Average (dBµV)	AVG-Lim (dB)	Phase	Correction (dB)		
0.150	48.57	66.00	-17.43	Phase 1	11.51		
0.150	46.89	66.00	-19.11	Phase 2	11.51		
0.175	46.14	66.00	-19.86	Phase 2	11.52		
0.182	45.38	66.00	-20.62	Phase 1	11.53		
0.213	40.25	66.00	-25.75	Phase 1	11.55		
0.213	42.43	66.00	-23.57	Phase 2	11.55		
0.251	38.20	66.00	-27.80	Phase 2	11.55		
0.292	31.48	66.00	-34.52	Phase 1	11.59		
0.553	20.06	60.00	-39.94	Phase 1	11.59		
0.560	19.78	60.00	-40.22	Phase 2	11.59		
0.593	19.86	60.00	-40.14	Phase 2	11.59		
0.701	28.35	60.00	-31.65	Phase 1	11.60		
0.704	28.26	60.00	-31.74	Phase 2	11.60		
0.737	31.32	60.00	-28.68	Phase 1	11.61		
0.740	31.23	60.00	-28.77	Phase 2	11.61		
0.773	29.45	60.00	-30.55	Phase 1	11.62		
0.776	29.90	60.00	-30.10	Phase 2	11.62		
0.812	32.54	60.00	-27.46	Phase 1	11.62		
0.814	32.62	60.00	-27.38	Phase 2	11.62		
0.881	19.75	60.00	-40.25	Phase 1	11.63		
15.783	26.23	60.00	-33.77	Phase 2	11.94		
16.292	27.05	60.00	-32.95	Phase 1	11.93		
16.769	28.24	60.00	-31.76	Phase 1	11.93		
16.809	27.79	60.00	-32.21	Phase 2	11.93		
17.282	28.94	60.00	-31.06	Phase 1	11.92		
17.329	28.17	60.00	-31.83	Phase 2	11.92		
17.795	28.72	60.00	-31.28	Phase 1	11.92		
17.831	27.86	60.00	-32.14	Phase 2	11.93		
18.310	28.42	60.00	-31.58	Phase 1	11.93		
18.355	27.82	60.00	-32.18	Phase 2	11.93		
18.825	27.70	60.00	-32.30	Phase 1	11.94		

Results: Complies by 17.43 dB



4.9.3.1 Test Results: PowerLine Coordinator[™] (Continued) 15.207: Conducted Emissions 120VAC 60Hz, Tested with AC Power Configuration

Model: ; Client: ; Comments: ; Test Date: 06/14/2018 12:17

Phase 2

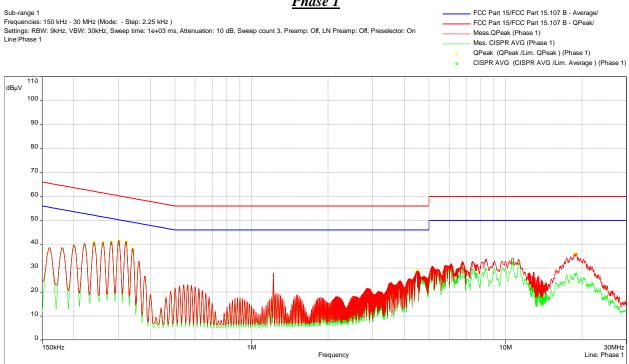
EMC Report for Smart Wires, Inc. on the Power Guardian System File: 103539437MPK-001

4.9.3.1 Test Results: PowerLine Coordinator[™] (Continued)

15.207: Conducted Emissions 120VAC 60Hz, Tested with AC Power Configuration

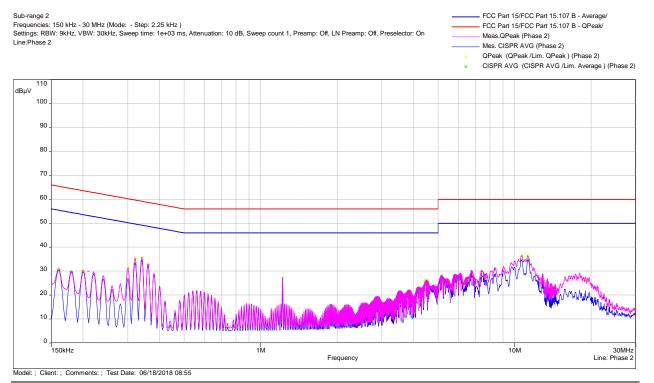
	Quasi Peak Table							
Frequency (MHz)	QPeak (dBµV)	Lim. QPeak (dBµV)	QPeak-Lim (dB)	Phase	Correction (dB)			
0.150	51.78	66.00	-14.22	Phase 1	11.51			
0.150	52.52	66.00	-13.48	Phase 2	11.51			
0.173	48.91	64.84	-15.93	Phase 1	11.52			
0.553	22.20	56.00	-33.80	Phase 2	11.59			
0.553	21.56	56.00	-34.44	Phase 1	11.59			
0.737	33.01	56.00	-22.99	Phase 2	11.61			
0.737	32.96	56.00	-23.04	Phase 1	11.61			
0.773	31.30	56.00	-24.70	Phase 1	11.62			
0.776	31.77	56.00	-24.23	Phase 2	11.62			
0.812	34.44	56.00	-21.56	Phase 2	11.62			
0.812	34.26	56.00	-21.74	Phase 1	11.62			
0.881	20.66	56.00	-35.34	Phase 2	11.63			
0.881	21.06	56.00	-34.94	Phase 1	11.63			
1.219	22.29	56.00	-33.71	Phase 1	11.62			
1.221	22.05	56.00	-33.95	Phase 2	11.62			
16.314	29.85	60.00	-30.15	Phase 1	11.93			
16.321	29.64	60.00	-30.36	Phase 2	11.93			
16.775	30.85	60.00	-29.15	Phase 2	11.93			
16.809	31.12	60.00	-28.88	Phase 1	11.93			
17.288	31.39	60.00	-28.61	Phase 1	11.92			
17.331	31.21	60.00	-28.79	Phase 2	11.92			
17.831	31.08	60.00	-28.92	Phase 2	11.93			
17.833	31.19	60.00	-28.81	Phase 1	11.93			
18.314	30.85	60.00	-29.15	Phase 2	11.93			
18.319	31.01	60.00	-28.99	Phase 1	11.93			
18.843	29.98	60.00	-30.02	Phase 1	11.94			
18.845	29.88	60.00	-30.12	Phase 2	11.94			

4.9.3.1 Test Results: PowerLine Coordinator[™] (Continued)


15.207: Conducted Emissions 120VAC 60Hz, Tested with AC Power Configuration

	Average Table						
Frequency (MHz)	AVG (dBµV)	Lim. Average (dBµV)	AVG-Lim (dB)	Phase	Correction (dB)		
0.150	46.04	56.00	-9.96	Phase 1	11.51		
0.150	47.09	56.00	-8.91	Phase 2	11.51		
0.175	44.71	54.73	-10.02	Phase 1	11.52		
0.175	46.17	54.73	-8.56	Phase 2	11.52		
0.213	40.33	53.09	-12.76	Phase 1	11.55		
0.213	42.40	53.09	-10.69	Phase 2	11.55		
0.557	18.97	46.00	-27.03	Phase 1	11.59		
0.593	19.85	46.00	-26.15	Phase 2	11.59		
0.704	28.26	46.00	-17.74	Phase 2	11.60		
0.704	28.16	46.00	-17.84	Phase 1	11.60		
0.737	31.05	46.00	-14.95	Phase 1	11.61		
0.740	31.25	46.00	-14.75	Phase 2	11.61		
0.776	29.39	46.00	-16.61	Phase 1	11.62		
0.776	29.94	46.00	-16.06	Phase 2	11.62		
0.814	32.61	46.00	-13.39	Phase 2	11.62		
0.814	32.41	46.00	-13.59	Phase 1	11.62		
0.881	18.99	46.00	-27.01	Phase 2	11.63		
0.881	19.32	46.00	-26.68	Phase 1	11.63		
15.783	26.47	50.00	-23.53	Phase 1	11.94		
15.783	26.27	50.00	-23.73	Phase 2	11.94		
16.809	28.06	50.00	-21.94	Phase 1	11.93		
16.809	27.88	50.00	-22.12	Phase 2	11.93		
17.329	28.20	50.00	-21.80	Phase 2	11.92		
17.329	28.34	50.00	-21.66	Phase 1	11.92		
17.795	28.00	50.00	-22.00	Phase 1	11.92		
17.831	27.93	50.00	-22.07	Phase 2	11.93		
18.353	27.85	50.00	-22.15	Phase 2	11.93		
18.353	27.97	50.00	-22.03	Phase 1	11.93		
18.875	26.35	50.00	-23.65	Phase 2	11.94		
18.877	26.51	50.00	-23.49	Phase 1	11.94		

Results: Complies by 8.56 dB


4.9.3.1 Test Results: PowerLine Coordinator[™] (Continued) 15.207: Conducted Emissions 120VAC 60Hz, Tested with DC Power Configuration

Phase 1

Model: ; Client: ; Comments: ; Test Date: 06/18/2018 08:55

Phase 2

EMC Report for Smart Wires, Inc. on the Power Guardian System File: 103539437MPK-001

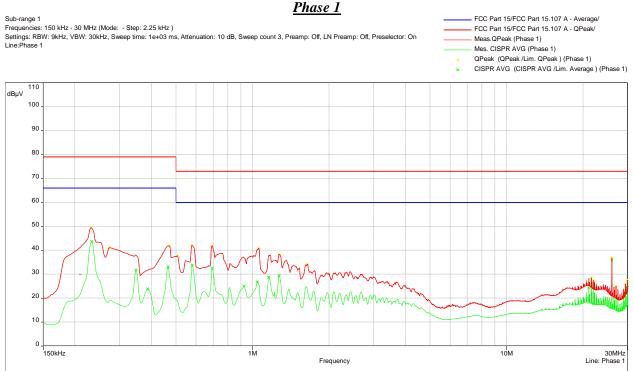
4.9.3.1 Test Results: PowerLine CoordinatorTM (Continued)

15.207: Conducted Emissions 120VAC 60Hz, Tested with DC Power Configuration

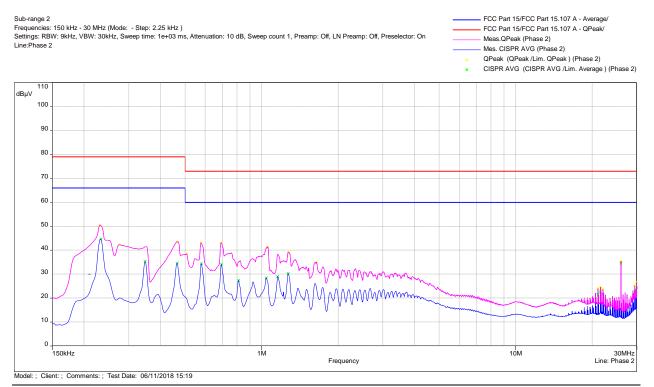
	Quasi Peak Table						
Frequency (MHz)	QPeak (dBµV)	Lim. QPeak (dBµV)	QPeak-Lim (dB)	Phase	Correction (dB)		
0.161	30.96	65.40	-34.44	Phase 2	11.52		
0.200	30.37	63.63	-33.26	Phase 2	11.54		
0.240	40.85	62.10	-21.25	Phase 1	11.55		
0.260	40.94	61.42	-20.49	Phase 1	11.56		
0.281	41.10	60.80	-19.70	Phase 1	11.58		
0.301	41.57	60.22	-18.65	Phase 1	11.59		
0.301	31.35	60.22	-28.87	Phase 2	11.59		
0.321	41.24	59.68	-18.44	Phase 1	11.59		
0.321	35.37	59.68	-24.31	Phase 2	11.59		
0.341	38.28	59.17	-20.89	Phase 1	11.59		
0.341	35.79	59.17	-23.39	Phase 2	11.59		
0.362	33.06	58.69	-25.64	Phase 2	11.58		
1.221	27.33	56.00	-28.67	Phase 2	11.62		
4.486	26.22	56.00	-29.78	Phase 2	11.76		
4.486	28.78	56.00	-27.22	Phase 1	11.76		
4.506	26.18	56.00	-29.82	Phase 2	11.76		
4.506	28.79	56.00	-27.21	Phase 1	11.76		
4.547	28.61	56.00	-27.39	Phase 1	11.76		
4.547	25.97	56.00	-30.03	Phase 2	11.76		
4.567	28.31	56.00	-27.69	Phase 1	11.76		
10.635	36.36	60.00	-23.64	Phase 2	11.87		
10.655	36.38	60.00	-23.62	Phase 2	11.87		
10.676	36.38	60.00	-23.62	Phase 2	11.87		
10.696	36.46	60.00	-23.54	Phase 2	11.87		
11.256	36.41	60.00	-23.59	Phase 2	11.89		
11.276	36.31	60.00	-23.69	Phase 2	11.89		
18.665	35.91	60.00	-24.09	Phase 1	11.94		
18.726	35.99	60.00	-24.01	Phase 1	11.94		
18.746	35.87	60.00	-24.13	Phase 1	11.94		
18.967	35.97	60.00	-24.03	Phase 1	11.94		
19.007	35.91	60.00	-24.09	Phase 1	11.94		
19.086	35.95	60.00	-24.05	Phase 1	11.94		

4.9.3.1 Test Results: PowerLine Coordinator[™] (Continued)

15.207: Conducted Emissions 120VAC 60Hz, Tested with DC Power Configuration


Average Table						
Frequency (MHz)	AVG (dBµV)	Lim. Average (dBµV)	AVG-Lim (dB)	Phase	Correction (dB)	
0.161	30.29	55.40	-25.10	Phase 2	11.52	
0.179	29.49	54.52	-25.03	Phase 2	11.52	
0.200	29.61	53.63	-24.02	Phase 2	11.54	
0.240	40.20	52.10	-11.89	Phase 1	11.55	
0.260	40.24	51.42	-11.18	Phase 1	11.56	
0.281	40.37	50.80	-10.43	Phase 1	11.58	
0.301	40.83	50.22	-9.40	Phase 1	11.59	
0.321	40.45	49.68	-9.23	Phase 1	11.59	
0.321	33.23	49.68	-16.45	Phase 2	11.59	
0.341	37.31	49.17	-11.86	Phase 1	11.59	
0.341	34.39	49.17	-14.78	Phase 2	11.59	
0.362	32.11	48.69	-16.58	Phase 2	11.58	
4.466	28.03	46.00	-17.97	Phase 1	11.76	
4.486	28.27	46.00	-17.73	Phase 1	11.76	
4.486	26.03	46.00	-19.97	Phase 2	11.76	
4.506	28.22	46.00	-17.78	Phase 1	11.76	
4.506	25.95	46.00	-20.05	Phase 2	11.76	
4.526	28.20	46.00	-17.80	Phase 1	11.76	
4.526	25.96	46.00	-20.04	Phase 2	11.76	
4.547	25.67	46.00	-20.33	Phase 2	11.76	
4.547	27.94	46.00	-18.06	Phase 1	11.76	
4.567	27.67	46.00	-18.33	Phase 1	11.76	
10.635	31.96	50.00	-18.04	Phase 1	11.87	
10.635	34.44	50.00	-15.56	Phase 2	11.87	
10.655	34.43	50.00	-15.57	Phase 2	11.87	
10.655	31.96	50.00	-18.04	Phase 1	11.87	
10.696	31.88	50.00	-18.12	Phase 1	11.87	
11.256	31.92	50.00	-18.08	Phase 1	11.89	
11.256	34.58	50.00	-15.42	Phase 2	11.89	
11.276	32.04	50.00	-17.96	Phase 1	11.89	
11.276	34.63	50.00	-15.37	Phase 2	11.89	
11.355	34.45	50.00	-15.55	Phase 2	11.89	

Results: Complies by 9.23dB


4.9.3.2 Test Results: Power Guardian[™] 390

15.107: Conducted Emissions 120VAC 60Hz, Tested with AC/DC Power Adapter

Model: ; Client: ; Comments: ; Test Date: 06/11/2018 15:19

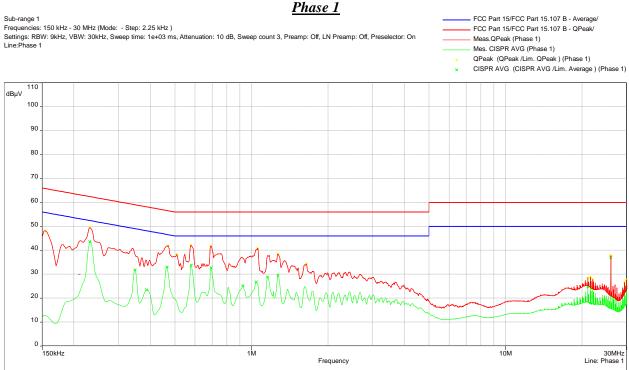
Phase 2

4.9.3.2 Test Results: Power Guardian[™] 390 (Continued)

15.107: Conducted Emissions 120VAC 60Hz, Tested with AC/DC Power Adapter

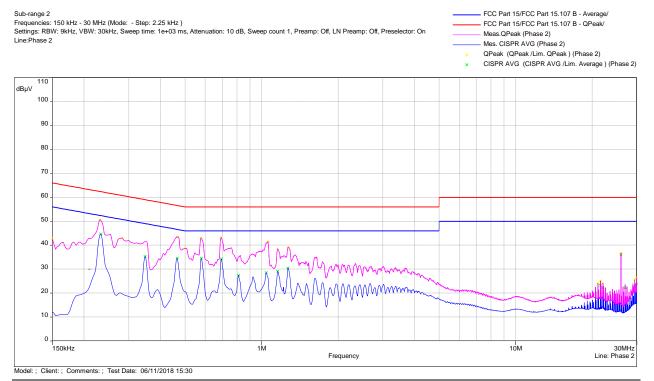
	Quasi Peak Table						
Frequency (MHz)	QPeak (dBµV)	Lim. QPeak (dBµV)	QPeak-Lim (dB)	Phase	Correction (dB)		
0.231	49.48	79.00	-29.52	Phase 1	11.55		
0.231	50.57	79.00	-28.43	Phase 2	11.55		
0.274	41.08	79.00	-37.92	Phase 1	11.57		
0.276	42.26	79.00	-36.74	Phase 2	11.57		
0.465	43.50	79.00	-35.50	Phase 2	11.59		
0.472	41.86	79.00	-37.14	Phase 1	11.59		
0.506	37.69	73.00	-35.31	Phase 1	11.59		
0.508	38.39	73.00	-34.61	Phase 2	11.59		
0.578	43.08	73.00	-29.92	Phase 2	11.59		
0.578	42.05	73.00	-30.95	Phase 1	11.59		
0.692	41.84	73.00	-31.16	Phase 1	11.60		
0.692	43.10	73.00	-29.90	Phase 2	11.60		
1.057	41.43	73.00	-31.57	Phase 2	11.63		
1.059	40.85	73.00	-32.15	Phase 1	11.63		
1.275	38.33	73.00	-34.67	Phase 1	11.62		
1.277	39.19	73.00	-33.81	Phase 2	11.62		
1.644	35.00	73.00	-38.00	Phase 2	11.67		
1.646	34.26	73.00	-38.74	Phase 1	11.67		
21.095	23.90	73.00	-49.10	Phase 2	11.96		
21.586	28.51	73.00	-44.49	Phase 1	11.97		
21.586	24.48	73.00	-48.52	Phase 2	11.97		
22.076	23.65	73.00	-49.35	Phase 2	11.97		
22.076	27.44	73.00	-45.56	Phase 1	11.97		
26.000	36.81	73.00	-36.19	Phase 1	12.00		
26.000	35.37	73.00	-37.63	Phase 2	12.00		
26.981	24.94	73.00	-48.06	Phase 1	12.01		
29.434	25.89	73.00	-47.11	Phase 1	12.04		
29.436	25.15	73.00	-47.85	Phase 2	12.04		
29.924	27.38	73.00	-45.62	Phase 1	12.05		
29.927	26.46	73.00	-46.54	Phase 2	12.05		

4.9.3.2 Test Results: Power Guardian[™] 390 (Continued)


15.107: Conducted Emissions 120VAC 60Hz, Tested with AC/DC Power Adapter

	Average Table						
Frequency (MHz)	AVG (dBµV)	Lim. Average (dBµV)	AVG-Lim (dB)	Phase	Correction (dB)		
0.233	43.65	66.00	-22.35	Phase 1	11.55		
0.233	44.61	66.00	-21.39	Phase 2	11.55		
0.348	31.72	66.00	-34.28	Phase 1	11.59		
0.348	35.25	66.00	-30.75	Phase 2	11.59		
0.386	23.77	66.00	-42.23	Phase 1	11.58		
0.465	33.01	66.00	-32.99	Phase 1	11.59		
0.465	34.50	66.00	-31.50	Phase 2	11.59		
0.580	34.35	60.00	-25.65	Phase 2	11.59		
0.580	33.72	60.00	-26.28	Phase 1	11.59		
0.695	34.06	60.00	-25.94	Phase 2	11.60		
0.695	32.48	60.00	-27.52	Phase 1	11.60		
0.812	27.31	60.00	-32.69	Phase 2	11.62		
0.926	25.00	60.00	-35.00	Phase 1	11.63		
1.043	28.41	60.00	-31.59	Phase 2	11.63		
1.046	26.70	60.00	-33.30	Phase 1	11.63		
1.158	28.95	60.00	-31.05	Phase 2	11.63		
1.160	28.65	60.00	-31.35	Phase 1	11.63		
1.273	29.39	60.00	-30.61	Phase 1	11.62		
1.273	30.27	60.00	-29.73	Phase 2	11.62		
21.095	24.35	60.00	-35.65	Phase 1	11.96		
21.095	21.61	60.00	-38.39	Phase 2	11.96		
21.586	25.08	60.00	-34.92	Phase 1	11.97		
21.586	22.55	60.00	-37.45	Phase 2	11.97		
22.076	23.91	60.00	-36.09	Phase 1	11.97		
22.076	21.54	60.00	-38.46	Phase 2	11.97		
26.000	35.86	60.00	-24.14	Phase 1	12.00		
26.000	34.62	60.00	-25.38	Phase 2	12.00		
29.434	22.94	60.00	-37.06	Phase 1	12.04		
29.436	22.57	60.00	-37.43	Phase 2	12.04		
29.924	24.51	60.00	-35.49	Phase 1	12.05		
29.927	24.21	60.00	-35.79	Phase 2	12.05		

Results: Complies by 21.39 dB



4.9.3.2 Test Results: Power Guardian[™] 390 (Continued) 15.207: Conducted Emissions 120VAC 60Hz, Tested with AC/DC Power Adapter

Model: ; Client: ; Comments: ; Test Date: 06/11/2018 15:30

Phase 2

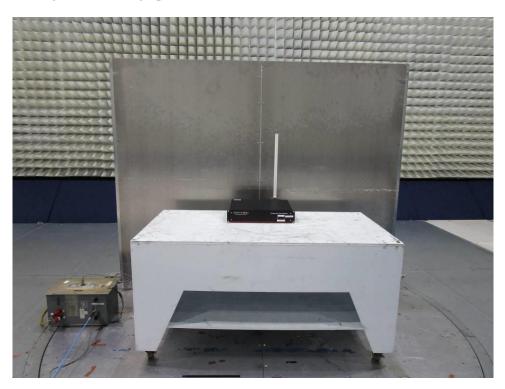
EMC Report for Smart Wires, Inc. on the Power Guardian System File: 103539437MPK-001

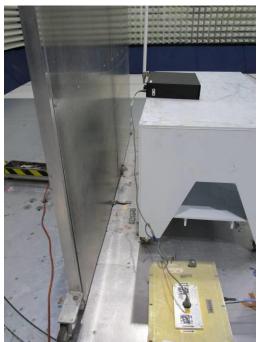
4.9.3.2 Test Results: Power Guardian[™] 390 (Continued)

15.207: Conducted Emissions 120VAC 60Hz, Tested with AC/DC Power Adapter

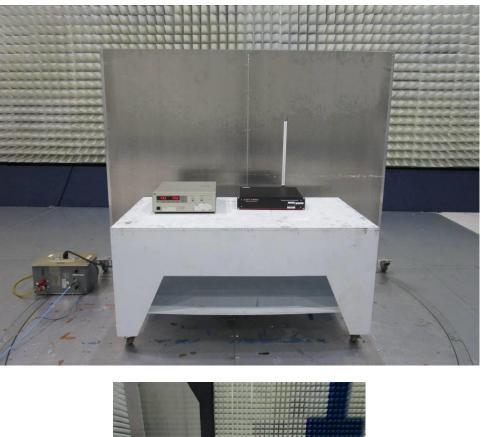
	Quasi Peak Table						
Frequency (MHz)	QPeak (dBµV)	Lim. QPeak (dBµV)	QPeak-Lim (dB)	Phase	Correction (dB)		
0.150	42.63	66.00	-23.37	Phase 2	11.51		
0.155	48.12	65.75	-17.63	Phase 1	11.51		
0.231	49.48	62.41	-12.93	Phase 1	11.55		
0.231	50.60	62.41	-11.82	Phase 2	11.55		
0.283	42.96	60.73	-17.78	Phase 2	11.58		
0.465	43.48	56.60	-13.12	Phase 2	11.59		
0.470	41.88	56.52	-14.65	Phase 1	11.59		
0.501	38.68	56.00	-17.32	Phase 2	11.59		
0.508	38.21	56.00	-17.79	Phase 1	11.59		
0.578	43.10	56.00	-12.90	Phase 2	11.59		
0.578	42.07	56.00	-13.93	Phase 1	11.59		
0.692	43.15	56.00	-12.85	Phase 2	11.60		
0.692	41.83	56.00	-14.17	Phase 1	11.60		
1.059	40.82	56.00	-15.18	Phase 1	11.63		
1.059	41.47	56.00	-14.53	Phase 2	11.63		
1.158	38.39	56.00	-17.61	Phase 2	11.63		
1.273	38.38	56.00	-17.62	Phase 1	11.62		
1.275	39.21	56.00	-16.79	Phase 2	11.62		
1.644	34.27	56.00	-21.73	Phase 1	11.67		
21.095	23.97	60.00	-36.03	Phase 2	11.96		
21.095	28.51	60.00	-31.49	Phase 1	11.96		
21.586	28.77	60.00	-31.23	Phase 1	11.97		
21.586	25.03	60.00	-34.97	Phase 2	11.97		
22.076	27.78	60.00	-32.22	Phase 1	11.97		
22.076	24.11	60.00	-35.89	Phase 2	11.97		
26.000	36.71	60.00	-23.29	Phase 2	12.00		
26.000	37.83	60.00	-22.17	Phase 1	12.00		
29.434	25.55	60.00	-34.45	Phase 2	12.04		
29.436	26.54	60.00	-33.46	Phase 1	12.04		
29.924	26.20	60.00	-33.80	Phase 2	12.05		
29.927	27.62	60.00	-32.38	Phase 1	12.05		

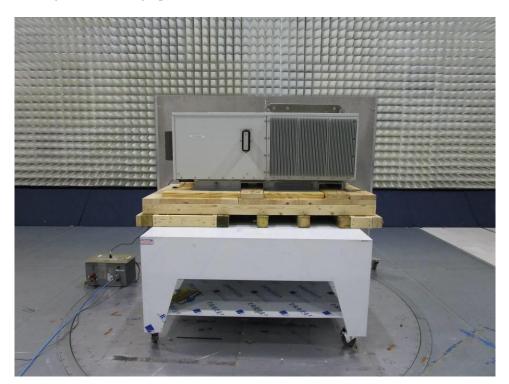
4.9.3.2 Test Results: Power Guardian[™] 390 (Continued)

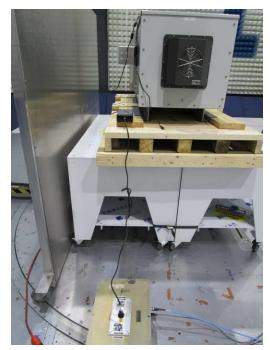

15.207: Conducted Emissions 120VAC 60Hz, Tested with AC/DC Power Adapter


	Average Table						
Frequency (MHz)	AVG (dBµV)	Lim. Average (dBµV)	AVG-Lim (dB)	Phase	Correction (dB)		
0.231	43.59	52.41	-8.82	Phase 1	11.55		
0.233	44.66	52.33	-7.67	Phase 2	11.55		
0.348	35.28	49.01	-13.73	Phase 2	11.59		
0.348	31.74	49.01	-17.27	Phase 1	11.59		
0.386	23.43	48.14	-24.71	Phase 1	11.58		
0.465	34.54	46.60	-12.06	Phase 2	11.59		
0.465	32.94	46.60	-13.66	Phase 1	11.59		
0.580	34.46	46.00	-11.54	Phase 2	11.59		
0.580	33.73	46.00	-12.27	Phase 1	11.59		
0.695	34.22	46.00	-11.78	Phase 2	11.60		
0.695	32.61	46.00	-13.39	Phase 1	11.60		
0.812	27.42	46.00	-18.58	Phase 2	11.62		
0.926	25.22	46.00	-20.78	Phase 1	11.63		
1.043	28.44	46.00	-17.56	Phase 2	11.63		
1.043	26.77	46.00	-19.23	Phase 1	11.63		
1.158	29.02	46.00	-16.98	Phase 2	11.63		
1.158	28.75	46.00	-17.25	Phase 1	11.63		
1.271	30.38	46.00	-15.62	Phase 2	11.62		
1.273	29.53	46.00	-16.47	Phase 1	11.62		
21.095	24.71	50.00	-25.29	Phase 1	11.96		
21.586	25.51	50.00	-24.49	Phase 1	11.97		
21.586	23.15	50.00	-26.85	Phase 2	11.97		
22.076	24.42	50.00	-25.58	Phase 1	11.97		
22.076	22.16	50.00	-27.84	Phase 2	11.97		
26.000	36.94	50.00	-13.06	Phase 1	12.00		
26.000	35.95	50.00	-14.05	Phase 2	12.00		
26.981	22.21	50.00	-27.79	Phase 2	12.01		
29.434	22.84	50.00	-27.16	Phase 2	12.04		
29.436	23.46	50.00	-26.54	Phase 1	12.04		
29.924	23.71	50.00	-26.29	Phase 2	12.05		
29.927	24.53	50.00	-25.47	Phase 1	12.05		

Results: Complies by 7.67 dB


4.9.4 Test Configuration Photographs


4.9.4 Test Configuration Photographs (Continued)



4.9.4 Test Configuration Photographs (Continued)

5.0 List of Test Equipment and Software

Equipment Description	Manufacturer	Model/ Type	Asset No.	Monthly Cal Interval	Cal Due
Pre-Amplifier	Sonoma Instrument	310	ITS 01493	12	10/20/18
EMI Receiver	Rohde and Schwarz	ESR7	ITS 01607	12	10/09/18
BI-Log Antenna	Antenna Research	LPB-2513	ITS 00355	12	02/21/19
LISN	FCC	FCC-LISN-PA- NEMA-5-15	ITS 00552	12	11/14/18
RE Cable	TRU Corporation	TRU CORE 300	ITS 1462	12	08/19/18
RE Cable	TRU Corporation	TRU CORE 300	ITS 1465	12	08/19/18
RE Cable	TRU Corporation	TRU CORE 300	ITS 1470	12	08/19/18
Transient Limiter	COM-POWER	LIT-153A	ITS 1452	12	06/19/18
Spectrum Analyzer	Rohde and Schwarz	FSU	ITS 00913	12	01/24/19
Spectrum Analyzer	Rohde and Schwarz	FSP	ITS 01200	12	01/08/19
Pre-Amplifier (1-18GHz)	Miteq	AMF-4D-001180-24- 10P	ITS 00526	12	01/19/19
Horn Antenna	ETS-Lindgren	3117	ITS 01325	12	01/25/19
Horn Antenna	ETS-Lindgren	3117-PA	ITS 01636	12	01/11/19
Notch Filter	Micro-Tronics	BRC50722	ITS 01170	12	01/26/19
High Pass Filter	Reactel	THS-4/18 S11	ITS 01171	12	01/28/19
RE Cable	TRU Corporation	TRU Core 300	ITS 01330	12	11/29/18
Pre-Amplifier	Sonoma Instrument	310	ITS 00942	12	01/26/19
Attenuator	Narda	FSCM99899	ITS 01583	12	08/31/18

Measurement equipment used for emission compliance testing utilized the equipment on the following list:

Software used for emission compliance testing utilized the following:

Name	Manufacturer	Version	Template/Profile
Tile	Quantum Change	3.4.K.22	Conducted Spurious_30M-26GHz
BAT-EMC	Nexio	3.16.0.64	Smartwires_Radio_G103539437.bpp
RS Commander	Rohde Schwarz	1.6.4	Not Applicable (Screen grabber)

6.0 Document History

Revision/ Job Number	Writer Initials	Reviewers Initials	Date	Change
1.0 / G103539437	AS	KV	June 25, 2018	Original Document