

C.4.2. Robot

The SPEAG DASY system uses the high precision robots (DASY5: RX90L) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version from Stäubli is used. The Stäubli robot series have many features that are important for our application:

- High precision (repeatability 0.02mm)
- High reliability (industrial design)
- > Low maintenance costs (virtually maintenance free due to direct drive gears; no belt drives)
- Jerk-free straight movements (brushless synchron motors; no stepper motors)
- Low ELF interference (motor control fields shielded via the closed metallic construction shields)

Picture C.5 DASY 5

C.4.3. Measurement Server

The Measurement server is based on a PC/104 CPU broad with CPU (DASY5: 400 MHz, Intel Celeron), chipdisk (DASY5: 128MB), RAM (DASY5: 128MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O broad, which is directly connected to the PC/104 bus of the CPU broad.

The measurement server performs all real-time data evaluation of field measurements and surface detection, controls robot movements and handles safety operation. The PC operating system cannot interfere with these time critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with an expansion port which is reserved for future applications. Please note that this expansion port does not have a standardized pinout, and therefore only devices provided by SPEAG can be connected. Devices from any other supplier could seriously damage the measurement server.

Picture C.6 Server for DASY 5

C.4.4. Device Holder for Phantom

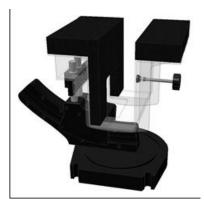
The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of $\pm 20\%$. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no

repositioning when changing the angles.

The DASY device holder is constructed of low-loss POM material having the following dielectric parameters: relative permittivity ε =3 and loss tangent δ =0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

<Laptop Extension Kit>


The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with

the Twin-SAM and ELI phantoms.

Picture C.7: Device Holder

Picture C.8: Laptop Extension Kit

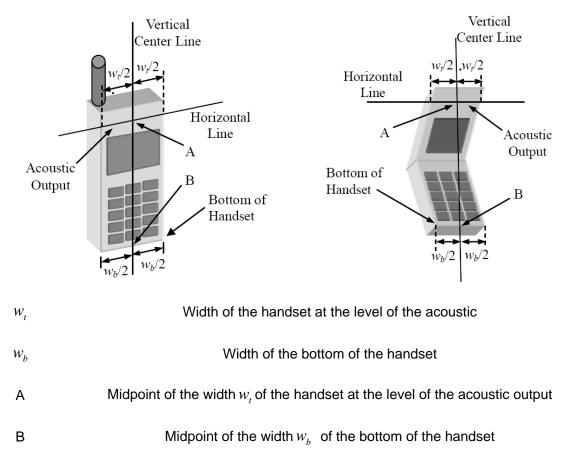
C.4.5. Phantom

The SAM Twin Phantom V4.0 is constructed of a fiberglass shell integrated in a table. The shape of the shell is based on data from an anatomical study designed to

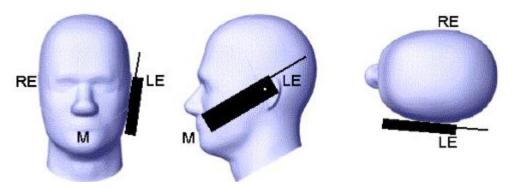
Represent the 90th percentile of the population. The phantom enables the dissymmetric evaluation of SAR for both left and right handed handset usage, as well as body-worn usage using the flat phantom region. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. The shell phantom has a 2mm shell thickness (except the ear region where shell thickness increases to 6 mm).

Shell Thickness:2 ± 0. 2 mmFilling Volume:Approx. 25 litersDimensions:810 x 1000 x 500 mm (H x L x W)Available:Special

Picture C.9: SAM Twin Phantom

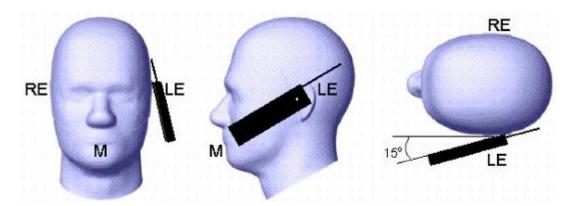


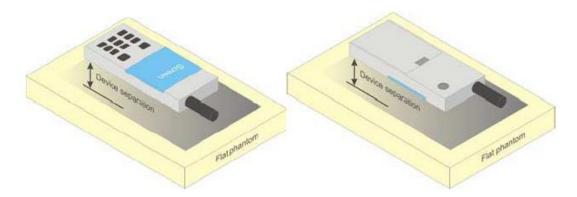
ANNEX D. Position of the wireless device in relation to the


phantom

D.1. General considerations

This standard specifies two handset test positions against the head phantom – the "cheek" position and the "tilt" position.

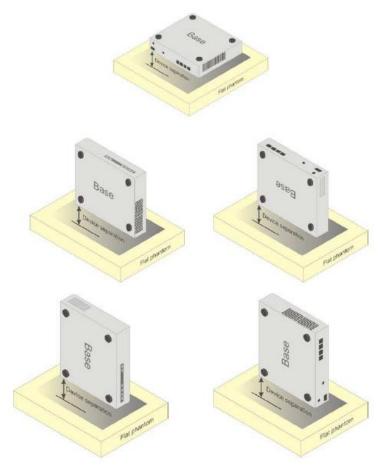




Picture D.3 Tilt position of the wireless device on the left side of SAM

D.2. Body-worn device

A typical example of a body-worn device is a mobile phone, wireless enabled PDA or other battery operated wireless device with the ability to transmit while mounted on a person's body using a carry accessory approved by the wireless device manufacturer.


Picture D.4Test positions for body-worn devices

D.3. Desktop device

A typical example of a desktop device is a wireless enabled desktop computer placed on a table or desk when used.

The DUT shall be positioned at the distance and in the orientation to the phantom that corresponds to the intended use as specified by the manufacturer in the user instructions. For devices that employ an external antenna with variable positions, tests shall be performed for all antenna positions specified. Picture 8.5 show positions for desktop device SAR tests. If the intended use is not specified, the device shall be tested directly against the flat phantom.

Picture D.5 Test positions for desktop devices

D.4. DUT Setup Photos

Picture D.6 DSY5 system Set-up

Note:

The photos of test sample and test positions show in additional document.

ANNEX E. Equivalent Media Recipes

The liquid used for the frequency range of 800-3000 MHz consisted of water, sugar, salt, preventol, glycol monobutyl and Cellulose. The liquid has been previously proven to be suited for worst-case. The Table E.1 shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the IEEE 1528 and IEC 62209.

		•		•				
	835	835	1900	1900	2450	2450		
Frequency (MHz)	Head	Body	Head	Body	Head	Body		
Ingredients (% by weight)								
Water	41.45	52.5	55.242	69.91	58.79	72.60		
Sugar	56.0	45.0	١	١	١	١		
Salt	1.45	1.4	0.306	0.13	0.06	0.18		
Preventol	0.1	0.1	١	١	١	١		
Cellulose	1.0	1.0	١	١	١	١		
Glycol Monobutyl	\	١	44.452	29.96	41.15	27.22		
Dielectric						a-50 7		
Parameters	ε=41.5	ε=55.2	ε=40.0	ε=53.3	ε=39.2	ε=52.7		
Target Value	σ=0.90	σ=0.97	σ=1.40	σ=1.52	σ=1.80	σ=1.95		

Table E.1: Composition of the Tis	ssue Equivalent Matter
	Soud Equivalent matter

ANNEX F. System Validation

The SAR system must be validated against its performance specifications before it is deployed. When SAR probes, system components or software are changed, upgraded or recalibrated, these must bevalidated with the SAR system(s) that operates with such components.

			oyotom vanaati			
System	Probe SN.	Liquid name	Validation	Frequenc	Permittivity	Conductivity
No.	FIDDE SIN.	Liquid Hame	date	y point	٤	σ (S/m)
1	3754	Head 835MHz	Aug7,2017	835MHz	41.040	0.917
2	3754	Head 1900MHz	Aug22,2017	1900MHz	39.641	1.385
3	3754	Head 2450MHz	Aug8,2017	2450MHz	40.874	1.821
4	3754	Head 2600MHz	Aug23,2017	2600MHz	38.943	1.951
5	3754	Body 835MHz	Aug7,2017	835MHz	57.108	1.001
6	3754	Body 1900MHz	Aug22,2017	1900MHz	53.237	1.524
7	3754	Body 2450MHz	Aug8,2017	2450MHz	53.946	1.918
8	3754	Body 2600MHz	Aug23,2017	2600MHz	52.686	2.136

Table F.1: System Validation Part 1

Table F.2: System Validation Part 2

0.14	Sensitivity	PASS	PASS
CW Validation	Probe linearity	PASS	PASS
Validation	Probe Isotropy	PASS	PASS
	MOD.type	GMSK	GMSK
Mod	MOD.type	OFDM	OFDM
Validation	Duty factor	PASS	PASS
	PAR	PASS	PASS

ECIT

ANNEX G. Probe and DAE Calibration Certificate

Schmid & Partner Engineering AG		S	p	е	a	q
Zeughausstrasse 43, 8004 Zurich, Switzerla Phone +41 44 245 9700, Fax +41 44 245 97 info@speag.com, http://www.speag.com	nd 779					
						1244
	MPORTANT		TICE			1211
		NO	IICE			
USAGE OF THE DAE 4						
The DAE unit is a delicate, high prec serviceable parts inside the DAE. Spec	ision instrument and cial attention shall be	requires given to	careful ti he follow	reatme /ing po	nt by th ints:	e user. There are n
Battery Exchange: The battery cover cause the threads inside the DAE to w	r of the DAE4 unit is ear out.	closed us	sing a sc	rew, o	ver tight	ening the screw ma
Shipping of the DAE: Before shippin DAE in an antistatic bag. This antistati DAE from impacts during transportati inside.	C Dad shall then he na	cked into	alargor	how or	antain	ar ushiph must a statt
E-Stop Failures: Touch detection ma of the E-stop may lead to damage of th accumulated in the E-stop. To preven carefully and keep the DAE unit in a no	t F-stop failure the	and collis	sion erro	rs are (often ca	the state of the s
Repair: Minor repairs are performed a the right to charge for any repair espec	at no extra cost durin ially if rough unprofes	g the ani sional ha	nual calib ndling ca	oration. aused t	Howev he defe	er, SPEAG reserve
DASY Configuration Files: Since the calibration procedure of a DAE unit, are in the corresponding configuration file.	e exact values of th		nnut roe	istance		management during the
Important Note: Warranty and calibration is vo Customer.	id if the DAE unit	is disa	ssemb	led p	artly o	or fully by the
Important Note:						
Never attempt to grease or oil stop assembly is allowed by calibration procedure.	the E-stop assem ertified SPEAG po	ibly. Cl ersonn	eaning el only	and i and i	readju s part	sting of the E- of the annual
	5/					
Important Note: To prevent damage of the DAE probe to the DAE. Carefully co mating position. Avoid any rot while turning the locking nut o	nnect the probe v ational movemen f the connector.	with the	conne	body	notch	oriented in the
disconnecting the probe from the	he DAE.		no our	ona	n be u	
Schmid & Partner Engineering						
Schmid & Partner Engineering						
Schmid & Partner Engineering						11.12.2009

alibration Laborato chmid & Partner Engineering AG ughausstrasse 43, 8004 Zurid			 S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service
ccredited by the Swiss Accredit he Swiss Accreditation Servic	ce is one of the signatories	to the EA	tion No.: SCS 0108
lultilateral Agreement for the lient TMC - SH (Aud			e No: DAE4-1244_Dec16
CALIBRATION	CERTIFICATE		
Dbject	DAE4 - SD 000 D	04 BM - SN: 1244	
Calibration procedure(s)	QA CAL-06.v29 Calibration procee	dure for the data acquisition e	lectronics (DAE)
Calibration date:	December 12, 20	16	
The measurements and the unce All calibrations have been condu	ertainties with confidence pro	nal standards, which realize the physica obability are given on the following page r facility: environment temperature (22 ±	s and are part of the certificate.
The measurements and the unco NII calibrations have been condu Calibration Equipment used (M&	ertainties with confidence pro	obability are given on the following page:	s and are part of the certificate.
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards	ertainties with confidence pro- icted in the closed laboratory .TE critical for calibration)	obability are given on the following page: r facility: environment temperature (22 ±	s and are part of the certificate. 3)°C and humidity < 70%.
The measurements and the unce all calibrations have been condu Calibration Equipment used (M& Primary Standards Seithley Multimeter Type 2001 Secondary Standards	rtainties with confidence pro- cted in the closed laboratory .TE critical for calibration) ID # SN: 0810278 ID #	cal Date (Certificate No.) 09-Sep-16 (No:19065) Check Date (in house)	s and are part of the certificate. 3)°C and humidity < 70%. Scheduled Calibration Sep-17 Scheduled Check
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Secondary Standards Nuto DAE Calibration Unit	tertainties with confidence proceed in the closed laboratory TE critical for calibration) ID # SN: 0810278 ID # SE UWS 053 AA 1001	cal Date (Certificate No.) 09-Sep-16 (No:19065)	s and are part of the certificate. 3)°C and humidity < 70%. Scheduled Calibration Sep-17
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit	ertainties with confidence pro- icted in the closed laboratory TE critical for calibration) ID # SN: 0810278 ID # SE UWS 053 AA 1001 SE UMS 006 AA 1002	Dabbility are given on the following page: r facility: environment temperature (22 ± Cal Date (Certificate No.) 09-Sep-16 (No:19065) Check Date (in house) 05-Jan-16 (in house check) 05-Jan-16 (in house check)	s and are part of the certificate. 3)°C and humidity < 70%. Scheduled Calibration Sep-17 Scheduled Check In house check: Jan-17 In house check: Jan-17
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit Calibrator Box V2.1	tertainties with confidence proceed in the closed laboratory TE critical for calibration) ID # SN: 0810278 ID # SE UWS 053 AA 1001	Cal Date (Certificate No.) 09-Sep-16 (No:19065) Check Date (in house) 05-Jan-16 (in house check)	s and are part of the certificate. 3)°C and humidity < 70%. Scheduled Calibration Sep-17 Scheduled Check In house check: Jan-17
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit Calibrator Box V2.1	ertainties with confidence pro- cted in the closed laboratory TE critical for calibration) ID # SN: 0810278 ID # SE UWS 053 AA 1001 SE UWS 006 AA 1002 Name	Dabbility are given on the following page: r facility: environment temperature (22 ± Cal Date (Certificate No.) 09-Sep-16 (No:19065) Check Date (in house) 05-Jan-16 (in house check) 05-Jan-16 (in house check) D5-Jan-16 (in house check)	s and are part of the certificate. 3)*C and humidity < 70%. Scheduled Calibration Sep-17 Scheduled Check In house check: Jan-17 In house check: Jan-17 Signature MAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit Calibrator Box V2.1 Calibrated by: Approved by:	ertainties with confidence producted in the closed laboratory IC ertitcal for calibration) ID # SN: 0810278 ID # SE UWS 053 AA 1001 SE UMS 006 AA 1002 Name Dominique Steffen Fin Bornholt	Cal Date (Certificate No.) 09-Sep-16 (No:19065) Check Date (in house) 05-Jan-16 (in house check) 05-Jan-16 (in house check) Function Function	s and are part of the certificate. 3)*C and humidity < 70%. Scheduled Calibration Sep-17 Scheduled Check In house check: Jan-17 In house check: Jan-17 Signature Signature Issued: December 13, 2016

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
 Service suisse d'étalonnage
 Servizio svizzero di taratura
 S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE Connector angle

data acquisition electronics gle information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-1244_Dec16

Page 2 of 5

DC Voltage Measurement

High Range:	1LSB =	6.1uV.	full range =	-100+300 mV
Low Range:	1LSB =	61nV	3-	-1+3mV

Calibration Factors	х	Y	Z
High Range	403.872 ± 0.02% (k=2)	403.613 ± 0.02% (k=2)	404.527 ± 0.02% (k=2)
Low Range	3.95409 ± 1.50% (k=2)	3.97148 ± 1.50% (k=2)	

Connector Angle

Connector Angle to be used in DASY system	22.0 ° ± 1 °

Certificate No: DAE4-1244_Dec16

Page 3 of 5

Appendix (Additional assessments outside the scope of SCS0108)

1. DC Voltage Linearity

High Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	199995.09	-0.83	-0.00
Channel X + Input	20004.47	2.58	0.01
Channel X - Input	-19997.82	2.60	-0.01
Channel Y + Input	199993.65	-2.29	-0.00
Channel Y + Input	20001.27	-0.51	-0.00
Channel Y - Input	-19997.58	2.97	-0.01
Channel Z + Input	199992.15	-3.40	-0.00
Channel Z + Input	19999.95	-1.78	-0.01
Channel Z - Input	-20002.51	-1.92	0.01

Low Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	2002.00	0.39	0.02
Channel X + Input	202.04	0.13	0.07
Channel X - Input	-197.82	0.13	-0.06
Channel Y + Input	2000.90	-0.59	-0.03
Channel Y + Input	202.65	0.73	0.36
Channel Y - Input	-197.74	0.13	-0.06
Channel Z + Input	2001.79	0.42	0.02
Channel Z + Input	200.75	-1.05	-0.52
Channel Z - Input	-199.15	-1.06	0.53

2. Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	-3.59	-5.16
	- 200	6.94	5.14
Channel Y	200	-3.41	-3.57
	- 200	2.60	2.96
Channel Z	200	-8.21	-8.18
	- 200	5.71	5.56

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (µV)	
Channel X	200	-	1.06	-4.10	
Channel Y 200		7.19	-	1.88	
Channel Z	200	9.77	4.29	-	

Certificate No: DAE4-1244_Dec16

Page 4 of 5

4. AD-Converter Values with inputs shorted

DASY measurement	parameters:	Auto Zero	Time: 3 sec;	Measuring time:	3 sec
------------------	-------------	-----------	--------------	-----------------	-------

	High Range (LSB)	Low Range (LSB)
Channel X	16885	16322
Channel Y	16457	16417
Channel Z	15874	17196

5. Input Offset Measurement DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10MΩ

	Average (µV)	min. Offset (µV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	-0.50	-1.93	1.16	0.62
Channel Y	0.32	-1.78	2.06	0.72
Channel Z	-2.19	-4.30	-0.47	0.66

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

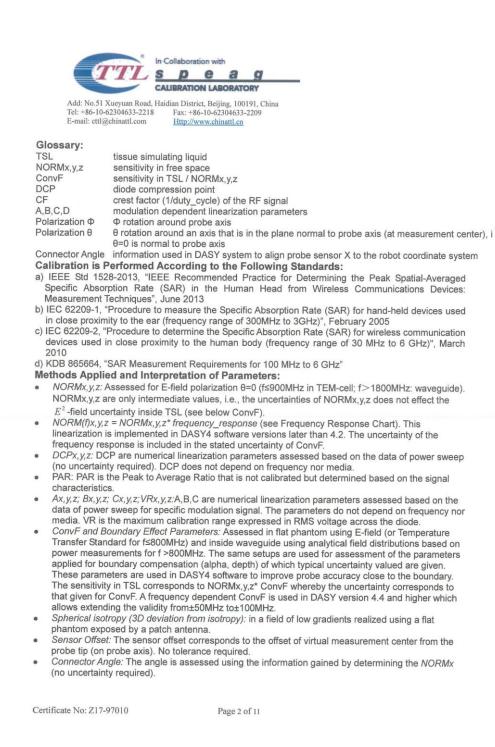
	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9


Certificate No: DAE4-1244_Dec16

Page 5 of 5

Tel: +86-10-623044 E-mail: cttl@china	633-2218 Fax: +8	rict, Beijing, 100191, China 36-10-62304633-2209 www.chinattl.cn	CNAS L05
Client ECI	T	Certificate No: Z17-	97010
CALIBRATION C	ERTIFICAT	E	
Object	EX3DV4	4 - SN:3754	
Calibration Procedure(s)	FD-Z11- Calibrati	004-01 ion Procedures for Dosimetric E-field Probe	S
Calibration date:	January	13, 2017	
		he closed laboratory facility: environment	t temperature(22±3)°C and
humidity<70%. Calibration Equipment used	(M&TE critical for	r calibration)	
Calibration Equipment used	-	,	Scheduled Calibration
Calibration Equipment used	-	r calibration) Cal Date(Calibrated by, Certificate No.) 27-Jun-16 (CTTL, No.J16X04777)	Scheduled Calibration Jun-17
Calibration Equipment used	ID #	Cal Date(Calibrated by, Certificate No.)	
Calibration Equipment used Primary Standards Power Meter NRP2	ID # 101919	Cal Date(Calibrated by, Certificate No.) 27-Jun-16 (CTTL, No.J16X04777)	Jun-17
Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91	ID # 101919 101547 101548	Cal Date(Calibrated by, Certificate No.) 27-Jun-16 (CTTL, No.J16X04777) 27-Jun-16 (CTTL, No.J16X04777)	Jun-17 Jun-17
Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator	ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB	Cal Date(Calibrated by, Certificate No.) 27-Jun-16 (CTTL, No.J16X04777) 27-Jun-16 (CTTL, No.J16X04777) 27-Jun-16 (CTTL, No.J16X04777) 13-Mar-16(CTTL,No.J16X01547)	Jun-17 Jun-17 Jun-17
Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator	ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB	Cal Date(Calibrated by, Certificate No.) 27-Jun-16 (CTTL, No.J16X04777) 27-Jun-16 (CTTL, No.J16X04777) 27-Jun-16 (CTTL, No.J16X04777) 13-Mar-16(CTTL, No.J16X01547) 13-Mar-16(CTTL, No.J16X01548) 26-Sep-16(SPEAG,No.EX3-7433_Sep16)	Jun-17 Jun-17 Jun-17 Mar-18 Mar-18 Sep-17
Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGeneratorMG3700A	ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7433 SN 1331 ID # 6201052605	Cal Date(Calibrated by, Certificate No.) 27-Jun-16 (CTTL, No.J16X04777) 27-Jun-16 (CTTL, No.J16X04777) 27-Jun-16 (CTTL, No.J16X04777) 13-Mar-16(CTTL, No.J16X01547) 13-Mar-16(CTTL, No.J16X01548) 26-Sep-16(SPEAG, No.EX3-7433_Sep16) 21-Jan-16(SPEAG, No.DAE4-1331_Jan10 Cal Date(Calibrated by, Certificate No.) 27-Jun-16 (CTTL, No.J16X04776)	Jun-17 Jun-17 Jun-17 Mar-18 Mar-18 Sep-17 5) Jan -17 Scheduled Calibration Jun-17
Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards	ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7433 SN 1331 ID # 6201052605	Cal Date(Calibrated by, Certificate No.) 27-Jun-16 (CTTL, No.J16X04777) 27-Jun-16 (CTTL, No.J16X04777) 27-Jun-16 (CTTL, No.J16X04777) 13-Mar-16(CTTL, No.J16X01547) 13-Mar-16(CTTL, No.J16X01548) 26-Sep-16(SPEAG, No.EX3-7433_Sep16) 21-Jan-16(SPEAG, No.DAE4-1331_Jan10 Cal Date(Calibrated by, Certificate No.)	Jun-17 Jun-17 Jun-17 Mar-18 Mar-18 Sep-17 Jan -17 Scheduled Calibration Jun-17 Jan -17
Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGeneratorMG3700A Network Analyzer E5071C	ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7433 SN 1331 ID # 6201052605 MY46110673	Cal Date(Calibrated by, Certificate No.) 27-Jun-16 (CTTL, No.J16X04777) 27-Jun-16 (CTTL, No.J16X04777) 13-Mar-16 (CTTL, No.J16X04777) 13-Mar-16 (CTTL, No.J16X01547) 13-Mar-16 (CTTL, No.J16X01548) 26-Sep-16 (SPEAG, No.EX3-7433_Sep16) 21-Jan-16 (SPEAG, No.DAE4-1331_Jan10 Cal Date(Calibrated by, Certificate No.) 27-Jun-16 (CTTL, No.J16X04776) 26-Jan-16 (CTTL, No.J16X00894)	Jun-17 Jun-17 Jun-17 Mar-18 Mar-18 Sep-17 5) Jan -17 Scheduled Calibration Jun-17
Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGeneratorMG3700A	ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7433 SN 1331 ID # 6201052605 MY46110673 Name	Cal Date(Calibrated by, Certificate No.) 27-Jun-16 (CTTL, No.J16X04777) 27-Jun-16 (CTTL, No.J16X04777) 27-Jun-16 (CTTL, No.J16X01547) 13-Mar-16(CTTL, No.J16X01548) 26-Sep-16(SPEAG,No.EX3-7433_Sep16) 21-Jan-16(SPEAG, No.DAE4-1331_Jan16 Cal Date(Calibrated by, Certificate No.) 27-Jun-16 (CTTL, No.J16X04776) 26-Jan-16 (CTTL, No.J16X04776) 26-Jan-16 (CTTL, No.J16X00894) Function	Jun-17 Jun-17 Jun-17 Mar-18 Mar-18 Sep-17 Jan -17 Scheduled Calibration Jun-17 Jan -17
Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGeneratorMG3700A Network Analyzer E5071C Calibrated by:	ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7433 SN 1331 ID # 6201052605 MY46110673 Name Yu Zongying	Cal Date(Calibrated by, Certificate No.) 27-Jun-16 (CTTL, No.J16X04777) 27-Jun-16 (CTTL, No.J16X04777) 27-Jun-16 (CTTL, No.J16X01547) 13-Mar-16(CTTL, No.J16X01548) 26-Sep-16(SPEAG,No.EX3-7433_Sep16) 21-Jan-16(SPEAG, No.DAE4-1331_Jan16 Cal Date(Calibrated by, Certificate No.) 27-Jun-16 (CTTL, No.J16X04776) 26-Jan-16 (CTTL, No.J16X04776) 26-Jan-16 (CTTL, No.J16X00894) Function SAR Test Engineer	Jun-17 Jun-17 Jun-17 Mar-18 Mar-18 Sep-17 Jan -17 Scheduled Calibration Jun-17 Jan -17

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2218
 Fax: +86-10-62304633-2209

 E-mail: cttl@chinattl.com
 <u>Http://www.chinattl.cn</u>

Probe EX3DV4

SN: 3754

Calibrated: January 13, 2017

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: Z17-97010

Page 3 of 11

DASY/EASY – Parameters of Probe: EX3DV4 – SN: 3754

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(µV/(V/m) ²) ^A	0.48	0.41	0.59	±10.8%
DCP(mV) ^B	102.4	100.9	102.7	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc ^E (k=2)
0 CW	X	0.0	0.0	1.0	0.00	198.9	±2.0%	
		Y	0.0	0.0	1.0		175.6	
		Z	0.0	0.0	1.0		221.1	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 5 and Page 6). ^B Numerical linearization parameter: uncertainty not required.

^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: Z17-97010

Page 4 of 11

E-mail: cttl@chinattl.com

DASY/EASY – Parameters of Probe: EX3DV4 – SN: 3754

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	9.41	9.41	9.41	0.30	0.70	±12%
900	41.5	0.97	9.10	9.10	9.10	0.13	1.52	±12%
1750	40.1	1.37	8.08	8.08	8.08	0.17	1.23	±12%
1900	40.0	1.40	7.85	7.85	7.85	0.24	1.05	±12%
2100	39.8	1.49	7.73	7.73	7.73	0.23	1.12	±12%
2300	39.5	1.67	7.58	7.58	7.58	0.56	0.72	±12%
2450	39.2	1.80	7.26	7.26	7.26	0.55	0.73	±12%
2600	39.0	1.96	7.05	7.05	7.05	0.60	0.70	±12%
5250	35.9	4.71	5.20	5.20	5.20	0.45	1.30	±13%
5600	35.5	5.07	4.62	4.62	4.62	0.45	1.35	±13%
5750	35.4	5.22	4.73	4.73	4.73	0.45	1.55	±13%

Calibration Parameter Determined in Head Tissue Simulating Media

Http://www.chinattl.cn

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: Z17-97010

Page 5 of 11

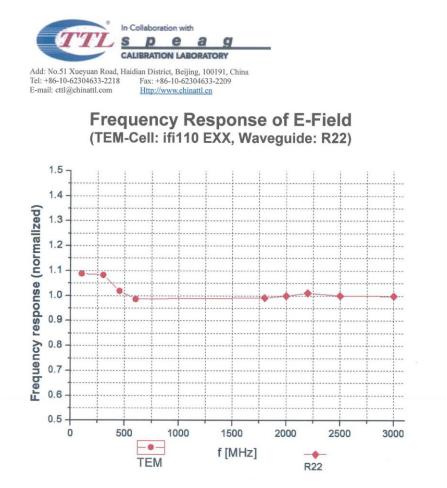
E-mail: cttl@chinattl.com

DASY/EASY – Parameters of Probe: EX3DV4 – SN: 3754

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	9.66	9.66	9.66	0.40	0.85	±12%
900	55.0	1.05	9.31	9.31	9.31	0.23	1.17	±12%
1750	53.4	1.49	7.80	7.80	7.80	0.22	1.14	±12%
1900	53.3	1.52	7.60	7.60	7.60	0.20	1.22	±12%
2100	53.2	1.62	7.96	7.96	7.96	0.23	1.24	±129
2300	52.9	1.81	7.43	7.43	7.43	0.41	1.01	±129
2450	52.7	1.95	7.22	7.22	7.22	0.40	1.04	±12%
2600	52.5	2.16	7.15	7.15	7.15	0.45	0.92	±12%
5250	48.9	5.36	4.79	4.79	4.79	0.50	1.55	±13%
5600	48.5	5.77	4.09	4.09	4.09	0.55	1.50	±13%
5750	48.3	5.94	4.55	4.55	4.55	0.58	1.70	±13%

Calibration Parameter Determined in Body Tissue Simulating Media

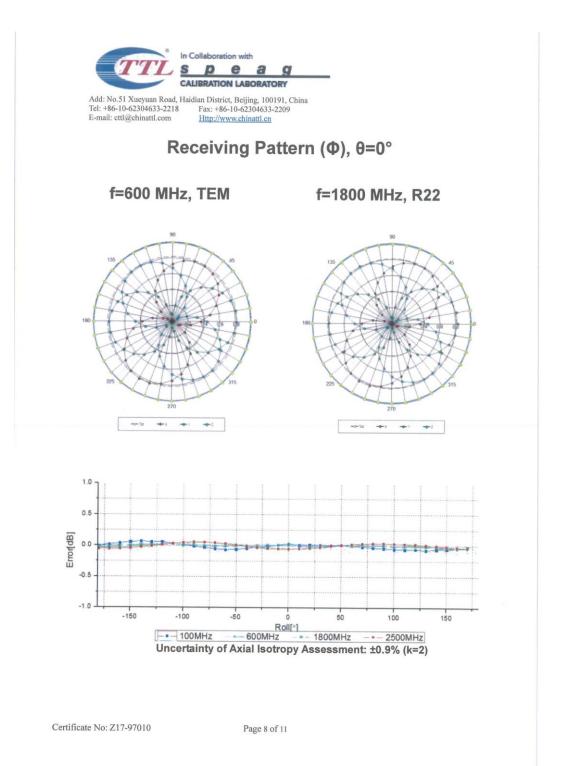
Http://www.chinattl.cn

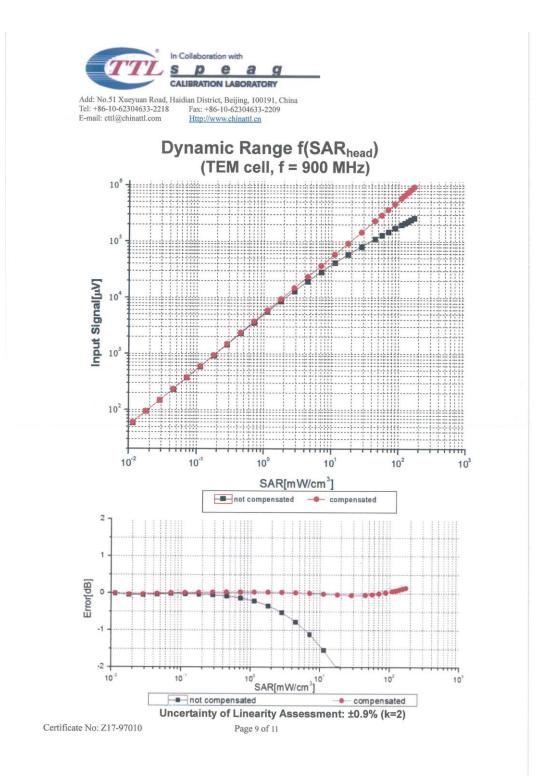

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

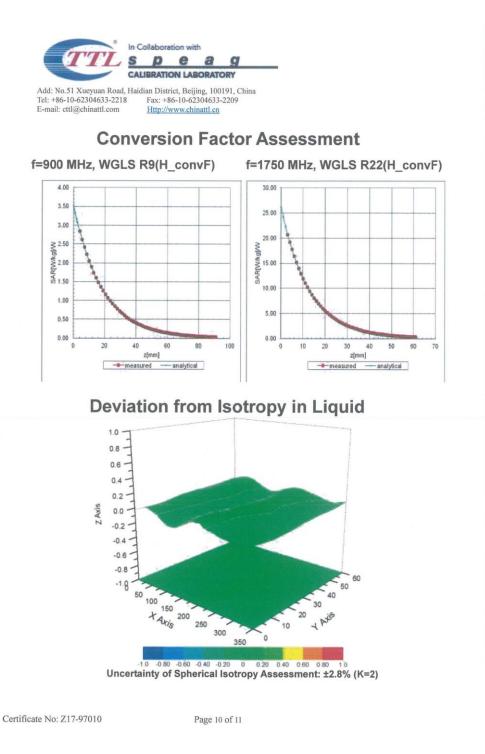
Certificate No: Z17-97010

Page 6 of 11




Certificate No: Z17-97010

Page 7 of 11



DASY/EASY – Parameters of Probe: EX3DV4 – SN: 3754

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	47.9
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	9mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	1.4mm

Certificate No: Z17-97010

Page 11 of 11

Tel: +86-10-62304 E-mail: cttl@china Client ECI	ttl.com Http://	86-10-62304633-2504 www.chinattl.en Certificate No: Z1	5-97165
CALIBRATION C	ERTIFICAT	E	
Object	D835V	2 - SN: 4d112	
Calibration Procedure(s)		-2-003-01 fon Procedures for dipole validation kits	
Calibration date:	October	r 22, 2015	
humidity<70%. Calibration Equipment used			_
Primary Standards Power Meter NRP2	ID# 101919	Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256)	Scheduled Calibration Jun-16
Power sensor NRP-Z91	101547	01-Jul-15 (CTTL, No.J15X04256)	Jun-16
Reference Probe EX3DV4		26-Aug-15(SPEAG,No.EX3-3617_Aug15)	Aug -16
DAE4	SN 777	26-Aug-15(SPEAG,No.DAE4-777_Aug15)	Aug -16
Secondary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	02-Feb-15 (CTTL, No. J15X00729)	Feb-16
Network Analyzer E5071C	MY46110673	03-Feb-15 (CTTL, No.J15X00728)	Feb-16
	Name	Function	Signature
Calibrated by:	Zhao Jing	SAR Test Engineer	大方
Reviewed by:	Qi Dianyuan	SAR Project Leader	20B2
Approved by:	Lu Bingsong	Deputy Director of the laboratory	Fra warsta
This calibration certificate sh	all not be reprodu	Issued: Octob uced except in full without written approval of	er 26, 2015 the laboratory
			and an

	Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
	Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com Http://www.chinattl.cn.
	lossary:
TS Co	SL tissue simulating liquid pnvF sensitivity in TSL / NORMx,y,z
N/.	
	alibration is Performed According to the Following Standards:
a)	IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless
. 1	Communications Devices: Measurement Techniques*, June 2013
b)	IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held
	devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)*, February 2005
c)	KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz
	ditional Documentation:
a)	DASY4/5 System Handbook
Me	ethods Applied and Interpretation of Parameters:
•	Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
•	Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
	Feed Point Impedance and Return Loss: These parameters are measured with the dipole
	positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
•	Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
	SAR measured: SAR measured at the stated antenna input power.
•	SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
	SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.
1	The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.
-	
	tificate No: Z15-97165 Page 2 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinatl.com Http://www.chinatl.cn

Measurement Conditions

DASY Version	DASY52	52.8.8.1222
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

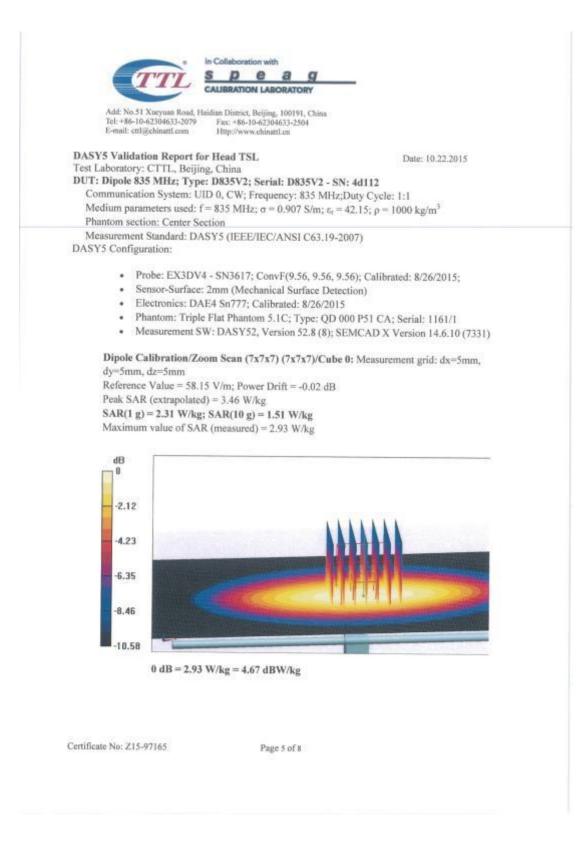
	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	42.2 ± 6 %	0.91 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		1

SAR result with Head TSL

Condition	
250 mW input power	2.31 mW/g
normalized to 1W	9.22 mW /g ± 20.8 % (k=2)
Condition	
250 mW input power	1.51 mW/g
normalized to 1W	6.03 mW /g ± 20.4 % (k=2)
	250 mW input power normalized to 1W Condition 250 mW input power

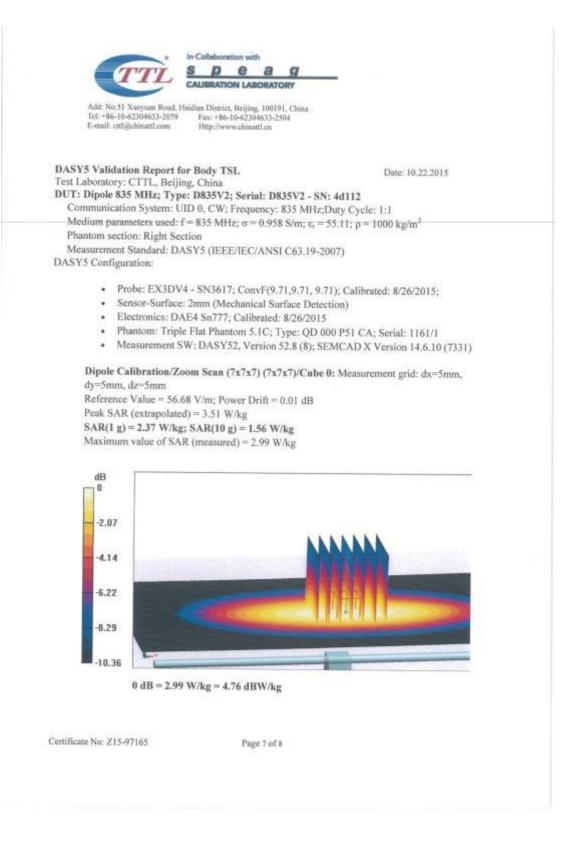
Body TSL parameters

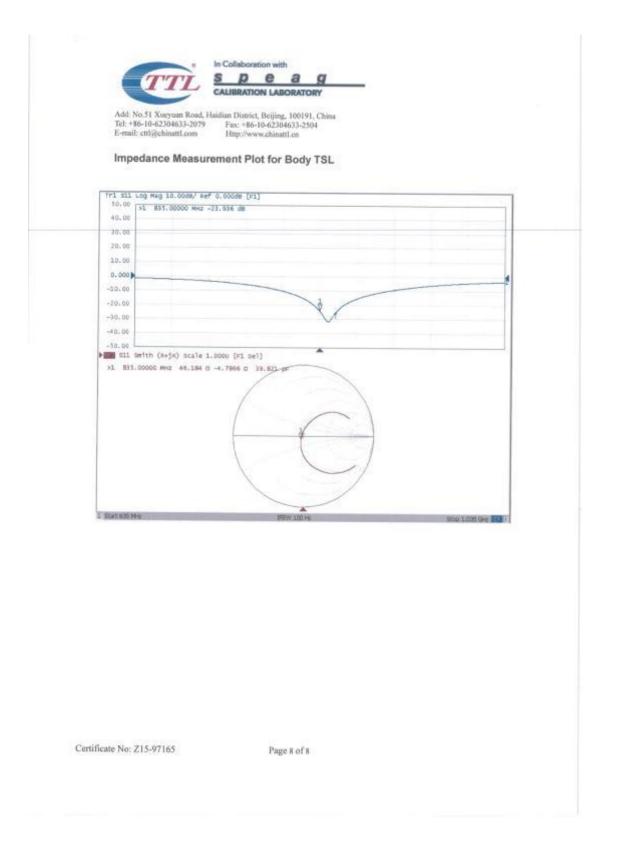
	Temperature	Permitt	ivity	Conductivity	
Nominal Body TSL parameters	22.0 °C	55.2	8	0.97 mho/m	
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.1 ±	6 %	0.96 mho/m ± 6 %	
Body TSL temperature change during test	<1.0 °C				
result with Body TSL				1	
SAR averaged over 1 cm ³ (1 g) of Body TSL	Cond	ition			
SAR measured	250 mW ii	nput power		2.37 mW / g	
SAR for nominal Body TSL parameters	normaliz	ed to 1W	9.57	mW /g ± 20.8 % (k=2)	
SAR averaged over 10 cm ³ (10 g) of Body T	SL Cond	ition			
SAR measured	250 mW ii	put power		1.56 mW / g	
SAR for nominal Body TSL parameters	normalize	normalized to 1W		6.29 mW /g ± 20.4 % (k=2	


Certificate No: Z15-97165

Page 3 of 8

E-mail: cttl@chinattl.com Http://ww	ww.chinattl.cn
Antenna Parameters with Head T	SL
Impedance, transformed to feed point	49.1Ω- 4.20)Ω
Return Loss	- 27.3dB
Antenna Parameters with Body T	SL
Impedance, transformed to feed point	46.2Ω- 4.79jΩ
Return Loss	- 23.9dB
General Antenna Parameters and	Design
be measured. The dipole is made of standard semirigid connected to the second arm of the dipole of the dipoles, small end caps are added according to the position as explained in 1	1.502 ns ower, only a slight warming of the dipole near the feedpoint can coaxial cable. The center conductor of the feeding line is directly e. The antenna is therefore short-circuited for DC-signals. On so to the dipole arms in order to improve matching when loaded the "Measurement Conditions" paragraph. The SAR data are no le length is still according to the Standard
After long term use with 100W radiated p be measured. The dipole is made of standard semirigid connected to the second arm of the dipole of the dipoles, small end caps are added according to the position as explained in t affected by this change. The overall dipol No excessive force must be applied to the connections near the feedpoint may be de-	ower, only a slight warming of the dipole near the feedpoint can coaxial cable. The center conductor of the feeding line is directly e. The antenna is therefore short-circuited for DC-signals. On so to the dipole arms in order to improve matching when loaded the "Measurement Conditions" paragraph. The SAR data are no e length is still according to the Standard. e dipole arms, because they might bend or the soldered
After long term use with 100W radiated p be measured. The dipole is made of standard semirigid connected to the second arm of the dipole of the dipoles, small end caps are added according to the position as explained in affected by this change. The overall dipol No excessive force must be applied to the connections near the feedpoint may be di Additional EUT Data	ower, only a slight warming of the dipole near the feedpoint can coaxial cable. The center conductor of the feeding line is directly e. The antenna is therefore short-circuited for DC-signals. On so to the dipole arms in order to improve matching when loaded the "Measurement Conditions" paragraph. The SAR data are no e length is still according to the Standard. e dipole arms, because they might bend or the soldered amaged.
After long term use with 100W radiated p be measured. The dipole is made of standard semirigid connected to the second arm of the dipole of the dipoles, small end caps are added according to the position as explained in affected by this change. The overall dipol	ower, only a slight warming of the dipole near the feedpoint can coaxial cable. The center conductor of the feeding line is directly e. The antenna is therefore short-circuited for DC-signals. On so to the dipole arms in order to improve matching when loaded the "Measurement Conditions" paragraph. The SAR data are no e length is still according to the Standard. e dipole arms, because they might bend or the soldered





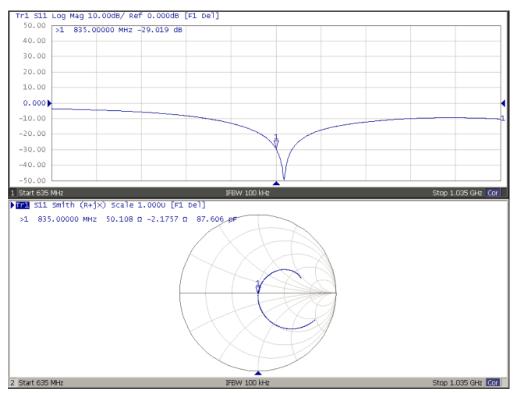
10.00 31.00 30.00 30.00 30.00 30.00 -10.00 -10.00 -30.00 	4
20.00 10.00 -10.00 -20.00 -40.00 -50.00	4
10.00 0.000 -10.00 -30.00 -30.00 -40.00 -50.00	4
0.000 ↓ -10.00 -20.00 -30.00 -40.00 -30.00	
-10.00 -29.00 -30.00 -40.00 -30.00	
-29,00 -30,00 -40,00 -30,00	
-30,00 -40,00 -30,00	
-40.00	
-50.00	
Store and the failed could a many find and	
1 Stat for Meg Bow 10546 Stor fr	
	100 1000 000 100
stop 11	Stati Look (no. 1977)
	NOP CASH (NO. 14 BE
300.0	itop 1.00% (90 100 10
3500 L4	1001.001.00 I
	1500 LOOM 1940 1970 F
Brat 6/5.949 may 1014	

D835V2, Serial No.4d112 Extended Dipole Calibrations

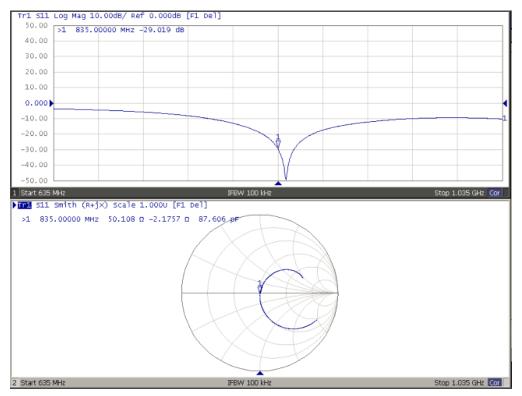
Per IEEE Std 1528-2013, the dipole should have a return loss better than -20dB at the test frequency to reduce uncertainty in the power measurement.

Per KDB 865664 D01, if dipoles are verified in return loss(<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

Justification of the extended calibration


		D835	V2 Serial No.4	d112			
835 Head							
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)	
10.22.2015	-27.27		49.108		-4.2018		
10.21.2016	-29.019	6.41	50.108	1	-2.1757	2.0261	

		D835	V2 Serial No.4	d112		
835 Body						
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
10.22.2015	-23.036		46.184		-4.7866	
10.21.2016	-23.131	0.56	47.003	0.819	-2.9072	1.8794


The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.

Dipole Verification Data D835V2 Serial No.4d112 835MHz-Head

835MHz - Body

		oration with	CNAS
Add: No.51 Xueyu Tel: +86-10-62304 E-mail: cttl@china	633-2079 Fax	strict, Beijing, 100191, China +86-10-62304633-2504 //www.chinattl.en	CALIBRATION No. L0570
Client ECI	т	Certificate No: Z	15-97168
CALIBRATION C	ERTIFICAT	TE	
Object	D1900	V2 - SN: 5d134	
		1-2-003-01 ation Procedures for dipole validation kits	
Calibration date:	Novem	iber 4, 2015	Contract (1974)
pages and are part of the co All calibrations have been		the closed laboratory facility: environment	t temperature(22+3)); and
	conducted in	the closed laboratory facility, environment or calibration)	t temperature(22±3)℃ and
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards	conducted in		t temperature(22±3) © and Scheduled Calibration
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2	I conducted in (M&TE critical f	Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256)	Scheduled Calibration Jun-16
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91	(M&TE critical fr ID# 101919 101547	Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256)	Scheduled Calibration Jun-16 Jun-16
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4	I conducted in (M&TE critical fr ID # 101919 101547 SN 3617	Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 28-Aug-15(SPEAG,No.EX3-3617_Aug15)	Scheduled Calibration Jun-16 Jun-16 Aug -16
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91	(M&TE critical fr ID# 101919 101547	Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256)	Scheduled Calibration Jun-16 Jun-16
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4	I conducted in (M&TE critical fr ID # 101919 101547 SN 3617	Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 28-Aug-15(SPEAG,No.EX3-3617_Aug15)	Scheduled Calibration Jun-16 Jun-16 Aug -16
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	I conducted in (M&TE critical fi 101919 101547 SN 3617 SN 777 ID # MY49071430	Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 26-Aug-15 (CTTL, No.J15X04256) 26-Aug-15 (SPEAG, No.EX3-3617_Aug15) 26-Aug-15 (SPEAG, No.DAE4-777_Aug15) Cal Date(Calibrated by, Certificate No.) 02-Feb-15 (CTTL, No.J15X00729)	Scheduled Calibration Jun-16 Jun-16 Aug -16 Aug -16
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards	I conducted in (M&TE critical fi 101919 101547 SN 3617 SN 777 ID # MY49071430	Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 26-Aug-15(SPEAG,No.EX3-3617_Aug15) 26-Aug-15(SPEAG,No.DAE4-777_Aug15) Cal Date(Calibrated by, Certificate No.) 02-Feb-15 (CTTL, No.J15X00729)	Scheduled Calibration Jun-16 Jun-16 Aug -16 Aug -16 Scheduled Calibration
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	I conducted in (M&TE critical fi 101919 101547 SN 3617 SN 777 ID # MY49071430	Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 26-Aug-15 (CTTL, No.J15X04256) 26-Aug-15 (SPEAG, No.EX3-3617_Aug15) 26-Aug-15 (SPEAG, No.DAE4-777_Aug15) Cal Date(Calibrated by, Certificate No.) 02-Feb-15 (CTTL, No.J15X00729)	Scheduled Calibration Jun-16 Jun-16 Aug -16 Aug -16 Scheduled Calibration Feb-16
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	Conducted in (M&TE critical fi 101919 101547 SN 3617 SN 777 ID # MY49071430 MY46110673	Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 26-Aug-15(SPEAG,No.EX3-3617_Aug15) 26-Aug-15(SPEAG,No.DAE4-777_Aug15) Cal Date(Calibrated by, Certificate No.) 02-Feb-15 (CTTL, No.J15X00729) 03-Feb-15 (CTTL, No.J15X00728)	Scheduled Calibration Jun-16 Jun-16 Aug -16 Aug -16 Scheduled Calibration Feb-16 Feb-16
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C Network Analyzer E5071C	Conducted in (M&TE critical fi 101919 101547 SN 3617 SN 777 ID # MY49071430 MY46110673 Name	Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 28-Aug-15(SPEAG,No.EX3-3617_Aug15) 28-Aug-15(SPEAG,No.DAE4-777_Aug15) Cal Date(Calibrated by, Certificate No.) 02-Feb-15 (CTTL, No.J15X00729) 03-Feb-15 (CTTL, No.J15X00728) Function	Scheduled Calibration Jun-16 Jun-16 Aug -16 Aug -16 Scheduled Calibration Feb-16 Feb-16
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C Network Analyzer E5071C	Conducted in (M&TE critical fi 101919 101547 SN 3617 SN 777 ID # MY49071430 MY46110673 Name Zhao Jing	Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 28-Aug-15(SPEAG,No.EX3-3617_Aug15) 28-Aug-15(SPEAG,No.DAE4-777_Aug15) Cal Date(Calibrated by, Certificate No.) 02-Feb-15 (CTTL, No.J15X00729) 03-Feb-15 (CTTL, No.J15X00728) Function SAR Test Engineer	Scheduled Calibration Jun-16 Jun-16 Aug -16 Aug -16 Scheduled Calibration Feb-16 Feb-16

Certificate No: Z15-97168

Page 1 of 8

	tl@chinattl.com Http://www.chinattl.cn
Glossary: TSL	tissue simulating liquid
ConvF N/A	sensitivity in TSL / NORMx.y.z not applicable or not measured
 a) IEEE Std 1 Spatial-Ave Communic b) IEC 62209 	s Performed According to the Following Standards: 528-2013, "IEEE Recommended Practice for Determining the Peak raged Specific Absorption Rate (SAR) in the Human Head from Wireless ations Devices: Measurement Techniques", June 2013 -1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held ed in close proximity to the ear (frequency range of 300MHz to 3GHz)", February
	4, SAR Measurement Requirements for 100 MHz to 6 GHz
	ocumentation: System Handbook
Measurer of the cer Antenna i point example to Feed Poli positioner measurer reflected Electrical No uncer SAR mea SAR nom connector SAR for m nominal S	ominal TSL parameters: The measured TSL parameters are used to calculate the AR result.
Measurem	ed uncertainty of measurement is stated as the standard uncertainty of ant multiplied by the coverage factor k=2, which for a normal distribution is to a coverage probability of approximately 95%.

.

Add: No.51 Xueyuan Rond, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.8.8.1222
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

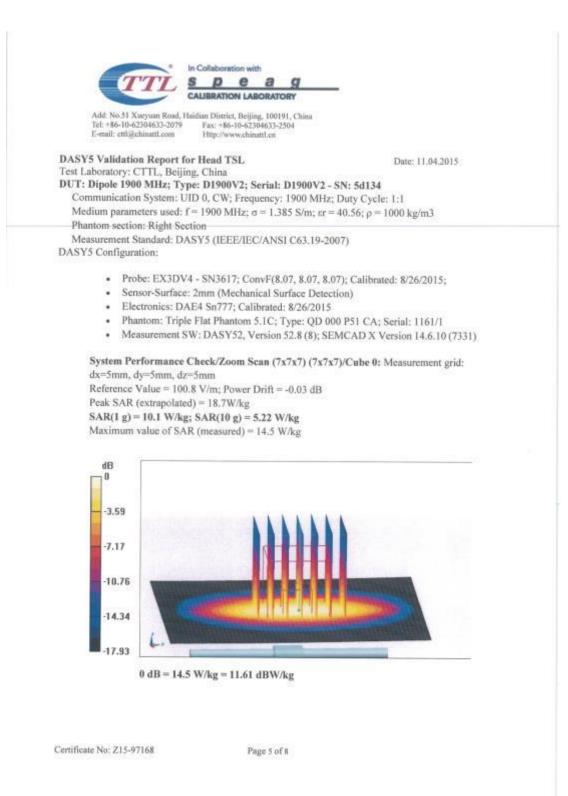
	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.6 ± 6 %	1.39 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

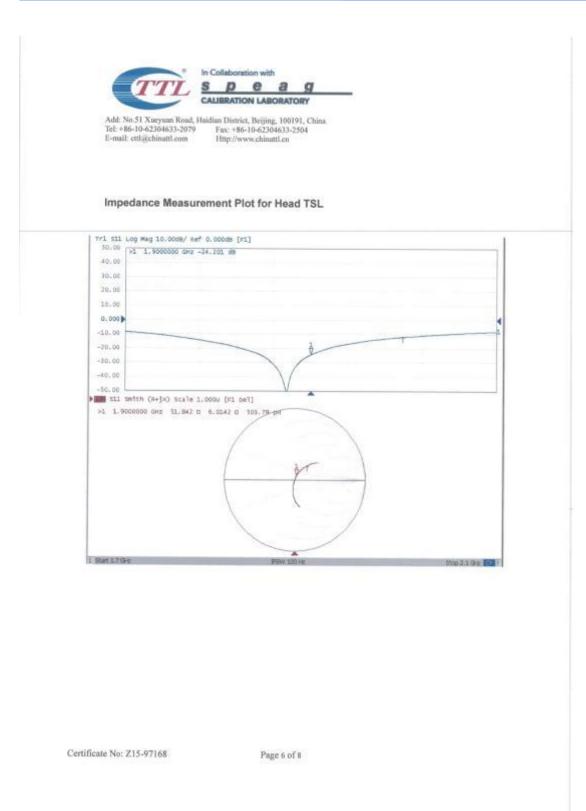
SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.1 mW/g
SAR for nominal Head TSL parameters	normalized to 1W	40.8 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.22 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	21.0 mW /g ± 20.4 % (k=2)

Body TSL parameters

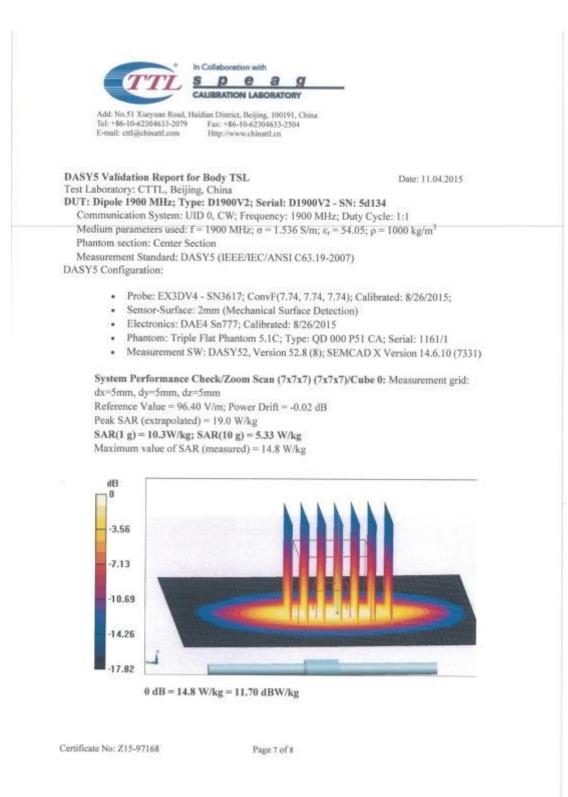
	Temperature	Permitti	ivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.1 ±	6 %	1.54 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		2	
R result with Body TSL	-			
SAR averaged over 1 cm ³ (1 g) of Body TSL	Cond	ition		
SAR measured	250 mW i	nput power		10.3 mW / g
SAR for nominal Body TSL parameters	normaliz	ed to 1W	41.1	mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm3 (10 g) of Body T	SL Cond	ition		
SAR measured	250 mW ir	nput power		5.33 mW / g
SAR for nominal Body TSL parameters	normalize	wt of be	21.3	mW /g ± 20.4 % (k=2)

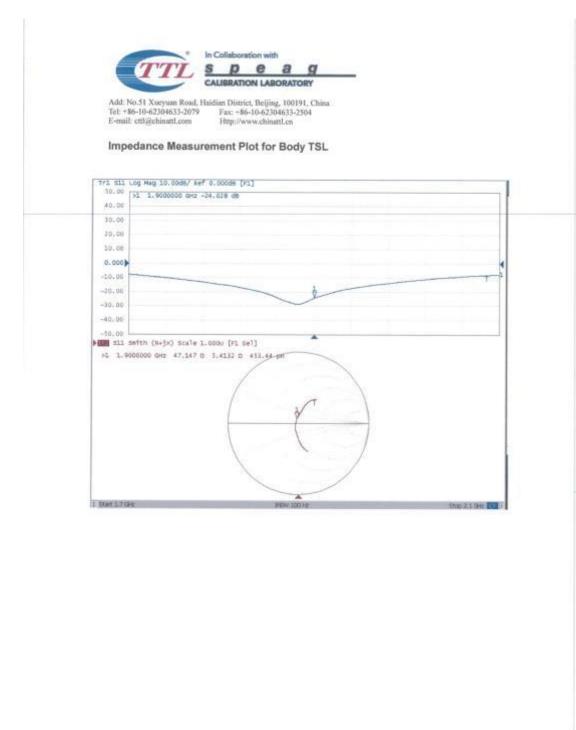

Certificate No: Z15-97168

Page 3 of 8



Antenna Parameters with Head TSL	51.8Ω+ 6.01[Ω
Return Loss	- 24.2dB
Antenna Parameters with Body TSL	
Impedance, transformed to feed point	47.1Ω+ 5.41jΩ
Return Loss	- 24.0dB
General Antenna Parameters and Design	1
Electrical Delay (one direction)	1.305 ns
he dipole is made of standard semirigid coaxiel c onnected to the second arm of the dipole. The an f the dipoles, small end caps are added to the dip ccording to the position as explained in the "Meas	ly a slight warming of the dipole near the feedpoint can cable. The center conductor of the feeding line is directly itenna is therefore short-circuited for DC-signals. On son pole arms in order to improve matching when loaded surement Conditions" paragraph. The SAR data are not
The dipole is made of standard semirigid coaxial c connected to the second arm of the dipole. The an of the dipoles, small end caps are added to the dip iccording to the position as explained in the "Meas iffected by this change. The overall dipole length i to excessive force must be applied to the dipole a connections near the feedpoint may be damaged.	table. The center conductor of the feeding line is directly itemna is therefore short-circuited for DC-signals. On som pole arms in order to improve matching when loaded surement Conditions" paragraph. The SAR data are not is still according to the Standard. arms, because they might bend or the soldered
connected to the second arm of the dipole. The an of the dipoles, small end caps are added to the dip	table. The center conductor of the feeding line is directly itemna is therefore short-circuited for DC-signals. On som pole arms in order to improve matching when loaded surement Conditions" paragraph. The SAR data are not is still according to the Standard. arms, because they might bend or the soldered





Certificate No: Z15-97168

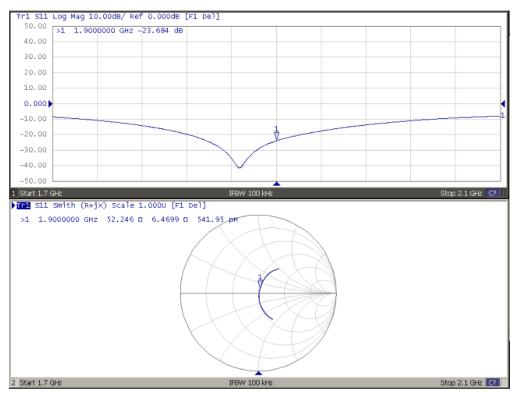
Page 8 of 8

D1900V2, Serial No.5d134 Extended Dipole Calibrations

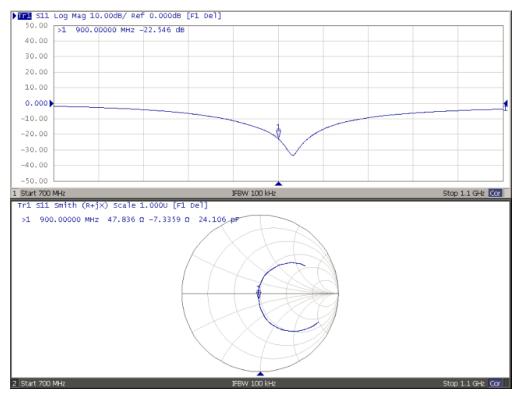
Per IEEE Std 1528-2013, the dipole should have a return loss better than -20dB at the test frequency to reduce uncertainty in the power measurement.

Per KDB 865664 D01, if dipoles are verified in return loss(<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

Justification of the extended calibration


D1900V2 Serial No.5d134						
			1900 Head			
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
11.04.2015	-24.201	-	51.842		6.0142	
11.03.2016	-23.684	2.13	52.246	0.404	6.4699	0.456

		D1900	V2 Serial No.	5d134		
1900 Body						
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
11.04.2015	-24.028	-	47.147	-	5.4132	
11.03.2016	-23.250	3.24	48.572	1.425	6.1951	0.782


The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.

Dipole Verification Data D1900V2 Serial No.5d134 1900MHz-Head

1900MHz - Body

Add No 51 Ver		ATION LABORATORY			CNAS
Tel: +86-10-62304 E-mail: cttl@china	633-2079 Fax:	istrict, Beijing, 100191, China +86-10-62304633-2504 ://www.chinattl.cn	(In)	alalalat	CALIBRATION No. L0570
Client EC	IT	Certificate	No: Z1	15-97171	
CALIBRATION C	ERTIFICA	TE			
Object	D2450	V2 - SN: 858			
Calibration Procedure(s)	FD-Z1	1-2-003-01			
		ation Procedures for dipole validati	ion kits		
Calibration date:		er 30, 2015			
	OCIODA	er 50, 2015			
measurements(SI). The me pages and are part of the ca	asurements and	traceability to national standards the uncertainties with confidence	probability	are given or	the following
All calibrations have been humidity<70%.	n conducted in	the closed laboratory facility: en	nvironment	temperatur	e(22±3)℃ and
humidity<70%.			nvironment	temperatur	e(22±3)℃ and
					e(22±3)°C and
humidity<70%. Calibration Equipment used	I (M&TE critical f	or calibration)	ate No.)	Scheduled	
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91	I (M&TE critical f ID # 101919 101547	or calibration) Cal Date(Calibrated by, Certification	ate No.) 6)	Scheduled	d Calibration
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4	I (M&TE critical f ID # 101919 101547	or calibration) Cal Date(Calibrated by, Certifica 01-Jul-15 (CTTL, No.J15X04256 01-Jul-15 (CTTL, No.J15X04256 26-Aug-15(SPEAG,No.EX3-361)	ate No.) 6) 6) 7_Aug15)	Scheduled Jur Jur	d Calibration
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91	I (M&TE critical f ID # 101919 101547	or calibration) Cal Date(Calibrated by, Certifica 01-Jul-15 (CTTL, No.J15X04256 01-Jul-15 (CTTL, No.J15X04256	ate No.) 6) 6) 7_Aug15)	Scheduled Jur Jur	d Calibration 1-16 1-16
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4	I (M&TE critical f ID # 101919 101547 SN 3617	or calibration) Cal Date(Calibrated by, Certifica 01-Jul-15 (CTTL, No.J15X04256 01-Jul-15 (CTTL, No.J15X04256 26-Aug-15(SPEAG,No.EX3-361) 26-Aug-15(SPEAG,No.DAE4-77	ate No.) 3) 5) 7_Aug15) 7_Aug15)	Scheduled Jur Jur Aug	d Calibration n-16 n-16 g-16 g-16
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4	I (M&TE critical f ID # 101919 101547 SN 3617 SN 777	or calibration) Cal Date(Calibrated by, Certifica 01-Jul-15 (CTTL, No.J15X04256 01-Jul-15 (CTTL, No.J15X04256 26-Aug-15(SPEAG,No.EX3-361 26-Aug-15(SPEAG,No.DAE4-77 Cal Date(Calibrated by, Certifica	ate No.) δ) 7_Aug15) 7_Aug15) te No.)	Scheduled Jur Jur Aug Scheduled	d Calibration n-16 g-16 g-16 Calibration
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards	ID# 101919 101547 SN 3617 SN 777 ID#	or calibration) Cal Date(Calibrated by, Certifica 01-Jul-15 (CTTL, No.J15X04256 01-Jul-15 (CTTL, No.J15X04256 26-Aug-15(SPEAG,No.EX3-361) 26-Aug-15(SPEAG,No.DAE4-77 Cal Date(Calibrated by, Certifica 02-Feb-15 (CTTL, No.J15X0072	ate No.) a) 7_Aug15) 7_Aug15) te No.) 29)	Scheduled Jur Jur Aug Scheduled Fet	d Calibration n-16 n-16 g-16 g-16
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	I (M&TE critical f ID # 101919 101547 SN 3617 SN 777 ID # MY49071430	or calibration) Cal Date(Calibrated by, Certifica 01-Jul-15 (CTTL, No.J15X04256 01-Jul-15 (CTTL, No.J15X04256 26-Aug-15(SPEAG,No.EX3-361) 26-Aug-15(SPEAG,No.DAE4-77 Cal Date(Calibrated by, Certifica 02-Feb-15 (CTTL, No.J15X0072	ate No.) a) 7_Aug15) 7_Aug15) te No.) 29)	Scheduled Jur Jur Aug Scheduled Fet	d Calibration n-16 g-16 g-16 g-16 Calibration p-16 p-16
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C Network Analyzer E5071C	ID# 101919 101547 SN 3617 SN 777 ID# MY49071430 MY46110673	Cal Date(Calibrated by, Certifica 01-Jul-15 (CTTL, No.J15X04256 01-Jul-15 (CTTL, No.J15X04256 26-Aug-15(SPEAG,No.EX3-361) 26-Aug-15(SPEAG,No.DAE4-77 Cal Date(Calibrated by, Certifica 02-Feb-15 (CTTL, No.J15X0072 03-Feb-15 (CTTL, No.J15X0072	ate No.) a) 7_Aug15) 7_Aug15) te No.) 29)	Scheduled Jur Aug Scheduled Fet	d Calibration n-16 g-16 g-16 g-16 Calibration p-16 p-16
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	I (M&TE critical f ID # 101919 101547 SN 3617 SN 777 ID # MY49071430 MY46110673 Name	Cal Date(Calibrated by, Certifica 01-Jul-15 (CTTL, No.J15X04256 01-Jul-15 (CTTL, No.J15X04256 26-Aug-15(SPEAG,No.EX3-361 26-Aug-15(SPEAG,No.DAE4-77 Cal Date(Calibrated by, Certifica 02-Feb-15 (CTTL, No.J15X0072 03-Feb-15 (CTTL, No.J15X0072 Function	ate No.) a) 7_Aug15) 7_Aug15) te No.) 29)	Scheduled Jur Aug Scheduled Fet	d Calibration n-16 g-16 g-16 g-16 Calibration p-16 p-16
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C Network Analyzer E5071C	I (M&TE critical f ID # 101919 101547 SN 3617 SN 777 ID # MY49071430 MY46110673 Name Zhao Jing	Cal Date(Calibrated by, Certifica 01-Jul-15 (CTTL, No.J15X04256 01-Jul-15 (CTTL, No.J15X04256 26-Aug-15(SPEAG,No.EX3-361 26-Aug-15(SPEAG,No.DAE4-77 Cal Date(Calibrated by, Certifica 02-Feb-15 (CTTL, No.J15X0072 03-Feb-15 (CTTL, No.J15X0072 Function SAR Test Engineer	ate No.) 5) 7_Aug15) 7_Aug15) te No.) (9) (8)	Scheduled Jur Aug Scheduled Fet	d Calibration n-16 g-16 g-16 g-16 Calibration p-16 p-16

Tel: +86	CALIBRATION LABORATORY .51 Xueyuan Road, Haidian District, Beijing, 100191, China -10-62304633-2079 Fax: +86-10-62304633-2504 ett/@chinatl.com Http://www.chinatl.cn
Glossary: TSL ConvF N/A	tissue simulating liquid sensitivity in TSL / NORMx,y,z not applicable or not measured
 a) IEEE Std Spatial-Av Communic b) IEC 62209 devices us 2005 	is Performed According to the Following Standards: 1528-2013, "IEEE Recommended Practice for Determining the Peak eraged Specific Absorption Rate (SAR) in the Human Head from Wireless actions Devices: Measurement Techniques", June 2013 9-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held sed in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 64, SAR Measurement Requirements for 100 MHz to 6 GHz
	Documentation: System Handbook
 Measure of the ce Antenna point exa parallel tr preed Point positione measure reflected Electrical No uncer SAR meas SAR norm connecto SAR for r 	plied and Interpretation of Parameters: ment Conditions: Further details are available from the Validation Report at the end rtificate. All figures stated in the certificate are valid at the frequency indicated. Parameters with TSL: The dipole is mounted with the spacer to position its feed ctly below the center marking of the flat phantom section, with the arms oriented to the body axis. Int Impedance and Return Loss: These parameters are measured with the dipole d under the liquid filled phantom. The impedance stated is transformed from the ment at the SMA connector to the feed point. The Return Loss ensures low power. No uncertainty required. Delay: One-way delay between the SMA connector and the antenna feed point. tainty required. asured: SAR measured at the stated antenna input power. malized: SAR as measured, normalized to an input power of 1 W at the antenna r. mominal TSL parameters: The measured TSL parameters are used to calculate the SAR result.
Measurem	ted uncertainty of measurement is stated as the standard uncertainty of ent multiplied by the coverage factor k=2, which for a normal distribution ds to a coverage probability of approximately 95%.
ertificate No: Z	15-97171 Page 2 of 8

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn

Measurement Conditions

DASY Version	DASY52	52.8.8.1222
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

g

Head TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.1 ± 6 %	1.82 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

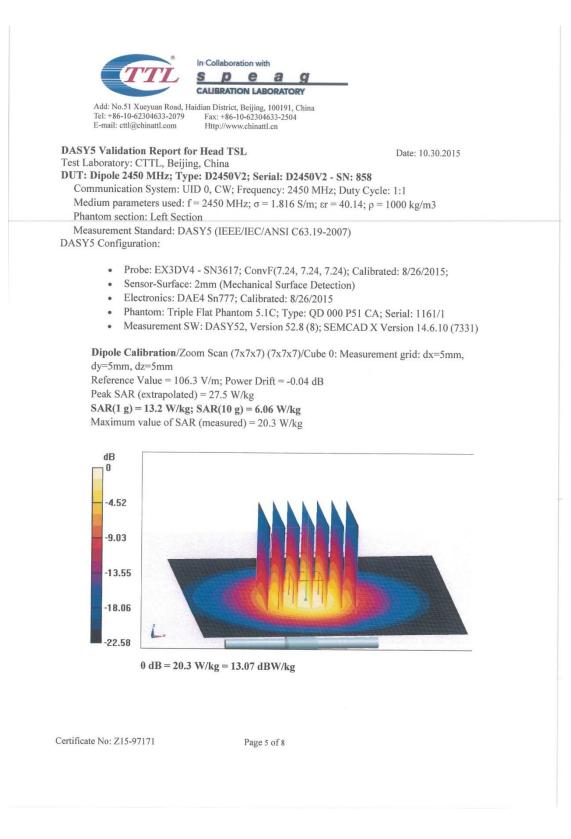
SAR result with Head TSL

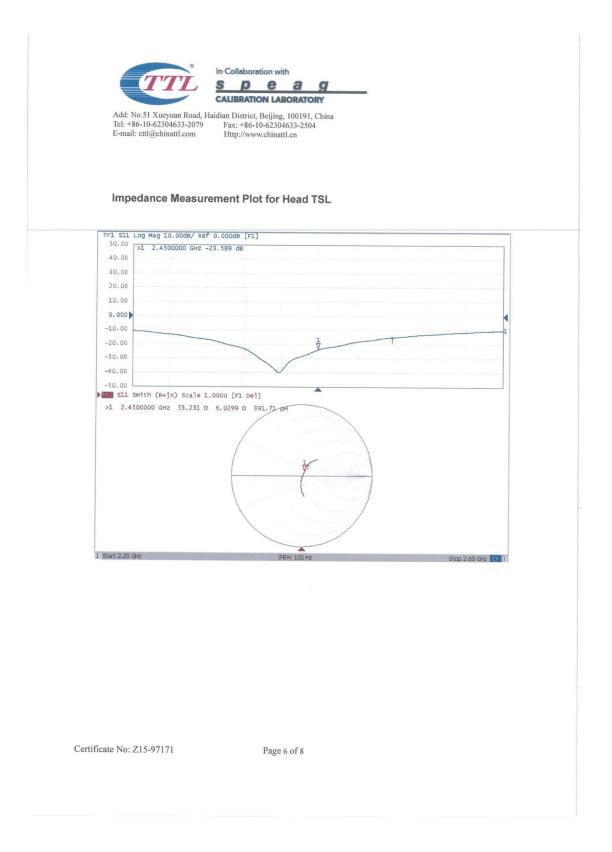
SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.2 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	52.9 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	6.06 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	24.3 mW /g ± 20.4 % (k=2)

Body TSL parameters

	Temperature	Permitti	vity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7		1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.1 ± 0	6 %	1.94 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C			
R result with Body TSL				
SAR averaged over 1 cm^3 (1 g) of Body TSL	Condi	tion		
SAR measured	250 mW ir	put power		13.2 mW / g
SAR for nominal Body TSL parameters	normalize	ed to 1W	53.1 1	mW /g ± 20.8 % (k=2)
SAR averaged over 10 $\ {\it cm}^3$ (10 g) of Body T	SL Condi	tion		
SAR measured	250 mW in	put power		6.16 mW / g
SAR for nominal Body TSL parameters	normalize	d to 1W	24.7 1	mW /g ± 20.4 % (k=2)

Cer


Page 3 of 8


ЕСП

Antenna Parameters with He	1701	
	ad ISL	
Impedance, transformed to feed po	pint	53.2Ω+ 6.03jΩ
Return Loss		- 23.6dB
Antenna Parameters with Bo	dy TSL	
Impedance, transformed to feed po	int	49.9Ω+ 7.39jΩ
Return Loss		- 22.6dB
Electrical Delay (one direction)		1.261 ns
	ited power, only a s	ight warming of the dipole near the feedpoint can
onnected to the second arm of the f the dipoles, small end caps are a ccording to the position as explaine ffected by this change. The overall o excessive force must be applied onnections near the feedpoint may	irigid coaxial cable. dipole. The antenna dded to the dipole a ed in the "Measuren dipole length is still to the dipole arms.	The center conductor of the feeding line is directly a is therefore short-circuited for DC-signals. On some rms in order to improve matching when loaded nent Conditions" paragraph. The SAB data are not
onnected to the second arm of the f the dipoles, small end caps are a ccording to the position as explaine ffected by this change. The overall	irigid coaxial cable. dipole. The antenna dded to the dipole a ed in the "Measuren dipole length is still to the dipole arms.	The center conductor of the feeding line is directly a is therefore short-circuited for DC-signals. On some rms in order to improve matching when loaded nent Conditions" paragraph. The SAR data are not according to the Standard

