Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn #### Impedance Measurement Plot for Head TSL Certificate No: Z15-97171 Page 6 of 8 Page Number Report Issued Date: Aug.29, 2018 : 135 of 172 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn DASY5 Validation Report for Body TSL Date: 10.30.2015 Page Number Report Issued Date: Aug.29, 2018 : 136 of 172 Test Laboratory: CTTL, Beijing, China DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 858 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.936$ S/m; $\epsilon_r = 53.11$; $\rho = 1000$ kg/m³ Phantom section: Center Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: - Probe: EX3DV4 SN3617; ConvF(7.35, 7.35, 7.35); Calibrated: 8/26/2015; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn777; Calibrated: 8/26/2015 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 99.98 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 26.6 W/kg SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.16 W/kg Maximum value of SAR (measured) = 19.8 W/kg 0 dB = 19.8 W/kg = 12.97 dBW/kg Certificate No: Z15-97171 Page 7 of 8 Certificate No: Z15-97171 Page 8 of 8 Page Number Report Issued Date: Aug.29, 2018 : 137 of 172 ## D2450V2, Serial No.858 Extended Dipole Calibrations Per IEEE Std 1528-2013, the dipole should have a return loss better than -20dB at the test frequency to reduce uncertainty in the power measurement. Per KDB 865664 D01,if dipoles are verified in return loss(<-20dB,within 20% of prior calibration),and in impedance (within 5 ohm of prior calibration),the annual calibration is not necessary and the calibration interval can be extended. #### Justification of the extended calibration | D2450V2 Serial No.858 | | | | | | | |------------------------|---------------------|--------------|----------------------------|----------------|---------------------------------|----------------| | | 2450 Head | | | | | | | Date of
Measurement | Return-Loss
(dB) | Delta
(%) | Real
Impedance
(ohm) | Delta
(ohm) | Imaginary
Impedance
(ohm) | Delta
(ohm) | | 10.30.2015 | -23.589 | - | 53.231 | - | 6.0299 | | | 10.29.2016 | -23.466 | 0.52 | 50.672 | 2.559 | 6.4162 | 0.386 | | | | D245 | 0V2 Serial No.
2450 Body | 858 | | | |------------------------|---------------------|--------------|-----------------------------|----------------|---------------------------------|----------------| | Date of
Measurement | Return-Loss
(dB) | Delta
(%) | Real
Impedance
(ohm) | Delta
(ohm) | Imaginary
Impedance
(ohm) | Delta
(ohm) | | 10.30.2015 | -22.642 | | 49.935 | | 7.3927 | | | 10.29.2016 | -23.075 | 1.91 | 46.903 | 3.032 | 5.6814 | 1.711 | Page Number Report Issued Date: Aug.29, 2018 : 138 of 172 The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration. # Dipole Verification Data D2450V2 Serial No.858 2450MHz-Head #### 2450MHz - Body Page Number Report Issued Date: Aug.29, 2018 : 139 of 172 Justification of the extended calibration | | D2450V2 Serial No.858 | | | | | | | |------------------------|-----------------------|--------------|----------------------------|----------------|---------------------------------|----------------|--| | | | | 2450 Head | | | | | | Date of
Measurement | Return-Loss
(dB) | Delta
(%) | Real
Impedance
(ohm) | Delta
(ohm) | Imaginary
Impedance
(ohm) | Delta
(ohm) | | | 10.30.2015 | -23.589 | | 53.231 | | 6.0299 | | | | 10.29.2016 | -23.466 | 0.52 | 50.672 | 2.559 | 6.4162 | 0.386 | | | 10.27.2017 | -22.956 | 2.17 | 52.563 | 1.891 | 6.85 | 0.434 | | Report No.: I18D00122-SAR01 | D2450V2 Serial No.858 | | | | | | | | |------------------------|---------------------|--------------|----------------------------|----------------|---------------------------------|----------------|--| | | 2450 Body | | | | | | | | Date of
Measurement | Return-Loss
(dB) | Delta
(%) | Real
Impedance
(ohm) | Delta
(ohm) | Imaginary
Impedance
(ohm) | Delta
(ohm) | | | 10.30.2015 | -22.642 | | 49.935 | | 7.3927 | | | | 10.29.2016 | -23.075 | 1.91 | 46.903 | 3.032 | 5.6814 | 1.711 | | | 10.27.2017 | -22.414 | 2.86 | 50.694 | 3.791 | 7.616 | 1.935 | | The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration. East China Institute of Telecommunications TEL: +86 21 63843300FAX:+86 21 63843301 Page Number : 140 of 172 Report Issued Date : Aug.29, 2018 # Dipole Verification Data D2450V2 Serial No.858 2450MHz-Head #### 2450MHz - Body Page Number Report Issued Date: Aug.29, 2018 : 141 of 172 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn Certificate No: Z15-97172 #### **CALIBRATION CERTIFICATE** ECIT Object D2600V2 - SN: 1031 Calibration Procedure(s) Client FD-Z11-2-003-01 Calibration Procedures for dipole validation kits Calibration date: October 30, 2015 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|--|-----------------------| | Power Meter NRP2 | 101919 | 01-Jul-15 (CTTL, No.J15X04256) | Jun-16 | | Power sensor NRP-Z91 | 101547 | 01-Jul-15 (CTTL, No.J15X04256) | Jun-16 | | Reference Probe EX3DV4 | SN 3617 | 26-Aug-15(SPEAG,No.EX3-3617_Aug15) | Aug-16 | | DAE4 | SN 777 | 26-Aug-15(SPEAG,No.DAE4-777_Aug15) | Aug-16 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 02-Feb-15 (CTTL, No.J15X00729) | Feb-16 | | Network Analyzer E5071C | MY46110673 | 03-Feb-15 (CTTL, No.J15X00728) | Feb-16 | | | | | | | | Name | Function | Signature | |----------------|-------------|-----------------------------------|-----------| | Calibrated by: | Zhao Jing | SAR Test Engineer | 是生 | | Reviewed by: | Qi Dianyuan | SAR Project Leader | 263 | | Approved by: | Lu Bingsong | Deputy Director of the laboratory | Ja usita | Issued: November 6, 2015 Page Number Report Issued Date: Aug.29, 2018 : 142 of 172 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z15-97172 Page 1 of 8 Report No.: I18D00122-SAR01 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn Glossary: TSL ConvF N/A tissue simulating liquid sensitivity in TSL / NORMx,y,z not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005 - c) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### **Additional Documentation:** d) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z15-97172 Page 2 of 8 Page Number Report Issued Date: Aug.29, 2018 : 143 of 172 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn #### **Measurement Conditions** as
far as not given on page 1 | DASY Version | DASY52 | 52.8.8.1222 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2600 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.0 | 1.96 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.9 ± 6 % | 2.01 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 14.6 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 58.0 mW /g ± 20.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 6.40 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 25.5 mW /g ± 20.4 % (k=2) | #### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.5 | 2.16 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.7 ± 6 % | 2.14 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | | | #### SAR result with Body TSL | SAR averaged over 1 $\ cm^3$ (1 g) of Body TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 14.2 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 57.1 mW /g ± 20.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 6.33 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 25.4 mW /g ± 20.4 % (k=2) | Page Number Report Issued Date: Aug.29, 2018 : 144 of 172 Certificate No: Z15-97172 Page 3 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn #### **Appendix** #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 48.5Ω- 3.48jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 28.3dB | | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 45.9Ω- 3.13jΩ | | | |--------------------------------------|---------------|--|--| | Return Loss | - 25.4dB | | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.253 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | SPEAG | | |-------|-------| | | SPEAG | Certificate No: Z15-97172 Page 4 of 8 Page Number Report Issued Date: Aug.29, 2018 : 145 of 172 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn E-mail: cttl@chinattl.com **DASY5 Validation Report for Head TSL** Date: 10.30.2015 Page Number Report Issued Date: Aug.29, 2018 : 146 of 172 Report No.: I18D00122-SAR01 Test Laboratory: CTTL, Beijing, China DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1031 Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2600 MHz; $\sigma = 2.014 \text{ S/m}$; $\epsilon r = 39.85$; $\rho = 1000 \text{ kg/m}$ 3 Phantom section: Center Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: - Probe: EX3DV4 SN3617; ConvF(7.21, 7.21, 7.21); Calibrated: 8/26/2015; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn777; Calibrated: 8/26/2015 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 106.9 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 32.1 W/kg SAR(1 g) = 14.6 W/kg; SAR(10 g) = 6.4 W/kgMaximum value of SAR (measured) = 23.0 W/kg 0 dB = 23.0 W/kg = 13.62 dBW/kg Certificate No: Z15-97172 Page 5 of 8 ## Impedance Measurement Plot for Head TSL Certificate No: Z15-97172 Page 6 of 8 Page Number Report Issued Date: Aug.29, 2018 : 147 of 172 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn DASY5 Validation Report for Body TSL Date: 10.30.2015 Page Number Report Issued Date: Aug.29, 2018 : 148 of 172 Report No.: I18D00122-SAR01 Test Laboratory: CTTL, Beijing, China DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1031 Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2600 MHz; $\sigma = 2.136$ S/m; $\epsilon_r = 52.7$; $\rho = 1000$ kg/m³ Phantom section: Left Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: - Probe: EX3DV4 SN3617; ConvF(7.2, 7.2, 7.2); Calibrated: 8/26/2015; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn777; Calibrated: 8/26/2015 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 99.48 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 30.4 W/kg SAR(1 g) = 14.2 W/kg; SAR(10 g) = 6.33 W/kg Maximum value of SAR (measured) = 22.2 W/kg 0 dB = 22.2 W/kg = 13.46 dBW/kg Certificate No: Z15-97172 Page 7 of 8 Certificate No: Z15-97172 Page 8 of 8 Page Number Report Issued Date: Aug.29, 2018 : 149 of 172 ## D2600V2, Serial No.1031 Extended Dipole Calibrations Per IEEE Std 1528-2013, the dipole should have a return loss better than -20dB at the test frequency to reduce uncertainty in the power measurement. Per KDB 865664 D01,if dipoles are verified in return loss(<-20dB,within 20% of prior calibration),and in impedance (within 5 ohm of prior calibration),the annual calibration is not necessary and the calibration interval can be extended. #### Justification of the extended calibration | | | D2600 | OV2 Serial No. | 1031 | | | |------------------------|---------------------|--------------|----------------------------|----------------|---------------------------------|----------------| | | 2600 Head | | | | | | | Date of
Measurement | Return-Loss
(dB) | Delta
(%) | Real
Impedance
(ohm) | Delta
(ohm) | Imaginary
Impedance
(ohm) | Delta
(ohm) | | 10.30.2015 | -28.261 | | 48.452 | | -3.4766 | | | 10.29.2016 | -26.029 | 7.89 | 44.630 | 3.822 | -4.4265 | 0.950 | | | D2600V2 Serial No.1031
2600 Body | | | | | | |------------------------|-------------------------------------|--------------|----------------------------|----------------|---------------------------------|----------------| | Date of
Measurement | Return-Loss
(dB) | Delta
(%) | Real
Impedance
(ohm) | Delta
(ohm) | Imaginary
Impedance
(ohm) | Delta
(ohm) | | 10.30.2015 | -25.441 | | 45.931 | | -3.125 | | | 10.29.2016 | -25.582 | 0.54 | 48.845 | 2.914 | -2.163 | 0.962 | The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration. East China Institute of Telecommunications Page Number: 150 of 172 TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date: Aug.29, 2018 # Dipole Verification Data D2600V2 Serial No.1031 2600MHz-Head #### 2600MHz - Body Page Number Report Issued Date: Aug.29, 2018 : 151 of 172 #### Justification of the extended calibration | | | D2600 | 0V2 Serial No. | 1031 | | | |------------------------|---------------------|--------------|----------------------------|----------------|---------------------------------|----------------| | | | | 2600 Head | | | | | Date of
Measurement | Return-Loss
(dB) | Delta
(%) | Real
Impedance
(ohm) | Delta
(ohm) | Imaginary
Impedance
(ohm) | Delta
(ohm) | | 10.30.2015 | -28.261 | | 48.452 | | -3.4766 | | | 10.29.2016 | -26.029 | 7.89 | 44.630 | 3.822 | -4.4265 | 0.950 | | 10.27.2017 | -27.350 | 5.08 | 48.552 | 3.922 | -3.976 | 0.451 | Report No.: I18D00122-SAR01 | D2600V2 Serial No.1031
2600 Body | | | | | | | |-------------------------------------|---------------------|--------------|----------------------------|----------------|---------------------------------|----------------| | Date of
Measurement | Return-Loss
(dB) | Delta
(%) | Real
Impedance
(ohm) | Delta
(ohm) | Imaginary
Impedance
(ohm) | Delta
(ohm)
 | 10.30.2015 | -25.441 | | 45.931 | | -3.125 | | | 10.29.2016 | -25.582 | 0.54 | 48.845 | 2.914 | -2.163 | 0.962 | | 10.27.2017 | -24.611 | 3.80 | 45.197 | 3.648 | -2.881 | 0.718 | The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration. East China Institute of Telecommunications TEL: +86 21 63843300FAX:+86 21 63843301 Page Number : 152 of 172 Report Issued Date : Aug.29, 2018 : 153 of 172 Page Number Report Issued Date: Aug.29, 2018 # Dipole Verification Data D2600V2 Serial No.1031 2600MHz-Head #### 2600MHz - Body Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client TMC-CQ (Auden) Certificate No: D5GHzV2-1121_Mar17 ## **CALIBRATION CERTIFICATE** Object D5GHzV2 - SN:1121 Calibration procedure(s) QA CAL-22.v2 Calibration procedure for dipole validation kits between 3-6 GHz Calibration date March 24, 2017 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (St). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Printary ocanidards | 10.9 | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|--|-------------------------------------| | Power meter NRP | SN: 104778 | 06-Apr-16 (No. 217-02288/02289) | Apr-17 | | Power sensor NRP-Z91 | SN: 103244 | 06-Apr-16 (No. 217-02288) | Apr-17 | | Power sensor NRP-Z91 | SN: 103245 | 06-Apr-16 (No. 217-02289) | Apr-17 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 05-Apr-16 (No. 217-02292) | Apr-17 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 05-Apr-16 (No. 217-02295) | Apr-17 | | Reference Probe EX3DV4 | SN: 3503 | 31-Dec-16 (No. EX3-3503 Dec16) | Dec-17 | | DAE4 | SN: 601 | 04-Jan-17 (No. DAE4-601_Jan17) | Jan-18 | | DAE4 | SN: 660 | 07-Dec-16 (No. DAE4-601_Dec16) | Dec-17 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter EPM-442A | SN: GB37480704 | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-16) | In house check: Oct-18 | | Network Analyzer HP 8753E | SN: US37390585 | 18-Oct-01 (in house check Oct-16) | In house check: Oct-17 | | | Name | Function | Signature | | Calibrated but | Section Management | TANK AND | California Control Agent California | on Kastrati Laboratory Technicien Approved by: Catja Pokovic Technical Manager issued: March 24, 2017. This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Page Number Report Issued Date: Aug.29, 2018 : 154 of 172 Certificate No: D5GHzV2-1121_Mar17 Page 1 of 16 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdiens C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Report No.: I18D00122-SAR01 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: d) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D5GHzV2-1121 Mar17 Page 2 of 16 Page Number Report Issued Date: Aug.29, 2018 : 155 of 172 #### Measurement Conditions DASY system configuration, as far as not given on pag | DASY Version | DASY5 | V52.8.8 | |------------------------------|--|----------------------------------| | Extrapolation | Advanced Extrapolation | 132.0.0 | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4.0 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 5200 MHz ± 1 MHz
5300 MHz ± 1 MHz
5500 MHz ± 1 MHz
5600 MHz ± 1 MHz
5800 MHz ± 1 MHz | The directory | ## Head TSL parameters at 5200 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 36.0 | 4.66 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.0 ± 6 % | 4.52 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL at 5200 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.91 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 78.6 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.26 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.4 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1121_Mar17 Page 3 of 16 #### Head TSL parameters at 5300 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.9 | 4.76 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.8 ± 6 % | 4.62 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | **** | | #### SAR result with Head TSL at 5300 MHz | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |---|--------------------|----------------------------| | SAR measured | 100 mW input power | 8.40 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 83.4 W / kg ± 19.9 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.41 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.9 W/kg ± 19.5 % (k=2) | ## Head TSL parameters at 5500 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.6 | 4.96 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.5 ± 6 % | 4.81 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | **** | | #### SAR result with Head TSL at 5500 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.40 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 83.4 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---
--------------------|--------------------------| | SAR measured | 100 mW input power | 2.38 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.6 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1121_Mar17 Page 4 of 16 Page Number Report Issued Date: Aug.29, 2018 : 157 of 172 #### Head TSL parameters at 5600 MHz The following parameters and calculations were applied | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.5 | 5.07 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.4 ± 6 % | 4.92 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL at 5600 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.42 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 83.6 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.40 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.8 W/kg ± 19.5 % (k=2) | #### Head TSL parameters at 5800 MHz The following parameters and calculations were applied | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.3 | 5.27 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.1 ± 6 % | 5.13 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL at 5800 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.10 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 80.3 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.30 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.8 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1121_Mar17 Page 5 of 16 #### Body TSL parameters at 5200 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 49.0 | 5.30 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 48.2 ± 6 % | 5.45 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | #### SAR result with Body TSL at 5200 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.25 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 72.3 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.03 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 20.2 W/kg ± 19.5 % (k=2) | #### Body TSL parameters at 5300 MHz The following parameters and calculations were applied | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.9 | 5.42 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 48.0 ± 6 % | 5.58 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | **** | **** | #### SAR result with Body TSL at 5300 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.66 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 76.4 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.14 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 21.3 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1121_Mar17 Page 6 of 16 #### Body TSL parameters at 5500 MHz The following parameters and calculations were applied | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.6 | 5.65 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 47.7 ± 6 % | 5.85 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | #### SAR result with Body TSL at 5500 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.02 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 80.0 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.23 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 22.2 W/kg ± 19.5 % (k=2) | #### Body TSL parameters at 5600 MHz The following parameters and calculations were applied. | ne tollowing parameters and seasons were app | Temperature | Permittivity | Conductivity | |--|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.5 | 5.77 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 47.5 ± 6 % | 5.99 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | **** | **** | #### SAR result with Body TSL at 5600 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.96 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 79.4 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.24 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 22.3 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1121_Mar17 Page 7 of 16 Report No.: I18D00122-SAR01 ## Body TSL parameters at 5800 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.2 | 6.00 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) "C | 47.2 ± 6 % | 6.28 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | #### SAR result with Body TSL at 5800 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.66 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 76.4 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.13 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 21.2 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1121_Mar17 Page 8 of 16 East China Institute of Telecommunications Page Number : 161 of 172 TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date: Aug.29, 2018 ## Appendix (Additional assessments outside the scope of SCS 0108) ## Antenna Parameters with Head TSL at 5200 MHz | Impedance, transformed to feed point | 50.0 Ω - 7.1 μΩ | |--------------------------------------|-----------------| | Return Loss | - 23.0 dB | | | 23.0 00 | ## Antenna Parameters with Head TSL at 5300 MHz | Impedance, transformed to feed point | 48.9 Ω - 4.0 μΩ | |--------------------------------------|-----------------| | Return Loss | - 27.6 dB | ## Antenna Parameters with Head TSL at 5500 MHz | Impedance, transformed to feed point | 51.8 Ω - 2.3 iΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 30.9 dB | | #### Antenna Parameters with Head TSL at 5600 MHz | Impedance, transformed to feed point | 54.0 Ω - 0.4 ΙΩ | 7 | |--------------------------------------|-----------------|---| | Return Loss | - 28.2 dB | | ### Antenna Parameters with Head TSL at 5800 MHz | Impedance, transformed to feed point | 55.8 Ω - 2.3 Ω | | |--------------------------------------|-----------------|--| | Return Loss | - 24.6 dB | | ### Antenna Parameters with Body TSL at 5200 MHz | Impedance, transformed to feed point | 50.5 Ω - 6.2 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 24.2 dB | | #### Antenna Parameters with Body TSL at 5300 MHz | Impedance, transformed to feed point | 49.6 Ω - 3.0 Ω | |--------------------------------------|-----------------| | Return Loss | - 30.4 dB | ## Antenna Parameters with Body TSL at 5500 MHz | Impedance, transformed to feed point | 52.3 Ω - 0.6 iΩ | | |--------------------------------------|-----------------|---| | Return
Loss | - 32.7 dB | _ | Certificate No: D5GHzV2-1121_Mar17 Page 9 of 16 Report No.: I18D00122-SAR01 #### Antenna Parameters with Body TSL at 5600 MHz | Impedance, transformed to feed point | 56.3 Ω + 1.6 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 24.3 dB | | #### Antenna Parameters with Body TSL at 5800 MHz | Impedance, transformed to feed point | 56.4 Ω - 1.8 μΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 24.1 dB | | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.203 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | | |-----------------|--------------------|--| | Manufactured on | September 08, 2011 | | Certificate No: D5GHzV2-1121_Mar17 Page 10 of 16 **DASY5 Validation Report for Head TSL** Date: 17.03.2017 Report No.: I18D00122-SAR01 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1121 Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 4.52$ S/m; $\varepsilon_r = 35$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5300 MHz; $\sigma = 4.62$ S/m; $\varepsilon_r = 34.8$; $\sigma = 1000$ kg/m³ Medium parameters used: f = 5300 MHz; σ = 4.62 S/m; ϵ_r = 34.8; ρ = 1000 kg/m³. Medium parameters used: f = 5500 MHz; σ = 4.81 S/m; ϵ_r = 34.5; ρ = 1000 kg/m³. Medium parameters used: f = 5600 MHz; σ = 4.92 S/m; ϵ_r = 34.4; ρ = 1000 kg/m³. Medium parameters used: f = 5800 MHz; σ = 5.13 S/m; ϵ_r = 34.1; ρ = 1000 kg/m³. Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(5.76, 5.76, 5.76); Calibrated: 31.12.2016, ConvF(5.35, 5.35, 5.35); Calibrated: 31.12.2016, ConvF(5.2, 5.2, 5.2); Calibrated: 31.12.2016, ConvF(5.09, 5.09, 5.09); Calibrated: 31.12.2016, ConvF(5.01, 5.01, 5.01); Calibrated: 31.12.2016; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 04.01.2017 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372) ### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 72.36 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 29.1 W/kg SAR(1 g) = 7.91 W/kg; SAR(10 g) = 2.26 W/kg Maximum value of SAR (measured) = 18.2 W/kg #### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 74.73 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 30.4 W/kg SAR(1 g) = 8.4 W/kg; SAR(10 g) = 2.41 W/kg Maximum value of SAR (measured) = 19.5 W/kg #### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 73.51 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 33.2 W/kg SAR(1 g) = 8.4 W/kg; SAR(10 g) = 2.38 W/kg Maximum value of SAR (measured) = 19.9 W/kg Certificate No: D5GHzV2-1121_Mar17 Page 11 of 16 Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 73.79 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 33.3 W/kg SAR(1 g) = 8.42 W/kg; SAR(10 g) = 2.4 W/kg Maximum value of SAR (measured) = 20.1 W/kg Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 71.38 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 33.4 W/kg SAR(1 g) = 8.1 W/kg; SAR(10 g) = 2.3 W/kg Maximum value of SAR (measured) = 19.6 W/kg 0 dB = 18.2 W/kg = 12.60 dBW/kg Certificate No: D5GHzV2-1121_Mar17 Page 12 of 16 Page Number Report Issued Date: Aug.29, 2018 : 165 of 172 Page Number Report Issued Date: Aug.29, 2018 : 166 of 172 **DASY5 Validation Report for Body TSL** Date: 24.03.2017 Report No.: I18D00122-SAR01 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1121 Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 5.45$ S/m; $\varepsilon_r = 48.2$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5300 MHz; $\sigma = 5.58$ S/m; $\varepsilon_r = 48.0 = 1000$ kg/m³ Medium parameters used: f = 5200 MHz; $\sigma = 5.45$ S/m; $\varepsilon_r = 48.2$; $\rho = 1000$ kg/m³. Medium parameters used: f = 5300 MHz; $\sigma = 5.58$ S/m; $\varepsilon_r = 48$; $\rho = 1000$ kg/m³. Medium parameters used: f = 5500 MHz; $\sigma = 5.85$ S/m; $\varepsilon_r = 47.7$; $\rho = 1000$ kg/m³. Medium parameters used: f = 5600 MHz; $\sigma = 5.99$ S/m; $\varepsilon_r = 47.5$; $\rho = 1000$ kg/m³. Medium parameters used: f = 5800 MHz; $\sigma = 6.28$ S/m; $\varepsilon_r = 47.2$; $\rho = 1000$ kg/m³. Phantom section: Flat Section Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(5.29, 5.29, 5.29); Calibrated: 31.12.2016, ConvF(5.04, 5.04, 5.04); Calibrated: 31.12.2016, ConvF(4.62, 4.62, 4.62); Calibrated: 31.12.2016, ConvF(4.57, 4.57, 4.57); Calibrated: 31.12.2016, ConvF(4.48, 4.48, 4.48); Calibrated: 31.12.2016; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn660; Calibrated: 07.12.2016 - Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 - DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372) ## Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.01 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 28.2 W/kg SAR(1 g) = 7.25 W/kg; SAR(10 g) = 2.03 W/kg Maximum value of SAR (measured) = 17.1 W/kg ## Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 66.88 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 30.4 W/kg SAR(1 g) = 7.66 W/kg; SAR(10 g) = 2.14 W/kg Maximum value of SAR (measured) = 18.3 W/kg #### Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 67.16 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 33.8 W/kg SAR(1 g) = 8.02 W/kg; SAR(10 g) = 2.23 W/kg Maximum value of SAR (measured) = 19.4 W/kg Certificate No: D5GHzV2-1121_Mar17 Page 14 of 16 East China Institute of Telecommunications Page Number : 167 of 172 TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date : Aug.29, 2018 Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 66.44 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 33.9 W/kg SAR(1 g) = 7.96 W/kg; SAR(10 g) = 2.24 W/kg Maximum value of SAR (measured) = 19.1 W/kg Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 64.47 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 34.8 W/kg SAR(1 g) = 7.66 W/kg; SAR(10 g) = 2.13 W/kg Maximum value of SAR (measured) = 19.1 W/kg 0 dB = 17.1 W/kg = 12.33 dBW/kg Certificate No: D5GHzV2-1121_Mar17 Page 15 of 16 Page Number Report Issued Date: Aug.29, 2018 : 168 of 172 Page Number Report Issued Date: Aug.29, 2018 : 169 of 172 Report No.: I18D00122-SAR01 Acceptable Conditions for SAR Measurements Using Probes and Dipoles Calibrated under the SPEAG-TMC Dual-Logo Calibration Program to Support FCC Equipment Certification The acceptable conditions for SAR measurements using probes, dipoles and DAEs calibrated by TMC (Telecommunication Metrology Center of MITT in Beijing, China), under the Dual-Logo Calibration Certificate program and quality assurance (QA) protocols established between SPEAG (Schmid & Partner Engineering AG, Switzerland) and TMC, to support FCC (U.S. Federal Communications Commission) equipment certification are defined and described in the following. - 1) The agreement established between SPEAG and TMC is only applicable to calibration services performed by TMC where its clients (companies and divisions of such companies) are headquartered in the Greater China Region, including Taiwan and Hong Kong. This agreement is subject to renewal at the end of each calendar year between SPEAG and TMC. TMC shall inform the FCC of any changes or early termination to the agreement. - 2) Only a subset of the calibration services specified in the SPEAG-TMC agreement, while it remains valid, are applicable to SAR measurements performed using such
equipment for supporting FCC equipment certification. These are identified in the - a) Calibration of dosimetric (SAR) probes EX3DVx, ET3DVx and ES3DVx. - i) Free-space E-field and H-field probes, including those used for HAC (hearing aid compatibility) evaluation, temperature probes, other probes or equipment not identified in this document, when calibrated by TMC, are excluded and - cannot be used for measurements to support FCC equipment certification. ii) Signal specific and bundled probe calibrations based on PMR (probe modulation response) characteristics are handled according to the requirements of KDB 865664; that is, "Until standardized procedures are available to make such determination, the applicability of a signal specific probe calibration for testing specific wireless modes and technologies is determined on a case-by-case basis through KDB inquiries, including SAR system verification requirements." - b) Calibration of SAR system validation dipoles, excluding HAC dipoles - c) Calibration of data acquisition electronics DAE3Vx, DAE4Vx and DAEasyVx. d) For FCC equipment certification purposes, the frequency range of SAR probe and dipole calibrations is limited to 700 MHz 6 GHz and provided it is supported by the equipment identified in the TMC QA protocol (a separate attachment to this - The identical system and equipment setup, measurement configurations, hardware, evaluation algorithms, calibration and QA protocols, including the format of calibration certificates and reports used by SPEAG shall be applied by Page Number Report Issued Date: Aug.29, 2018 : 170 of 172 f) The calibrated items are only applicable to SPEAG DASY 4 and DASY 5 or higher version systems. Report No.: I18D00122-SAR01 - 3) The SPEAG-TMC agreement includes specific protocols identified in the following to ensure the quality of calibration services provided by TMC under this SPEAG-TMC Dual-Logo calibration agreement are equivalent to the calibration services provided by SPEAG. TMC shall, upon request, provide copies of documentation to the FCC to substantiate program implementation. - the FCC to substantiate program implementation. a) The Inter-laboratory Calibration Evaluation (ILCE) stated in the TMC QA protocol shall be performed between SPEAG and TMC at least once every 12 months. The ILCE acceptance criteria defined in the TMC QA protocol shall be satisfied for the TMC. SPEAG and FCC agreements to remain yalid. - satisfied for the TMC, SPEAG and FCC agreements to remain valid. b) Check of Calibration Certificate (CCC) shall be performed by SPEAG for all calibrations performed by TMC. Written confirmation from SPEAG is required for TMC to issue calibration certificates under the SPEAG-TMC Dual-Logo calibration program. Quarterly reports for all calibrations performed by TMC under the program are also issued by SPEAG. - c) The calibration equipment and measurement system used by TMC shall be verified before each calibration service according to the specific reference SAR probes, dipoles, and DAE calibrated by SPEAG. The results shall be reproducible and within the defined acceptance criteria specified in the TMC QA protocol before each actual calibration can commence. TMC shall maintain records of the measurement and calibration system verification results for all calibrations. - d) Quality Check of Calibration (QCC) certificates shall be performed by SPEAG at least once every 12 months. SPEAG shall visit TMC facilities to verify the laboratory, equipment, applied procedures and plausibility of randomly selected certificates. - A copy of this document, to be updated annually, shall be provided to TMC clients that accept calibration services according to the SPEAG-TMC Dual-Logo calibration program, which should be presented to a TCB (Telecommunication Certification Body), to facilitate FCC equipment approval. - TMC shall address any questions raised by its clients or TCBs relating to the SPEAG-TMC Dual-Logo calibration program and inform the FCC and SPEAG of any critical issues. Change Note: Revised on June 26 to clarify the applicability of PMR and Bundled probe calibrations according to the requirements of KDB 865664. East China Institute of Telecommunications TEL: +86 21 63843300FAX:+86 21 63843301 Page Number : 171 of 172 Report Issued Date : Aug.29, 2018 **ANNEX H. Accreditation Certificate** ## **Accredited Laboratory** A2LA has accredited #### EAST CHINA INSTITUTE OF TELECOMMUNICATIONS Shanghai, People's Republic of China for technical competence in the field of #### **Electrical Testing** This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009). Presented this 15th day of March 2017. Page Number Report Issued Date: Aug.29, 2018 : 172 of 172 Report No.: I18D00122-SAR01 President and CEO For the Accreditation Council Certificate Number 3682.01 Valid to February 28, 2019 For the tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation. ********END OF REPORT*******