

TEST REPORT

No. I19D00009-SRD04

For

Client: Mobiwire SAS

Production: 4G Smart Feature Phone

Model Name: MobiWire Oneida

Brand Name: MobiWire


FCC ID: QPN-ONEIDA

Hardware Version: V04

Software Version: VDF_ONEIDA_SS_O_L_C_V01.0_20180919.M

P_FCC

Issued date: 2019-03-08

Page Number

: 2 of 108

Report Issued Date: Mar.08, 2019

NOTE

- 1. The test results in this test report relate only to the devices specified in this report.
- 2. This report shall not be reproduced except in full without the written approval of China Telecommunication Technology Labs.
- 3. ANSI/TIA-603-E and KDB 971168 D01 has not been approved by A2LA.
- 4. For the test results, the uncertainty of measurement is not taken into account when judging the compliance with specification, and the results of measurement or the average value of measurement results are taken as the criterion of the compliance with specification directly.

Test Laboratory:

East China Institute of Telecommunications

Add: 7-8F, G Area, No.668, Beijing East Road, Huangpu District, Shanghai, P. R. China

Tel: +86 21 63843300 FAX: +86 21 63843301

E-Mail: welcome@ecit.org.cn

Page Number : 3 of 108 Report Issued Date: Mar.08, 2019

Revision Version

Report Number		Revision	Date	Memo
1190	000009-SRD04	00	2019-02-25	Initial creation of test report
I19E	000009-SRD04	01	2019-03-08	Second creation of test report

Page Number : 4 of 108 Report Issued Date: Mar.08, 2019

CONTENTS

1. TEST L	.ABORATORY	6
1.1.	TESTING LOCATION	6
1.2.	TESTING ENVIRONMENT	6
1.3.	PROJECT DATA	6
1.4.	SIGNATURE	6
2. CLIEN	TINFORMATION	7
2.1.	APPLICANT INFORMATION	7
2.2.	MANUFACTURER INFORMATION	7
3. EQUIP	MENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	8
3.1.	ABOUT EUT	8
3.2.	INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST	8
3.3.	INTERNAL IDENTIFICATION OF AE USED DURING THE TEST	8
4. REFER	ENCE DOCUMENTS	9
4.1.	DOCUMENTS SUPPLIED BY APPLICANT	9
4.2.	REFERENCE DOCUMENTS FOR TESTING	9
5. TEST F	RESULTS	10
5.1.	SUMMARY OF TEST RESULTS	10
5.2.	STATEMENTS	10
6. TEST E	EQUIPMENTS UTILIZED	11
6.1.	CONDUCTED TEST SYSTEM	11
6.2.	RADIATED EMISSION TEST SYSTEM	11
7. MEASU	JREMENT UNCERTAINTY	13
8. TEST E	ENVIRONMENT	14
ANNEX A	A. DETAILED TEST RESULTS	15
ANNEX A	A.1. OUTPUT POWER	15

Page Number : 5 of 108 Report Issued Date: Mar.08, 2019

ANNEX A.2.	PEAK-TO-AVERAGE POWER RATIO	17
ANNEX A.3.	OCCUPIED BANDWIDTH	19
ANNEX A.4.	-26DB EMISSION BANDWIDTH	34
ANNEX A.5.	BAND EDGE AT ANTENNA TERMINALS	50
ANNEX A.6.	FREQUENCY STABILITY	59
ANNEX A.7.	CONDUCTED SPURIOUS EMISSION	64
ANNEX A.8.	RADIATED	78
ANNEX B.	ACCREDITATION CERTIFICATE	108

1. Test Laboratory

1.1. Testing Location

Company Name	East China Institute of Telecommunications
Address	7-8/F., Area G, No.666, Beijing East Road, Shanghai, China
Postal Code	200001
Telephone	+86 21 63843300
Fax	+86 21 63843301
FCC registration No	958356

1.2. Testing Environment

Normal Temperature	15℃-35℃
Relative Humidity	20%-75%

1.3. Project Data

Project Leader	Yu Anlu
Testing Start Date	2018-01-27
Testing End Date	2018-12-19
Project Leader:	Yu Anlu
Testing Start Date:	2019-01-23
Testing End Date:	2019-02-19

1.4. Signature

Yang Dejun

杨德君

(Prepared this test report)

Shi Hongqi

施瓦旗

(Reviewed this test report)

Page Number

: 6 of 108

Report Issued Date: Mar.08, 2019

Zheng Zhongbin

(Approved this test report)

Page Number

: 7 of 108

Report Issued Date: Mar.08, 2019

2. Client Information

2.1. Applicant Information

Company Name	Mobiwire SAS
Address	79 AVENUE FRANCOIS ARAGO 92017 NANTERRE CEDEX France.
Telephone	+86 574 59555707
Postcode	

2.2. Manufacturer Information

Company Name	Mobiwire SAS
Address	79 AVENUE FRANCOIS ARAGO 92017 NANTERRE CEDEX France.
Telephone	+86 574 59555707
Postcode	

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1. About EUT

Production	4G Smart Feature Phone
Model name	MobiWire Oneida
FCC ID	QPN-ONEIDA
GSM Frequency Band	GSM850/GSM900/GSM1800/GSM1900
UMTS Frequency Band	Band I/II/V/VIII
CDMA Frequency Band	1
LTE Frequency Band	Band 1/3/7/20
Additional Communication	BT/BLE/2.4G WLAN 802.11 b/g/n20/n40
Function	
Extreme Temperature	-20/+60 ℃
Nominal Voltage	3.7V
Extreme High Voltage	4.2V
Extreme Low Voltage	3.6V

Note: Photographs of EUT are shown in ANNEX A of this test report.

3.2. Internal Identification of EUT used during the test

EUT ID*	Model	SN or IMEI	HW	SW Version	Date of receipt
	Name		Versi		
			on		
N01	MobiWire	352548100000704/	V04	VDF_ONEIDA_SS_O_L_C_	2018-10-15
	Oneida	352548100000712		V01.0_20181025_MP_FCC	
N05	MobiWire	352548100000563/	V04	VDF_ONEIDA_SS_O_L_C_	2018-10-15
	Oneida	352548100000571		V01.0_20181025_MP_FCC	
N02	MobiWire	352548100000647/	V04	VDF_ONEIDA_SS_O_L_C_	2019-01-23
	Oneida	352548100000654		V01.0_20180919_MP_FCC	
N05(With	MobiWire	352548100004045	V04	VDF_ONEIDA_SS_O_L_C_	2019-01-23
out	Oneida			V01.0_20180919_MP_FCC	
Camera)					
N06(Sing	MobiWire	/	V04	VDF_ONEIDA_SS_O_L_C_	2019-01-23
le SIM)	Oneida			V01.0_20180919_MP_FCC	

^{*}EUT ID: is used to identify the test sample in the lab internally.

3.3. Internal Identification of AE used during the test

AE ID*	Description	Туре	Manufacturer
AE1	RF cable		AE1

^{*}AE ID: is used to identify the test sample in the lab internally.

Page Number

: 9 of 108

Report Issued Date: Mar.08, 2019

4. Reference Documents

4.1. Documents supplied by applicant

All technical documents are supplied by the client or manufacturer, which is the basis of testing.

4.2. Reference Documents for testing

The following documents listed in this section are referred for testing.

Reference	Title	Version		
FCC Part 24	PERSONAL COMMUNICATIONS SERVICES	2018/10/		
		01		
FCC Part 22	PUBLIC MOBILE SERVICES	2018/10/		
		01		
FCC Part 2	FREQUENCY ALLOCATIONS AND RADIO TREATY	2018/10/		
	MATTERS; GENERAL RULES AND REGULATIONS	01		
ANSI-TIA-603-E	Land Mobile FM or PM Communications Equipment	2016		
	Measurement and Performance Standards			
ANSI C63.26	American National Standard of Procedures for Compliance	2015		
	Testing of Licensed Transmitters Used in Licensed Radio			
KDB 971168 D01	Measurement Guidance for Certification of Licensed Digital	v03r01		
	Transmitters			

5. Test Results

5.1. Summary of Test Results

Measurement Items	Sub-clause of Part15C	Sub-claus e of IC	Verdict
Output Power	2.1046/22.913(a)/ 24.232(c)	/	Р
Peak-to-Average Ratio	24.232(d)	/	Р
99%Occupied Bandwidth	2.1049(h)(i)/ 22.917(b)	/	Р
-26dB Emission Bandwidth	22.917(b)/§24.238 (b)	/	Р
Band Edge at antenna terminals	22.917(a)/24.238(a)	/	Р
Frequency stability	2.1055/24.235	/	Р
Conducted Spurious mission	2.1053/22.917(a)/ 24.238(a)	/	Р
Emission Limit	2.1051/22.917/24. 238/22.913/24.232	/	Р

Note: please refer to Annex A in this test report for the detailed test results.

The following terms are used in the above table.

Р	Pass, the EUT complies with the essential requirements in the standard.
NP	Not Perform, the test was not performed by ECIT.
NA	Not Applicable, the test was not applicable.
F	Fail, the EUT does not comply with the essential requirements in the standard.

5.2. Statements

The MobiWire Oneida, supporting GSM/GPRS/EDGE/WCDMA/LTE/BT/BLE/WLAN, manufactured by Mobiwire SAS, which is a variant product for testing. In this report, only the RSE and ERP/EIRP are tested. For the other test cases we quote the data of report No: I18D00205-SRD04, which was prepared by East China Institute of Telecommunications.

Note: This project has three sets of radiated configuration samples, N02, N06(single SIM) and N05(without Camera), Among them, N02 main test, N05 and N06 samples test the worst mode of N02.

ECIT only performed test cases which identified with P/NP/NA/F results in Annex A.

ECIT has verified that the compliance of the tested device specified in section 3 of this test report is successfully evaluated according to the procedure and test methods as defined in type certification requirement listed in section 4 of this test report.

East China Institute of Telecommunications TEL: +86 21 63843300FAX: +86 21 63843301 Page Number : 10 of 108 Report Issued Date: Mar.08, 2019

6. Test Equipments Utilized

6.1. Conducted Test System

No.	Name	Туре	SN	Manufactur e	Calibration date	Cal.interval
1	Spectrum Analyzer	FSQ26	101096	R&S	2018-05-11	1 Year
2	Universal Radio Communicatio	CMU20 0	123124	R&S	2018-05-11	1 Year
3	DC Power Supply	ZUP60- 14	LOC-220Z0 06 -0007	TDL-Lambd a	2018-05-11	1 Year

6.2. Radiated Emission Test System

The test equipment and ancillaries used are as follows.

No.	Equipment	Model	Serial Number	Manufactur er	Calibration date	Cal.interval
1	Universal Radio Communicatio n Tester	CMU20 0	123123	R&S	2018-05-11	1 Year
2	EMI Test Receiver	ESU40	100307	R&S	2018-05-11	1 Year
3	TRILOG Broadband Antenna	VULB9 163	VULB9163- 515	Schwarzbec k	2017-02-25	3 Year
4	Double- ridged Waveguide Antenna	ETS-31 17	00135890	ETS	2017-01-11	3 Year
5	2-Line V-Network	ENV21 6	101380	R&S	2018-05-11	1 Year
6	Substitution A ntenna	ETS-31 17	00135890	ETS	2017-01-11	3 Year

Page Number

: 11 of 108

Report Issued Date: Mar.08, 2019

7	RF Signal Generator	SMF10 0A	102314	R&S	2018-05-11	1 Year
8	Substitution A ntenna	VUBA9 117	9117-266	Schwarzbec k	2017-11-18	3 Year
9	Amplifier	SCU08	10146	R&S	2018-05-11	1 Year

Climate chamber

No.	Equipment	Model	Serial Number	Manufactur er	Calibration date	Cal.interval
1	Climate chamber	SH-641	92012011	ESPEC	2017-12-25	2 Year

Page Number

: 13 of 108

Report Issued Date: Mar.08, 2019

7. Measurement Uncertainty

Measurement uncertainty for all the testing in this report are within the limit specified in ECIT documents . The detailed measurement uncertainty is defined in ECIT documents.

Measurement Items	Range	Confide nce Level	Calculated Uncertainty
Maximum Peak Output Power	30MHz-3600MHz	95%	\pm 0.544dB
EBW and VBW	30MHz-3600MHz	95%	±62.04Hz
Transmitter Spurious Emission-Conducted	30MHz-2GHz	95%	\pm 0.90dB
Transmitter Spurious Emission-Conducted	2GHz-3.6GHz	95%	\pm 0.88dB
Transmitter Spurious Emission-Conducted	3.6GHz-8GHz	95%	\pm 0.96dB
Transmitter Spurious Emission-Conducted	8GHz-20GHz	95%	\pm 0.94dB
Transmitter Spurious Emission-Radiated	9KHz-30MHz	95%	\pm 5.66dB
Transmitter Spurious Emission-Radiated	30MHz-1000MHz	95%	\pm 4.98dB
Transmitter Spurious Emission-Radiated	1000MHz -18000MHz	95%	\pm 5.06dB
Transmitter Spurious Emission-Radiated	18000MHz -40000MHz	95%	\pm 5.20dB
Frequency stability	1MHz-16GHz	95%	±62.04Hz

Page Number

: 14 of 108

Report Issued Date: Mar.08, 2019

8. Test Environment

Shielding Room1 (6.0 meters×3.0 meters×2.7 meters) did not exceed following limits along the conducted RF performance testing:

Temperature	Min. = 15 °C, Max. = 35 °C			
Relative humidity	Min. = 20 %, Max. = 75 %			
Shielding effectiveness	> 100 dB			
Ground system resistance	< 0.5 Ω			

Control room did not exceed following limits along the EMC testing:

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. =25 %, Max. = 75 %
Shielding effectiveness	> 100 dB
Electrical insulation	> 10 kΩ
Ground system resistance	< 0.5 Ω

Fully-anechoic chamber1 (6.9 meters×10.9 meters×5.4 meters) did not exceed following limits along the EMC testing:

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. = 25 %, Max. = 75 %
Shielding effectiveness	> 100 dB
Electrical insulation	> 10 kΩ
Ground system resistance	< 0.5 Ω
VSWR	Between 0 and 6 dB, from 1GHz to 18GHz
Site Attenuation Deviation	Between -4 and 4 dB,30MHz to 1GHz
Uniformity of field strength	Between 0 and 6 dB, from 80MHz to 3000 MHz

ANNEX A. Detailed Test Results

ANNEX A.1. OUTPUT POWER

A.1.1. Summary

During the process of testing, the EUT was controlled Rhode & Schwarz Digital Radio.

Communication tester (CMU-200) to ensure max power transmission and proper modulation.

This result contains peak output power and EIRP measurements for the EUT. In all cases, output power is within the specified limits.

A.1.2. Conducted

A.1.2.1. Method of Measurements

Method of measurements please refer to KDB971168 D01 v03 clause 5.

The EUT was set up for the max output power with pseudo random data modulation.

The power was measured with Rhode & Schwarz Spectrum Analyzer FSQ(peak).

These measurements were done at 3 frequencies, 1850.2 MHz, 1880.0MHz and 1909.8MHz for PCS1900 band; 824.2MHz, 836.6MHz and 848.8MHz for GSM850 band. (bottom, middle and top of operational frequency range).

These measurements were done at 3 frequencies, 1852.4 MHz, 1880.0MHz and 1907.6MHz for WCDMA Band II; 826.4MHz, 836.6MHz and 846.6MHz for WCDMA Band V. (bottom, middle and top of operational frequency range).

A.1.2.2 Test procedures:

- 1. The transmitter output port was connected to base station.
- 2. Set the EUT at maximum power through base station.
- 3. Select lowest, middle, and highest channels for each band and different modulation.
- 4. Measure the maximum burst average power for GSM and maximum average power for other modulation signal.

A.1.2.3 Limit:

22.913(a) Mobile stations are limited to 7watts.

24.232(c) Mobile and portable stations are limited to 2 watts.

A.1.2.4 Test Procedure:

The transmitter output power was connected to calibrated attenuator, the other end of which was connected to signal analyzer. Transmitter output power was read off the power in dBm. The power outputs at the transmitter antenna port was determined by adding the value of attenuator to the signal analyzer reading.

A.1.2.5 GSM Test Condition:

RBW	VBW	Sweep time	Span
10MHz	30MHz	Auto	10MHz

East China Institute of Telecommunications TEL: +86 21 63843300FAX: +86 21 63843301 Page Number : 15 of 108 Report Issued Date: Mar.08, 2019

Page Number : 16 of 108

Report Issued Date: Mar.08, 2019

A.1.2.6 WCDMA Test Condition:

RBW	VBW	Sweep time	Span
10MHz	30MHz	Auto	50MHz

A.1.2.7 Measurement results:

GSM 850 (GMSK)			
Channel/fc(MHz)	Peak power (dBm)	AV power (dBm)	
Mid 189/836.4	32.9	32.44	
Low 128/824.2	32.64	32.43	
High 251/848.8	32.67	32.43	
GPRS 850 (0	GMSK 1 Slot)		
Channel/fc(MHz)	Peak power (dBm)	AV power (dBm)	
Mid 189/836.4	32.93	32.47	
Low 128/824.2	32.74	32.45	
High 251/848.8	32.72	32.45	
EDGE 850 (EDGE 850 (8PSK 1 Slot)		
Channel/fc(MHz)	Peak power (dBm)	AV power (dBm)	
Mid 189/836.4	30.14	27.26	
Low 128/824.2	29.95	27.05	
High 251/848.8	30.25	27.37	

GSM 1900(GMSK)		
Channel/fc(MHz)	Peak power (dBm)	AV power (dBm)
Mid 661/1880	32.56	32.40
Low 512/1850.2	31.72	30.18
High 810/1909.8	32.94	32.77
GPRS 1900 (GMSK 1 Slot)		
Channel/fc(MHz) Peak power (dBm) AV power (dBm)		

Mid 661/1880	30.65	29.98
Low 512/1850.2	31.04	30.2
High 810/1909.8	30.26	29.69
EDGE 1900 (8PSK 1 Slot)		
Channel/fc(MHz)	Peak power (dBm)	AV power (dBm)
Mid 661/1880	29.32	26.41
Low 512/1850.2	29.05	26.28
High 810/1909.8	29.21	26.31

WCDMA II		
Channel/fc(MHz)	Peak power (dBm)	AV power (dBm)
Mid 9400 /1880	26.37	22.64
Low 9262/1852.4	26.55	22.73
High 9538/1907.6	26.51	22.72
WCDMA BAND V		
Channel/fc(MHz)	Peak power (dBm)	AV power (dBm)
Mid 4183/836.6	26.20	22.45
Low 4132/826.4	26.23	22.46
High 4233/846.6	26.11	22.35

Conclusion: PASS

ANNEX A.2. Peak-to-Average Power Ratio

Method of test measurements please refer to KDB971168 D01 v03 clause 5.7.

A.2.1 PAPR Limit

The peak-to-average power ratio (PAPR) of the transmission may not exceed 13dB

A.2.2 Test procedures

1. The EUT was connected to the spectrum analyzer and system simulator via a power divider.

Page Number

: 17 of 108

Report Issued Date: Mar.08, 2019

- 2.
- 1) Select the spectrum analyzer CCDF function.

- 2) Set RBW ≥ signal's occupied bandwidth.
- 3) Set the number of counts to a value that stabilizes the measured CCDF cure;
- 4) Sweep time \geq 1s.
- 3. Record the maximum PAPR level associated with a probability of 0.1%.

A.2.3 Test results:

GSM850				
Channel	128	189	251	
Frequency (MHz)	824.2	836.4	848.8	
PAPR(dB)	7.66	8.04	10.71	
	GPRS850			
Channel	128	189	251	
Frequency (MHz)	824.2	836.4	848.8	
PAPR(dB)	7.78	8.25	10.69	
	EDGE850			
Channel	128	189	251	
Frequency (MHz)	824.2	836.4	848.8	
PAPR(dB)	7.78	8.14	10.68	

GSM1900				
Channel	512	661	810	
Frequency (MHz)	1850.2	1880	1909.8	
PAPR(dB)	10.67	7.69	10.06	
	GPRS1900			
Channel	512	661	810	
Frequency (MHz)	1850.2	1880	1909.8	
PAPR(dB)	10.58	7.7	10.11	
EDGE1900				
Channel	512	661	810	

Page Number

: 18 of 108

Report Issued Date: Mar.08, 2019

Frequency (MHz)	1850.2	1880	1909.8
PAPR(dB)	10.58	7.69	10.05

WCDMA Band II			
Channel	9262	9400	9538
Frequency (MHz)	1852.4	1880	1907.6
PAPR(dB)	5.45	5.1	5.03
WCDMA Band V			
Channel	4132	4183	4233
Frequency (MHz)	826.4	836.4	846.6
PAPR(dB)	8.43	4.1	4.29

Conclusion: PASS

ANNEX A.3. Occupied Bandwidth

Method of test please refer to KDB971168 D01 v03 clause 4.0.

A.3.1. Occupied Bandwidth

Similar to conducted emissions; occupied bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies of GSM850, PCS1900, WCDMA BANDII and WCDMA BANDV.

A.3.2 Test Procedure:

- 1. The EUT output RF connector was connected with a short cable to the signal analyzer.
- 2. RBW was set to about 1% of emission BW, VBW >= 3 times RBW,.
- 3. 99% bandwidth were measured, the occupied bandwidth is delta frequency between the two points where the display line intersects the signal trace.

Page Number

: 19 of 108

Report Issued Date: Mar.08, 2019

A.3.3 Test result:

GSM850		
Test channel	Frequency (MHz)	99% Occupied Bandwidth(KHz)

836.4	246.795	
824.2	245.192	
848.8	248.397	
GPRS850		
Frequency (MHz)	99% Occupied Bandwidth(KHz)	
836.4	243.59	
824.2	248.397	
848.8	245.192	
EDGE850		
Frequency (MHz)	99% Occupied Bandwidth(KHz)	
836.4	246.795	
824.2	250	
848.8	246.795	
	824.2 848.8 GPRS850 Frequency (MHz) 836.4 824.2 848.8 EDGE850 Frequency (MHz) 836.4 824.2	

Conclusion: PASS

GSM 850

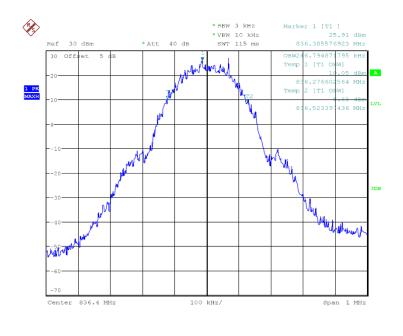
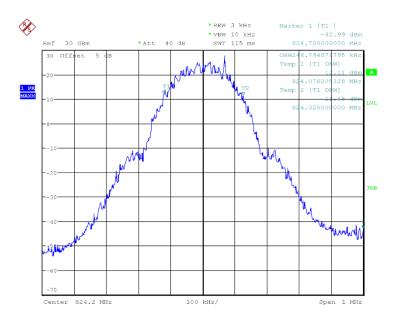



Fig.1 Channel 189-Occupied Bandwidth (99%)

Date: 17.0CT.2018 08:26:01

Date: 17.0CT.2018 08:26:50

Date: 17.0CT.2018 08:27:39

Fig.2 Channel 128-Occupied Bandwidth (99%)

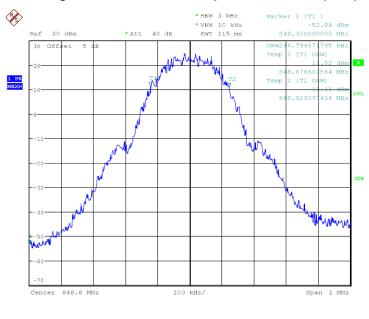
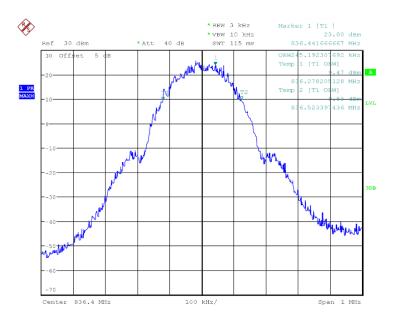
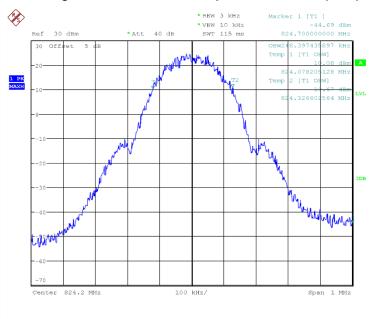
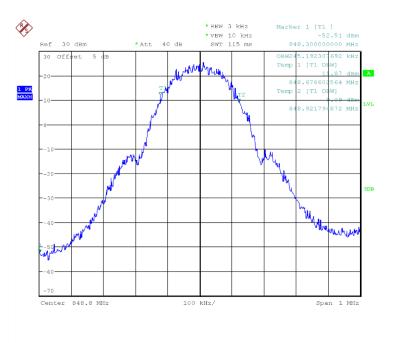



Fig.3 Channel 251-Occupied Bandwidth (99%)


GPRS 850

Date: 17.0CT.2018 08:30:12


Fig.4 Channel 189-Occupied Bandwidth (99%)

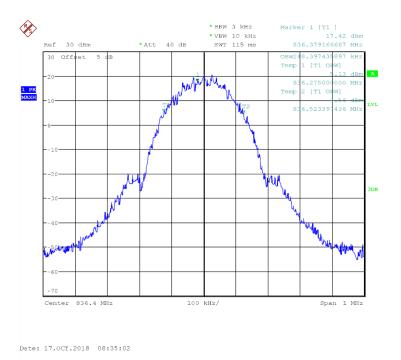
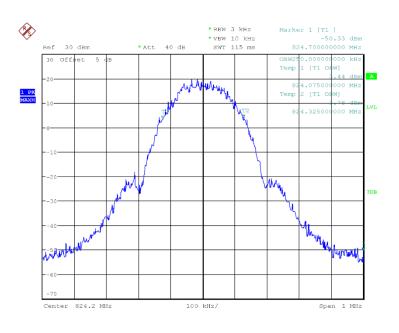
Date: 17.0CT.2018 08:30:59

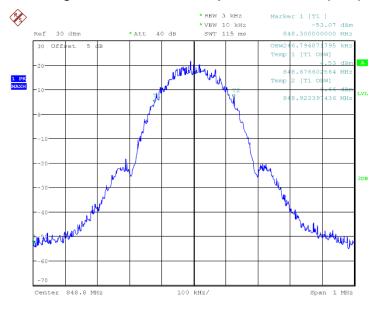
Fig.5 Channel 128-Occupied Bandwidth (99%)

Date: 17.0CT.2018 08:31:46

Fig.6 Channel 251-Occupied Bandwidth (99%)

EDGE 850

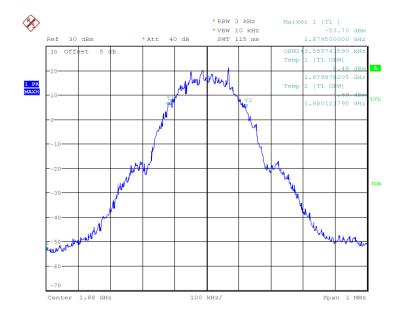




Fig.7 Channel 189-Occupied Bandwidth (99%)

Date: 17.0CT.2018 08:35:49

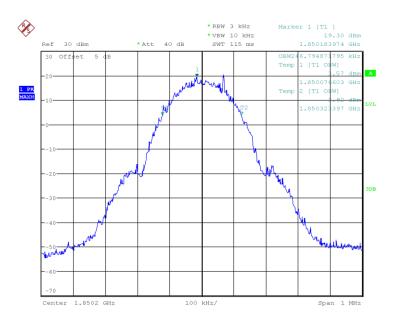
Fig.8 Channel 128-Occupied Bandwidth (99%)

Date: 17.0CT.2018 08:36:36

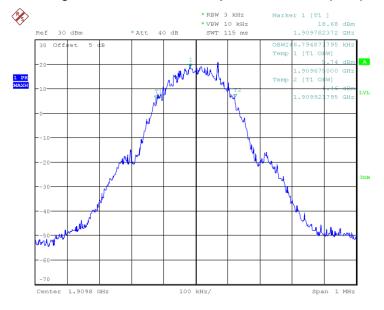

Fig.9 Channel 251-Occupied Bandwidth (99%)

GSM1900		
Test channel	Frequency (MHz)	99% Occupied Bandwidth(KHz)
Mid 661	1880	243.589
Low 512	1850.2	246.795

High 810	1909.8	246.795		
	GPRS1900			
Test channel	Frequency (MHz)	99% Occupied Bandwidth(KHz)		
Mid 661	1880	246.795		
Low 512	1850.2	246.795		
High 810	1909.8	243.589		
EDGE1900				
Test channel	Frequency (MHz)	99% Occupied Bandwidth(KHz)		
Mid 661	1880	256.410		
Low 512	1850.2	253.205		
High 810	1909.8	253.205		

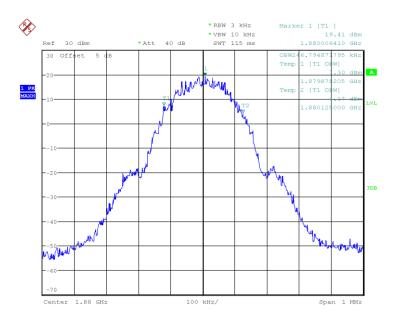

Conclusion: PASS GSM 1900

Date: 17.0CT.2018 10:32:59


Fig.10 Channel 661-Occupied Bandwidth (99%)

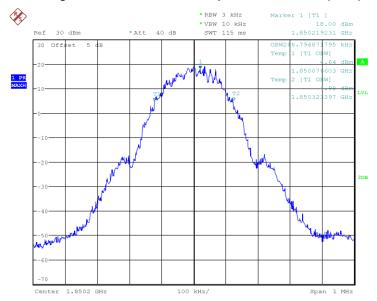
Date: 17.0CT.2018 10:31:39

Fig.11 Channel 512-Occupied Bandwidth (99%)

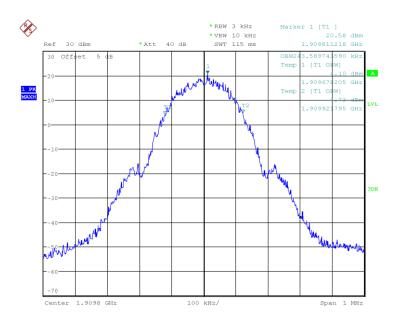


Date: 17.0CT.2018 10:34:36

Fig.12 Channel 810-Occupied Bandwidth (99%)

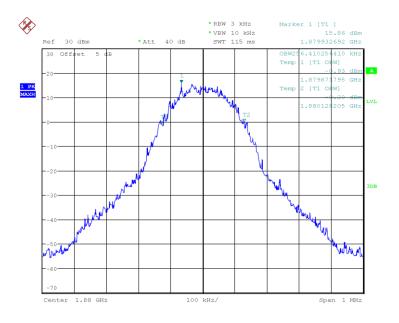

GPRS 1900

Date: 17.0CT.2018 10:39:05


Fig.13 Channel 661-Occupied Bandwidth (99%)

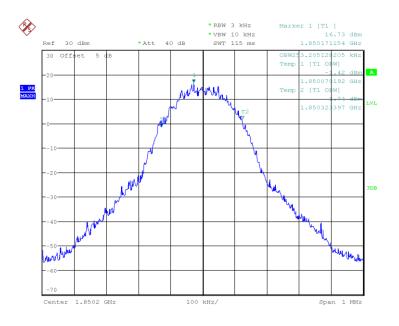
Date: 17.0CT.2018 10:38:11

Fig.14 Channel 512-Occupied Bandwidth (99%)

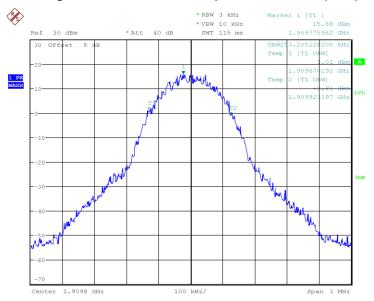


Date: 17.0CT.2018 10:40:14

Fig.15 Channel 810-Occupied Bandwidth (99%)


EDGE 1900

Date: 17.0CT.2018 10:44:40


Fig.16 Channel 661-Occupied Bandwidth (99%)

Date: 17.0CT.2018 10:43:25

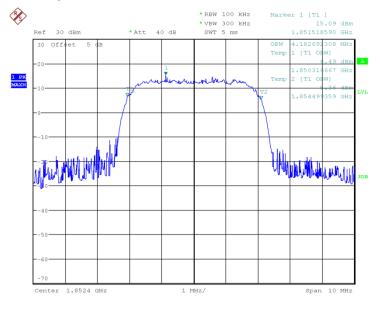
Fig.17 Channel 512-Occupied Bandwidth (99%)

Date: 17.0CT.2018 10:45:53

Fig.18 Channel 810-Occupied Bandwidth (99%)

WCDMA BAND II		
Test channel	Frequency (MHz)	99% Occupied Bandwidth(MHz)
Mid 9400	1880	4.167
Low 9262	1852.4	4.183

East China Institute of Telecommunications TEL: +86 21 63843300FAX: +86 21 63843301 Page Number : 29 of 108 Report Issued Date: Mar.08, 2019


High 9538	1907.6	4.167
-----------	--------	-------

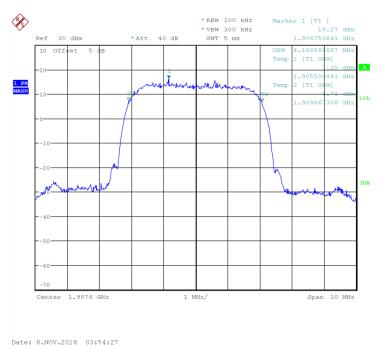
Conclusion: PASS WCDMA BAND II

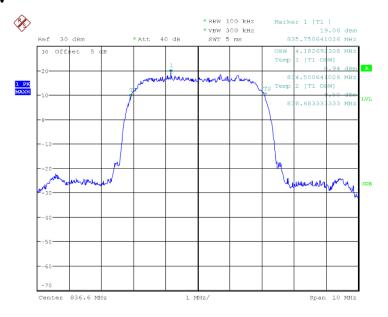
Date: 8.NOV.2018 03:52:24

Fig.19 Channel 9400-Occupied Bandwidth (99%)

Date: 8.NOV.2018 03:53:25

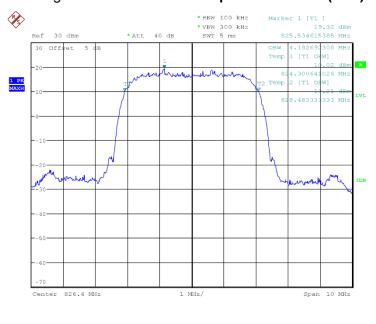
Fig.20 Channel 9262-Occupied Bandwidth (99%)




Fig.21 Channel 9538-Occupied Bandwidth (99%)

WCDMA BAND V		
Test channel	Frequency (MHz)	99% Occupied Bandwidth(MHz)
Mid 4183	836.6	4.183
Low 4132	826.4	4.183
High 4233	846.6	4.183

Conclusion: PASS



WCDMA BAND V

Date: 17.0CT.2018 09:27:36

Fig.22 Channel 4183-Occupied Bandwidth (99%)

Date: 17.0CT.2018 09:28:40

Fig.23 Channel 4132-Occupied Bandwidth (99%)



Fig.24 Channel 4233-Occupied Bandwidth (99%)

Page Number

: 34 of 108

Report Issued Date: Mar.08, 2019

ANNEX A.4. -26dB Emission Bandwidth

Method of test please refer to KDB971168 D01 v03 clause 4.0.

A.4.1. -26dB Emission Bandwidth

Similar to conducted emissions; occupied bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies of GSM850, PCS1900, WCDMA BANDII and WCDMA BANDV.

A.4.2 Test Procedure:

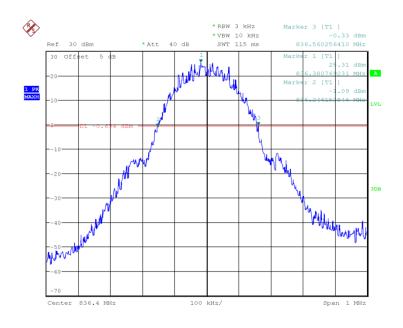
- 1. The EUT output RF connector was connected with a short cable to the signal analyzer.
- 2. RBW was set to about 1% of emission BW, VBW >= 3 times RBW,.
- 3. 26dB bandwidth were measured, the occupied bandwidth is delta frequency between the two points where the display line intersects the signal trace.

A.4.3 Measurement methods:

For GSM: signal analyzer setting as: RBW=3KHz;VBW=10KHz;Span=1MHz.

For WCDMA: signal analyzer setting as: RBW=50KHz;VBW=200KHz;Span=10MHz.

A.4.4 Test results:


	GSM 850		
Test channel	Frequency (MHz)	–26dBc Emission Bandwidth(KHz)	
Mid 189	836.4	314.103	
Low 128	824.2	310.897	
High 251	848.8	317.308	
GPRS 850			
Test channel	Frequency (MHz)	–26dBc Emission Bandwidth(KHz)	
Mid 189	836.4	315.705	
Low 128	824.2	312.5	
High 251	848.8	312.5	
EDGE 850			
Test channel	Frequency (MHz)	–26dBc Emission Bandwidth(KHz)	
Mid 189	836.4	310.897	

Low 128	824.2	310.897
High 251	848.8	314.103

Conclusion: PASS

GSM 850

Date: 8.NOV.2018 03:45:26

Fig.25 Channel 189- Emission Bandwidth (-26dBc BW)

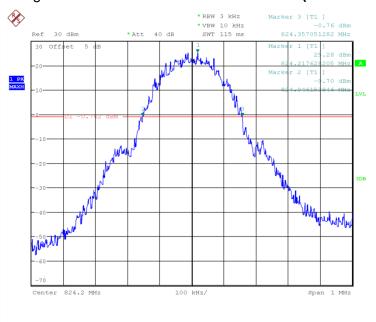
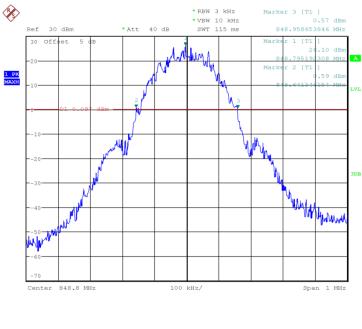



Fig.26 Channel 128- Emission Bandwidth (-26dBc BW)

Date: 8.NoV.2018 03:45:57

Date: 8.NOV.2018 03:46:28

Fig.27 Channel 251- Emission Bandwidth (-26dBc BW)

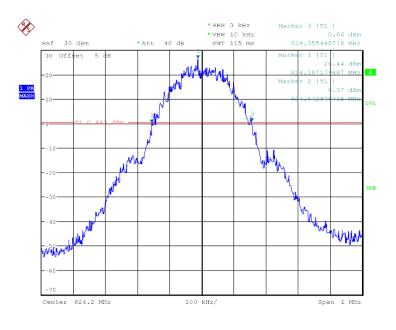
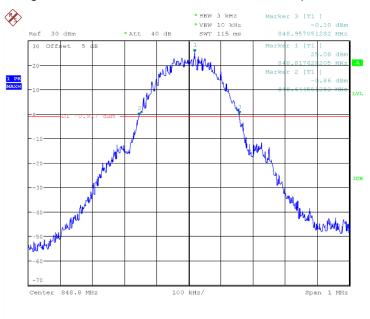
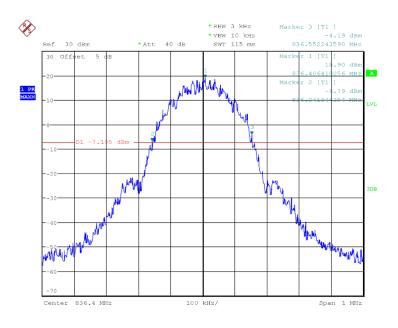

GPRS 850

Fig.28 Channel 189- Emission Bandwidth (-26dBc BW)


Page Number : 36 of 108 Report Issued Date: Mar.08, 2019

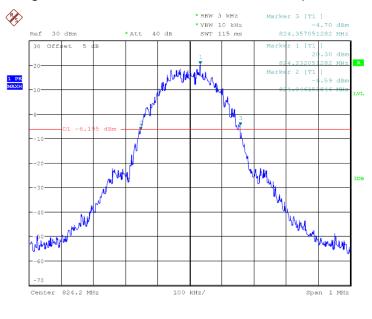
Date: 17.0CT.2018 08:40:12

Fig.29 Channel 128- Emission Bandwidth (-26dBc BW)

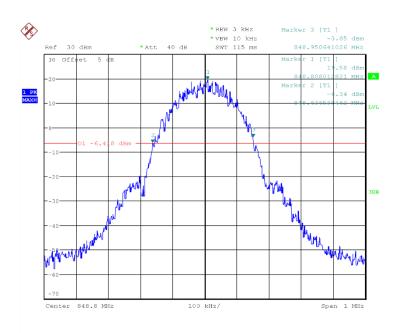


Date: 17.0CT.2018 08:40:41

Fig.30 Channel 251- Emission Bandwidth (-26dBc BW)


EDGE 850

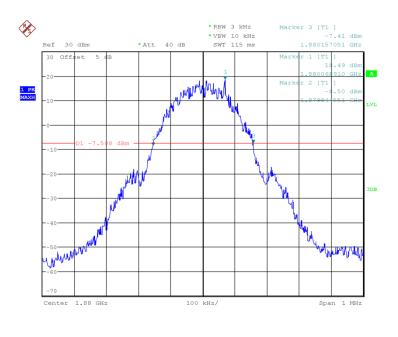
Date: 17.0CT.2018 08:42:28


Fig.31 Channel 189- Emission Bandwidth (-26dBc BW)

Date: 17.0CT.2018 08:42:57

Fig.32 Channel 128- Emission Bandwidth (-26dBc BW)

Date: 17.0CT.2018 08:43:27


Fig.33 Channel 251- Emission Bandwidth (-26dBc BW)

1 19.00	Chamilei 231- Emission Ban	awidii (Zoabe Bii)
	GSM1900	
Test channel	Frequency (MHz)	–26dBc Emission Bandwidth(KHz)
Mid 661	1880	312.5
Low 512	1850.2	310.897
High 810	1909.8	310.897
	GPRS1900	
Test channel	Frequency (MHz)	–26dBc EmissionBandwidth(KHz)
Mid 661	1880	320.513
Low 512	1850.2	317.308
High 810	1909.8	315.705
	EDGE1900	
Test channel	Frequency (MHz)	–26dBc Emission Bandwidth(KHz)
Mid 661	1880	323.718
Low 512	1850.2	323.718
High 810	1909.8	314.103

Conclusion: PASS

GSM 1900

Date: 8.NOV.2018 03:48:17

Fig.34 Channel 661- Emission Bandwidth (-26dBc BW)

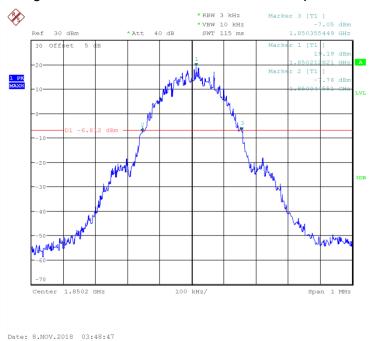


Fig.35 Channel 512- Emission Bandwidth (-26dBc BW)

Page Number : 40 of 108 Report Issued Date: Mar.08, 2019

: 41 of 108

Report Issued Date: Mar.08, 2019

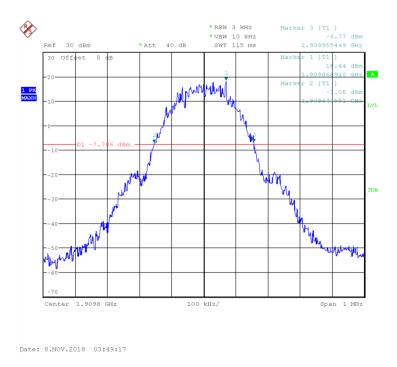
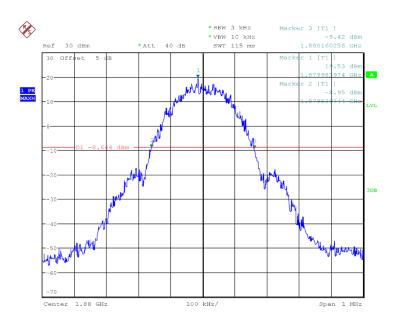
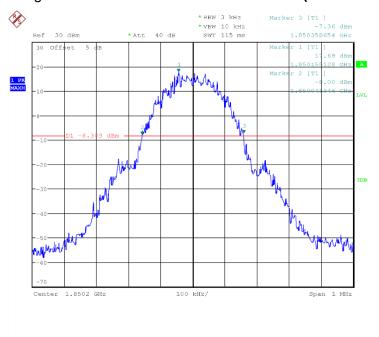



Fig.36 Channel 810- Emission Bandwidth (-26dBc BW)



GPRS 1900

Date: 17.0CT.2018 08:46:04

Fig.37 Channel 661- Emission Bandwidth (-26dBc BW)

Date: 17.0CT.2018 08:46:32

Fig.38 Channel 512- Emission Bandwidth (-26dBc BW)

: 43 of 108

Report Issued Date: Mar.08, 2019

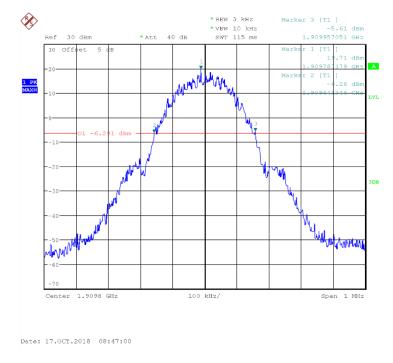
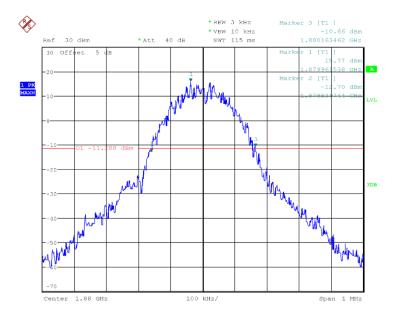
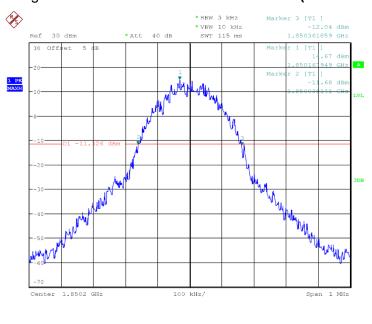
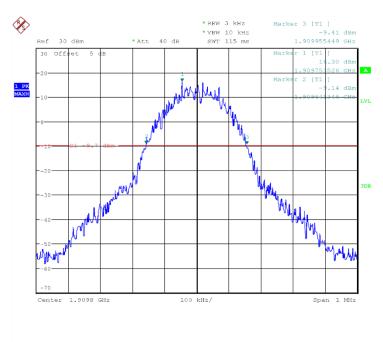



Fig.39 Channel 810- Emission Bandwidth (-26dBc BW)



EDGE 1900

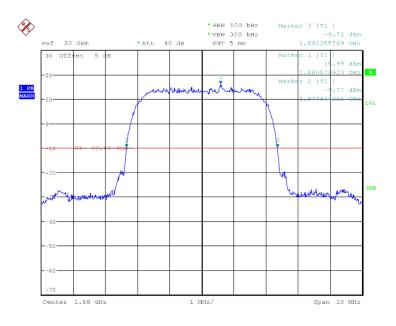
Date: 17.0CT.2018 08:49:21


Fig.40 Channel 661- Emission Bandwidth (-26dBc BW)

Date: 17.0CT.2018 08:49:49

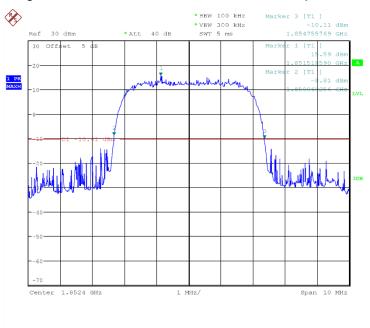
Fig.41 Channel 512- Emission Bandwidth (-26dBc BW)

Date: 17.0CT.2018 08:50:17


Fig.42 Channel 810- Emission Bandwidth (-26dBc BW)

WCDMA BAND II		
Test channel	Frequency (MHz)	–26dBc Emission Bandwidth(MHz)
Mid 9400	1880	4.712
Low 9262	1852.4	4.696
High 9538	1907.6	4.728

Conclusion: PASS

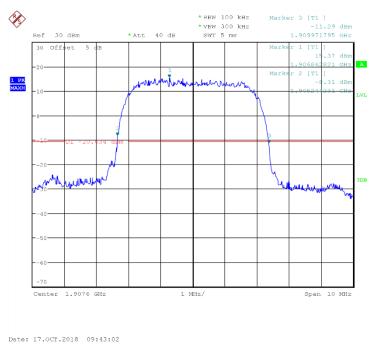

WCDMA BAND II

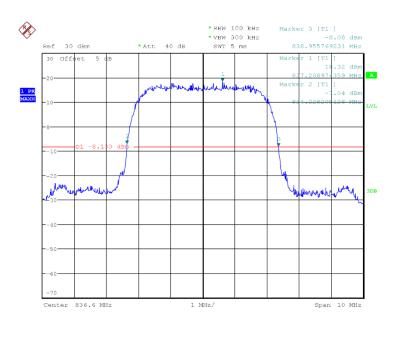
Date: 17.0CT.2018 09:41:59

Fig.43 Channel 9400- Emission Bandwidth (-26dBc BW)

Date: 17.0CT.2018 09:42:30

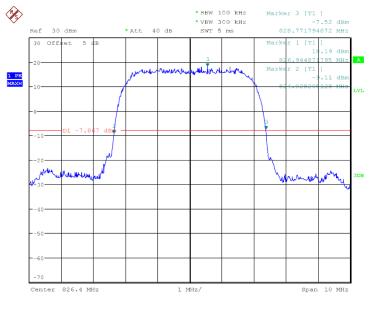
Fig.44 Channel 9262- Emission Bandwidth (-26dBc BW)




Fig.45 Channel 9538- Emission Bandwidth (-26dBc BW)

WCDMA BAND V		
Test channel	Frequency (MHz)	–26dBc Emission Bandwidth(MHz)
Mid 4183	836.6	4.728
Low 4132	826.4	4.744
High 4233	846.6	4.76

Conclusion: PASS


WCDMA BAND V

Date: 17.0CT.2018 09:43:43

Fig.46 Channel 4183- Emission Bandwidth (-26dBc BW)

Date: 17.0CT.2018 09:44:16

Fig.47 Channel 4132- Emission Bandwidth (-26dBc BW)

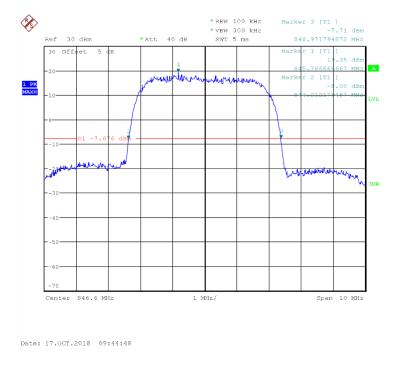


Fig.48 Channel 4233- Emission Bandwidth (-26dBc BW)

ANNEX A.5. Band Edge at antenna terminals

Method of test measurements please refer to KDB971168 D01 v03 clause 6

A.5.1 Limit:

The magnitude of each spurious and harmonic emission that can be detected when the equipment is operated under the conditions specification in the instruction manual and/or alignment procedure, shall not be less than 43+10log (Mean power in watts) dBc below the mean power output outside a license's frequency block(-13dBm).

A.5.2 Test procedure:

- 1. The RF output of the transceiver was connected to a signal analyzer through appropriate attenuation.
- In the 1MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed.
- 3. The RF fundamental frequency should be excluded against the limit line in the operating frequency band
- 4. The limit line is derived from 43+10log(P) Db below the transmitter power P(Watts)
 - =P(W)-[43+10log(P)](Db)
 - =[30+10log(P)](dBm)-[43+10log(P)](Db)
 - =-13dBm

A.5. Test Result: GSM 850

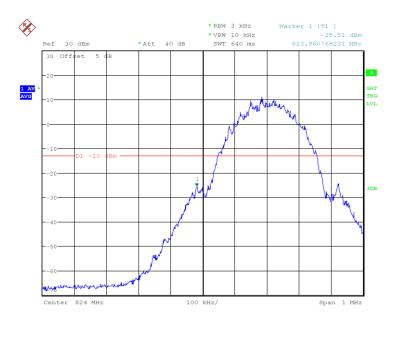
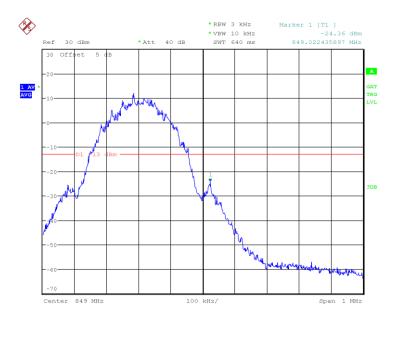
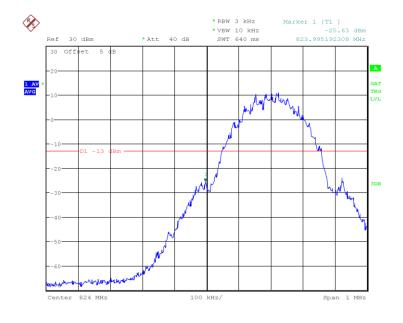



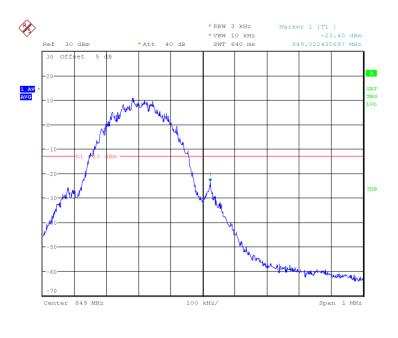
Fig.49 Channel 128- LOW BAND EDGE BLOCK

Date: 17.0CT.2018 11:00:52



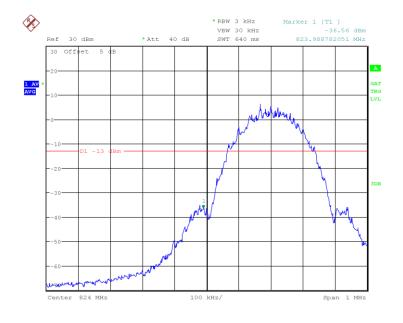
Date: 17.0CT.2018 11:02:20

Fig.50 Channel 251- LOW BAND EDGE BLOCK


GPRS 850

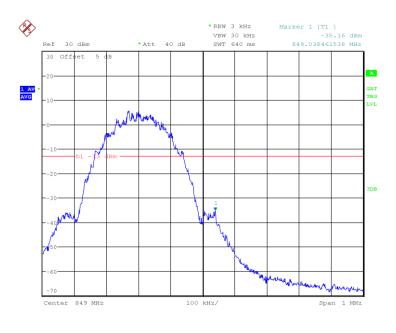
Date: 17.0CT.2018 11:09:48

Fig.51 Channel 128- LOW BAND EDGE BLOCK



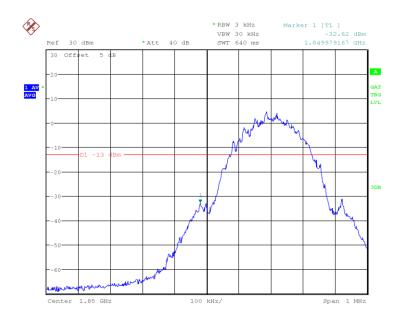
Date: 17.0CT.2018 11:11:12

Fig.52 Channel 251- LOW BAND EDGE BLOCK


EDGE 850

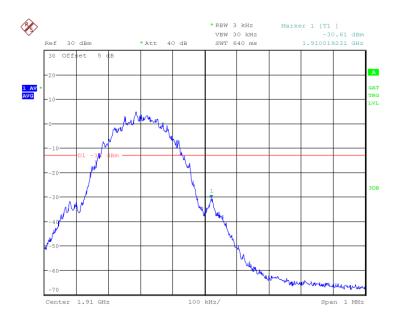
Date: 17.0CT.2018 11:21:06

Fig.53 Channel 128- LOW BAND EDGE BLOCK



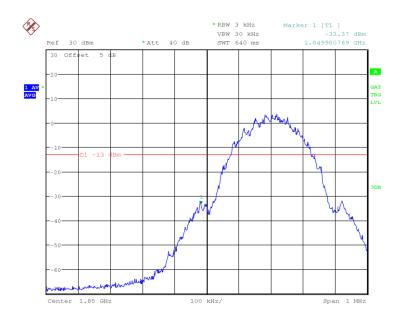
Date: 17.0CT.2018 11:22:56

Fig.54 Channel 251- LOW BAND EDGE BLOCK


GSM 1900

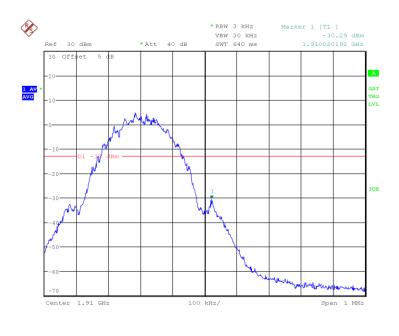
Date: 17.0CT.2018 11:27:18

Fig.55 Channel 512- LOW BAND EDGE BLOCK



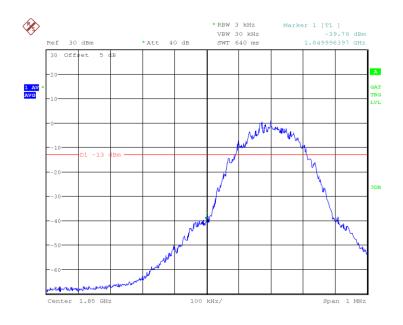
Date: 17.0CT.2018 11:28:57

Fig.56 Channel 810- LOW BAND EDGE BLOCK


GPRS 1900

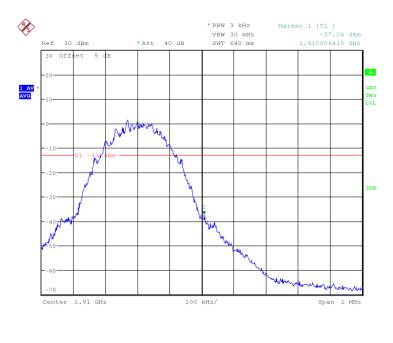
Date: 17.0CT.2018 11:31:28

Fig.57 Channel 512- LOW BAND EDGE BLOCK



Date: 17.0CT.2018 11:33:22

Fig.58 Channel 810- LOW BAND EDGE BLOCK


EDGE 1900

Date: 17.0CT.2018 11:37:09

Fig.59 Channel 512- LOW BAND EDGE BLOCK

Date: 17.0CT.2018 11:39:06

Fig.60 Channel 810- LOW BAND EDGE BLOCK

WCDMA BAND II

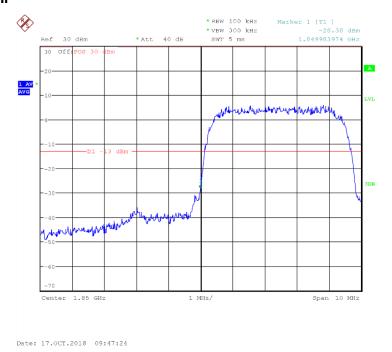


Fig.61 Channel 9262- LOW BAND EDGE BLOCK

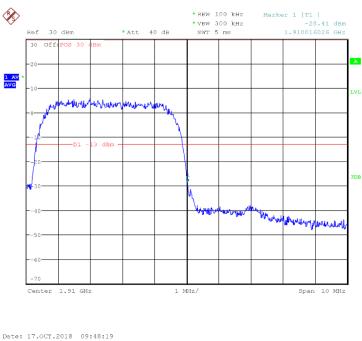
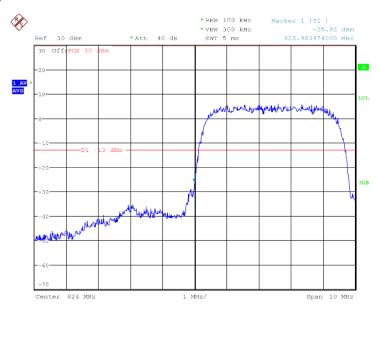



Fig.62 Channel 9538- LOW BAND EDGE BLOCK

Conclusion: PASS

WCDMA BAND V

Date: 17.0CT.2018 09:49:22

Fig.63 Channel 4132- LOW BAND EDGE BLOCK

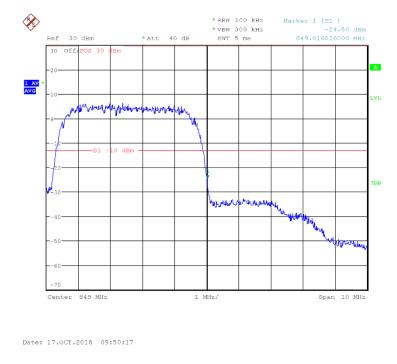


Fig.64 Channel 4233- LOW BAND EDGE BLOCK

Conclusion: PASS

: 59 of 108

Report Issued Date: Mar.08, 2019

Page Number

ANNEX A.6. FREQUENCY STABILITY

Method of test measurements please refer to KDB971168 D01 v03 clause 9

A.5.1.Method of Measurement and test procedures

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the EUT in a "call mode". This is accomplished with the use of R&S CMU200 DIGITAL RADIO COMMUNICATION TESTER.

- 1. Measure the carrier frequency at room temperature.
- 2. Subject the EUT to overnight soak at -30℃.
- 3. With the EUT, powered via nominal voltage, connected to the CMU200 and in a simulated call on mid channel of GSM850, PCS1900, WCDMA BANDII and WCDMA BANDV, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.
- 4. Repeat the above measurements at 10° C increments from -30° C to $+50^{\circ}$ C. Allow at least 1 1/2 hours at each temperature, unpowered, before making measurements.
- 5. Re-measure carrier frequency at room temperature with nominal voltage. Vary supply voltage from minimum voltage to maximum voltage, in 0.1Volt increments re-measuring carrier frequency at each voltage. Pause at nominal voltage for 1 1/2 hours unpowered, to allow any self-heating to stabilize, before continuing.
- 6. Subject the EUT to overnight soak at $+50^{\circ}$ C.
- 7. With the EUT, powered via nominal voltage, connected to the CMU200 and in a simulated call on the centre channel, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.
- 8. Repeat the above measurements at 10 C increments from $+50^{\circ}$ C to -30° C. Allow at least 1.5 hours at each temperature, unpowered, before making measurements.
- 9. At all temperature levels hold the temperature to +/- 0.5°C during the measurement procedure.

A.5.2. Measurement Limit

A.5.2.1. For Hand carried battery powered equipment

According to the JTC standard the GSM frequency stability of the carrier shall be accurate to within 0.1ppm of the received frequency from the base station. And the WCDMA is 2.5ppm. This accuracy is sufficient to meet Sec.24.235, Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. As this transceiver is considered "Hand carried, battery powered equipment" Section 2.1055(d)(2) applies. This requires that the lower voltage for frequency stability testing be specified by the manufacturer. This transceiver is specified to operate with an input voltage of between 3.6VDC and 4.35VDC, with a nominal voltage of 3.8VDC. Operation above or below these voltage limits is prohibited by transceiver software in order to prevent improper operation as well as to protect components from overstress. These voltages was varied from 85% to 115%.

: 60 of 108

Report Issued Date: Mar.08, 2019

A.5.2.2. For equipment powered by primary supply voltage

According to the JTC standard the GSM frequency stability of the carrier shall be accurate to within 0.1ppm of the received frequency from the base station. And the WCDMA is 2.5ppm. This accuracy is sufficient to meet Sec.24.235, Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. For this EUT section 2.1055(d)(1) applies. This requires varying primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment.

A.5.3 Test results
GSM850Mid Channel/fc(MHz) 189/836.4
Frequency Error VS Temperature

Power Supply (VDc)	Environment Temperature(℃)	Frequency error(Hz)	Limit (Hz)
3.7	-20	2.45	84
3.7	-10	3.94	84
3.7	0	3.87	84
3.7	10	2.71	84
3.7	20	1.68	84
3.7	30	2.91	84
3.7	40	0.65	84
3.7	50	1.55	84
3.7	60	0.26	84

8

Frequency Error VS Voltage

Power Supply (VDc)	Environment Temperature(°C)	Frequency error(Hz)	Limit (Hz)
3.6	25	1.49	84
3.7	25	2.39	84
4.2	25	4.13	84

: 61 of 108

Report Issued Date: Mar.08, 2019

PCS1900 Mid Channel/fc(MHz) 661/1880

Frequency Error VS Temperature

Power Supply (VDc)	Environment $Temperature(^{\mathbb{C}})$	Frequency error(Hz)	Limit (Hz)
3.7	-20	17.69	196
3.7	-10	23.89	196
3.7	0	26.93	196
3.7	10	24.67	196
3.7	20	21.89	196
3.7	30	22.34	196
3.7	40	20.53	196
3.7	50	26.28	196
3.7	60	26.54	196

Frequency Error VS Voltage

Power Supply (VDc)	Environment Temperature(°C)	Frequency error(Hz)	Limit (Hz)
3.6	25	27.83	196
3.7	25	24.92	196
4.2	25	27.38	196

: 62 of 108

Report Issued Date: Mar.08, 2019

Frequency Error VS Temperature

Power Supply (VDc)	Environment Temperature(°C)	Frequency error(Hz)	Limit (Hz)
3.7	-20	-14.33	4700
3.7	-10	-11.02	4700
3.7	0	-7.45	4700
3.7	10	-9.48	4700
3.7	20	-12.02	4700
3.7	30	-9.86	4700
3.7	40	-17.84	4700
3.7	50	-12.25	4700
3.7	60	-16.85	4700

Frequency Error VS Voltage

Power Supply (VDc)	Environment Temperature(℃)	Frequency error(Hz)	Limit (Hz)
3.6	25	-12.12	4700
3.7	25	-13.99	4700
4.2	25	-14.62	4700

: 63 of 108

Report Issued Date: Mar.08, 2019

WCDMA BAND V Mid Channel/fc(MHz) 4183/836.6

Frequency Error VS Temperature

Power Supply (VDc)	Environment Temperature(℃)	Frequency error(Hz)	Limit (Hz)
3.7	-20	-12.83	2091.5
3.7	-10	-12.42	2091.5
3.7	0	-11.23	2091.5
3.7	10	-11.15	2091.5
3.7	20	-11.2	2091.5
3.7	30	-3.52	2091.5
3.7	40	-6.32	2091.5
3.7	50	-9.69	2091.5
3.7	60	-13.4	2091.5

Frequency Error VS Voltage

Power Supply (VDc)	Environment Temperature(℃)	Frequency error(Hz)	Limit (Hz)
3.6	25	-9.25	2091.5
3.7	25	-9.08	2091.5
4.2	25	-11.18	2091.5

Conclusion: PASS

ANNEX A.7. CONDUCTED SPURIOUS EMISSION

A.7.1. GSM Measurement Method and test procedures

The following steps outline the procedure used to measure the conducted emissions from the EUT.

- 1. Determine frequency range for measurements: From CFR 2.1057 the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency. For the equipment of PCS1900 band, this equates to a frequency range of 30 MHz to 19.1 GHz, data taken from 30 MHz to 20 GHz. For GSM850, data taken from 30 MHz to 10 GHz.
- 2. The sweep time is set automatically by instrument itself. That should be the optimal sweep time for the span and the RBW. If the sweep time is too short, that is sweep is too fast, the sweep result is not accurate; If the sweep time is too long, that is sweep is too low, some frequency components may be lost. The instrument will give a optimal sweep time according the selected span and RBW.
- 3. The procedure to get the conducted spurious emission is as follows: The trace mode is set to MaxHold to get the highest signal at each frequency; Wait 25 seconds;Get the result.
- 4. Determine EUT transmit frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing.

GSM 850 Transmitter

Channel	Frequency(MHz)
128	824.2
189	836.4
251	848.8

PCS 1900 Transmitter

Channel	Frequency(MHz)
512	1850.2
661	1880.0
810	1909.8

A.7.1.1. Measurement Limit

Part 24.238 and Part 22.917 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

A7.1.2. Measurement result

Spurious emission limit -13dBm.

Note: peak above the limit line is the carrier frequency.

A7.1.2.1. GSM850

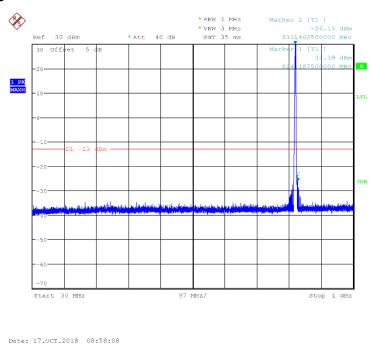
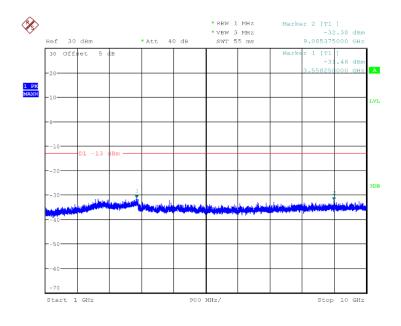



Fig.65 Channel 128: 30MHz~1GHz

Date: 17.0CT.2018 08:58:30

Fig.66 Channel 128: 1GHz~10GHz

Date: 17.0CT.2018 08:57:05

Fig.67 Channel 189: 30MHz~1GHz