

TEST REPORT

No. I20D00015-SAR01

For

Client: Mobiwire SAS

Production: 2G feature phone

Model Name: MobiWire Nikiti, Altice F2

Brand Name: MobiWire, Altice

FCC ID: QPN-NIKITI

Hardware Version: V01

Software Version: ELKI_DS_L_V01.2_181106_MP

Issued date: 2020-03-11

NOTE

- 1. The test results in this test report relate only to the devices specified in this report.
- 2. This report shall not be reproduced except in full without the written approval of East China Institute of Telecommunications.
- 3. KDB has not been approved by A2LA.
- 4. It has been confirmed with the customer that the Tune-up Power information provided by the customer may affect the validity of the measurement results in this report, and the impact and consequences will be borne by the customer.
- 5. For the test results, the uncertainty of measurement is not taken into account when judging the compliance with specification, and the results of measurement or the average value of measurement results are taken as the criterion of the compliance with specification directly.

Test Laboratory: East China Institute of Telecommunications Add: Building 4,No.766,Jingang Road,Pudong, Shanghai, P. R. China Tel: +86 21 63843300 FAX: +86 21 63843301 E-Mail: <u>welcome@ecit.org.cn</u>

Revision Version

Report Number	Revision	Date	Memo
I20D00015-SAR01	00	2020-03-11	Initial creation of test report

CONTENTS

1. TEST I	ABORATORY	7
1.1.	TESTING LOCATION	7
1.2.	TESTING ENVIRONMENT	7
1.3.	PROJECT DATA	7
1.4.	SIGNATURE	7
2. CLIEN	۲ INFORMATION ٤	3
2.1.	APPLICANT INFORMATION	3
2.2.	MANUFACTURER INFORMATION	3
3. EQUIP	MENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE))
3.1.	ABOUT EUT)
3.2.	INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST)
3.3.	INTERNAL IDENTIFICATION OF AE USED DURING THE TEST)
4. REFEF	ENCE DOCUMENTS11	I
4.1.	DOCUMENTS SUPPLIED BY APPLICANT 11	I
4.1. 4.2.	DOCUMENTS SUPPLIED BY APPLICANT	
		1
4.2. 4.3.	REFERENCE DOCUMENTS11	1
4.2. 4.3.	REFERENCE DOCUMENTS 11 CRITERION	1 1 2
4.2. 4.3. 5. TEST \$	REFERENCE DOCUMENTS	1 1 2
4.2. 4.3. 5. TEST \$ 5.1. 5.2.	REFERENCE DOCUMENTS	1 1 2 3
4.2. 4.3. 5. TEST \$ 5.1. 5.2.	REFERENCE DOCUMENTS. 11 CRITERION 11 SUMMARY AND STATEMENT OF COMPLIANCE 12 TEST SUMMARY 12 STATEMENT OF COMPLIANCE 13	1 1 2 3 4
4.2. 4.3. 5. TEST \$ 5.1. 5.2. 6. SPECI	REFERENCE DOCUMENTS. 11 CRITERION 11 SUMMARY AND STATEMENT OF COMPLIANCE 12 TEST SUMMARY 12 STATEMENT OF COMPLIANCE 12 STATEMENT OF COMPLIANCE 13 FIC ABSORPTION RATE (SAR) 14	1 1 2 3 4
4.2. 4.3. 5. TEST \$ 5.1. 5.2. 6. SPECI 6.1. 6.2.	REFERENCE DOCUMENTS. 11 CRITERION 11 SUMMARY AND STATEMENT OF COMPLIANCE 12 TEST SUMMARY 12 STATEMENT OF COMPLIANCE 13 FIC ABSORPTION RATE (SAR) 14 INTRODUCTION 14	1 1 2 3 4 4
4.2. 4.3. 5. TEST \$ 5.1. 5.2. 6. SPECI 6.1. 6.2.	REFERENCE DOCUMENTS. 11 CRITERION 11 SUMMARY AND STATEMENT OF COMPLIANCE 12 TEST SUMMARY 12 STATEMENT OF COMPLIANCE 13 FIC ABSORPTION RATE (SAR) 14 INTRODUCTION 14 SAR DEFINITION 14	1 1 2 2 3 4 4 4 5
4.2. 4.3. 5. TEST \$ 5.1. 5.2. 6. SPECI 6.1. 6.2. 7. SAR M	REFERENCE DOCUMENTS 11 CRITERION 11 SUMMARY AND STATEMENT OF COMPLIANCE 12 TEST SUMMARY 12 STATEMENT OF COMPLIANCE 13 FIC ABSORPTION RATE (SAR) 14 INTRODUCTION 14 SAR DEFINITION 14 EASUREMENT SYSTEM INTRODUCTION 15	1 1 2 2 3 3 4 4 4 5 5 5

	7.3.	E-FIELD PROBE CALIBRATION 16
	7.4.	OTHER TEST EQUIPMENT
8. T	EST P	OSITION IN RELATION TO THE PHANTOM
	8.1.	GENERAL CONSIDERATIONS
	8.2.	BODY-WORN DEVICE
	8.3.	DESKTOP DEVICE
9. T	ISSUE	SIMULATING LIQUIDS
	9.1.	EQUIVALENT TISSUES COMPOSITION
	9.2.	DIELECTRIC PERFORMANCE OF TSL
10.	SYST	EM VALIDATION
	10.1.	SYSTEM VALIDATION
	10.2.	SYSTEM SETUP25
	10.3.	SYSTEM VALIDATION RESULT
11.	MEAS	SUREMENT PROCEDURES
	11.1.	TEST STEPS
	11.2.	SPATIAL PEAK SAR EVALUATION
	11.3.	GENERAL MEASUREMENT PROCEDURE
	11.4.	BLUETOOTH & WIFI MEASUREMENT PROCEDURES
12.	SIMU	LTANEOUS TRANSMISSION SAR CONSIDERATIONS
	12.1.	REFERENCE DOCUMENT
	12.2.	ANTENNA SEPARATION DISTANCES
	12.3.	SAR MEASUREMENT POSITIONS
	12.4.	LOW POWER TRANSMITTERS SAR CONSIDERATION
	12.5.	SIMULTANEOUS TRANSMISSION ANALYSIS
	12.6.	SIMULTANEOUS TRANSMISSION TABLE
13.	CONI	DUCTED OUTPUT POWER

	13.1.	GSM MEASUREMENT RESULT	33
	13.2.	BT MEASUREMENT RESULT	34
14 . .	.SAR ME	EASUREMENT RESULT	35
	14.1.	FAST SAR TEST RESULT FOR I18D00228	35
	14.2.	SIMULTANEOUS SAR EVALUATION FOR I18D00228	37
	14.3.	SAR MEASUREMENT VARIABILITY FOR I18D00228	38
	14.2.	STANDARD PROCEDURE SAR RESULTS FOR I20D00015	39
1 5. .	TEST E	QUIPMENT UTILIZED	40
16.	MEASU	REMENT UNCERTAINTY	41
AN	NEX A.	GRAPH RESULTS	44
ANI	NEX B.	SYSTEM VALIDATION	46
AN	NEX C.	CALIBRATION CERTIFICATION	47
ANI	NEX D.	ACCREDITATION CERTIFICATION	69

1. Test Laboratory

1.1. Testing Location

Company Name	East China Institute of Telecommunications	
Address Building 4,No.766,Jingang Road,Pudong, Shanghai, China		
Postal Code	201206	
Telephone	+86 21 63843300	
Fax	+86 21 63843301	

1.2. Testing Environment

Normal Temperature	18℃-25℃
Relative Humidity	25%-75%

1.3. Project Data

Project Leader	Chen Minfei
Testing Start Date	2020-03-11
Testing End Date	2020-03-11

1.4. Signature

王王斌

Wang Yubin (Prepared this test report)

钪

Yan Hang (Prepared this test report)

Zheng Zhongbin (Approved this test report)

2. Client Information

2.1. Applicant Information

Company Name	Mobiwire SAS	
Address 79 AVENUE FRANCOIS ARAGO 92017 NANTERRE CEDEX France.		
Telephone +33668018722		
Postcode	/	

2.2. Manufacturer Information

Company Name	Mobiwire SAS	
Address 79 AVENUE FRANCOIS ARAGO 92017 NANTERRE CEDEX France.		
Telephone	+33668018722	
Postcode	/	

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1. About EUT

Description:	2G feature phone
Model Name:	MobiWire Nikiti, Altice F2
Operation Model(s):	GSM850/1900,BT3.0
Tx Frequency:	824.2-848.8MHz(GSM850) 1850.2-1909.8MHz(GSM1900) 2402 – 2480 MHz (BT)
Test device Production Information:	Production unit
GPRS/EGPRS Class Mode:	N/A
GPRS/ EGPRS Multislot Class:	N/A
Device Type:	Portable device
UE category	3
Antenna Type:	Inner antenna
Accessories/Body-worn	Battery
Configurations:	
Dimensions:	111.61mm×48.31mm×14.70mm
Note:	
The EUT SAR Test without the charging battery cover is not applicable since no way to have this	
battery cover removed and replaced by	-
Photographs of EUT are shown in ANNEX C of this test report.	

3.2. Internal Identification of EUT used during the test

EUT ID*	SN or IMEI	HW Version	SW Version	Date of receipt
N04	SIM :356734105468932	V01	ELKI_DS_L_V01.2_181106 _MP	2020-02-25

*EUT ID: is used to identify the test sample in the lab internally.

Note: The product has two SIM cards, SIM 1 and SIM 2 does not support simultaneous work, only supports a single transmitter; When SIM 1 is working, SIM 2 will be suspended until SIM 2 is selected. When stop using the SIM 1, SIM 2 would work. SIM1 is the worst case.

3.3. Internal Identification of AE used during the test

AE ID*	Description	Туре	Manufacturer
BA05	Battery	N/A	N/A

*AE ID: is used to identify the test sample in the lab internally.

4. Reference Documents

4.1. Documents supplied by applicant

All technical documents are supplied by the client or manufacturer, which is the basis of testing.

4.2. Reference Documents

The following documents listed in this section are referred for testing.

Reference	Title	Version
	Recommended Practice for Determining the Peak Spatial-Average	
IEEE 1528	Specific Absorption Rate (SAR) in the Human Body Due to Wireless	2013
	Communications Devices: Experimental Techniques.	
KDB648474	Handset SAR	D04 v01r03
KDB447498	General RF Exposure Guidance	D01 v06
KDB865664	SAR Measurement 100 MHz to 6 GHz	D01 v01r04
KDB865664	RF Exposure Reporting	D02 v01r02

4.3. Criterion

At frequencies between 100 kHz and 6 GHz, the MPE (Maximum Permissible Exposure) in population/ uncontrolled environments for electromagnetic field strengths may be exceeded if

- a) The exposure conditions can be shown by appropriate techniques to produce SARs below 0.08W/kg, as averaged over the whole body, and spatial peak SAR values not exceeding 1.6 W/kg, as averaged over any 1g of tissue (defined as a tissue volume in the shape of a cube), except for the hands, wrists, feet, and ankles where the spatial peak SAR shall not exceed 4 W/kg, as averaged over any 10g of tissue (defined as a tissue volume in the shape of a cube); and
- b) The induced currents in the body confirm with the MPE in table 2, Part B in ANSI C95.1-1999.

5. Test Summary and Statement of Compliance

5.1. Test Summary

The maximum results of Specific Absorption Rate (SAR) in standalone mode are as follows. **Table 5.1: Standalone Max. Reported SAR**

Band	Report SAR 1	g(W/Kg) (original)	SAR 1g(W/Kg) (Current)		
	Head		Head	Body(15mm)	
GSM 850	1.479	0.926	1.18	0.647	
GSM 1900	0.850	0.309	-	-	

The maximum results of Specific Absorption Rate (SAR) in simultaneous mode are as follows. **Table 5.2: Simultaneous Transmission SAR**

Simultaneous transmission(W/Kg) (original)							
	Test Position		2G	ВТ	SUM		
	Left	Cheek	1.454	0.105	1.559		
$H_{ab} d(1_{ab})$	Len	Tilt 15 °	0.709	0.105	0.814		
Head(1g)		Cheek	1.479	0.105	1.584		
	Right	Tilt 15 °	0.609	0.105	0.714		
Body 15 mm(1g)	Phantom Side		0.79	0.035	0.825		
Body 15 mm $(1g)$	Groun	d Side	0.926	0.035	0.961		

The SAR values found for the Mobile Phone are below the maximum recommended levels of 1.6 W/Kg as averaged over any 1g tissue.

Note: The **MobiWire Nikiti**, **Altice F2** supporting 2G, manufactured by **Mobiwire SAS** is a variant product for testing. According to the Product Change Description, SAR test is only required in worse case. Test data are reflected from test report **I18D00228-SAR01**, which is the test report for the initial product. Reassessed SAR is lower than the original value, so the variant product reported SAR not change

5.2. Statement of Compliance

The MobiWire Nikiti, Altice F2 manufactured by Mobiwire SAS is a parent model for testing.

ECIT has verified that the compliance of the tested device specified in section 3 of this test report is successfully evaluated according to the procedure and test methods as defined in type certification requirement listed in section 4 of this test report.

For body worn operation mode, this device with any accessory that contained in this report has been tested and the values meet FCC RF exposure guidelines. Use of other accessories may not ensure compliance with FCC RF exposure guidelines.

6. Specific Absorption Rate (SAR)

6.1. Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/ controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

6.2. SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt}(\frac{dW}{dm}) = \frac{d}{dt}(\frac{dW}{\rho dv})$$

SAR is expressed in units of Watts per kilogram (W/kg) SAR measurement can be either related to the temperature elevation in tissue by

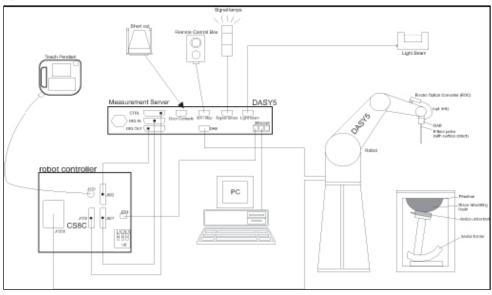
$$SAR = c(\frac{\delta T}{\delta t})$$

Where: C is the specific head capacity, δT is the temperature rise and δt is the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where:

- $\succ \sigma$ is the conductivity of the tissue
- \succ ho is the mass density of tissue, which is normally set to 1g/cm³
- \succ E is the RMS electrical field strength


However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

7. SAR Measurement System Introduction

7.1. Measurement Set-up

The DASY5 system for performing compliance tests is illustrated above graphically. This system consists of the following items:

Picture 7-1 SAR Measurement Set-up

- A standard high precision 6-axis robot (Stäubli TX=RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

7.2. E-field Probe System

The SAR measurements were conducted with the dosimetric probe designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multifiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY5 software reads the reflection during a software approach and looks for the maximum using 2nd ord curve fitting. The approach is stopped at reaching the maximum.

Probe Specifications	::	
Model:	ES3DV3,EX3DV4	
	10MHz — 6GHz(EX3DV4)	
Frequency Range:	10MHz — 4GHz(ES3DV3)	
Calibration:	In head and body simulating tissue at	
Calibration.	frequency from 650MHz to 5900MHz	
Linearity:	± 0.2 dB(30 MHz to 4 GHz) for ES3DV3	
Linearity.	± 0.2 dB(30 MHz to 6 GHz) for EX3DV4	Picture 7-2 Detail of Probe
Dynamic Range:	10 mW/kg — 100 W/kg	Ficture 7-2 Detail of Frobe
Probe Length:	330 mm	
Probe Tip Length:	20 mm	
Body Diameter:	12 mm	
Tip Diameter:	2.5 mm (3.9 mm for ES3DV3)	
Tip-Center:	1 mm (2.0mm for ES3DV3)	
Application:	SAR Dosimetry Testing Compliance tests of mobile phones Dosimetry in strong gradient fields	
		Picture 7-3 E-field Probe

7.3. E-field Probe Calibration

Each E-Probe/Probe Amplifier combination has unique calibration parameters. A TEM cell calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm²) using an RF Signal generator, TEM cell, and RF Power Meter.

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can

be performed in a TEM cell if the frequency is below 1 GHz and inn a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/cm².

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$

Where:

 Δt = Exposure time (30 seconds),

C = Heat capacity of tissue (brain or muscle),

 ΔT = Temperature increase due to RF exposure.

$$SAR = \frac{\left|E\right|^2 \cdot \sigma}{\rho}$$

Where:

 σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m³).

7.4. Other Test Equipment

7.4.1. Data Acquisition Electronics (DAE)

The data acquisition electronics consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock. The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

The input impedance of the DAE is 200M Ohm; the inputs are symmetrical and floating. Common mode rejection is above 80dB.

Picture 7-4: DAE

7.4.2. Robot

The SPEAG DASY system uses the high precision robots (DASY5: TX90) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version

from Stäubli is used. The Stäubli robot series have many features that are important for our application:

- High precision (repeatability 0.02mm)
- High reliability (industrial design)
- Low maintenance costs (virtually maintenance free due to direct drive gears; no belt drives)
- Jerk-free straight movements (brushless synchronal motors; no stepper motors)
- Low ELF interference (motor control fields shielded via the closed metallic construction shields)

Picture 7-5: DASY 5

7.4.3. Measurement Server

The Measurement server is based on a PC/104 CPU broad with CPU (DASY5: 400 MHz, Intel Celeron), chip disk (DASY5: 128MB), RAM (DASY5: 128MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O broad, which is

Picture 7-6: Server for DASY 5

directly connected to the PC/104 bus of the CPU broad.

The measurement server performs all real-time data evaluation of field measurements and surface detection, controls robot movements and handles safety operation. The PC operating system cannot interfere with these time critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with an expansion port which is reserved for future applications. Please note that this expansion port does not have a standardized pinout, and therefore only devices provided by SPEAG can be connected. Devices from any other supplier could seriously damage the measurement server.

7.4.4. Device Holder for Phantom

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of $\pm 20\%$. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.


The DASY device holder is constructed of low-loss POM material having the following dielectric parameters: relative permittivity \mathcal{E} =3 and loss tangent \mathcal{S} =0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

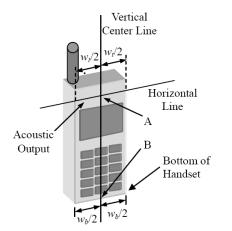
Picture 7-7: Device Holder

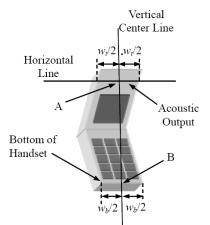
The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with the Twin-SAM and ELI phantoms.

The DASY device holder is constructed of low-loss POM material having the following dielectric parameters: relative permittivity \mathcal{E} =3 and loss tangent δ =0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

Picture 7-8: Laptop Extension Kit

The SAM Twin Phantom V4.0 is constructed of a fiberglass shell integrated in a table. The shape of the shell is based on data from an anatomical study designed to represent the 90th percentile of the population. The phantom enables the dissymmetric evaluation of SAR for both left and right handed handset usage, as well as body-worn usage using the flat phantom region. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. The shell phantom has a 2mm shell thickness (except the ear region where shell thickness to 6 mm).

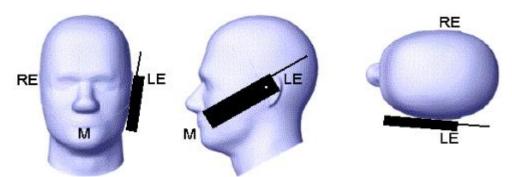

Shell Thickness:	2 ± 0.2 mm	
Available:	Special	
Filling Volume:	Approx. 25 liters	
Dimensions:	810 x l000 x 500 mm (H x L x W)	Picture 7-9: SAM Twin Phantom



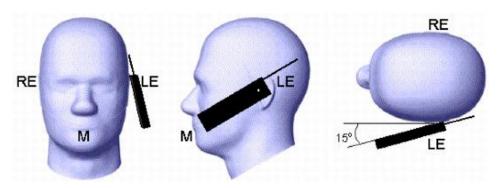
8. Test Position in Relation to the Phantom

8.1. General considerations

This standard specifies two handset test positions against the head phantom – the "cheek" position and the "tilt" position.

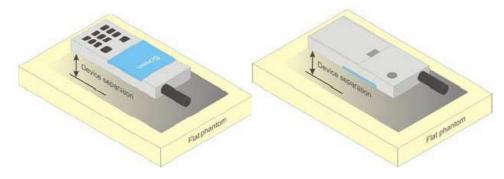


Picture 8-1 Typical "fixed" case handset


Picture 8-2 Typical "clam-shell" case handset

W _t	Width of the handset at the level of the acoustic
W _b	Width of the bottom of the handset
A	Midpoint of the width W_t of the handset at the level of the acoustic output
В	Midpoint of the width w_b of the bottom of the handset

Picture 8-3 Cheek position of the wireless device on the left side of SAM

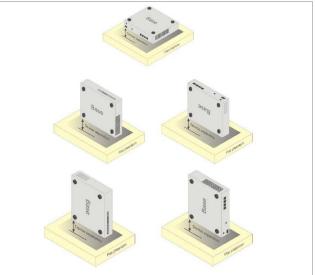


Picture 8-4 Tilt position of the wireless device on the left side of SAM

8.2. Body-worn device

A typical example of a body-worn device is a mobile phone, wireless enabled PDA (personal digital assistant) or other battery operated wireless device with the ability to transmit while mounted on a person's body using a carry accessory approved by the wireless device manufacturer.

Picture 8-5 Test positions for body-worn devices


8.3. Desktop device

A typical example of a desktop device is a wireless enabled desktop computer placed on a table or desk when used.

The DUT shall be positioned at the distance and in the orientation to the phantom that corresponds to the intended use as specified by the manufacturer in the user instructions. For devices that employ an external antenna with variable positions.

Tests shall be performed for all antenna positions specified.

Picture 8-6 shows positions for desktop device SAR tests. If the intended use is not specified, the device shall be tested directly against the flat phantom.

Picture 8-6 Test positions for desktop devices

9. Tissue Simulating Liquids

9.1. Equivalent Tissues Composition

The liquid used for the frequency range of 650-6000 MHz consisted of water, sugar, salt, preventol, glycol monobutyl and Cellulose. The liquid has been previously proven to be suited for worst-case. The Table 9.1 shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the IEEE 1528 and IEC 62209.

Frequency (MHz)	835	900	1800	1950	2300	2450	2600	5800
Ingredients (% by wei	ght)							
Water	41.45	40.92	55.242	54.89	56.34	58.79	58.79	65.53
Sugar	56.0	56.5	/	/	/	/	/	
Salt	1.45	1.48	0.306	0.18	0.14	0.06	0.06	
Preventol	0.1	0.1	/	/	/	/	/	
Cellulose	1.0	1.0	/	/	/	/	/	
GlycolMonobutyl	/	/	44.452	44.93	43.52	41.15	41.15	
Diethylenglycol momohexylether	/	/	/	/	/	/	/	17.24
Triton X-100	/	/	/	/	/	/	/	17.23
Dielectric Parameters Target Value	ε=41.5 σ=0.90	ε=41.5 σ=0.97	ε=40.0 σ=1.40	ε=40.0 σ=1.40	ε=39.5 σ=1.67	ε=39.2 σ=1.80	ε=39.0 σ=1.96	ε=35.3 σ=5.27

Table 9.1: Com	position of the Hea	ad Tissue Equivalent Matter

Table 9.2: Targets for tissue simulating liquid

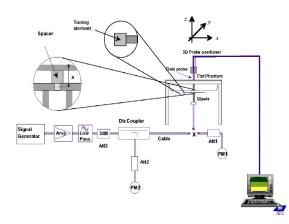
Frequency (MHz)	Liquid Type	Conductivity (σ)	± 5% Range	Permittivity (ε)	± 5% Range
835	Head	0.90	0.874~0.97	41.5	39.4~43.6
900	Head	0.97	0.92~1.02	41.5	39.4~43.6
1800	Head	1.40	1.33~1.47	40.0	38.0~42.0
1950	Head	1.40	1.33~1.47	40.0	38.0~42.0
2300	Head	1.67	1.59~1.75	39.5	37.5~41.4
2450	Head	1.80	1.71~1.89	39.2	37.2~41.2
2600	Head	1.96	1.86~2.06	39.0	37.5~40.95
5200	Head	4.66	4.43~4.89	35.99	34.19~37.79
5300	Head	4.76	4.52~4.99	35.87	34.08~37.66
5500	Head	4.96	4.71~5.2	35.6	33.82~37.38
5600	Head	5.07	4.82~5.32	35.53	33.75~37.30
5800	Head	5.27	5.01~5.53	35.3	33.54~37.05

Note: Effective February 19, 2019, FCC has permitted the use of single head-tissue simulating liquid specified in IEC 62209-1 for all SAR tests.

9.2. Dielectric Performance of TSL

Tissue Simulating Liquid										
Frequency	Head(S	Standard)	Test Result		Deviation (%)					
(MHz)	Permittivity	Conductivity	Temperature	Date	Permittivity	Conductivity	Permittivity	Conductivity		
	3	σ			3	σ	3	σ		
835	41.50	0.90	22.6 ℃	2020-03-11	42.55	0.93	2.53%	3.33%		

Table 9.3: Dielectric Performance of Head Tissue Simulating Liquid


10. System Validation

10.1. System Validation

Each DASY system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the DASY software, enable the user to conduct the system performance check and system validation. System validation kit includes a dipole, tripod holder to fix it underneath the flat phantom and a corresponding distance holder.

10.2. System Setup

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

Picture 10-1 Setup for System Evaluation

Picture 10-2. Setup for Dipole

10.3. System Validation Result

SAR System Validation									
Frequency	Target Value (w/kg)				Test Resu	lt (w/kg)	Deviat	ion (%)	
(MHz)	10g	1g	Temperature	Date	10g	1g	10g	1g	
835	6.25	9.63	22.6 ℃	2020-03-11	6.36	9.56	1.76%	-0.73%	
Note: The inp	Note: The input power level is equivalent to 1w								

Table 10.1: System Validation Result of SAR

11. Measurement Procedures

11.1. Test Steps

According to the SAR test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

(a) Power reference measurement

The reference and drift jobs are useful for monitoring the power drift of the device under test in the batch process. Both jobs measure the electric field strength at a specified reference position, at a selectable distance from the phantom surface. The reference position can be either the selected section's grid reference point or a user point in this section. The reference job projects the selected point onto the phantom surface, orients the probe perpendicularly to the surface, and approaches the surface using the selected detection method.

(b) Area scan

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a finer measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. The scan area is defined by an editable grid. This grid is anchored at the grid reference point of the selected section in the phantom. When the area scan's property sheet is brought up, grid was at to 15mm * 15mm and can be edited by users.

(c) Zoom scan

Zoom scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1g and 10g of simulated tissue. The default zoom scan measures 5 * 5 * 7 points within a cube whose base faces are centered around the maximum found in a preceding area scan job within the same procedure. If the preceding Area Scan job indicates more than one maximum, the number of Zoom Scans has to be enlarged accordingly.

(d) Power drift measurement

The drift job measures the field at the same location as the most recent reference job within the same procedure, and with the same setting. The drift measurement gives the field difference in dB from the reading conducted within the last reference measurement. Several drift measurements are possible for one reference measurement. This allows a user to monitor the power drift of the device under within a batch process. In the properties of the drift job, the user can specify a limit for the drift and have DASY software stop the measurements if this limit is exceeded. This ensures that the power drift during one measurement is within 5%.

The SAR measurement procedures for each of test conditions are as follows:

- (a) Make EUT to transmit it maximum output power
- (b) Measure conducted output power through RF cable
- (c) Place the EUT in the specific position of phantom
- (d) Measure SAR results for Middle channel or the highest power channel on each testing position
- (e) Measure SAR results for other channels in worst SAR testing position if the reported SAR of highest power channel is larger than 0.8 W/kg
- (f) Record the SAR value

11.2. Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the IEEE1529 standard. It can be conducted for 1g and 10g.

The DASY system allows evaluations that combine measured data and robot positions, such as:

a) Maximum Search

During a maximum search, global and local maximum searches are automatically performed in 2D after each Area Scan measurement with at least 6 measurement points. It is based on the evaluation of the local SAR gradient calculated by the Quadratic Shepard's method. The algorithm will find the global maximum and all local maxima within -2dB of the global maxima for all SAR distributions.

b) Extrapolation

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation. Extrapolation routines require at least 10 measurement points in 3D space. They are used in the Cube Scan to obtain SAR values between the lowest measurement points and the inner phantom surface. The routine uses the modified Quadratic Shepard's method for extrapolation. For a grid using 5*5*5 measurement points with 5mm resolution amounting to 343 measurement points, the uncertainty of the extrapolation routines is less than 1% for 1g and 10 cubes.

c) Boundary effect

For measurements in the immediate vicinity of a phantom surface, the field coupling effects between the probe and the boundary influence the probe characteristics. Boundary effect errors of different dosi-metric probe types have been analyzed by measurements and using a numerical probe model. As expected, both methods showed an enhanced sensitivity in the immediate vicinity of the boundary. The effect strongly depends on the probe dimensions and disappears with increasing distance from the boundary. The sensitivity can be approximately given as:

$$S \approx So + Sb * \exp\left(-\frac{z}{a}\right) * \cos(\pi \frac{z}{\lambda})$$

Since the decay of the boundary effect dominates for small probe ($a \ll \lambda$), the cos-term can be omitted. Factors Sb (parameter Alpha in the DASY software) and a (parameter Delta in the DASY software) ard assessed during probe calibration and used for numerical compensation of the boundary effect. Several simulations and measurements have confirmed that the compensation is valid for different field and boundary configurations.

This simple compensation procedure can largely reduce the probe uncertainty near boundaries. It works well as long as:

- > The boundary curvature is small
- > The probe axis is angled less than 30_to the boundary normal
- > The distance between probe and boundary is larger than 25% of the probe diameter
- > The probe is symmetric (all sensors have the same offset from the probe tip)

Since all of these requirements are fulfilled in a DASY system, the correction of the probe boundary effect in the vicinity of the phantom surface is performed in a fully automated manner via the measurement data extraction during post processing.

11.3. General Measurement Procedure

The area and zoom scan resolutions specified in the table below must be applied to the SAR measurements and fully documented in SAR reports to qualify for TCB approval. Probe boundary effect error compensation is required for measurements with the probe tip closer than half a probe tip diameter to the phantom surface. Both the probe tip diameter and sensor offset distance must satisfy measurement protocols; to ensure probe boundary effect errors are minimized and the higher fields closest to the phantom surface can be correctly measured and extrapolated to the phantom surface for computing 1-g SAR. Tolerances of the post-processing algorithms must be verified by the test laboratory for the scan resolutions used in the SAR measurements, according to the reference distribution functions specified in IEEE Std 1528-2013. The results should be documented as part of the system validation records and may be requested to support test results when all the measurement parameters in the following table are not satisfied.

	lte	ms	≤3GHz	>3GHz
	Maximum	Distance	5mm ±1mm	$\frac{1}{2} * \delta * \ln(2) \text{ mm } \pm 0.5 \text{ mm}$
N	laximum pr	obe angle	30±1°	20±1°
			≤2GHz: ≤15mm	3-4GHz: ≤12mm
			2-3GHz: ≤12mm	4-6GHz: ≤10mm
Maximum Area Scan spatial resolution: $\Delta x_{Area} , \Delta y_{Area}$			when the x or y dimension of the device , in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the device with at least one measurement point on the device	
Maximum	Zoom Scai	n spatial resolution:	≤2GHz: ≤8mm	3-4GHz: ≤5mm
	Δ XZoom ,	Δ yzoom	2-3GHz: ≤5mm	4-6GHz: ≤4mm
maximum zoom scan	unif	orm grid: Δ z _{zoom} (n)	≤5mm	3-4GHz: ≤4mm 4-5GHz: ≤3mm 5-6GHz: ≤2mm
spatial resolution, normal to phantom	graded grid	$\Delta z_{Zoom}(1)$: between 1 st two points closest to phantom surface	≤4mm	3-4GHz: ≤3mm 4-5GHz: ≤2.5mm 5-6GHz: ≤2mm
surface	Δ z _{Zoom} (n >1) between subsequent points		≤1.5*	
minimum zoom scan volume	x, y, z		≥30mm	3-4GHz: ≥28mm 4-5GHz: ≥25mm 5-6GHz: ≥22mm

Table 11.1: Test Resolution Requirement	Table 11.1:	Test Resolution	Requirement
---	-------------	------------------------	-------------

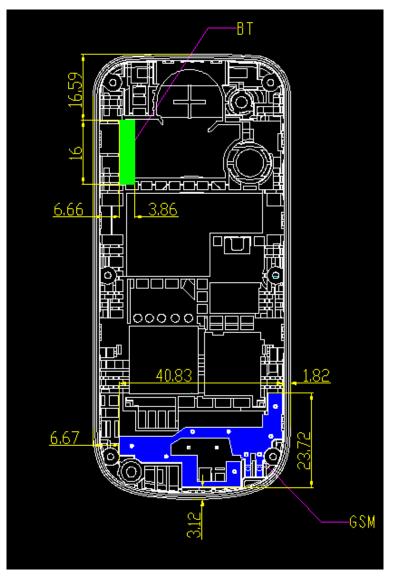
Notes:

 δ is the penetration depth of a plane-wave at normal incidence to the tissue medium in IEEE 1528-2013. When Zoom Scan is required and reported SAR from the Area Scan based 1-g SAR estimation procedure of KDB publication 447498 is \leq 1.4 W/kg, \leq 8mm for 2GHz-3GHz, \leq 7mm for 3GHz-4GHz, \leq 5mm for 4GHz-6GHz Zoom Scan resolution may be applied.

11.4. Bluetooth & WiFi Measurement Procedures

Normal network operating configurations are not suitable for measuring the SAR of 802.11 transmitters in general. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure that the results are consistent and reliable.

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in a test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters. The test frequencies should correspond to actual channel frequencies defined for domestic use. SAR for devices with switched diversity should be measured with only one antenna transmitting at a time during each SAR measurement, according to a fixed modulation and data rate. The same data pattern should be used for all measurements.



12. Simultaneous Transmission SAR Considerations

12.1. Reference Document

The following procedures adopted from "FCC SAR Considerations for Cell Phones with Multiple Transmitters" are applicable to handsets with built-in unlicensed transmitters such as 802.11 a/b/g and Bluetooth devices which may simultaneously transmit with the licensed transmitter.

12.2. Antenna Separation Distances

Picture 12-1 Antenna Locations

12.3. SAR Measurement Positions

According to the KDB941225 D06 Hot Spot SAR v01, the edges with less than 2.5 cm distance to the antennas need to be tested for SAR.

Antenna Mode	Front	Back	Left	Right	Тор	Bottom
2/3/4G	Yes	Yes	Yes	Yes	No	Yes
BT/WiFi	BT/WiFi Yes		No	Yes	Yes	No

Table 12.1: SAR measurement Positions

12.4. Low Power Transmitters SAR Consideration

Standalone 1-g head or body SAR evaluation by measurement or numerical simulation for low power transmitters is not required when the corresponding SAR Exclusion Threshold condition, listed below, is satisfied.

The 1-g SAR test exclusion threshold for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

Where

- > Frequency(GHz) is the RF channel transmit frequency in GHz
- > Power and distance are rounded to the nearest mW and mm before calculation
- > The result is rounded to one decimal place for comparison

According to the KDB447498 appendix A, the SAR test exclusion threshold for 2450MHz at 5mm test separation distances is 10mW. That means the transmitters with tune-up power below 10mW are excluded for SAR measurement.

12.5. Simultaneous Transmission Analysis

KDB 447498 D01 General RF Exposure Guidance introduces a new formula for calculating the SPLSR (SAR to Peak Location Ratio) between pairs of simultaneously transmitting antennas:

$$SPLSR = \sqrt{(SAR1 + SAR2)^3/Ri}$$

Where

- SAR1 is the highest measured or estimated SAR for the first of a pair of simultaneous transmitting antennas, in a specific test operating mode and exposure condition.
- SAR2 is the highest measured or estimated SAR for the second of a pair of simultaneous transmitting antennas, in the same test operating mode and exposure condition as the first.
- Ri is the separation distance between the pair of simultaneous transmitting antennas. When the SAR is measured, for both antennas in the pair, it is determined by the actual x, y and z coordinates in the 1-g SAR for each SAR peak location , based on the extrapolated and interpolated result in the zoom scan measurement, using the formula of

$$(x1 - x2)^2 + (y1 - y2)^2 + (z1 - z2)^2$$

In order for a pair of simultaneous transmitting antennas with the sum of 1-g SAR > 1.6 W/kg to qualify for exemption from Simultaneous Transmission SAR measurements, it has to satisfy the condition of:

 $\sqrt{(SAR1 + SAR2)^3/Ri} < 0.04$

12.6. Simultaneous Transmission Table

Table 12.2: Simultaneous Transmission Configurations

Items	Capable Transmit Configurations
1	GSM/EGPRS/EDGE + BT

13. Conducted Output Power

13.1. GSM Measurement result

Table 13.1: The conducted power measurement results for GSM850/1900

GSM 850MHZ	Conducted Power (dBm)									
	Channel 128(824.2MHz)	Channel 190(836.6MHz)	Channel 251(848.8MHz)							
	31.81	32.10	32.02							
GSM	Conducted Power(dBm)									
	Channel 512(1850.2MHz)	Channel 661(1880 MHz)	Channel 810(1909.8MHz)							
1900MHZ	29.22	29.23	29.15							

NOTES:

1) Division Factors

To average the power, the division factor is as follows:

1TX-slot = 1 transmit time slot out of 8 time slots=> conducted power divided by (8/1) => -9.03dB

2TX-slots = 2 transmit time slots out of 8 time slots=> conducted power divided by (8/2) => -6.02dB

3TX-slots = 3 transmit time slots out of 8 time slots=> conducted power divided by (8/3) => -4.26dB

4TX-slots = 4 transmit time slots out of 8 time slots=> conducted power divided by (8/4) => -3.01dB

13.2. BT Measurement result

GFSK				
Channel	Ch0 (2402 MHz)	Ch39 (2441MHz)	CH78 (2480MHz)	
Conducted Output Power (dBm)	3.43	3.68	3.53	
π/4 DQPSK				
Channel	Ch0 (2402 MHz)	Ch39 (2441MHz)	CH78 (2480MHz)	
Conducted Output Power (dBm)	1.78	2.03	1.89	
8DPSK				
Channel	Ch0 (2402 MHz)	Ch39 (2441MHz)	CH78 (2480MHz)	
Conducted Output Power (dBm)	1.81	2.02	1.94	

Table 13.7: The conducted power for Bluetooth

NOTE: According to KDB447498 D01 BT standalone SAR are not required, because maximum average output power is less than 10mW.

When the standalone SAR test exclusion is applied to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to the following to determine simultaneous transmission SAR test exclusion:

$$SAR = \frac{P(Max.Power of channel, including tuneup tolerance, mW)}{D(Min.test separation distance, mm)} * \frac{\sqrt{frequency(GHz)}}{x}$$

Where

- > D (Min, test separation distances, mm) is always set to 50 mm for Head SAR evaluation
- > Frequency(GHz) is the center frequency in GHz
- > where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR

Therefor

- SAR head value of BT is 0.105W/Kg where D is set to 5mm
- > SAR body value of BT is 0.035 W/Kg for 1g where D is set to 10mm

14. SAR Measurement Result

14.1. Fast SAR Test Result for I18D00228

Frequ	ency	Mode		Test	Figure	Measured average	Maximum allowed	Scaling	Measured	Reported	Power
MHz	Ch.	/Band	Side	Position	No.	power (dBm)	oower Power		SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
836.6	190	GSM850	Left	Touch	/	32.10	33	1.230	1.06	1.304	-0.12
824.2	128	GSM850	Left	Touch	/	31.81	33	1.315	0.887	1.167	-0.01
848.8	251	GSM850	Left	Touch	/	32.02	33	1.253	1.16	1.454	0.02
836.6	190	GSM850	Left	Tilt	/	32.10	33	1.230	0.576	0.709	-0.01
836.6	190	GSM850	Right	Touch	/	32.10	33	1.230	1.12	1.378	0.10
824.2	128	GSM850	Right	Touch	/	31.81	33	1.315	0.937	1.232	0.03
848.8	251	GSM850	Right	Touch	/	32.02	33	1.253	1.16	1.454	0.03
836.6	190	GSM850	Right	Tilt	/	32.10	33	1.230	0.495	0.609	-0.16
						Repeated					
848.8	251	GSM850	Right	Touch	/	32.02	33	1.253	1.18	1.479	0.06

Table 14.11: SAR Values for GSM850 Head

Table 14.12: SAR Values for GSM850 Body

Frequ y MH z		Mode /Band	Service /Heads et	Test Positio n	Spacin g (mm)	Figur e No.	Measure d average power (dBm)	Maximu m allowed Power (dBm)	Scalin g factor	Measure d SAR(1g) (W/kg)	Reporte d SAR(1g) (W/kg)	Powe r Drift (dB)
836.6	190	GSM85 0	Voice	Toward Phanto m	15	/	32.10	33	1.230	0.642	0.790	-0.04
836.6	190	GSM85 0	Voice	Toward Ground	15	/	32.10	33	1.230	0.669	0.823	-0.00
824.2	128	GSM85 0	Voice	Toward Ground	15	/	31.81	33	1.315	0.704	0.926	0.04
848.8	251	GSM85 0	Voice	Toward Ground	15	/	32.02	33	1.253	0.685	0.858	0.07

Freque	ency	Mode	Side	Test	Figure	Measured average	Maximum allowed	Scaling	Measured SAR(1g)	Reported SAR(1g)	Power Drift
MHz	Ch.	/Band	Blue	Position	No.	power (dBm)	Power (dBm)	factor	(W/kg)	(W/kg)	(dB)
1880	661	GSM1900	Left	Touch	/	29.23	29.5	1.064	0.534	0.568	0.18
1880	661	GSM1900	Left	Tilt	/	29.23	29.5	1.064	0.084	0.089	-0.14
1880	661	GSM1900	Right	Touch	/	29.23	29.5	1.064	0.682	0.726	-0.15
1850	512	GSM1900	Right	Touch	/	29.22	29.5	1.067	0.566	0.604	0.08
1910	810	GSM1900	Right	Touch	/	29.15	29.5	1.084	0.784	0.850	0.17
1880	661	GSM1900	Right	Tilt	/	29.23	29.5	1.064	0.130	0.138	0.09

Table 14.13: SAR Values for GSM1900 Head

Table 14.14: SAR Values for GSM1900 Body

Frequ y MH z		Mode /Band	Service /Heads et	Test Positio n	Spacin g (mm)	Figur e No.	Measure d average power (dBm)	Maximu m allowed Power (dBm)	Scalin g factor	Measure d SAR(1g) (W/kg)	Reporte d SAR(1g) (W/kg)	Powe r Drift (dB)
1880	661	GSM190 0	Voice	Toward Phanto m	15	/	29.23	29.5	1.064	0.278	0.296	0.09
1880	661	GSM190 0	Voice	Toward Ground	15	/	29.23	29.5	1.064	0.290	0.309	-0.13

	Simultaneous transmission(W/Kg)							
	Test Position		2G	ВТ	SUM			
	Left	Cheek	1.454	0.105	1.559			
Head(1a)	Len	Tilt 15 °	0.709	0.105	0.814			
Head(1g)	Diabt	Cheek	1.479	0.105	1.584			
	Right	Tilt 15 °	0.609	0.105	0.714			
Body 15 mm(1g)	Phanto		0.79	0.035	0.825			
Douy 15 mm(1g)	Groun	d Side	0.926	0.035	0.961			

14.2. Simultaneous SAR Evaluation for I18D00228

According to the conducted power measurement result, we can draw the conclusion that: stand-alone SAR for WiFi should be performed. Then, simultaneous transmission SAR for WiFi/BT is considered with measurement results of GSM/WCDMA/LTE/CDMA and WiFi/BT. According to the above table, the sum of reported SAR values for GSM/WCDMA/LTECDMA and WiFi<1.6W/kg. So the simultaneous transmission SAR is not required for WiFi/BT transmitter.

14.3. SAR Measurement Variability for I18D00228

SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium.

The following procedures are applied to determine if repeated measurements are required.

1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps2) through 4) do not apply.

2) When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once.

3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is \geq 1.45W/kg (~ 10% from the 1-g SAR limit).

4) Perform a third repeated measurement only if the original, first or second repeated measurement is \geq 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

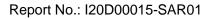

Frequ	uency	Configuration	Test	Original	First Repeated	The Ratio
MHz	Ch.	Configuration	Position	SAR (W/kg)	SAR (W/kg)	
848.8	251	GSM850	Right Touch	1.16	1.18	1.017

Table 14.5: SAR Measurement Variability (1g)

Note: According to the KDB 865664 D01 repeated measurement is not required when the original highest measured SAR is < 0.8 W/kg.

14.2. Standard procedure SAR results for I20D00015

				Frequency	Measured	Tune-up	Power Drift	Limit of 1g	SAR 1.6 W/k	g (mW/g)	Figure
Test Position Cover T	Cover Type	Mode	Channel	(MHz) power	power (dBm)	r(dBm) (dBm)	(dB)	Measured SAR1g	Scaling Factor	Report SAR1g	No.
	Head SAR										
Right Touch	Standard	GSM850	251	848.8	32.02	33	0.060	0.942	1.25	1.180	1
	Body SAR (Worn 15mm)										
Back Side	Standard	GSM850	128	824.2	31.81	33	-0.130	0.492	1.32	0.647	2

15. Test Equipment Utilized

Table 16.1	SAR Tes	t System	Equipment List
------------	---------	----------	----------------

Item	Instrument	Туре	Serial	Manufactur	Cal. Date	Cal.
nem	Name	туре	Number	er	Cal. Date	interval
1	Network	N5242A	MY51221755	Agilent	2019-12-11	1 year
1	analyzer	NJZ4ZA	101151221755	Agilont	2010 12 11	i yeai
2	Power meter	NRVD	102257			
3	Dowerconcer		100241	RS	2019-5-10	1 year
3	Power sensor	NRV-Z5	100644			
4	Signal	E44280	MV(40072044	Agilopt	2019-5-10	1 Voor
4	Generator	E4438C	MY49072044	Agilent	2019-5-10	1 Year
5	Amplifier	NTWPA-0086010F	12023024	rflight	No Calibration	Requested
6	Coupler	778D	MY4825551	Agilent	2019-5-10	1 year
7	BTS	E5515C	MY50266468	Agilent	2019-12-11	1 year
8	E-field Probe	ES3DV3	3252	SPEAG	2020-1-3	1 year
9	DAE	SPEAG DAE4	1244	SPEAG	2018-12-13	1 year
	Dipole	SPEAG D835V2	4d112	SPEAG	2018-10-25	3 year
	Validation Kit	SPEAGD1900V2	5d151	SPEAG	2017-12-6	3 year

16. Measurement Uncertainty

	Unc. value,	Prob.		Ci	Ci	Std.Unc.	Std.Unc.	Vi
Uncertainty Factors	±%	Dist.	Div.	1g	10g	±%,1g	±%,10g	Veff
		Ме	asuremen	t System				
Probe Calibration	6	N	1	1	1	6	6	8
Axial Isotropy	0.5	R	√3	0.7	0.7	0.2	0.2	8
Hemispherical Isotropy	2.6	R	√3	0.7	0.7	1.1	1.1	8
Boundary Effects	0.8	R	√3	1	1	0.5	0.5	8
Linearity	0.6	R	√3	1	1	0.3	0.3	8
System Detection Limits	1	R	√3	1	1	0.6	0.6	8
Readout Electronics	0.7	N	1	1	1	0.7	0.7	8
Response Time	0	R	√3	1	1	0	0	8
Integration Time	2.6	R	√3	1	1	1.5	1.5	8
RF Ambient Noise	3	R	√3	1	1	1.7	1.7	8
RF Ambient Reflections	3	R	√3	1	1	1.7	1.7	8
Probe Positioner	1.5	R	√3	1	1	0.9	0.9	∞
Probe Positioning	2.9	R	√3	1	1	1.7	1.7	8
Max. SAR Eval.	1	R	√3	1	1	0.6	0.6	8
		Те	st Sample	Related				
Device Positioning	2.9	Ν	1	1	1	2.9	2.9	145
Device Holder	3.6	Ν	1	1	1	3.6	3.6	5
	•	Pł	nantom an	d Setup	•			
Phantom Uncertainty	4	R	√3	1	1	2.3	2.3	8
Liquid Conductivity (target)	5	R	√3	0.64	0.43	1.8	1.2	8
Liquid Conductivity (meas.)	2.5	Ν	1	0.64	0.43	1.6	1.1	8
Liquid Permittivity (target)	5	R	√3	0.6	0.49	1.7	1.4	8
Liquid Permittivity (meas.)	2.5	Ν	1	0.6	0.49	1.5	1.2	8
Combined Std. Uncertainty		RSS				±9.27%	±9.07%	
Expanded Std. Uncertainty		k=2				±18.53%	±18.14%	

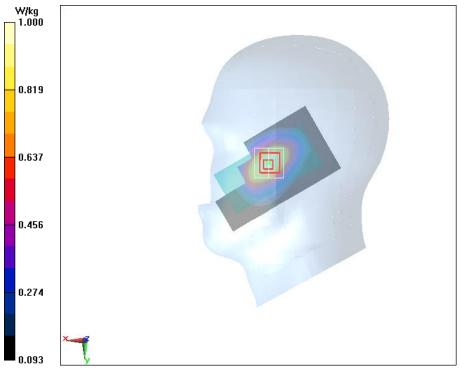
Table 17.1 Measurement Uncertainty Evaluation for SAR test

Table 17.2	2 Measurer	nent Une	certainty	Evaluatio	on for Sys	stem valid	ation	
Uncertainty Factors	Unc. value,	Prob.	Div.	Ci	Ci	Std.Unc.	Std.Unc.	Vi
	±%	Dist.	Div.	1g	10g	±%,1g	±%,10g	Veff
		Ме	asurement	t System				
Probe Calibration	6	Ν	1	1	1	6	6	8
Axial Isotropy	0.5	R	√3	0.7	0.7	0.2	0.2	8
Hemispherical Isotropy	2.6	R	√3	0.7	0.7	1.1	1.1	∞
Boundary Effects	0.8	R	√3	1	1	0.5	0.5	∞
Linearity	0.6	R	√3	1	1	0.3	0.3	∞
System Detection Limits	1	R	√3	1	1	0.6	0.6	∞
Readout Electronics	0.7	Ν	1	1	1	0.7	0.7	∞
Response Time	0	R	√3	1	1	0	0	∞
Integration Time	2.6	R	√3	1	1	1.5	1.5	∞
RF Ambient Noise	3	R	√3	1	1	1.7	1.7	∞
RF Ambient Reflections	3	R	√3	1	1	1.7	1.7	∞
Probe Positioner	1.5	R	√3	1	1	0.9	0.9	∞
Probe Positioning	2.9	R	√3	1	1	1.7	1.7	∞
Max. SAR Eval.	1	R	√3	1	1	0.6	0.6	∞
			Diople	9				
Power Drift	5	R	√3	1	1	2.9	2.9	∞
Dipole Positioning	2	Ν	1	1	1	2	2	∞
Dipole Input Power	5	Ν	1	1	1	5	5	∞
		Pł	nantom an	d Setup				
Phantom Uncertainty	4	R	√3	1	1	2.3	2.3	∞
Liquid Conductivity (target)	5	R	√3	0.64	0.43	1.8	1.2	∞
Liquid Conductivity (meas.)	2.5	Ν	1	0.64	0.43	1.6	1.1	∞
Liquid Permittivity (target)	5	R	√3	0.6	0.49	1.7	1.4	∞
Liquid Permittivity (meas.)	2.5	Ν	1	0.6	0.49	1.5	1.2	∞
Combined Std. Uncertainty		RSS				±11.2%	±10.9%	387
Expanded Std. Uncertainty		k=2				±22.4%	±21.8%	

Table 17.2 Measurement Uncertainty Evaluation for System Validation

	7.3 Measu	rement U	Incertain	iy Evalua	tion for F	ast SAR t	est	
Uncertainty Factors	Unc. value,	Prob.	Div.	Ci	Ci	Std.Unc.	Std.Unc.	Vi
Uncertainty 1 detois	±%	Dist.	DIV.	1g	10g	±%,1g	±%,10g	veff
		Ме	asurement	System				
Probe Calibration	6	Ν	1	1	1	6	6	8
Axial Isotropy	0.5	R	√3	0.7	0.7	0.2	0.2	8
Hemispherical Isotropy	2.6	R	√3	1	1	1.5	1.5	8
Boundary Effects	0.8	R	√3	0.7	0.7	0.32	0.32	8
Linearity	0.6	R	√3	1	1	0.35	0.35	8
System Detection Limits	1	R	√3	1	1	0.58	0.58	8
Readout Electronics	0.7	R	√3	1	1	0.4	0.4	8
Response Time	0	N	1	1	1	0	0	8
Integration Time	2.6	R	√3	1	1	1.5	1.5	8
RF Ambient Noise	3	R	√3	1	1	1.73	1.73	8
RF Ambient Reflections	3	R	√3	1	1	1.73	1.73	8
Probe Positioner	1.5	R	√3	1	1	0.87	0.87	8
Probe Positioning	2.9	R	√3	1	1	1.67	1.67	8
Max. SAR Eval.	1	R	√3	1	1	0.58	0.58	8
Fast SAR z-Approximation	7	R	√3	1	1	4.04	4.04	8
		Те	st sample	Related	•			
Test sample Positioning	2.9	Ν	1	1	1	2.9	2.9	145
Device Holder Uncertainty	3.6	N	1	1	1	3.6	3.6	5
		Phantom	n and Tissu	e Paramet	ters			
Phantom Uncertainty	4	R	√3	1	1	2.31	2.31	8
Liquid Conductivity (target)	5	R	√3	0.64	0.43	1.85	1.24	8
Liquid Conductivity (meas)	2.5	Ν	1	0.64	0.43	0.92	0.62	8
Liquid Permittivity (target)	5	R	√3	0.6	0.49	1.73	1.41	8
Liquid Permittivity (meas)	2.5	Ν	1	0.6	0.49	0.87	0.71	8
Combined Std. Uncertainty		RSS				±10.11%	±9.93%	
Expanded Std. Uncertainty		k=2				±20.22%	±19.86%	

Table 17.3 Measurement Uncertainty Evaluation for Fast SAR test


END OF REPORT BODY

ANNEX A. Graph Results

Fig.1 GSM850 Right Cheek High

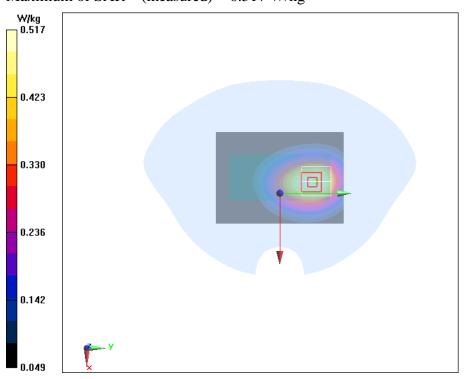
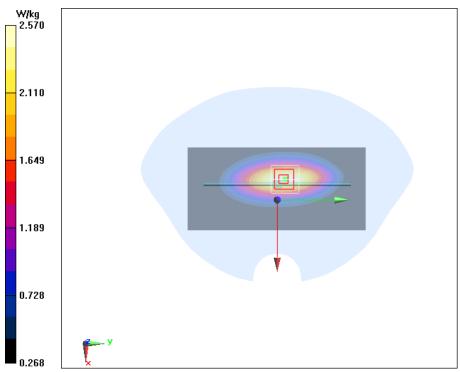

Date/Time: 2020/3/11 Electronics: DAE4 Sn1244 Medium parameters used: f = 849 MHz; $\sigma = 0.942$ S/m; $\varepsilon_r = 42.349$; $\rho = 1000$ kg/m³ Ambient Temperature:22.6 °C Liquid Temperature:22.6 °C Communication System: GSM Professional 900MHz; Frequency: 848.8 MHz; Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3252ConvF(6.29, 6.29, 6.29); Calibrated: 1/3/2020 GSM850 Right Cheek High 21/Area Scan (71x41x1): Measurement grid: dx=10 mm, dy=10 mm Maximum value of SAR (Measurement) = 1.03 W/kgGSM850 Right Cheek High 21/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 14.65 V/m; Power Drift = 0.06 dBPeak SAR (extrapolated) = 1.21 W/kgSAR(1 g) = 0.942 W/kg; SAR(10 g) = 0.666 W/kgMaximum value of SAR (measured) = 1.00 W/kg

Fig.1 GSM 850 Ground Mode Low

Date/Time: 2020/3/11 Electronics: DAE4 Sn1244 Medium parameters used (interpolated): f = 824.2 MHz; $\sigma = 0.988 \text{ S/m}$; $\varepsilon_r = 56.828$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature:22.6 °C Liquid Temperature:22.6 °C Communication System: GSM 900MHz; Frequency: 824.2 MHz; Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3252ConvF(6.25, 6.25, 6.25); Calibrated: 1/3/2020 GSM 850 Ground Mode Low 2/Area Scan (51x71x1): Measurement grid: dx=10 mm, dy=10 mm Maximum value of SAR (Measurement) = 0.542 W/kgGSM 850 Ground Mode Low 2/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 17.27 V/m; Power Drift = -0.13 dBPeak SAR (extrapolated) = 0.633 W/kgSAR(1 g) = 0.492 W/kg; SAR(10 g) = 0.357 W/kgMaximum of SAR (measured) = 0.517 W/kg



ANNEX B. System Validation

Head 835MHz

Date/Time: 2020/3/11 Electronics: DAE4 Sn1244 Medium parameters used: f = 835 MHz; $\sigma = 0.927$ S/m; $\varepsilon_r = 42.547$; $\rho = 1000$ kg/m³ Ambient Temperature:22.6 °C Liquid Temperature:22.6 °C Communication System: CW 900MHz; Frequency: 835 MHz; Duty Cycle: 1:1 Probe: ES3DV3 - SN3252ConvF(6.29, 6.29, 6.29); Calibrated: 1/3/2020 System Validation/Area Scan (61x131x1): Measurement grid: dx=10 mm, dy=10 mm Maximum value of SAR (Measurement) = 2.61 W/kgSystem Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 51.99 V/m; Power Drift = -0.07 dBPeak SAR (extrapolated) = 3.43 W/kgSAR(1 g) = 2.39 W/kg; SAR(10 g) = 1.59 W/kgMaximum value of SAR (measured) = 2.57 W/kg

ANNEX C. Calibration Certification

Client - EC	Conditional Condition of Condition of Condition	:+se-to-62304633-2504 or/www.chinattl.co Certific	ate No: Z19-60489
CALIBRATION	CERTIFICA	TE	and the second
Object	DAE	I - SN: 1244	
Calibration Procedure(s	FF-Z	11-002-01 ration Procedure for the Data Ac x)	quisition Electronics
Calibration date:	Dece	mber 17, 2019	
pages and are part of th All calibrations have b humidity<70%.		the closed laboratory facility: em	vironment temperature(22±3) $\ensuremath{\mathbb{C}}$ and
Calibration Equipment u	ised (M&TE critical	for calibration)	
Primary Standards	0.038355 23		
(in all y countralities	ID# C	al Date(Calibrated by, Cartificate No) Scheduled Calibration
	ID# C	al Date(Calibrated by, Cartificate No 24-Jun-19 (CTTL, No.J19X05125)	1.1205
			5.572
Process Calibrator 753	1971018 Name	24-Jun-19 (CTTL, No.J19X05125) Function	5.572
Process Calibrator 753 Calibrated by:	1971018	24-Jun-19 (CTTL, No.J19X05126)	Jun-20
Process Calibrator 753 Calibrated by:	1971018 Name	24-Jun-19 (CTTL, No.J19X05125) Function	Jun-20
Process Calibrator 753 Calibrated by: Reviewed by:	1971018 Name Zhao Jing	24-Jun-19 (CTTL, No.J19X05125) Function SAR Test Engineer	Jun-20
Process Calibrator 753 Calibrated by: Reviewed by: Approved by:	1971018 Name Zhao Jing Lin Hao Qi Dianyuan	24-Jun-19 (CTTL, No.J19X05125) Function SAR Test Engineer SAR Test Engineer	Jun-20 Signature 通り 一番が し ここここ Issued December 18, 2019

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com Http://www.chinattl.cn

Glossary:

DAE Connector angle data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Certificate No: Z19-60489

Page 2 of 3

		olisbors			
TTL	S	p	e	a	g
	CAL	IBRATH	ON LAR	ORAT	DRY
De la Marca De la					

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: ettligehinattl.com Http://www.chinattl.cn

DC Voltage Measurement

A/D - Converter Re	solution nomin	18		
High Range:	1LSB =	6.1µV,	full range =	-100+300 mV
Low Range:	1LSB =	61nV,	fuil range =	-1+3mV
DASY measuremen	t parameters:	Auto Zero	Time: 3 sec. Me.	asuring time: 3 sec

Calibration Factors	x	Y	z
High Range	403.859 ± 0.15% (k=2)	403.595 ± 0.15% (k=2)	404.513 ± 0.15% (k=2)
Low Range	3.95597 ± 0.7% (k=2)	3.97332 ± 0.7% (k=2)	3.98293 ± 0.7% (k=2)

Connector Angle

Connect	tor Angle to be used in DASY system	23.5°±1°

Certificate No: Z19-60489

Page 3 of 3

E-mail: cttl@chin Client EC		e (hisatti.cn	
	IT	Certificate No: Z20-60	027
CALIBRATION C	ERTIFICAT		ALE AL
Object	ES3DV3 - S	SN : 3252	1000
Calibration Procedure(s)	FF-Z11-004		
		Procedures for Dosimetric E-field Probes	
Calibration date:	January 03	2020	
		eability to national standards, which realize	
ul calibrations have been	certificate.		
numidity<70%.	m conducted in the	closed laboratory facility: environment ten albration)	nperature(22±3)で and
numidity<70%. Calibration Equipment use	m conducted in the	albration)	nperature(22±3)℃ and Scheduled Calibration
rumidity<70%. Calibration Equipment use Primary Standards Power Meter NRP2	n conducted in the d (M&TE critical for ca ID# 101819	alibration) Cel Date(Celibrated by, Certificate No.) 8 18-Jun-19(CTTL, No.J19X05125)	
rumidity<70%. Calibration Equipment use Primary Standards Power Meter NRP2 Power sensor NRP-291	d (M&TE critical for ca ID # 101919 101547	alibration) Cal Date(Calibrated by, Certificate No.) 1 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125)	Scheduled Calibration Jun-20 Jun-20
rumidity<70%. Calibration Equipment use Primary Standards Power Meter NRP2 Power sensor NRP-291 Power sensor NRP-291	m conducted in the d (M&TE critical for ca ID # 101919 101547 101548	alibration) Cal Date(Calibrated by, Certificate No.) 1 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125)	Scheduled Calibration Jun-20 Jun-20 Jun-20
numidity<70%. Calibration Equipment use Primary Standards Power Meter NRP2 Power sensor NRP-291 Power sensor NRP-291 Reference 10dBAttenue	d (M&TE critical for ca ID # 101919 101547 101548 tor 18N50W-10dB	alibration) Cal Date(Calibrated by, Certificate No.) 1 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 9-Feb-18(CTTL, No.J18X01133)	Scheduled Calibration Jun-20 Jun-20 Jun-20 Feb-20
rumidity<70%. Calibration Equipment use Primary Standards Power Meter NRP2 Power sensor NRP-291 Power sensor NRP-291	d (M&TE critical for ca ID # 101919 101547 101548 tor 18N50W-10dB tor 18N50W-20dB	albration) Cal Date(Calibrated by, Certificate No.) 18 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 9-Feb-18(CTTL, No.J18X01133) 9-Feb-18(CTTL, No.J18X01132)	Scheduled Calibration Jun-20 Jun-20 Jun-20 Feb-20 Feb-20
numidity<70%. Calibration Equipment use Primary Standards Power Meter NRP2 Power sensor NRP-291 Power sensor NRP-291 Reference 10dBAttenua Reference 20dBAttenua	d (M&TE critical for ca ID # 101919 101547 101548 tor 18N50W-10dB tor 18N50W-20dB	alibration) Cal Date(Calibrated by, Certificate No.) 1 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 9-Feb-18(CTTL, No.J18X01133)	Scheduled Calibration Jun-20 Jun-20 Jun-20 Feb-20 Feb-20 (2) May-20
numidity<70%. Calibration Equipment use Primary Standards Power Meter NRP2 Power sensor NRP-291 Power sensor NRP-291 Reference 10dBAttenua Reference 20dBAttenua Reference Probe EX30	d (M&TE critical for ca 10 # 101919 101547 101548 tor 18N50W-10dB tor 18N50W-20dB V4 SN 7307	albration) Cal Date(Calibrated by, Certificate No.) 3 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 9-Feb-18(CTTL, No.J19X01133) 9-Feb-18(CTTL, No.J18X01132) 24-May-19(SPEAG, No.EX3-7307_May19) 26-Aug-19(SPEAG, No.DAE4-1525_Aug19)	Scheduled Calibration Jun-20 Jun-20 Jun-20 Feb-20 Feb-20 [2] May-20
umidity<70%. Calibration Equipment use Primary Standards Power Meter NRP2 Power sensor NRP-291 Power sensor NRP-291 Reference 10dBAttenua Reference 20dBAttenua Reference Probe EX30 DAE4 Secondary Standards Signal Generator MG370	d (M&TE critical for ca ID # 101919 101547 101548 stor 18N50W-10dB stor 18N50W-20dB V4 SN 7307 SN 1525 ID # 20A 6201052605	albration) Cal Date(Calibrated by, Certificate No.) 3 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 9-Feb-18(CTTL, No.J19X05125) 9-Feb-18(CTTL, No.J18X01133) 9-Feb-18(CTTL, No.J18X01132) 24-May-19(SPEAG, No.EX3-7307_May19) 26-Aug-19(SPEAG, No.DAE4-1525_Aug19)	Scheduled Calibration Jun-20 Jun-20 Jun-20 Feb-20 Feb-20 (2) May-20 9) Aug-20
umidity<70%. Calibration Equipment use Primary Standards Power Meter NRP2 Power sensor NRP-291 Power sensor NRP-291 Reference 10dBAttenua Reference 20dBAttenua Reference Probe EX30 DAE4 Secondary Standards	d (M&TE critical for ca ID # 101919 101547 101548 stor 18N50W-10dB stor 18N50W-20dB V4 SN 7307 SN 1525 ID # 2004 6201052605 1C MY46110673	albration) Cal Date(Calibrated by, Certificate No.) S 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 9-Feb-18(CTTL, No.J19X05125) 9-Feb-18(CTTL, No.J19X05133) 9-Feb-18(CTTL, No.J19X01133) 9-Feb-18(CTTL, No.J18X01132) 24-May-19(SPEAG, No.EX3-7307_May19) 26-Aug-19(SPEAG, No.DAE4-1525_Aug19) Cal Date(Calibrated by, Certificate No.) \$ \$ 18-Jun-19(CTTL, No.J19X05127) \$ \$ 24-Jan-19(CTTL, No.J19X00547) \$ \$	Scheduled Calibration Jun-20 Jun-20 Jun-20 Feb-20 Feb-20 (2) May-20 9) Aug-20 cheduled Calibration
numidity<70%. Calibration Equipment use Primary Standards Power Meter NRP2 Power sensor NRP-291 Power sensor NRP-291 Reference 10dBAttenua Reference 20dBAttenua Reference Probe EX30 DAE4 Secondary Standards Signal Generator MG370 Network Analyzer E507	an conducted in the ID # 101919 101547 101548 tor 18N50W-10dB tor 18N50W-20dB V4 SN 7307 SN 1525 ID # D0A 6201052605 IC MY46110673 Name	albration) Cal Date(Calibrated by, Certificate No.) 3 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 9-Feb-18(CTTL, No.J19X05125) 9-Feb-18(CTTL, No.J19X05127) 24-May-19(SPEAG, No.DAE4-1525_Aug19) 26-Aug-19(SPEAG, No.DAE4-1525_Aug19) 26-Aug-19(SPEAG, No.DAE4-1525_Aug19) Cal Date(Calibrated by, Certificate No.) S 18-Jun-19(CTTL, No.J19X05127) 24-Jan-19(CTTL, No.J19X00547) Function	Scheduled Calibration Jun-20 Jun-20 Jun-20 Feb-20 Feb-20 2) May-20 9) Aug-20 cheduled Calibration Jun-20
umidity<70%. Calibration Equipment use Primary Standards Power Meter NRP2 Power sensor NRP-291 Power sensor NRP-291 Reference 10dBAttenua Reference 20dBAttenua Reference Probe EX30 DAE4 Secondary Standards Signal Generator MG370 Network Analyzer E507	d (M&TE critical for ca ID # 101919 101547 101548 stor 18N50W-10dB stor 18N50W-20dB V4 SN 7307 SN 1525 ID # 2004 6201052605 1C MY46110673	albration) Cal Date(Calibrated by, Certificate No.) S 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 9-Feb-18(CTTL, No.J19X05125) 9-Feb-18(CTTL, No.J19X05133) 9-Feb-18(CTTL, No.J19X01133) 9-Feb-18(CTTL, No.J18X01132) 24-May-19(SPEAG, No.EX3-7307_May19) 26-Aug-19(SPEAG, No.DAE4-1525_Aug19) Cal Date(Calibrated by, Certificate No.) \$ \$ 18-Jun-19(CTTL, No.J19X05127) \$ \$ 24-Jan-19(CTTL, No.J19X00547) \$ \$	Scheduled Calibration Jun-20 Jun-20 Feb-20 Feb-20 (2) May-20 9) Aug-20 cheduled Calibration Jun-20 Jan-20
humidity<70%. Calibration Equipment use Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenua Reference 20dBAttenua Reference Probe EX30 DAE4 Secondary Standards SignalGenerator MG370	an conducted in the ID # 101919 101547 101548 tor 18N50W-10dB tor 18N50W-20dB V4 SN 7307 SN 1525 ID # D0A 6201052605 IC MY46110673 Name	albration) Cal Date(Calibrated by, Certificate No.) 3 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 9-Feb-18(CTTL, No.J19X05125) 9-Feb-18(CTTL, No.J19X05127) 24-May-19(SPEAG, No.DAE4-1525_Aug19) 26-Aug-19(SPEAG, No.DAE4-1525_Aug19) 26-Aug-19(SPEAG, No.DAE4-1525_Aug19) Cal Date(Calibrated by, Certificate No.) S 18-Jun-19(CTTL, No.J19X05127) 24-Jan-19(CTTL, No.J19X00547) Function	Scheduled Calibration Jun-20 Jun-20 Feb-20 Feb-20 2) May-20 9) Aug-20 cheduled Calibration Jun-20 Jan-20

Certificate No: Z20-60027

Page 1 of 11

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.con <u>Http://www.chinattl.co</u>

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx yz
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A,B,C,D	modulation dependent linearization parameters
Polarization Φ	Φ rotation around probe exis
Polarization 8	0 rotation around an axis that is in the plane normal to probe axis (at measurement center)

Polarization 0 0 rotation around an axis that is in the plane normal to probe axis (at measurement center), i 0=0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010

d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization 0=0 (fs900MHz in TEM-cell; f>1800MHz: waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the
 frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax, y, z; Bx, y, z; Cx, y, z; VRx, y, z: A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for fs800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: Z20-60027

Page 2 of 11

Probe ES3DV3

SN: 3252

Calibrated: January 03, 2020

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: Z20-60027

Page 3 of 11

* in	Collebon	tion wit	ħ	
TTL s	P	e	a	g
	LIBRATI	ON LAS	ORATO	DRY
Add: No.51 Xuryuan Road, Ha	idian Dist	ict, Beij	ing, 100	191, China
Tel: +86-10-62304633-2512	Fax: +i	\$6-10-62	304633-	2504
E-mail: etthätchinani.com	Hittp://	www.chi	satil cn	

DASY/EASY – Parameters of Probe: ES3DV3 – SN:3252

Basic Calibration Parameters

- transitioning -	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(µV/(V/m)2)^	1.31	1.35	1.33	±10.0%
DCP(mV) ⁸	104.4	104.4	104.6	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	c	D dB	VR mV	Unc ^E (k=2)
0	CW	х	0.0	0.0	1.0	0.00	286.5	±2.3%
		Y	0.0	0.0	1.0	-	282.4	
		z	0.0	0.0	1.0		282.4	-

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 5 and Page 6).
^B Numerical linearization parameter: uncertainty not required.
^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: Z20-60027

Page 4 of 11

DASY/EASY – Parameters of Probe : ES3DV3 – SN:3252

Calibration Pa	arameter D	Determined	in H	lead	Tissue	Simulating	Media
----------------	------------	------------	------	------	--------	------------	-------

t [MHz]c	Relative Permittivity ^F	Conductivity (S/m) ^r	ConvF X	ConvF Y	ConvF Z	Alpha®	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	6.46	6.46	6.46	0.40	1.40	±12.1%
835	41.5	0.90	6.29	6.29	6.29	0.35	1.62	±12.1%
900	41.5	0.97	6.27	6.27	6.27	0.38	1.57	±12.1%
1750	40.1	1.37	5.36	5.36	5.36	0.64	1.27	±12.1%
1900	40.0	1.40	5.20	5.20	5.20	0.64	1.29	±12.1%
2000	40.0	1.40	5.12	5.12	5.12	0.64	1.31	±12.1%
2300	39.5	1.67	4.94	4.94	4.94	0.90	1.09	±12.1%
2450	39.2	1.80	4.75	4.75	4.75	0.90	1.10	±12.1%
2600	39.0	1.96	4.52	4.52	4.52	0.90	1.10	±12.1%

^C Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

* At frequency below 3 GHz, the validity of tissue parameters (c and o) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (c and o) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: Z20-60027

Page 5 of 11

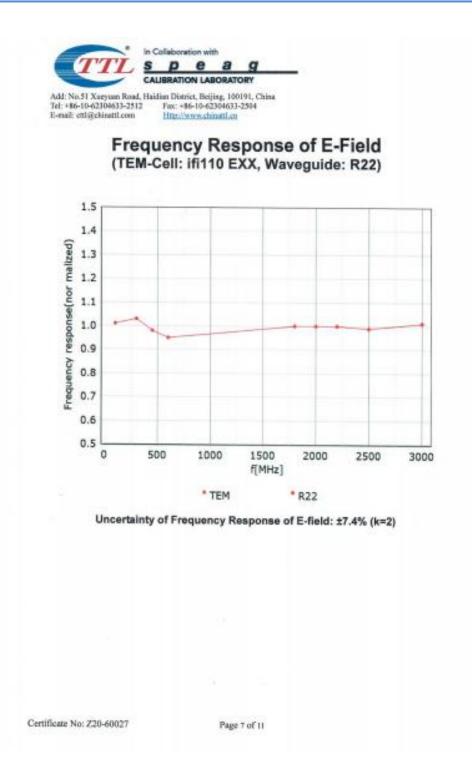
E-mail: cttl@chinattl.com

DASY/EASY – Parameters of Probe : ES3DV3 – SN:3252

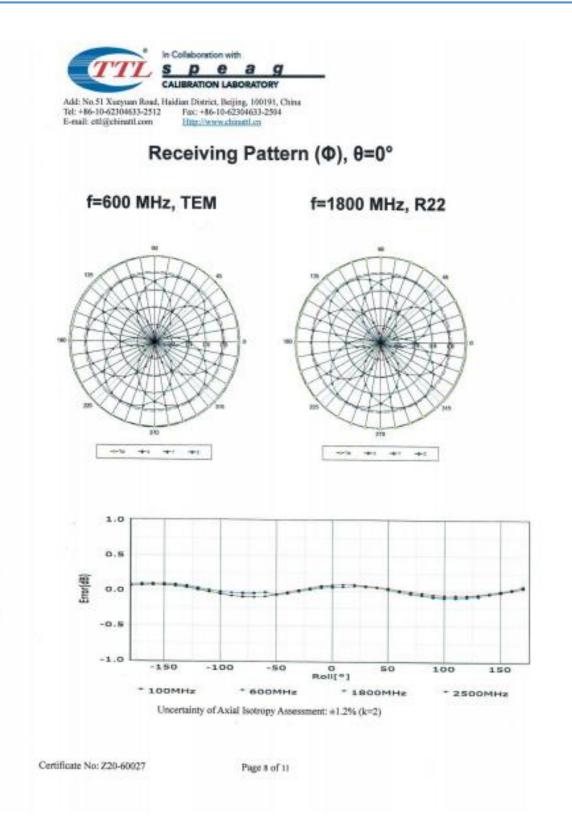
f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth [®] (mm)	Unct. (k=2)
750	55.5	0.96	6.45	6.45	6.45	0.36	1.61	±12.1%
835	55.2	0.97	6.25	6.25	6.25	0.35	1.63	±12.1%
900	55.0	1.05	6.23	6.23	6.23	0.46	1.47	±12.1%
1750	63.4	1.49	5.05	5.05	5.05	0.61	1.36	±12.1%
1900	63.3	1.52	4.81	4.81	4.81	0.58	1.41	±12.1%
2000	53.3	1.52	4.86	4.86	4.86	0.65	1.35	±12.1%
2300	62.9	1.81	4.60	4.60	4.60	0.90	1.17	±12.1%
2450	52.7	1.95	4.48	4.48	4.48	0.90	1.15	±12.1%
2600	52.5	2.16	4.27	4.27	4.27	0.90	1.15	±12.1%

Calibration Parameter Determined in Body Tissue Simulating Media

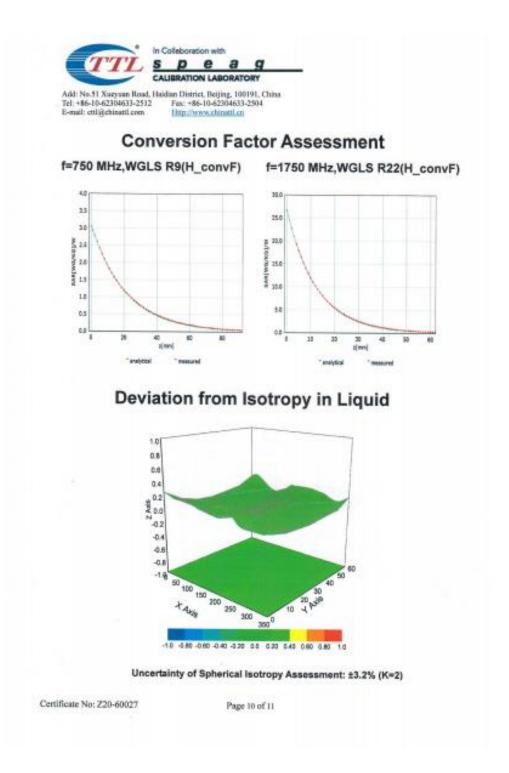
⁰ Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128. 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.


FAt frequency below 3 GHz, the validity of tissue parameters (c and o) can be relaxed to ±10% if liquid companiation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ±5%. The uncortainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ⁹ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies

between 3-8 GHz at any distance larger than half the probe tip diameter from the boundary.


Certificate No: Z20-60027

Page 6 of 11



· 10	Collebo	ration wit	th:	
TTL S	p	е	а	9
	ALIBRAT	TON LAS	ORATO	DRY
Add: No.51 Xueyuas Read, Hi				
Tel: +86-10-62304633-2512	Fas:	+86-10-62	304633-	-2504
E-mail: cttl@chinattl.com	Http:	(www.ch)	sati.cs	

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3252

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (*)	131
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	10mm
Tip Diameter	4mm
Probe Tip to Sensor X Calibration Point	2mm
Probe Tip to Sensor Y Calibration Point	2mm
Probe Tip to Sensor Z Calibration Point	2mm
Recommended Measurement Distance from Surface	3mm

Certificate No: Z20-60027

Page 11 of 11

	TL SI	oration with	中国认可国际互认
		ATION LABORATORY	NAS 校准
Tel: +86-10-62304	633-2079 Fax:	istrict, Beijing, 100191, China +86-10-62304633-2504	CALIBRATION CNAS L0570
E-mail: cttl@china Client ECIT		//www.chinattl.cn Certificate No: Z1	8-60425
Oliciti			0-60420
CALIBRATION C	ERTIFICA	TE	
Dbject	D835\	/2 - SN: 4d112	
Calibration Procedure(s)	FF-Z1	1-003-01	
		ation Procedures for dipole validation kits	
Calibration date:		er 25, 2018	
ages and are part of the c	ertificate.		
Il calibrations have been umidity<70%.	n conducted in	the closed laboratory facility: environment	temperature(22±3)℃ and
ages and are part of the co Il calibrations have beer umidity<70%. calibration Equipment used rimary Standards	n conducted in	for calibration)	
II calibrations have beer umidity<70%. alibration Equipment used rimary Standards	n conducted in		temperature(22±3)℃ and Scheduled Calibration Oct-18
Il calibrations have beer umidity<70%. alibration Equipment used rimary Standards Power Meter NRVD Power sensor NRV-Z5	I conducted in (M&TE critical f ID # 102083 100542	for calibration) Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Il calibrations have beer umidity<70%. alibration Equipment used rimary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4	ID # 102083 100542 SN 7514	for calibration) Cal Date(Calibrated by, Certificate No.) 01-Nov-17 (CTTL, No.J17X08756)	Scheduled Calibration Oct-18
Il calibrations have beer umidity<70%. alibration Equipment used rimary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4	ID # 102083 100542	for calibration) Cal Date(Calibrated by, Certificate No.) 01-Nov-17 (CTTL, No.J17X08756) 01-Nov-17 (CTTL, No.J17X08756)	Scheduled Calibration Oct-18 Oct-18
Il calibrations have beer umidity<70%. alibration Equipment used rimary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4 DAE4	ID # 102083 100542 SN 7514	for calibration) Cal Date(Calibrated by, Certificate No.) 01-Nov-17 (CTTL, No.J17X08756) 01-Nov-17 (CTTL, No.J17X08756) 27-Aug-18(SPEAG,No.EX3-7514_Aug18)	Scheduled Calibration Oct-18 Oct-18 Aug-19
Il calibrations have beer umidity<70%. alibration Equipment used rimary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	I conducted in (M&TE critical f 102083 100542 SN 7514 SN 1555	for calibration) Cal Date(Calibrated by, Certificate No.) 01-Nov-17 (CTTL, No.J17X08756) 01-Nov-17 (CTTL, No.J17X08756) 27-Aug-18(SPEAG,No.EX3-7514_Aug18) 20-Aug-18(SPEAG,No.DAE4-1555_Aug18) Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration Oct-18 Oct-18 Aug-19 Aug-19
Il calibrations have beer umidity<70%. alibration Equipment used rimary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	I conducted in (M&TE critical f 102083 100542 SN 7514 SN 1555 ID #	for calibration) Cal Date(Calibrated by, Certificate No.) 01-Nov-17 (CTTL, No.J17X08756) 01-Nov-17 (CTTL, No.J17X08756) 27-Aug-18(SPEAG,No.EX3-7514_Aug18) 20-Aug-18(SPEAG,No.DAE4-1555_Aug18) Cal Date(Calibrated by, Certificate No.) 23-Jan-18 (CTTL, No.J18X00560)	Scheduled Calibration Oct-18 Oct-18 Aug-19 Aug-19 Scheduled Calibration
Il calibrations have beer umidity<70%. alibration Equipment used rimary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	I conducted in (M&TE critical f 102083 100542 SN 7514 SN 1555 ID # MY49071430 MY46110673	Cal Date(Calibrated by, Certificate No.) 01-Nov-17 (CTTL, No.J17X08756) 01-Nov-17 (CTTL, No.J17X08756) 27-Aug-18(SPEAG,No.EX3-7514_Aug18) 20-Aug-18(SPEAG,No.DAE4-1555_Aug18) Cal Date(Calibrated by, Certificate No.) 23-Jan-18 (CTTL, No.J18X00560) 24-Jan-18 (CTTL, No.J18X00561)	Scheduled Calibration Oct-18 Oct-18 Aug-19 Aug-19 Scheduled Calibration Jan-19 Jan-19
Il calibrations have beer umidity<70%. alibration Equipment used rimary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C NetworkAnalyzer E5071C	a conducted in (M&TE critical f 102083 100542 SN 7514 SN 1555 ID # MY49071430 MY46110673 Name	Cal Date(Calibrated by, Certificate No.) 01-Nov-17 (CTTL, No.J17X08756) 01-Nov-17 (CTTL, No.J17X08756) 27-Aug-18(SPEAG,No.EX3-7514_Aug18) 20-Aug-18(SPEAG,No.DAE4-1555_Aug18) Cal Date(Calibrated by, Certificate No.) 23-Jan-18 (CTTL, No.J18X00560) 24-Jan-18 (CTTL, No.J18X00561)	Scheduled Calibration Oct-18 Oct-18 Aug-19 Aug-19 Scheduled Calibration Jan-19
Il calibrations have beer umidity<70%. calibration Equipment used rimary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C NetworkAnalyzer E5071C	I conducted in (M&TE critical f 102083 100542 SN 7514 SN 1555 ID # MY49071430 MY46110673	Cal Date(Calibrated by, Certificate No.) 01-Nov-17 (CTTL, No.J17X08756) 01-Nov-17 (CTTL, No.J17X08756) 27-Aug-18(SPEAG,No.EX3-7514_Aug18) 20-Aug-18(SPEAG,No.DAE4-1555_Aug18) Cal Date(Calibrated by, Certificate No.) 23-Jan-18 (CTTL, No.J18X00560) 24-Jan-18 (CTTL, No.J18X00561)	Scheduled Calibration Oct-18 Oct-18 Aug-19 Aug-19 Scheduled Calibration Jan-19 Jan-19
Il calibrations have beer umidity<70%. calibration Equipment used rimary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C NetworkAnalyzer E5071C	a conducted in (M&TE critical f 102083 100542 SN 7514 SN 1555 ID # MY49071430 MY46110673 Name	Cal Date(Calibrated by, Certificate No.) 01-Nov-17 (CTTL, No.J17X08756) 01-Nov-17 (CTTL, No.J17X08756) 27-Aug-18(SPEAG,No.EX3-7514_Aug18) 20-Aug-18(SPEAG,No.DAE4-1555_Aug18) Cal Date(Calibrated by, Certificate No.) 23-Jan-18 (CTTL, No.J18X00560) 24-Jan-18 (CTTL, No.J18X00561)	Scheduled Calibration Oct-18 Oct-18 Aug-19 Aug-19 Scheduled Calibration Jan-19 Jan-19
Il calibrations have beer umidity<70%. calibration Equipment used	in conducted in ID# 102083 100542 SN 7514 SN 1555 ID# MY49071430 MY46110673 Name Zhao Jing	Cal Date(Calibrated by, Certificate No.) 01-Nov-17 (CTTL, No.J17X08756) 01-Nov-17 (CTTL, No.J17X08756) 27-Aug-18(SPEAG,No.EX3-7514_Aug18) 20-Aug-18(SPEAG,No.DAE4-1555_Aug18) Cal Date(Calibrated by, Certificate No.) 23-Jan-18 (CTTL, No.J18X00560) 24-Jan-18 (CTTL, No.J18X00561) Function SAR Test Engineer	Scheduled Calibration Oct-18 Oct-18 Aug-19 Aug-19 Scheduled Calibration Jan-19 Jan-19

In Collaboration with
CALIBRATION LABORATORY
Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, ChinaTel: +86-10-62304633-2079Fax: +86-10-62304633-2504E-mail: cttl@chinattl.comhttp://www.chinattl.cn
Glossary:TSLtissue simulating liquidConvFsensitivity in TSL / NORMx,y,zN/Anot applicable or not measured
 Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to COMPUTE to 100000000000000000000000000000000000
 6GHz)", July 2016 c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz
Additional Documentation: e) DASY4/5 System Handbook
 Methods Applied and Interpretation of Parameters: Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
 Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required. SAR measured: SAR measured at the stated antenna input power. SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. SAR for normal TSL parameters: The measured TSL parameters are used to achieve the stated at the stated antenna input power of 1 W at the antenna connector.
SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.
The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor $k=2$, which for a normal distribution Corresponds to a coverage probability of approximately 95%.
Certificate No: Z18-60425 Page 2 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com http://www.chinattl.cn E-mail: cttl@chinattl.com

Measurement Conditions

not given on page 1.	
DASY52	52.10.2.1495
Advanced Extrapolation	
Triple Flat Phantom 5.1C	
15 mm	with Spacer
dx, dy, dz = 5 mm	
835 MHz ± 1 MHz	
	Advanced Extrapolation Triple Flat Phantom 5.1C 15 mm dx, dy, dz = 5 mm

g

Head TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	42.4 ± 6 %	0.89 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

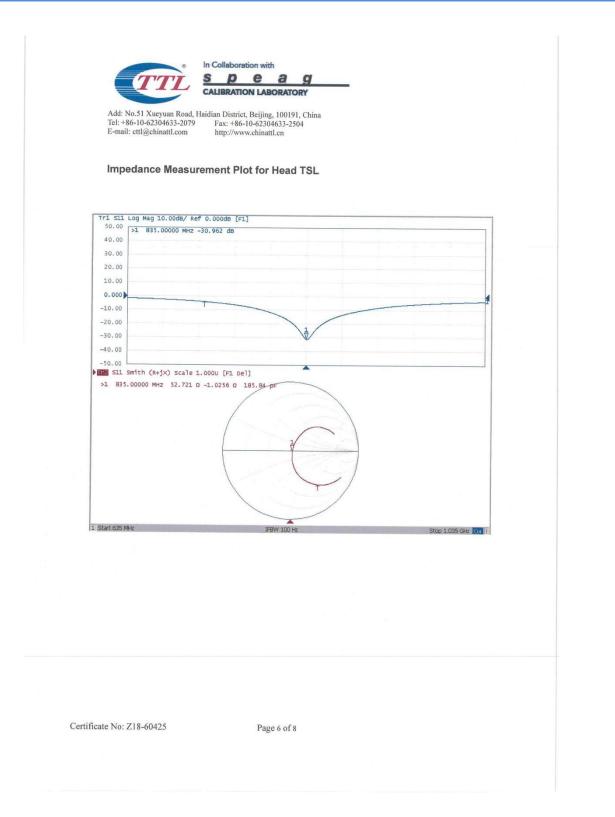
SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.38 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	9.63 mW /g ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.55 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	6.25 mW /g ± 18.7 % (k=2)

Body TSL parameters The following parameters and calculations were applied.

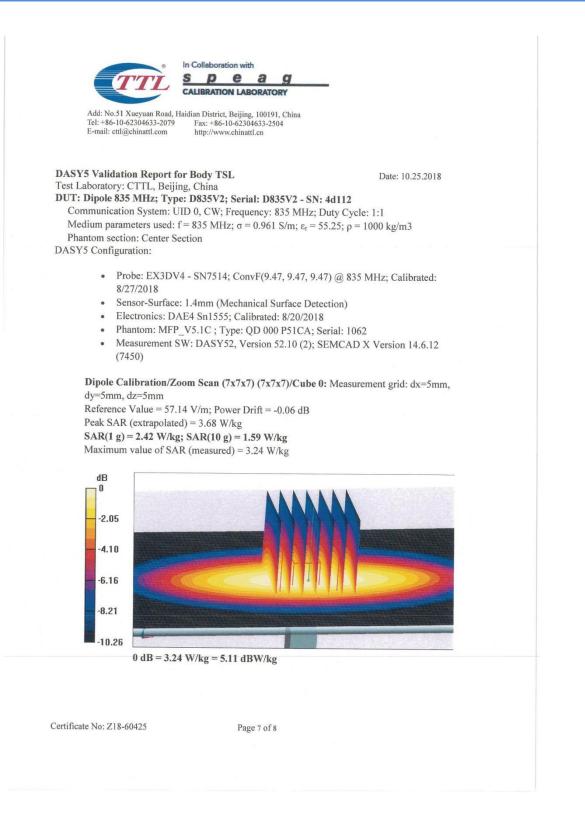
	Temperature	Permitt	ivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2		0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.3 ±	6 %	0.96 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C			
R result with Body TSL				
SAR averaged over 1 cm^3 (1 g) of Body TSL	Condi	tion		
SAR measured	250 mW ir	put power		2.42 mW / g
SAR for nominal Body TSL parameters	normalize	ed to 1W	9.75	mW /g ± 18.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Body T	SL Condi	tion		
SAR measured	250 mW in	put power		1.59 mW / g
SAR for nominal Body TSL parameters	normalize	d to 1W	6.40	mW /g ± 18.7 % (k=2)

Certificate No: Z18-60425

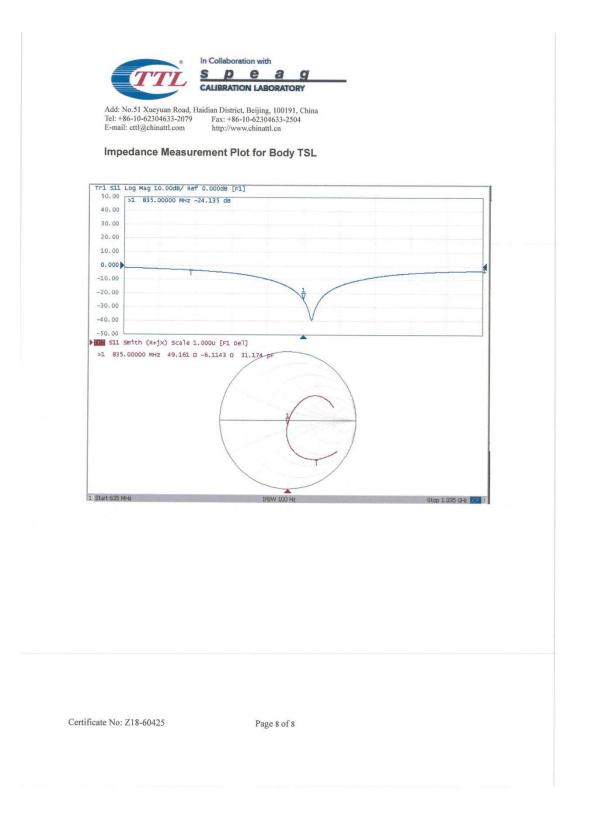
Page 3 of 8



	Tel: +86-10-62304633-2079 Fax: +86-10-623 E-mail: cttl@chinattl.com http://www.china	
A	opendix (Additional assessments ou	
	ntenna Parameters with Head TSL	
	Impedance, transformed to feed point	52.7Ω- 1.03jΩ
	Return Loss	- 31.0dB
An	tenna Parameters with Body TSL	
	Impedance, transformed to feed point	49.2Ω- 6.11jΩ
	Return Loss	- 24.1dB
Ge	eneral Antenna Parameters and Desi	an
		9.1
Afte De The con	measured. e dipole is made of standard semirigid coaxia nected to the second arm of the dipole. The he dipoles, small end caps are added to the	1.265 ns only a slight warming of the dipole near the feedpoint can al cable. The center conductor of the feeding line is directly antenna is therefore short-circuited for DC-signals. On some dipole arms in order to improve matching when loaded
Afte oe The con of the acc affe	er long term use with 100W radiated power, measured. e dipole is made of standard semirigid coaxia inected to the second arm of the dipole. The he dipoles, small end caps are added to the ording to the position as explained in the "M cited by this change. The overall dipole leng	1.265 ns only a slight warming of the dipole near the feedpoint can al cable. The center conductor of the feeding line is directly antenna is therefore short-circuited for DC-signals. On some dipole arms in order to improve matching when loaded easurement Conditions" paragraph. The SAR data are not th is still according to the Standard. e arms, because they might bend or the soldered
Afte be The con of the acc affe No con	er long term use with 100W radiated power, measured. e dipole is made of standard semirigid coaxia nected to the second arm of the dipole. The he dipoles, small end caps are added to the ording to the position as explained in the "M ected by this change. The overall dipole leng excessive force must be applied to the dipol	1.265 ns only a slight warming of the dipole near the feedpoint can al cable. The center conductor of the feeding line is directly antenna is therefore short-circuited for DC-signals. On some dipole arms in order to improve matching when loaded easurement Conditions" paragraph. The SAR data are not th is still according to the Standard. e arms, because they might bend or the soldered
Afte be The con of the acc affe No con	er long term use with 100W radiated power, measured. e dipole is made of standard semirigid coaxia unected to the second arm of the dipole. The he dipoles, small end caps are added to the ording to the position as explained in the "M ected by this change. The overall dipole leng excessive force must be applied to the dipol unections near the feedpoint may be damage	1.265 ns only a slight warming of the dipole near the feedpoint can al cable. The center conductor of the feeding line is directly antenna is therefore short-circuited for DC-signals. On some dipole arms in order to improve matching when loaded easurement Conditions" paragraph. The SAR data are not th is still according to the Standard. e arms, because they might bend or the soldered
Afte be The con of th acco affe No con	er long term use with 100W radiated power, measured. a dipole is made of standard semirigid coaxia inected to the second arm of the dipole. The he dipoles, small end caps are added to the iording to the position as explained in the "M citcle by this change. The overall dipole leng excessive force must be applied to the dipol inections near the feedpoint may be damage	1.265 ns only a slight warming of the dipole near the feedpoint can al cable. The center conductor of the feeding line is directly antenna is therefore short-circuited for DC-signals. On some dipole arms in order to improve matching when loaded easurement Conditions" paragraph. The SAR data are not th is still according to the Standard. e arms, because they might bend or the soldered id.



In Collaboration with p e a CALIBRATION LABORATORY Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn DASY5 Validation Report for Head TSL Date: 10.24.2018 Test Laboratory: CTTL, Beijing, China DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d112 Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; σ = 0.892 S/m; ϵ_r = 42.41; ρ = 1000 kg/m3 Phantom section: Right Section DASY5 Configuration: • Probe: EX3DV4 - SN7514; ConvF(9.09, 9.09, 9.09) @ 835 MHz; Calibrated: 8/27/2018 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1555; Calibrated: 8/20/2018 . . Phantom: MFP_V5.1C ; Type: QD 000 P51CA; Serial: 1062 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 • (7450)Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 58.97 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.59 W/kg SAR(1 g) = 2.38 W/kg; SAR(10 g) = 1.55 W/kg Maximum value of SAR (measured) = 3.19 W/kg dB 0 -2.14 -4.28 -6.43 -8.57 -10.71 0 dB = 3.19 W/kg = 5.04 dBW/kgCertificate No: Z18-60425 Page 5 of 8



ANNEX D. Accreditation Certification

Accredited Laboratory

A2LA has accredited

-

EAST CHINA INSTITUTE OF TELECOMMUNICATIONS

Shanghai, People's Republic of China

for technical competence in the field of Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Presented this 6th day of May 2019.

Vice President, Accreditation Services For the Accreditation Council Certificate Number 3682.01 Valid to February 28, 2021

For the tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.

***********End of the Report*********