

SAR TEST REPORT

Applicant	Mobiwire SAS
FCC ID	QPN-MOBIPHONE
Product	3G Feature Phone
Brand	Altice
Model	H30
Report No.	R1907A0371-S2V1
Issue Date	August 8, 2019

TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in IEEE 1528- 2013, ANSI C95.1: 1992/IEEE C95.1: 1991. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Yu Wang Guangchang Fan

Performed by: Yu Wang Approved by: Guangchang Fan

TA Technology (Shanghai) Co., Ltd.

No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China TEL: +86-021-50791141/2/3 FAX: +86-021-50791141/2/3-8000

Table of Contents

1	Tes	t Laborato	ory				
	1.1	Notes of	the Test Report	3			
	1.2	Test faci	ility	3			
	1.3	Testing I	Location				
	1.4	Laborato	bry Environment	4			
2	Stat	ement of	Compliance	5			
3	Des	cription o	of Equipment under Test	6			
4	Tes	t Specifica	ation, Methods and Procedures				
5	Ope	erational (Conditions during Test	9			
	5.1	Test Pos	sitions	9			
		5.1.1	Against Phantom Head	9			
		5.1.2	Body Worn Configuration	9			
	5.2	Measure	ement Variability	10			
	5.3	Test Cor	nfiguration	11			
		5.3.1	GSM Test Configuration	11			
6	SAF	R Measur	ements System Configuration				
	6.1	SAR Me	asurement Set-up	12			
	6.2	DASY5 I	E-field Probe System	13			
	6.3	SAR Me	asurement Procedure	14			
7	Mai	n Test Eq	uipment				
8	Tiss	ue Dieleo	ctric Parameter Measurements&System Verification	17			
	8.1	Tissue V	/erification	17			
	8.2	System I	Performance Check	19			
9	Nor	mal and N	Maximum Output Power	21			
	9.1	GSM Mo	ode	21			
1() Mea	asured an	nd Reported (Scaled) SAR Results				
	10.1	EUT Ant	tenna Locations				
	10.2	Measure	ed SAR Results	23			
11	l Mea	asuremen	It Uncertainty	25			
A	NNEX	A: Test La	ayout	26			
A	NNEX	B:The EL	JT Appearances and Test Configuration	28			
A	NNEX	C: Syster	m Check Results				
A	NNEX	D: Highes	st Graph Results				
A	NNEX	NEX E: Calibration Certificate					

1 Test Laboratory

1.1 Notes of the Test Report

This report shall not be reproduced in full or partial, without the written approval of **TA technology** (shanghai) co., Ltd. The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein .Measurement Uncertainties were not taken into account and are published for informational purposes only. This report is written to support regulatory compliance of the applicable standards stated above.

1.2 Test facility

FCC (Designation number: CN1179, Test Firm Registration Number: 446626)

TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

IC (recognition number is 8510A)

TA Technology (Shanghai) Co., Ltd. has been listed by industry Canada to perform electromagnetic emission measurement.

VCCI (recognition number is C-4595, T-2154, R-4113, G-10766)

TA Technology (Shanghai) Co., Ltd. has been listed by industry Japan to perform electromagnetic emission measurement.

A2LA(Certificate Number: 3857.01)

TA Technology (Shanghai) Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

1.3 Testing Location

Company:	TA Technology (Shanghai) Co., Ltd.
Address:	No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China
City:	Shanghai
Post code:	201201
Country:	P. R. China
Contact:	Xu Kai
Contact: Telephone:	Xu Kai +86-021-50791141/2/3
Contact: Telephone: Fax:	Xu Kai +86-021-50791141/2/3 +86-021-50791141/2/3-8000
Contact: Telephone: Fax: Website:	Xu Kai +86-021-50791141/2/3 +86-021-50791141/2/3-8000 http://www.ta-shanghai.com

1.4 Laboratory Environment

Temperature	Min. = 18°C, Max. = 25 °C			
Relative humidity	Min. = 30%, Max. = 70%			
Ground system resistance	< 0.5			
Ambient noise is checked and found very low and in compliance with requirement of standards.				
Reflection of surrounding objects is minimized and in compliance with requirement of standards.				

2 Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for the EUT are as follows: Table 1: Highest Reported SAR

	Highest Reported SAR (W/kg)				
Mode	1g SAR Head	1g SAR Body-worn (Separation 10mm)			
GSM 850	0.422	0.726			
GSM 1900	0.253	0.334			
Date of Testing:	August 7, 2019				

3 Description of Equipment under Test

Client Information

Applicant	Mobiwire SAS
Applicant address 79 avenue Francois Arago, 92000 NANTERRE France	
Manufacturer	Mobiwire SAS
Manufacturer address	79 avenue Francois Arago, 92000 NANTERRE France

General Technologies

Application Purpose:	Original Grant
EUT Stage:	Identical Prototype
Model:	H30
IMEI:	863336040000542
Hardware Version:	V01
Software Version:	NL185_H30_ODO_S_L_V01_20190628_MP
Antenna Type:	Internal Antenna
Device Class:	В
Power Class	GSM 850:4
	GSM 1900:1
Power Level	GSM 850:level 5
	GSM 1900:level 0
	EUT Accessory
	Manufacturer: Dongguan Aohai Aohai Power Power Technology Co.,
Adapter	Ltd
	Model: A31A-050055U-US1
	Manufacturer: Shenzhen Aerospace Electronic Co.,Ltd.
Battery	Model: 178100170
	Power Rating: DC 3.7V, 1000mAh, Li-ion
	Manufacturer: SAGETEL HK
Charging cradie	Model: H30

Wireless Technology and Frequency Range

Wireless Technology		Modulation	Operating mode	Tx (MHz)	
	950		□Multi-slot Class:8-1UP	004 040	
	850	Voice(GMSK)	□Multi-slot Class:10-2UP	824 ~ 849	
GSM	1900	GPRS(GMSK)	⊠Multi-slot Class:12-4UP	1050 . 1010	
		1900	□Multi-slot Class:33-4UP	1850 ~ 1910	
	Does this device support DTM (Dual Tr		ransfer Mode)? □Yes ⊠No		

4 Test Specification, Methods and Procedures

The tests documented in this report were performed in accordance with FCC 47 CFR § 2.1093, IEEE 1528- 2013, ANSI C95.1: 1992/IEEE C95.1: 1991, the following FCC Published RF exposure KDB procedures:

447498 D01 General RF Exposure Guidance v06 648474 D04 Handset SAR v01r03 690783 D01 SAR Listings on Grants v01r03 865664 D01 SAR measurement 100 MHz to 6 GHz v01r04 865664 D02 RF Exposure Reporting v01r02 941225 D01 3G SAR Procedures v03r01

5 Operational Conditions during Test

5.1 Test Positions

5.1.1 Against Phantom Head

Measurements were made in "cheek" and "tilt" positions on both the left hand and right hand sides of the phantom.

The positions used in the measurements were according to IEEE 1528 - 2013 "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate(SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques".

5.1.2 Body Worn Configuration

Body-worn operating configurations should be tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in normal use configurations.

Per FCC KDB Publication 648474 D04, Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB Publication 447498 D01 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented. Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

5.2 Measurement Variability

Per FCC KDB Publication 865664 D01, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media were required for SAR measurements in a frequency band, the variability measurement procedures were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. These additional measurements were repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR Measurement Variability was assessed using the following procedures for each frequency band:

1) When the original highest measured SAR is \geq 0.80 W/kg, the measurement was repeated once.

2) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was \ge 1.45 W/kg (~ 10% from the 1-g SAR limit).

3) A third repeated measurement was performed only if the original, first or second repeated measurement was \geq 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg

The same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds.

ECC SAR Test Report

5.3 Test Configuration

5.3.1 GSM Test Configuration

According to specification 3GPP TS 51.010, the maximum power of the GSM can do the power reduction for the multi-slot. The allowed power reduction in the multi-slot configuration is as following:

Output power of reductions:

								• • • • •	.	
Table	1.	The	allowed	nower	reduction	n in	the	multi-slot	configuration	1
IUNIC	••	1110	anonca	pono :	100000				ooninguruuon	•

Number of timeslots in uplink assignment	Permissible nominal reduction of maximum output power,(dB)
1	0
2	0 to 3,0
3	1,8 to 4,8
4	3,0 to 6,0

6 SAR Measurements System Configuration

6.1 SAR Measurement Set-up

The DASY system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- > An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- > The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP or Win7 and the DASY software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- > The phantom, the device holder and other accessories according to the targeted measurement.

6.2 DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe ES3DV3 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

ES3DV3 Probe Specification

Construction	Symmetrical design with triangular coreInterleaved sensors	
	Built-in shielding against static	
	charges PEEK enclosure material	
	(resistant to organic solvents, e.g.	
	DGBE)	
Calibration	ISO/IEC 17025 calibration service	
	available	
Frequency	10 MHz to 4 GHz	
	Linearity: ± 0.2 dB	3
	(30 MHz to 4 GHz)	
Directivity	± 0.2 dB in HSL (rotation around	
	probe axis) ± 0.3 dB in tissue	
	material (rotation normal to probe	
	axis)	
Dynamic	5 μW/g to > 100 mW/g Linearity:	
Range	\pm 0.2dB	
Dimensions	Overall length: 330 mm (Tip: 20	20
	mm) Tipdiameter: 3.9 mm (Body:	-
	12 mm) Distance from probe tip to	
	dipole centers: 2.0 mm	
Application	General dosimetry up to 4 GHz	
	Dosimetry in strong gradient fields	
	Compliance tests of mobile phones	
	- · · ·	

E-field Probe Calibration

Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy was evaluated and found to be better than \pm 0.25dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1 GHz, and in a wave guide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based

temperature probe is used in conjunction with the E-field probe.

SAR=C∆T/∆t

Where: $\Delta t = Exposure time (30 seconds),$

C = Heat capacity of tissue (brain or muscle),

 ΔT = Temperature increase due to RF exposure.

Or

SAR=IEl²σ/ρ

Where: σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m³).

6.3 SAR Measurement Procedure

Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Area Scan

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly. Area scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz.

	≤3 GHz	> 3 GHz	
Maximum distance from closest			
measurement point (geometric center of	5 ± 1 mm	½·δ·ln(2) ± 0.5 mm	
probe sensors) to phantom surface			
Maximum probe angle from probe axis to			
phantom surface normal at the	30° ± 1°	20° ± 1°	
measurement location			
	≤ 2 GHz: ≤ 15 mm	3 – 4 GHz: ≤ 12 mm	
	2 – 3 GHz: ≤ 12 mm	4 – 6 GHz: ≤ 10 mm	
	When the x or y dimen	sion of the test device, in	
Maximum area scan spatial resolution:	the measurement plar	ne orientation, is smaller	
ΔxArea, ΔyArea	than the above, the n	neasurement resolution	
	must be ≤ the correspo	nding x or y dimension of	
	the test device with at	least one measurement	
	point on the test device.		

TA Technology (Shanghai) Co., Ltd.TA-MB-05-003SPage 14 of 34

This report shall not be reproduced except in full, without the written approval of TA Technology (Shanghai) Co., Ltd.

Zoom Scan

Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10 gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label.

Zoom scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz.

			≤3GHz	> 3 GHz		
Maximum Taam		tial recolution () v	≤2GHz: ≤8mm	3 – 4GHz: ≤5mm*		
waximum 200m	i scan spa		2 – 3GHz: ≤5mm*	4 – 6GHz: ≤4mm*		
				3 – 4GHz: ≤4mm		
Maximum	Maximum	niform grid: $ riangle z_{zoom}(n)$	≤5mm	4 – 5GHz: ≤3mm		
zoom scan				5 – 6GHz: ≤2mm		
spatial		$\triangle z_{zoom}(1)$: between 1 st two		3 – 4GHz: ≤3mm		
resolution,	Out dad	points closest to phantom	≤4mm	4 – 5GHz: ≤2.5mm		
normal to	Graded	surface	5 – 6GHz: ≤2mm			
phantom	gria	$\triangle z_{zoom}(n \ge 1)$: between	$c_1 = c_2 = c_2 = c_2$			
Sunace		subsequent points	$\leq 1.3 \cdot 2z_{zoom}(1-1)$			
Minimum				3 – 4GHz: ≥28mm		
zoom scan		X, y, z	≥30mm	4 – 5GHz: ≥25mm		
volume				5 – 6GHz: ≥22mm		
Note: δ is the pe	enetration	depth of a plane-wave at nor	mal incidence to the	e tissue medium; see		
draft standard IE	EEE P152	8-2011 for details.				

* When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is \leq 1.4W/kg, \leq 8mm, \leq 7mm and \leq 5mm zoom scan resolution may be applied, respectively, for 2GHz to 3GHz, 3GHz to 4GHz and 4GHz to 6GHz.

Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drifts more than 5%, the SAR will be retested.

7 Main Test Equipment

Equipment	Manufacturer	Model	SN	Cal. Data	Cal. interval
System Validation Dipole	SPEAG	D835V2	4d005	May. 18, 2018	3 Year
System Validation Dipole	SPEAG	D1900V2	509	May. 18, 2018	3 Year
Dosimetric E-Field Probe	SPEAG	ES3DV3	3090	Apr. 12, 2019	1 Year
Data Acquisition Electronics	SPEAG	DAE4	662	Apr. 11, 2019	1 Year
Radio Communication Analyzer	Anritsu	MT8820C	6200918396	Dec. 12, 2018	1 Year
ENA Series Network Analyzer	Agilent	8753ES	US39170317	Dec. 12, 2018	1 Year
Dielectric Assessment Kit	SPEAG	DAK-3.5	1056	N/A	N/A
USB/GPIB Interface	Agilent	82357B	N10149	N/A	N/A
Signal Generator	R&S	SMT06	100796	May. 14, 2019	1 Year
Signal Generator	R&S	SMB100A	103718	Dec. 12, 2018	1 Year
POWER METER	R&S	NRP	101293	Dec. 18, 2018	1 Year
Thermometer	Shanghai Gao Zhi Precision Instrument Co., Ltd.	HB6801	120100323	May. 16, 2019	1 Year
oupler	REBES	TC-05180-10S	161221001	N/A	N/A
Amplifier	Mini-Circuit	ZHL42	QA1252001	N/A	N/A
DC Source	Agilent	66319B	MY43000795	N/A	N/A

8 Tissue Dielectric Parameter Measurements&System Verification

8.1 Tissue Verification

The temperature of the tissue-equivalent medium used during measurement must also be within 18°C to 25°C and within \pm 2°C of the temperature when the tissue parameters are characterized. The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements. The parameters should be re-measured after each 3 – 4 days of use; or earlier if the dielectric parameters can become out of tolerance.

Frequ (MF	ency Iz)	Water (%)	Salt (%)	Sugar (%)	Glycol (%)	Preventol (%)	Cellulose (%)	٤r	σ(s/m)
Head	835	41.45	1.45	56	0	0.1	1.0	41.5	0.90
	1900	55.242	0.306	0	44.452	0	0	40.0	1.40
Pedu	835	52.5	1.4	45	0	0.1	1.0	55.2	0.97
Body	1900	69.91	0.13	0	29.96	0	0	53.3	1.52

Target values

Measurements results

Frequency (MHz)		Test Data	Temp	Measured Paran	Dielectric neters	Target D Paran	electric neters	Limit (Within ±5%)	
		Test Date	Ĉ	σ(s/m)	٤r	σ(s/m)	٤r	Dev σ(%)	Dev ε _r (%)
835	Head	8/7/2019	22.1	0.93	43.00	0.90	41.50	3.44	3.61
	Body	8/7/2019	22.1	0.99	55.30	0.97	55.20	2.16	0.18
1900	Head	8/7/2019	22.1	1.44	41.00	1.40	40.00	2.86	2.50
	Body	8/7/2019	22.1	1.55	52.40	1.52	53.30	1.97	-1.69
Note: Th	e depth of	tissue-equival	ent liquio	d in a phanto	om must be	≥ 15.0 cm	for SAR m	neasurer	nents ≤
3 GHz a	nd ≥ 10.0 c	m for measur	ements >	> 3 GHz.					

8.2 System Performance Check

The manufacturer calibrates the probes annually. Dielectric parameters of the tissue simulates were measured using the dielectric probe kit and the network analyzer. A system check measurement for every day was made following the determination of the dielectric parameters of the Tissue simulates, using the dipole validation kit. The dipole antenna was placed under the flat section of the twin SAM phantom.

System check is performed regularly on all frequency bands where tests are performed with the DASY system.

Picture 1System Performance Check setup

Picture 2 Setup Photo

Justification for Extended SAR Dipole Calibrations

Usage of SAR dipoles calibrated less than 3 years ago but more than 1 year ago were confirmed in maintaining return loss (< - 20 dB, within 20% of prior calibration) and impedance (within 5 ohm from prior calibration) requirements per extended calibrations in KDB 865664 D01:

Dipole		Date of Measurement	Return Loss(dB)	Δ%	Impedance (Ω)	ΔΩ
Dipole D835V2 SN: 4d005	Head	5/18/2018	-34.1	/	49.5	/
	Liquid	5/15/2019	-32.0	6.2	48.6	0.9
	Body	5/18/2018	22.1	/	46.6	/
	Liquid	5/15/2019	-21.4	3.16	44.1	2.5
_	Head	5/18/2018	-23.4	/	52.0	/
	Liquid	5/15/2019	-22.7	3.00	54.4	2.4
SN: 509	Body	5/18/2018	-21.4	/	52.7	/
	Liquid	5/15/2019	-20.6	3.7	50.6	2.1

System Check results

Frequ (M	Frequency (MHz) Test Date T		Temp ℃	10mW Measured SAR _{1g} (W/ kg)	1W Normalized SAR _{1g} (W/kg)	1W Target SAR _{1g} (W/kg)	Δ % (Limit ±10%)	Plot No.
025	Head	8/7/2019	22.1	0.091	9.1	9.45	-3.70	P1
000	Body	8/7/2019	22.1	0.095	9.50	9.74	-2.46	P3
1000	Head	8/7/2019	22.1	0.387	38.7	39.6	-2.27	P2
1900	Body	8/7/2019	22.1	0.405	40.50	39.5	2.47	P4
Note:	Target \	/alues used de	erive from	the calibratio	on certificate Da	ata Storage	and Evalua	ation.

9 Normal and Maximum Output Power

KDB 447498 D01 at the maximum rated output power and within the tune-up tolerance range specified for the product, but not more than 2 dB lower than the maximum tune-up tolerance limit.

9.1 GSM Mode

		Burst-Ave	eraged ou	utput pow	/er(dBm)		Frame-Averaged output power(dBm)				
GSM	1 850	Tune-up	Channe	l/Frenqu	cy(MHz)	Division	Tune-up	Channel/Frenqucy(MHz)			
031			128	190	251	Factors		128	190	251	
		IVIAA	/824.2	/836.6	/848.8			/824.2	/836.6	/848.8	
GSM	CS	33.00	32.12	32.18	32.13	9	24.00	23.12	23.18	23.13	
	1 Tx Slot	33.00	32.04	32.12	32.05	9	24.00	23.04	23.12	23.05	
GPRS	2 Tx Slots	32.00	31.14	31.21	31.17	6	26.00	25.14	25.21	25.17	
(GMSK)	3 Tx Slots	30.00	29.45	29.49	29.43	4.26	25.74	25.19	25.23	25.17	
	4 Tx Slots	29.50	28.71	28.77	28.68	3	26.50	25.71	25.77	25.68	
		Burst-Ave	eraged ou	utput pow	/er(dBm)		Frame-A	Frame-Averaged output power(dBm)			
GSM	1 1000	Tune-up	Channe	l/Frenqu	cy(MHz)	Division	Tune-up	Channel/Frenqucy(MHz)			
GSIM	11900		512	661	810	Factors		512	661	810	
		IVIAA	/1850.2	/1880	/1909.8		IVIAA	/1850.2	/1880	/1909.8	
GSM	CS	30.50	29.77	29.86	29.87	9	21.50	20.77	20.86	20.87	
	1 Tx Slot	30.50	29.71	29.78	29.84	9	21.50	20.71	20.78	20.84	
GPRS	2 Tx Slots	29.50	28.75	28.85	28.89	6	23.50	22.75	22.85	22.89	
(GMSK)	3 Tx Slots	27.50	26.84	26.93	26.98	4.26	23.24	22.58	22.67	22.72	
	4 Tx Slots	26.50	25.91	25.99	26.01	3	23.50	22.91	22.99	23.01	
Notes:The	e worst-case	e configura	ation and	mode fo	r SAR tes	sting is de	etermined t	o be as fo	ollows:		

1. Standalone: GSM 850 GMSK (GPRS) mode with 4 time slots for Max power, GSM 1900 GMSK (GPRS) mode with 4 time slots for Max power,based on the output power measurements above.

10 Measured and Reported (Scaled) SAR Results

10.1 EUT Antenna Locations

Overall (Length x Width): 130 mm x 50 mm Overall Diagonal: 134mm/Display Diagonal: 46 mm

Note: 1. Per FCC KDB 447498 D01,

for each exposure position, testing of other requised channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:

a) ≤0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100MHz

b) ≤0.6 W/kg or 1.5 W/kg, for1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz.

c) \leq 0.4 W/kg or 1.0 Wkg, for 1-g or 10-g respectively, when the transmission band is \geq 200 MHz. 2.When the original highest measured SAR is \geq 0.80 W/kg, the measurement was repeated once.

10.2 Measured SAR Results

Table 1: GSM 850

		Channol				Measured	Limit of SAR 1.6 W/kg (mW/g)				
Test Position	Cover Type/Frequency (MHz)Time slotDuty 	power (dBm)	Power Drift (dB)	Measured SAR1g	Scaling Factor	Report SAR1g	Plot No.				
Head SAR											
Left Cheek	standard	190/836.6	GSM	1:8.3	33.00	32.18	-0.050	0.349	1.21	0.422	P1
Left Tilt	standard	190/836.6	GSM	1:8.3	33.00	32.18	-0.130	0.168	1.21	0.203	/
Right Cheek	standard	190/836.6	GSM	1:8.3	33.00	32.18	-0.070	0.337	1.21	0.407	/
Right Tilt	standard	190/836.6	GSM	1:8.3	33.00	32.18	-0.030	0.163	1.21	0.197	/
	_		_	Body-w	vorn SAR (Distance 10	m)				
Back Side	standard	190/836.6	GSM	1:8.3	33.00	32.18	-0.190	0.601	1.21	0.726	P3
Front Side	standard	190/836.6	GSM	1:8.3	33.00	32.18	-0.130	0.392	1.21	0.473	/
Note: 1.The va	alue with blu	ue color is the	maximur	n SAR Va	alue of eac	h test band.					
2.When multip	le slots are	used, SAR sh	nould be t	tested to	account fo	r the maximu	Im source-ba	ased time-ave	eraged outp	out power.	

		Channol				Measured	Lim	it of SAR 1.6	W/kg (mV	V/g)	
Test Position	Cover Type	/Frequency (MHz)	Time slot	Duty Cycle	Tune-up (dBm)	power (dBm)	Power Drift (dB)	Measured SAR1g	Scaling Factor	Report SAR1g	Plot No.
Head SAR											
Left Cheek	standard	810/1909.8	GSM	1:8.3	30.50	29.87	0.170	0.219	1.16	0.253	P2
Left Tilt	standard	810/1909.8	GSM	1:8.3	30.50	29.87	-0.030	0.079	1.16	0.091	/
Right Cheek	standard	810/1909.8	GSM	1:8.3	30.50	29.87	0.000	0.170	1.16	0.197	/
Right Tilt	standard	810/1909.8	GSM	1:8.3	30.50	29.87	-0.180	0.104	1.16	0.120	/
				Body-w	vorn SAR (Distance 10	m)				
Back Side	standard	810/1909.8	GSM	1:8.3	30.50	29.87	-0.130	0.289	1.16	0.334	P4
Front Side	standard	810/1909.8	GSM	1:8.3	30.50	29.87	-0.170	0.167	1.16	0.193	/
Note: 1.The va	alue with blu	ue color is the	maximur	n SAR Va	alue of eac	h test band.					
2.When multip	ole slots are	used, SAR sh	nould be t	tested to	account fo	r the maximu	im source-ba	ased time-ave	eraged out	out power.	

11 Measurement Uncertainty

Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528- 2013 is not required in SAR reports submitted for equipment approval.

ANNEX A: Test Layout

ECC SAR Test Report

Tissue Simulating Liquids

For the measurement of the field distribution inside the flat phantom with DASY, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For Head and Body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm, which is shown in Picture 3 and Picture 4.

Picture 3: liquid depth in the head Phantom

Picture 4: Liquid depth in the flat Phantom

ANNEX B: The EUT Appearances and Test Configuration

Front Side

Back Side a: EUT

Picture 5: Constituents of EUT

Picture 6:Left Hand Touch Cheek Position

Picture 7: Left Hand Tilt 15 Degree Position

Picture 8: Right Hand Touch Cheek Position

Picture 9: Right Hand Tilt 15 Degree Position

Picture 10: Back Side, the distance from handset to the bottom of the Phantom is 10mm

Picture 11: Front Side, the distance from handset to the bottom of the Phantom is 10mm

ANNEX C: System Check Results

ANNEX D: Highest Graph Results

ANNEX E: Calibration Certificate