

EMC TEST REPORT

Applicant	Mobiwire SAS
FCC ID	QPN-MOBIPHONE
Product	3G Feature Phone
Brand	Altice
Model	H30
Report No.	R1907A0371-E2
Issue Date	August 5, 2019

TA Technology (Shanghai) Co., Ltd.tested the above equipment in accordance with the requirements in **FCC Code CFR47 Part15B (2018)/ ANSI C63.4 (2014)**. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Wei Lin

Performed by: Wei Liu/ Manager

Guangchang Fan

Approved by: Guangchang Fan/ Director

TA Technology (Shanghai) Co., Ltd.

No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China TEL:+86-021-50791141/2/3 FAX:+86-021-50791141/2/3-8000

Table of Contents

Number	Test Case	Clause in FCC Rules	Conclusion				
1	Radiated Emission	15.109, ANSI C63.4-2014	PASS				
2	Conducted Emission	15.107, ANSI C63.4-2014	PASS				
Test Date: July 18, 2019							

Summary of measurement results

1 Test Laboratory

1.1 Notes of the Test Report

This report shall not be reproduced in full or partial, without the written approval of **TA technology** (shanghai) co., Ltd. The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein .Measurement Uncertainties were not taken into account and are published for informational purposes only. This report is written to support regulatory compliance of the applicable standards stated above.

1.2 Test facility

CNAS (accreditation number:L2264)

TA Technology (Shanghai) Co., Ltd. has obtained the accreditation of China National Accreditation Service for Conformity Assessment (CNAS).

FCC (Designation number: CN1179, Test Firm Registration Number: 446626)

TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

IC (recognition number is 8510A)

TA Technology (Shanghai) Co., Ltd. has been listed by industry Canada to perform electromagnetic emission measurement.

VCCI (recognition number isC-4595, T-2154, R-4113, G-10766)

TA Technology (Shanghai) Co., Ltd. has been listed by industry Japan to perform electromagnetic emission measurement.

A2LA (Certificate Number: 3857.01)

TA Technology (Shanghai) Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

1.3 Testing Location

Company:	TA Technology (Shanghai) Co., Ltd.
Address:	No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China
City:	Shanghai
Post code:	201201
Country:	P. R. China
Contact:	Xu Kai
Telephone:	+86-021-50791141/2/3
Fax:	+86-021-50791141/2/3-8000
Website:	http://www.ta-shanghai.com
E-mail:	xukai@ta-shanghai.com

2 General Description of Equipment under Test

2.1 Client Information

Applicant	Mobiwire SAS
Applicant address	79 avenue Francois Arago, 92000 NANTERRE France
Manufacturer	Mobiwire SAS
Manufacturer address	79 avenue Francois Arago, 92000 NANTERRE France

2.2 General information

EUT Description						
Device Type:	Portable Device					
Model:	H30					
IMEI:	863336040007480					
HW Version:	V01					
SW Version:	NL185_H30_ODO_S_	L_V01_20190628_MP				
Antenna Type:	Internal Antenna					
	Band	Tx (MHz)	Rx (MHz)			
Frequency:	GSM850	824 ~ 849	869 ~ 894			
	GSM 1900	1850 ~ 1910	1930 ~ 1990			
	GSM: GMSK					
Modulation:	GPRS: GMSK					
	EGPRS: GMSK/8PSK					
	EUT	Accessory				
Adapter	Manufacturer: Donggu	an Aohai Aohai Power Powe	er Technology Co., Ltd			
	Model: A31A-050055U	-US1				
	Manufacturer: Shenzhen Aerospace Electronic Co.,Ltd.					
Battery	Model: 178100170					
	Power Rating: DC 3.7V, 1000mAh, Li-ion					
Charging cradle	Manufacturer: SAGET	EL HK				
	Model: H30					
Note: Theinformation of	of the EUT is declared by	y the manufacturer.				

2.3 Applied Standards

According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

Test standards FCC Code CFR47 Part15B(2018) ANSI C63.4 (2014)

2.4 Test Mode

Test Mode	
Mode 1:	Adapter +charging cradle+ldle
Mode 2:	Adapter +charging cradle+ Traffic

During the test, the preliminary test was performed in all modeswith all frequency bands (GSM), mode 1(Adapter +charging cradle+ldle) selected as the worst condition. The test data of the worst-case condition was recorded in this report.

3 Test Case Results

3.1 Radiated Emission

Ambient condition

Temperature	Relative humidity	Pressure
24°C~26°C	45%~50%	102.5kPa

Methods of Measurement

The EUT is placed on a non-metallic table 0.8m above the horizontal metal reference ground plane. The distance between EUT and receive antenna should be 3 meters.During the test, the EUT was operating in its typical mode. The test method is according to ANSI C63.4-2014.Sweep the whole frequency band through the range from30MHz to the 5th harmonic of the carrier.During the test, the height of receive antenna shall be moved from 1 to4meters, and the antenna shall be performed under horizontal and vertical polarization. The turn table shall be rotated from 0 to 360 degrees fordetecting the maximum of radiated signal level.

The data of cable loss and antenna factor has been calibrated in full testing frequency range before the testing.During the test, the EUT is worked at maximum output power.

Set the spectrum analyzer in the following:

Below 1GHz:

RBW=100 kHz / VBW=300 kHz / Sweep=AUTO

Above 1GHz:

- (a) PEAK: RBW=1MHz / VBW=3MHz/ Sweep=AUTO
- (b) AVERAGE: RBW=1MHz / VBW=3MHz / Sweep=AUTO

The radiated emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis). The worst emission was found in stand-up position (Z axis) and the worst case was recorded.

Test Setup

Below 1GHz

Above 1GHz

Note: Area side:2.4mX3.6m

Antenna Tower meets ANSI C63.4 requirements for measurements above 1 GHz by keeping the antenna aimed at the EUT during the antenna's ascent/ descent along the antenna mast.

Limits

Frequency (MHz)	Field Strength (dBµV/m)	Detector
30 -88	40.0	Quasi-peak
88-216	43.5	Quasi-peak
216 – 960	46.0	Quasi-peak
960-1000	54.0	Quasi-peak
1000-5 th harmonic of the highest	54	Average
frequency or 40GHz, which is lower	74	Peak

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96. U=3.704 dB.

Test Results

The following graphs display the maximum values of horizontal and vertical by software. For above 1GHz, Blue trace uses the peak detection, Green trace uses the average detection. **Variant**

Frequency (MHz)	Quasi-Peak (dBuV/m)	Height (cm)	Polarizat ion	Azimuth (deg)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
30.000000	30.5	125.0	V	346.0	14.2	9.5	40.0
56.837500	11.5	175.0	V	247.0	13.9	28.5	40.0
100.775000	9.9	125.0	V	0.0	13.4	33.6	43.5
158.721250	11.9	100.0	V	304.0	10.0	31.6	43.5
185.327500	10.4	100.0	V	0.0	11.3	33.1	43.5
531.495000	18.9	189.0	V	125.0	21.7	27.1	46.0

Radiated Emission from 30MHz to 1GHz

Remark: 1. Quasi-Peak = Reading value + Correction factor

2. Correction Factor = Antenna factor+ Insertion loss(cable loss+amplifier gain)

3. Margin = Limit –Quasi-Peak

Radiated Emission from 1GHz to 18GHz

Frequency (MHz)	Peak (dBuV/m)	Height (cm)	Polarizat ion	Azimuth (deg)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
1032.718750	35.2	200.0	V	97.0	-11.7	38.8	74.0
1813.698750	36.7	200.0	V	250.0	-9.3	37.3	74.0
2491.101250	40.3	100.0	V	175.0	-6.4	33.7	74.0
4203.068750	42.3	200.0	Н	149.0	-2.2	31.7	74.0
6566.681250	49.1	200.0	V	0.0	5.0	24.9	74.0
10779.407500	54.9	100.0	Н	5.0	13.4	19.1	74.0

Frequency (MHz)	Average (dBuV/m)	Height (cm)	Polarizat ion	Azimuth (deg)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
1165.480000	23.8	200.0	Н	252.0	-11.3	30.2	54.0
1600.108750	24.6	100.0	V	346.0	-10.0	29.4	54.0
2588.605000	28.2	200.0	Н	318.0	-6.2	25.8	54.0
4225.577500	31.5	100.0	V	298.0	-2.1	22.5	54.0
6598.903750	37.8	100.0	V	0.0	5.0	16.2	54.0
10764.675000	43.7	100.0	Н	1.0	13.4	10.3	54.0

3.2 Conducted Emission

Ambient condition

Temperature	Relative humidity	Pressure		
24°C ~26°C	50%~55%	102.5kPa		

Methods of Measurement

The EUT is placed on a non-metallic table of 80cm height above the horizontal metal reference ground plane. During the test, the EUT was operating in its typical mode. The test method is according to ANSI C63.4-2014. Connect the AC power line of the EUT to the L.I.S.N. Use EMI receiver to detect the average and Quasi-peak value. RBW is set to 9 kHz, VBW is set to 30kHz. The measurement result should include both L line and N line.

Test Setup

Note: Power Supply is AC Power source and it is used to change the voltage 120V/60Hz.

Limits

Frequency	Conducted Limits(dBµV)					
(MHz)	Quasi-peak	Average				
0.15 - 0.5	66 to 56 [*]	56 to 46 [*]				
0.5 - 5	56	46				
5 - 30 60 50						
* Decreases with the logarithm of the frequency.						

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96. U= 2.57 dB.

Test Results

Following plots, Blue trace uses the peak detection; Green trace uses the average detection.

Frequency (MHz)	QuasiPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.16	53.78		65.40	11.62	1000.0	9.000	L1	ON	19.13
0.17		38.29	54.84	16.55	1000.0	9.000	L1	ON	19.15
0.37	37.94		58.44	20.50	1000.0	9.000	L1	ON	19.21
0.38	· · · · · · · · · · · · · · · · · · ·	24.43	48.19	23.76	1000.0	9.000	L1	ON	19.23
2.09	30.70		56.00	25.30	1000.0	9.000	L1	ON	19.09
2.12		25.03	46.00	20.97	1000.0	9.000	L1	ON	19.08
3.57	36.39		56.00	19.61	1000.0	9.000	L1	ON	19.07
3.70		29.98	46.00	16.02	1000.0	9.000	L1	ON	19.07
5.16	8	27.06	50.00	22.94	1000.0	9.000	L1	ON	19.09
5.36	32.80		60.00	27.20	1000.0	9.000	L1	ON	19.10
28.73	29.52		60.00	30.48	1000.0	9.000	L1	ON	19.83
29.31		21.22	50.00	28.78	1000.0	9.000	L1	ON	19.84

L line Conducted Emission from 150 KHz to 30 MHz

Frequency (MHz)	QuasiPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.16	50.73		65.40	14.67	1000.0	9.000	N	ON	19.15
0.17		35.33	54.73	19.40	1000.0	9.000	N	ON	19.16
0.37	33.82		58.54	24.72	1000.0	9.000	N	ON	19.20
0.50		24.08	46.00	21.92	1000.0	9.000	N	ON	19.23
2.06	35.20		56.00	20.80	1000.0	9.000	N	ON	19.11
2.07		25.18	46.00	20.82	1000.0	9.000	N	ON	19.10
3.58	40.50		56.00	15.50	1000.0	9.000	N	ON	19.07
4.06		31.84	46.00	14.16	1000.0	9.000	N	ON	19.06
5.18		26.53	50.00	23.47	1000.0	9.000	N	ON	19.09
5.27	37.83		60.00	22.17	1000.0	9.000	N	ON	19.09
28.73	24.94		60.00	35.06	1000.0	9.000	N	ON	19.69
29.94		19.97	50.00	30.03	1000.0	9.000	N	ON	19.68

N line Conducted Emission from 150 KHz to 30 MHz

Nama	Manufacturor	Turno	Serial	Calibration	Expiration	
Name	Manufacturer	Type	Number	Date	Time	
Spectrum	DIC	FSV40	15195-01-	2010 05 10	2020-05-18	
Analyzer	κασ		00	2019-05-19		
EMI Test	Dic	ESCI	100040	2010 05 10	2020-05-18	
Receiver	Ras	ESCI	100940	2019-05-19		
Trilog Antenna	SCHWARZBECK	VULB 9163	9163-201	2017-11-18	2019-11-17	
Horn Antenna	R&S	HF907	100126	2018-07-07	2020-07-06	
Standard Gain	ETS Lindaron	2160.00	00102642	2019 06 20	2020 06 10	
Horn	ETS-Lindgren	3100-09	00102043	2018-00-20	2020-00-19	
Bore Sight	сте	0171D	00050750	1	1	
Antenna mast		21/10	00030732		/	
Test software	EMC32	R&S	9.26.0	/	/	

ANNEX A: The EUT Appearance and Test Configuration

A.1 EUT Appearance

Front Side

Back Side a: EUT

b: Adapter

c: Charging cradle

d: Battery
Picture 1EUT

A.2 Test Setup

a: Below 1GHz

b: Above 1GHz Picture 2Radiated Emission Test Setup

Picture 3 Conducted Emission Test Setup