

SAR TEST REPORT

Applicant Mobiwire SAS

FCC ID QPN-MOBIPHONE

Product 3G Feature Phone

Brand Altice

Model H30

Report No. RXA1710-0348SAR

Issue Date December 18, 2017

TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in **IEEE 1528- 2013, ANSI/ IEEE C95.1-1992.** The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Performed by: Jiangpeng Lan

Approved by: Kai Xu

TA Technology (Shanghai) Co., Ltd.

No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China TEL: +86-021-50791141/2/3

FAX: +86-021-50791141/2/3-8000

Table of Contents

1	T	Test Laboratory	3
	1.1	Notes of the Test Report	3
	1.2	Past facility	3
	1.3	3 Testing Location	4
	1.4	Laboratory Environment	4
2	S	Statement of Compliance	5
3		Description of Equipment under Test	6
4	Т	Test Specification, Methods and Procedures	8
5	C	Operational Conditions during Test	g
	5.1	Test Positions	9
		5.1.1 Against Phantom Head ······	g
		5.1.2 Body Worn Configuration	<u>g</u>
	5.2	2 Measurement Variability	10
	5.3		
		5.3.1 GSM Test Configuration	10
6	S	SAR Measurements System Configuration	11
	6.1	SAR Measurement Set-up	11
	6.2	2 DASY5 E-field Probe System	12
	6.3	SAR Measurement Procedure	13
7	Ν	Main Test Equipment	15
8	Т	Fissue Dielectric Parameter Measurements & System Verification	16
	8.1	Tissue Verification	16
	8.2	System Performance Check	17
9	Ν	Normal and Maximum Output Power	19
	9.1	GSM Mode	19
10) N	Measured and Reported (Scaled) SAR Results	20
	10.	.1 EUT Antenna Locations	20
	10.	2 Measured SAR Results	21
11	l N	Measurement Uncertainty	23
Α	NNE	EX A: Test Layout	24
Α	NNE	EX B: System Check Results	27
Α	NNE	EX C: Highest Graph Results	31
Α	NNE	EX D: Probe Calibration Certificate	35
Α	NNE	EX E: D835V2 Dipole Calibration Certificate	46
Α	NNE	EX F: D1900V2 Dipole Calibration Certificate	54
Α	NNE	EX G: DAE4 Calibration Certificate	62
Α	NNE	EX H: The EUT Appearances and Test Configuration	65

1 Test Laboratory

1.1 Notes of the Test Report

This report shall not be reproduced in full or partial, without the written approval of **TA technology** (shanghai) co., Ltd. The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein . Measurement Uncertainties were not taken into account and are published for informational purposes only. This report is written to support regulatory compliance of the applicable standards stated above.

1.2 Test facility

CNAS (accreditation number:L2264)

TA Technology (Shanghai) Co., Ltd. has obtained the accreditation of China National Accreditation Service for Conformity Assessment (CNAS).

FCC (Designation number: CN1179, Test Firm Registration Number: 446626)

TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

IC (recognition number is 8510A)

TA Technology (Shanghai) Co., Ltd. has been listed by industry Canada to perform electromagnetic emission measurement.

VCCI (recognition number is C-4595, T-2154, R-4113, G-10766)

TA Technology (Shanghai) Co., Ltd. has been listed by industry Japan to perform electromagnetic emission measurement.

A2LA (Certificate Number: 3857.01)

TA Technology (Shanghai) Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

1.3 Testing Location

Company: TA Technology (Shanghai) Co., Ltd.

Address: No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China

City: Shanghai

Post code: 201201

Country: P. R. China

Contact: Xu Kai

Telephone: +86-021-50791141/2/3

Fax: +86-021-50791141/2/3-8000

Website: http://www.ta-shanghai.com

E-mail: xukai@ta-shanghai.com

1.4 Laboratory Environment

Temperature	Min. = 18°C, Max. = 25 °C		
Relative humidity	Min. = 30%, Max. = 70%		
Ground system resistance	< 0.5 Ω		

Ambient noise is checked and found very low and in compliance with requirement of standards. Reflection of surrounding objects is minimized and in compliance with requirement of standards.

2 Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for the EUT are as follows: Table 2.1: Highest Reported SAR

	Highest Reported SAR (W/kg)				
Mode	1g SAR Head	1g SAR Body-worn (Separation 10mm)			
GSM 850	0.624	1.583			
GSM 1900	0.476	1.479			
Date of Testing:	December	r 8, 2017			

Note: The device is in compliance with SAR for Uncontrolled Environment /General Population exposure limits (1.6 W/kg) specified in ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013.

3 Description of Equipment under Test

Client Information

Applicant	Mobiwire SAS		
Applicant address	79 avenue Francois Arago, 92000 NANTERRE France		
Manufacturer	Mobiwire SAS		
Manufacturer address	79 avenue Francois Arago, 92000 NANTERRE France		

General Technologies

Application Purpose:	Original Grant
EUT Stage	Identical Prototype
Model:	H30
IMEI:	356928080035389
Hardware Version:	V01
Software Version:	NL185_X1808_ODO_S_L_V01_20171109_MP
Antenna Type:	Internal Antenna
Device Class:	В
Power Class:	GSM 850:4 GSM 1900:1
Power Level	GSM 850:level 5 GSM 1900:level 0
	EUT Accessory
Adapter	Manufacturer: AOHAI Model: A31-500550
Battery	Manufacturer: veken Model: 178100170 Power Rating: DC 3.7V, 1000mAh, Li-ion
Earphone	Manufacturer: juwei Model: JWEP0944-M01R
Charging cradle	Manufacturer: mobiwire Model: MC-188-MC188 Black

Wireless Technology and Frequency Range

	ireless hnology	Modulation	Operating mode	Tx (MHz)
	050		☐Multi-slot Class:8-1UP	004 040
	850	Voice(GMSK) GPRS(GMSK)	☐Multi-slot Class:10-2UP	824 ~ 849
GSM	1900		⊠Multi-slot Class:12-4UP	4050 4040
			☐Multi-slot Class:33-4UP	1850 ~ 1910
	Does this dev	vice support DTM (Dual T	ransfer Mode)? □Yes ⊠No	

4 Test Specification, Methods and Procedures

The tests documented in this report were performed in accordance with FCC 47 CFR § 2.1093, IEEE 1528- 2013, ANSI/IEEE C95.1-1992, the following FCC Published RF exposure KDB procedures:

447498 D01 General RF Exposure Guidance v06 648474 D04 Handset SAR v01r03 865664 D01 SAR measurement 100 MHz to 6 GHz v01r04 865664 D02 RF Exposure Reporting v01r02 941225 D01 3G SAR Procedures v03r01

5 Operational Conditions during Test

5.1 Test Positions

5.1.1 Against Phantom Head

Measurements were made in "cheek" and "tilt" positions on both the left hand and right hand sides of the phantom.

The positions used in the measurements were according to IEEE 1528 - 2013 "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques".

5.1.2 Body Worn Configuration

Body-worn operating configurations should be tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in normal use configurations.

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration. Per FCC KDB Publication 648474 D04, Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB Publication 447498 D01 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented. Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

5.2 Measurement Variability

Per FCC KDB Publication 865664 D01, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media were required for SAR measurements in a frequency band, the variability measurement procedures were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. These additional measurements were repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR Measurement Variability was assessed using the following procedures for each frequency band:

- 1) When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once.
- 2) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).
- 3) A third repeated measurement was performed only if the original, first or second repeated measurement was \geq 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- 4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg

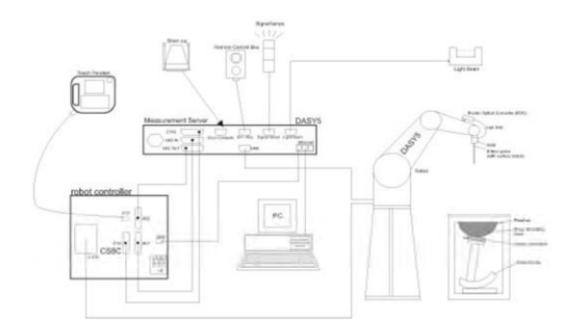
The same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds.

5.3 Test Configuration

5.3.1 GSM Test Configuration

According to specification 3GPP TS 51.010, the maximum power of the GSM can do the power reduction for the multi-slot. The allowed power reduction in the multi-slot configuration is as following: Output power of reductions:

Table 5.1: The allowed power reduction in the multi-slot configuration


Number of timeslots in uplink	Permissible nominal reduction of maximum
assignment	output power,(dB)
1	0
2	0 to 3,0
3	1,8 to 4,8
4	3,0 to 6,0

SAR Measurements System Configuration

6.1 **SAR Measurement Set-up**

The DASY system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP or Win7 and the DASY software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

6.2 DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe EX3DV4 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

EX3DV4 Probe Specification

Construction Symmetrical design with triangular core

> Built-in shielding against static charges PEEK enclosure material (resistant to

organic solvents, e.g., DGBE)

Calibration ISO/IEC 17025 calibration

service available

10 MHz to > 6 GHz Frequency

> Linearity: ± 0.2 dB (30 MHz to 6 GHz)

Directivity ± 0.3 dB in HSL (rotation around probe

axis) ± 0.5 dB in tissue material (rotation

normal to probe axis)

Dynamic 10 μ W/g to > 100 mW/g Linearity: \pm 0.2dB (noise: typically < 1 μ W/g) Range

Dimensions Overall length: 330 mm (Tip: 20 mm) Tip

diameter: 2.5 mm (Body: 12 mm)

Typical distance from probe tip to dipole

centers: 1 mm

Application High precision dosimetric

> measurements in any exposure Scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to

6 GHz with precision of better 30%.

E-field Probe Calibration

Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than ± 10%. The spherical isotropy was evaluated and found to be better than ± 0.25dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1 GHz, and in a wave guide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based

temperature probe is used in conjunction with the E-field probe.

SAR=CAT/At

Where: $\Delta t = \text{Exposure time (30 seconds)},$

C = Heat capacity of tissue (brain or muscle),

 ΔT = Temperature increase due to RF exposure.

Or

SAR=IEI²σ/ρ

Where: σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m³).

6.3 SAR Measurement Procedure

Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Area Scan

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly. Area scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz.

	≤3 GHz	> 3 GHz	
Maximum distance from closest			
measurement point (geometric center of	5 ± 1 mm	½·δ·ln(2) ± 0.5 mm	
probe sensors) to phantom surface			
Maximum probe angle from probe axis to			
phantom surface normal at the	30° ± 1°	20° ± 1°	
measurement location			
	≤ 2 GHz: ≤ 15 mm	3 – 4 GHz: ≤ 12 mm	
	2 – 3 GHz: ≤ 12 mm	4 – 6 GHz: ≤ 10 mm	
	When the x or y dimension of the test device, in		
Maximum area scan spatial resolution:	the measurement plane orientation, is smaller		
ΔxArea, ΔyArea	than the above, the m	neasurement resolution	
	must be ≤ the correspo	nding x or y dimension of	
	the test device with at least one measurement		
	point on the	e test device.	

Zoom Scan

Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10 gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label.

Zoom scan parameters extracted	rom FCC KDB 865664 D01 SAR	measurement 100 MHz to 6 GHz.
Zooni scan parameters extracted		

			≤3GHz	> 3 GHz
Maximum zo	om scan	spatial resolution:△x _{zoom}	≤2GHz: ≤8mm	3 – 4GHz: ≤5mm*
	△yzoom			4 – 6GHz: ≤4mm*
Massianus				3 – 4GHz: ≤4mm
Maximum	Uı	niform grid: $\triangle z_{zoom}(n)$	≤5mm	4 – 5GHz: ≤3mm
zoom scan				5 – 6GHz: ≤2mm
spatial		$\triangle z_{zoom}(1)$: between 1 st two		3 – 4GHz: ≤3mm
resolution,	Graded grid	points closest to phantom	≤4mm	4 – 5GHz: ≤2.5mm
normal to		surface		5 – 6GHz: ≤2mm
phantom surface		$\triangle z_{zoom}(n>1)$: between	<1 Fa \ -	, (p. 1)
Surface		subsequent points	≤1.5•△z _{zoom} (n-1)	
Minimum				3 – 4GHz: ≥28mm
zoom scan		X, y, z	≥30mm	4 – 5GHz: ≥25mm
volume				5 – 6GHz: ≥22mm

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drifts more than 5%, the SAR will be retested.

^{*} When zoom scan is required and the <u>reported</u> SAR from the <u>area scan based 1-g SAR</u> estimation procedures of KDB 447498 is ≤ 1.4W/kg, ≤8mm, ≤7mm and ≤5mm zoom scan resolution may be applied, respectively, for 2GHz to 3GHz, 3GHz to 4GHz and 4GHz to 6GHz.

7 Main Test Equipment

Name of Equipment	Manufacturer	Type/Model	Serial Number	Last Cal.	Cal. Due Date
Network analyzer	Agilent	E5071B	MY42404014	2017-05-20	2018-05-19
Dielectric Probe Kit	HP	85070E	US44020115	2017-05-20	2018-05-19
Power meter	Agilent	E4417A	GB41291714	2017-05-21	2018-05-20
Power sensor	Agilent	N8481H	MY50350004	2017-05-21	2018-05-20
Power sensor	Agilent	E9327A	US40441622	2017-05-20	2018-05-19
Dual directional coupler	Agilent	778D-012	50519	2017-05-21	2018-05-20
Dual directional coupler	Agilent	777D	50146	2017-05-20	2018-05-19
Amplifier	INDEXSAR	IXA-020	0401	2017-05-20	2018-05-19
Wideband radio communication tester	R&S	CMW 500	113645	2017-05-20	2018-05-19
BT Base Station Simulator	R&S	СВТ	100271	2017-05-14	2018-05-13
E-field Probe	SPEAG	EX3DV4	3677	2017-01-23	2018-01-22
DAE	SPEAG	DAE4	1291	2017-01-19	2018-01-18
Validation Kit 835MHz	SPEAG	D835V2	4d020	2017-08-28	2020-08-27
Validation Kit 1900MHz	SPEAG	D1900V2	5d060	2017-08-26	2020-08-25
Temperature Probe	Tianjin jinming	JM222	AA1009129	2017-05-20	2018-05-19
Hygrothermograph	Anymetr	NT-311	20150731	2017-05-17	2018-05-16
Software for Test	Speag	DASY5	52.8.8.1222	/	/
Software for Tissue	Agilent	85070	E06.01.36	/	/

8 Tissue Dielectric Parameter Measurements & System Verification

8.1 Tissue Verification

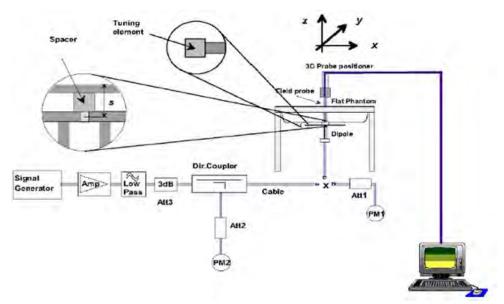
The temperature of the tissue-equivalent medium used during measurement must also be within 18° C to 25° C and within \pm 2° C of the temperature when the tissue parameters are characterized. The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements. The parameters should be re-measured after each 3-4 days of use; or earlier if the dielectric parameters can become out of tolerance.

Target values

Frequency (MHz)		Water (%)	Salt (%)	Sugar (%)	Glycol (%)	Preventol (%)	Cellulose (%)	٤r	σ(s/m)
Head	835	41.45	1.45	56	0	0.1	1.0	41.5	0.90
пеац	1900	55.242	0.306	0	44.452	0	0	40.0	1.40
Pody	835	52.5	1.4	45	0	0.1	1.0	55.2	0.97
Body	1900	69.91	0.13	0	29.96	0	0	53.3	1.52

Measurements results

Frequency		Temp			Dielectric neters	•	Dielectric neters	Limit (Within ±5%)	
(M	Hz)	Test Date	ပ	٤r	σ(s/m)	ε _r	σ(s/m)	Dev ε _r (%)	Dev σ(%)
835	Head	12/8/2017	21.5	42.3	0.93	41.5	0.90	1.93	3.33
033	Body	12/8/2017	21.5	55.4	1.01	55.2	0.97	0.36	4.12
1000	Head	12/8/2017	21.5	40.4	1.39	40.0	1.40	1.00	-0.71
1900	Body	12/8/2017	21.5	51.8	1.50	53.3	1.52	-2.81	-1.32


Note: The depth of tissue-equivalent liquid in a phantom must be \geq 15.0 cm for SAR measurements \leq 3 GHz and \geq 10.0 cm for measurements > 3 GHz.

8.2 System Performance Check

The manufacturer calibrates the probes annually. Dielectric parameters of the tissue simulates were measured using the dielectric probe kit and the network analyzer. A system check measurement for every day was made following the determination of the dielectric parameters of the Tissue simulates, using the dipole validation kit. The dipole antenna was placed under the flat section of the twin SAM phantom.

System check is performed regularly on all frequency bands where tests are performed with the DASY system.

Picture 1 System Performance Check setup

Picture 2 Setup Photo

System Check results

FCC SAR Test Report

Frequency (MHz)		Test Date	Temp ℃	250mW Measured SAR _{1g} (W/kg)	1W Normalized SAR _{1g} (W/kg)	1W Target SAR _{1g} (W/kg)	Δ % (Limit ±10%)	Plot No.
835	Head	12/8/2017	21.5	2.44	9.76	9.45	3.28	1
033	Body	12/8/2017	21.5	2.41	9.64	9.75	-1.13	2
1000	Head	12/8/2017	21.5	9.88	39.52	40.10	-1.45	3
1900	Body	12/8/2017	21.5	9.93	39.72	39.50	0.56	4

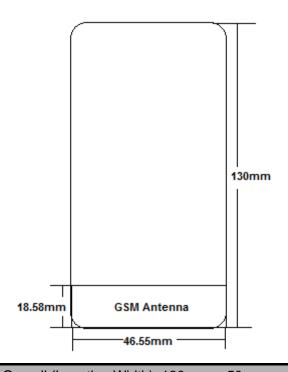
Note: Target Values used derive from the calibration certificate Data Storage and Evaluation.

9 Normal and Maximum Output Power

KDB 447498 D01 at the maximum rated output power and within the tune-up tolerance range specified for the product, but not more than 2 dB lower than the maximum tune-up tolerance limit.

9.1 GSM Mode

GSM 850		Ві	urst Avera	ge	Division	Fra	Burst		
		Power(dBm)			Division	Р	Tune-up		
Tx Ch	nannel	128	190	251	Factors (dB)	128	190	251	Limit
Frequen	icy(MHz)	824.2	836.6	848.8	(ub)	824.2	836.6	848.8	(dBm)
GSM(GMSK)	32.43	32.24	32.27	9.03	23.40	23.21	23.24	33.00
	1Txslot	32.37	32.28	32.21	9.03	23.34	23.25	23.18	33.00
GPRS	2Txslots	30.62	30.55	30.50	6.02	24.60	24.53	24.48	31.50
(GMSK)	3Txslots	29.15	29.07	29.00	4.26	24.89	24.81	24.74	29.50
	4Txslots	28.15	28.05	27.98	3.01	25.14	25.04	24.97	28.50
GSM	1900	P	ower(dBm	า)	Division	Power(dBm)			Burst
Tx Ch	nannel	512	661	810	Factors	512	661	810	Tune-up
Frequen	ıcy(MHz)	1850.2	1880	1909.8	(dB)	1850.2	1880	1909.8	Limit
Troquer	icy (ivii iz)	1000.2	1000	1303.0	(ub)	1000.2	1000	1303.0	(dBm)
GSM(GMSK)	30.16	30.03	30.03	9.03	21.13	21.00	21.00	31.00
	1Txslot	30.14	30.00	29.94	9.03	21.11	20.97	20.91	31.00
GPRS	2Txslots	28.00	27.94	28.01	6.02	21.98	21.92	21.99	29.00
(GMSK)	3Txslots	26.49	26.43	26.48	4.26	22.23	22.17	22.22	27.00
	4Txslots	25.32	25.27	25.32	3.01	22.31	22.26	22.31	26.00


Notes: The worst-case configuration and mode for SAR testing is determined to be as follows:

Standalone: GSM 850 GMSK (GPRS) mode with 4 time slots for Max power, GSM 1900 GMSK (GPRS) mode with 4 time slots for Max power, based on the output power measurements above.

10 Measured and Reported (Scaled) SAR Results

10.1 EUT Antenna Locations

Overall (Length x Width): 130 mm x 50 mm Overall Diagonal: 134mm/Display Diagonal: 46 mm

Note: 1. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg (for 1g SAR) or ≤ 2 W/kg (for 10g SAR) then testing at the other channels is not required for such test configuration(s).

- 2 When the original highest measured SAR is \geq 0.80 W/kg, the measurement was repeated once.
- 3 Per FCC KDB Publication 648474 D04, SAR was evaluated without a headset connected to the device. Since the reported SAR was ≤ 1.2 W/kg, no additional SAR evaluations using a headset cable were required.

10.2 Measured SAR Results

Table 1: GSM 850

Test Position	Cover Type	Channel/ Frequency (MHz)	Time slot	Duty Cycle	Tune-up limit (dBm)	Conducted Power (dBm)	Drift (dB)	Measured SAR _{1g} (W/kg)	Scaling Factor	Reported SAR _{1g} (W/kg)	Plot No.
					Head SAF	₹					
Left Cheek	standard	190/836.6	GSM	1:8.3	33.00	32.24	-0.031	0.520	1.19	0.619	/
Left Tilt	standard	190/836.6	GSM	1:8.3	33.00	32.24	-0.020	0.300	1.19	0.357	/
Right Cheek	standard	190/836.6	GSM	1:8.3	33.00	32.24	-0.100	0.524	1.19	0.624	5
Right Tilt	standard	190/836.6	GSM	1:8.3	33.00	32.24	-0.050	0.297	1.19	0.354	/
			E	Body-wo	rn (Distan	ce 10mm)					
	standard	251/848.8	4 Txslots	1:2.07	28.50	27.98	0.010	1.090	1.13	1.229	/
Back Side	standard	190/836.6	4 Txslots	1:2.07	28.50	28.05	0.000	1.210	1.11	1.342	/
	standard	128/824.2	4 Txslots	1:2.07	28.50	28.15	0.040	1.360	1.08	1.474	/
Front Side	standard	190/836.6	4 Txslots	1:2.07	28.50	28.05	0.110	0.936	1.11	1.038	/
Back Side	Earphone	128/824.2	GSM	1:8.3	33.00	32.43	0.070	0.520	1.14	0.593	/
Back Side	Repeated	128/824.2	4 Txslots	1:2.07	28.50	28.15	-0.060	1.460	1.08	1.583	6

Note: 1.The value with blue color is the maximum SAR Value of each test band.

^{2.} When multiple slots are used, SAR should be tested to account for the maximum source-based time-averaged output power.

Measurement Variability								
Test Position	Channel/ Frequency(MHz)	MAX Measured SAR _{1g} (W/kg)	1 st Repeated SAR _{1g} (W/kg)	Ratio				
Back Side	128/824.2	1.360	1.460	1.07				

Note: 1) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).

²⁾ A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Table 2: GSM 1900

Back Side

Repeated

Test Position	Cover Type	Channel/ Frequency (MHz)	Time slot	Duty Cycle	Tune-up limit (dBm)	Conducted Power (dBm)	Drift (dB)	Measured SAR _{1g} (W/kg)	Scaling Factor	Reported SAR _{1g} (W/kg)	Plot No.
					Head SAF	₹					
Left Cheek	standard	661/1880	GSM	1:8.3	31.00	30.03	-0.094	0.381	1.25	0.476	7
Left Tilt	standard	661/1880	GSM	1:8.3	31.00	30.03	-0.010	0.262	1.25	0.328	/
Right Cheek	standard	661/1880	GSM	1:8.3	31.00	30.03	-0.080	0.366	1.25	0.458	/
Right Tilt	standard	661/1880	GSM	1:8.3	31.00	30.03	0.100	0.305	1.25	0.381	/
			В	ody-wo	rn (Distan	ce 10mm)					
	Standard	810/1909.8	4Txslots	1:2.07	26.00	25.32	-0.160	1.120	1.17	1.310	/
Back Side	Standard	661/1880	4Txslots	1:2.07	26.00	25.27	-0.022	1.180	1.18	1.396	/
	Standard	512/1850.2	4Txslots	1:2.07	26.00	25.32	-0.130	1.130	1.17	1.322	/
Front Side	Standard	661/1880	4Txslots	1:2.07	26.00	25.27	0.060	0.628	1.18	0.743	/
Back Side	Earphone	661/1880	GSM	1:8.3	31.00	30.03	-0.180	0.992	1.25	1.240	/

Note: 1. The value with blue color is the maximum SAR Value of each test band.

4Txslots 1:2.07

661/1880

26.00

25.27

-0.022

1.250

1.18

1.479

8

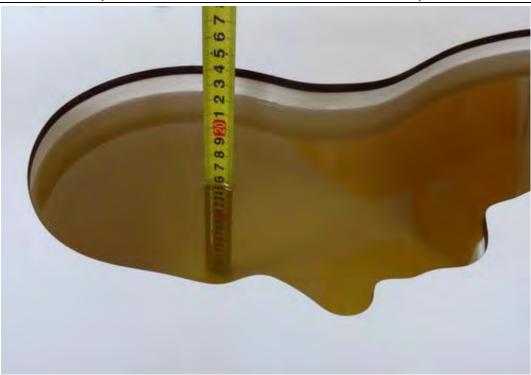
Measurement Variability								
Test Position	Channel/ Frequency(MHz)	MAX Measured SAR _{1g} (W/kg)	1 st Repeated SAR _{1g} (W/kg)	Ratio				
Back Side	661/1880	1.180	1.250	1.06				

Note: 1) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).

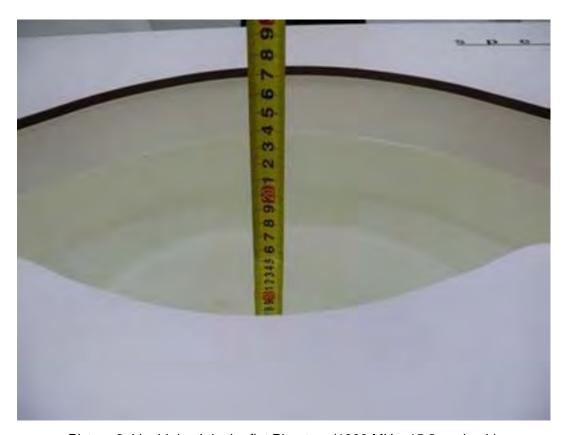
^{2.} When multiple slots are used, SAR should be tested to account for the maximum source-based time-averaged output power.

²⁾ A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

11 Measurement Uncertainty


Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528- 2013 is not required in SAR reports submitted for equipment approval. This also applies to the 10-g SAR required for phablets in KDB Publication 648474.

ANNEX A: Test Layout


Picture 3: Liquid depth in the head Phantom (835MHz, 15.3cm depth)

Picture 4: Liquid depth in the flat Phantom (835MHz, 15.4cm depth)

Picture 5: liquid depth in the head Phantom (1900 MHz, 15.3cm depth)

Picture 6: Liquid depth in the flat Phantom (1900 MHz, 15.2cm depth)

ANNEX B: System Check Results

Plot 1 System Performance Check at 835 MHz Head TSL

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d020

Date: 12/8/2017

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium parameters used: f = 835 MHz; $\sigma = 0.93 \text{ mho/m}$; $\varepsilon_r = 42.3$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature:22.3 °C Liquid Temperature: 21.5°C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(9.31, 9.31, 9.31); Calibrated: 1/23/2017;

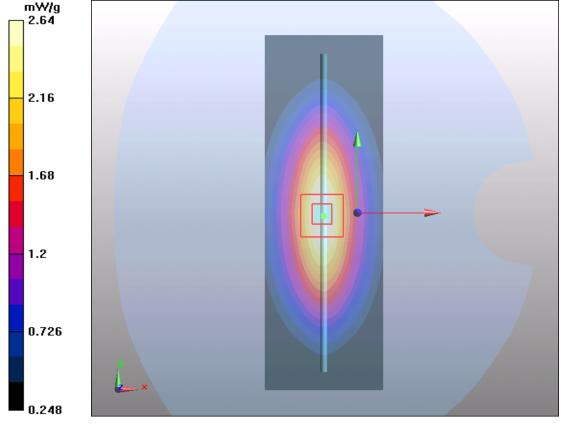
Electronics: DAE4 Sn1291; Calibrated: 1/19/2017 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

d=15mm, Pin=250mW/Area Scan (41x121x1): Measurement grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 2.64 mW/g

d=15mm, Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,


dz=5mm

Reference Value = 54.4 V/m; Power Drift = -0.076 dB

Peak SAR (extrapolated) = 3.67 W/kg

SAR(1 g) = 2.44 mW/g; SAR(10 g) = 1.6 mW/g

Maximum value of SAR (measured) = 2.64 mW/g

Plot 2 System Performance Check at 835 MHz Body TSL

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d020

Date: 12/8/2017

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium parameters used: f = 835 MHz; $\sigma = 1.01$ mho/m; $\varepsilon_r = 55.4$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

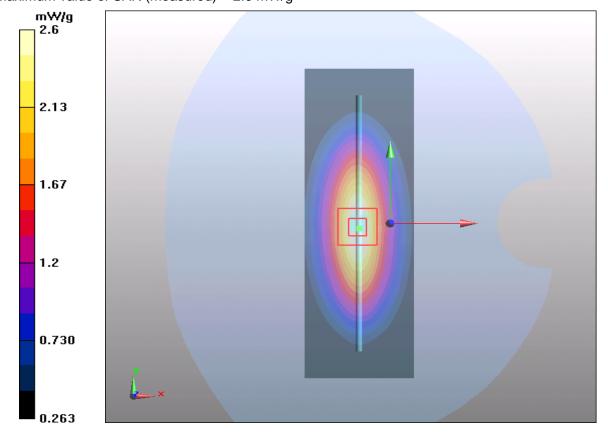
Probe: EX3DV4 - SN3677; ConvF(9.74, 9.74, 9.74); Calibrated: 1/23/2017;

Electronics: DAE4 Sn1291; Calibrated: 1/19/2017 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

d=15mm, Pin=250mW/Area Scan (41x121x1): Measurement grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 2.58 mW/g


d=15mm, Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm

Reference Value = 51.9 V/m; Power Drift = -0.058 dB

Peak SAR (extrapolated) = 3.5 W/kg

SAR(1 g) = 2.41 mW/g; SAR(10 g) = 1.6 mW/g Maximum value of SAR (measured) = 2.6 mW/g

Plot 3 System Performance Check at 1900 MHz Head TSL DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d060

Date: 12/8/2017

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1900 MHz; $\sigma = 1.39 \text{ mho/m}$; $\epsilon_r = 40.4$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

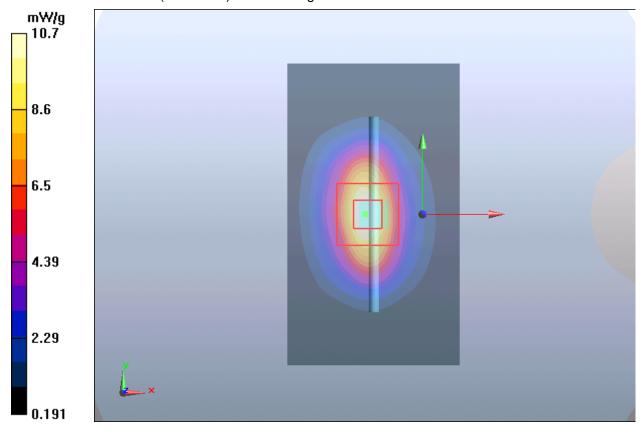
DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(8.39, 8.39, 8.39); Calibrated: 1/23/2017;

Electronics: DAE4 Sn1291; Calibrated: 1/19/2017 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


d=10mm, Pin=250mW/Area Scan (41x71x1): Measurement grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 11.3 mW/g

d=10mm, Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 85.5 V/m; Power Drift = 0.028 dB

Peak SAR (extrapolated) = 17.8 W/kg

SAR(1 g) = 9.88 mW/g; SAR(10 g) = 4.9 mW/gMaximum value of SAR (measured) = 10.7 mW/g

Plot 4 System Performance Check at 1900 MHz Body TSL DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d060

Date: 12/8/2017

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1900 MHz; $\sigma = 1.50 \text{ mho/m}$; $\epsilon_r = 51.8$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

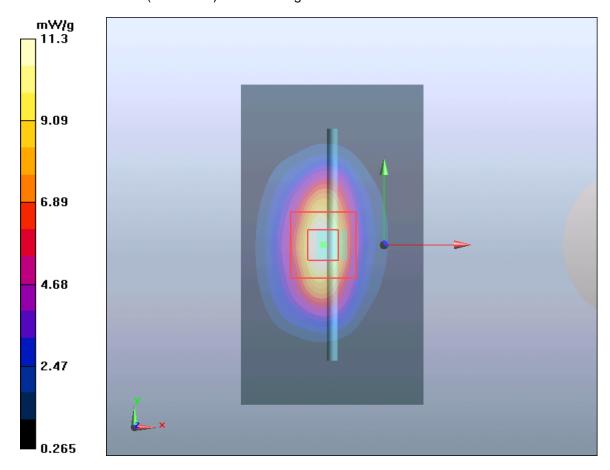
Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.98, 7.98, 7.98); Calibrated: 1/23/2017;

Electronics: DAE4 Sn1291; Calibrated: 1/19/2017 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

d=10mm, Pin=250mW/Area Scan (41x71x1): Measurement grid: dx=1.500 mm, dy=1.500 mm


Maximum value of SAR (interpolated) = 12.2 mW/g

d=10mm, Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 82.3 V/m; Power Drift = 0.068 dB

Peak SAR (extrapolated) = 17.8 W/kg

SAR(1 g) = 9.93 mW/g; SAR(10 g) = 5.25 mW/g Maximum value of SAR (measured) = 11.3 mW/g

ANNEX C: Highest Graph Results

Plot 5 GSM 850 Right Cheek Middle

Date: 12/8/2017

Communication System: UID 0, GSM 850 (0); Frequency: 836.6 MHz;Duty Cycle: 1:8.30042

Medium parameters used: f = 837 MHz; $\sigma = 0.936 \text{ S/m}$; $\varepsilon_r = 41.859$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature:22.3 °C Liquid Temperature: 21.5°C

Phantom section: Right Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

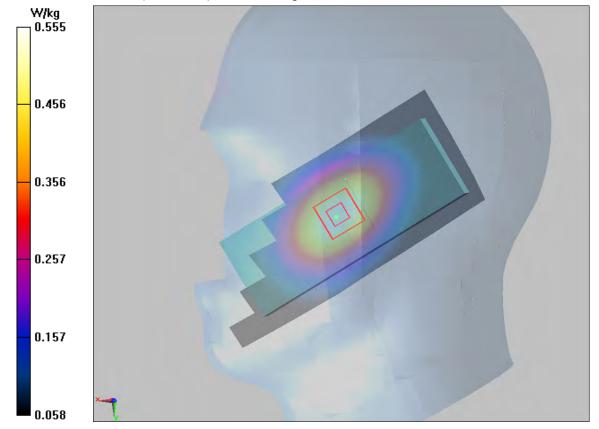
Probe: EX3DV4 - SN3677; ConvF(9.31, 9.31, 9.31); Calibrated: 1/23/2017;

Electronics: DAE4 Sn1291; Calibrated: 1/19/2017 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Right Cheek Middle/Area Scan (51x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.567 W/kg


Right Cheek Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.73 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 0.673 W/kg

SAR(1 g) = 0.524 W/kg; SAR(10 g) = 0.376 W/kg

Maximum value of SAR (measured) = 0.555 W/kg

Plot 6 GSM 850 GPRS (4 Txslots) Back Side Low (Repeated, Distance 10mm)

Date: 12/8/2017

Communication System: UID 0, GPRS 4TX (0); Frequency: 824.2 MHz; Duty Cycle: 1:2.07491 Medium parameters used (interpolated): f = 824.2 MHz; $\sigma = 0.977$ S/m; $\epsilon_r = 54.153$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

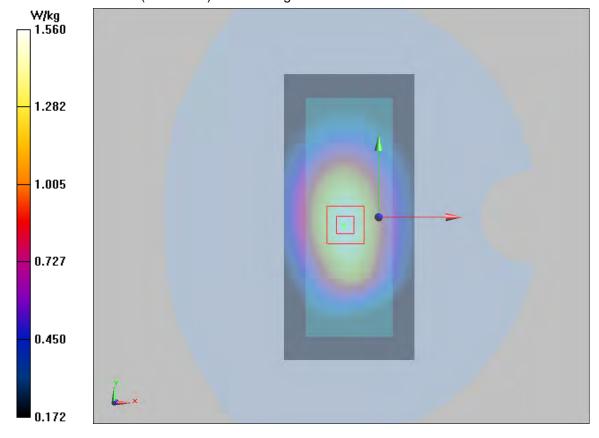
Probe: EX3DV4 - SN3677; ConvF(9.74, 9.74, 9.74); Calibrated: 1/23/2017;

Electronics: DAE4 Sn1291; Calibrated: 1/19/2017 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Back Side Low/Area Scan (51x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 1.54 W/kg


Back Side Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 39.81 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 1.95 W/kg

SAR(1 g) = 1.46 W/kg; SAR(10 g) = 1.05 W/kg

Maximum value of SAR (measured) = 1.56 W/kg

Plot 7 GSM 1900 Left Cheek Middle

Date: 12/8/2017

Communication System: UID 0, GSM 1900 (0); Frequency: 1880 MHz; Duty Cycle: 1:8.30042

Medium parameters used: f = 1880 MHz; σ = 1.365 S/m; ϵ_r = 39.636; ρ = 1000 kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Left Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

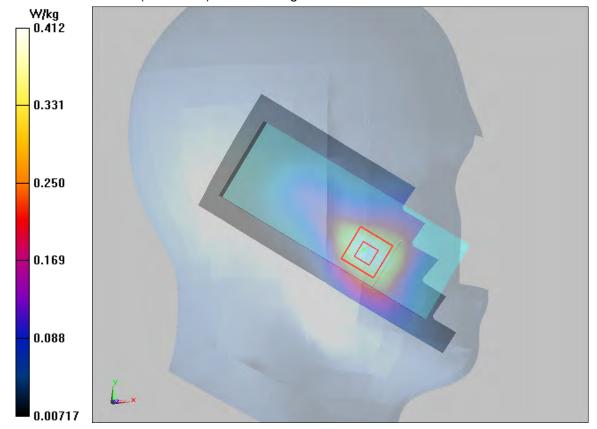
Probe: EX3DV4 - SN3677; ConvF(8.39, 8.39, 8.39); Calibrated: 1/23/2017;

Electronics: DAE4 Sn1291; Calibrated: 1/19/2017 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Left Cheek Middle/Area Scan (51x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.411 W/kg


Left Cheek Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.984 V/m; Power Drift = -0.094 dB

Peak SAR (extrapolated) = 0.582 W/kg

SAR(1 g) = 0.381 W/kg; SAR(10 g) = 0.235 W/kg

Maximum value of SAR (measured) = 0.412 W/kg

Report No: RXA1710-0348SAR Plot 8 GSM 1900 GPRS ((4 Txslots) Back Side Middle (Repeated, Distance 10mm)

Date: 12/8/2017

Communication System: UID 0, GPRS 4TX (0); Frequency: 1880 MHz; Duty Cycle: 1:2.07491

Medium parameters used: f = 1880 MHz; $\sigma = 1.498 \text{ S/m}$; $\varepsilon_r = 54.067$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature:22.3 °C Liquid Temperature: 21.5°C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

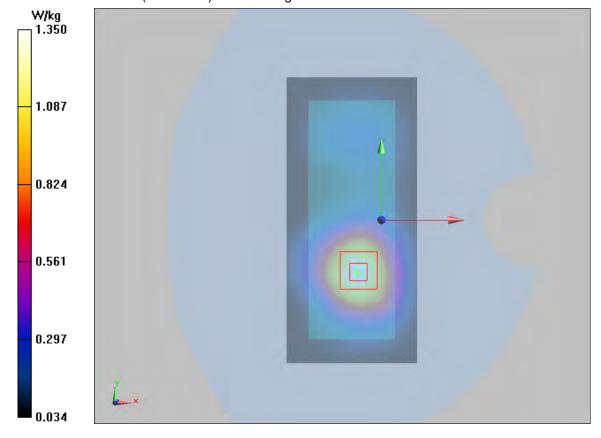
Probe: EX3DV4 - SN3677; ConvF(7.98, 7.98, 7.98); Calibrated: 1/23/2017;

Electronics: DAE4 Sn1291; Calibrated: 1/19/2017 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Back Side Middle/Area Scan (51x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 1.38 W/kg


Back Side Middle /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.93 V/m; Power Drift = -0.022 dB

Peak SAR (extrapolated) = 1.94 W/kg

SAR(1 g) = 1.25 W/kg; SAR(10 g) = 0.758 W/kg

Maximum value of SAR (measured) = 1.35 W/kg

ANNEX D: Probe Calibration Certificate

Client

TA(Shanghai)

Certificate No: Z17-97012

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:3677

Calibration Procedure(s)

FD-Z11-004-01

Calibration Procedures for Dosimetric E-field Probes

Calibration date:

January 23, 2017

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	101919	27-Jun-16 (CTTL, No.J16X04777)	Jun-17
Power sensor NRP-Z91	101547	27-Jun-16 (CTTL, No.J16X04777)	Jun-17
Power sensor NRP-Z91	101548	27-Jun-16 (CTTL, No.J16X04777)	Jun-17
Reference10dBAttenuator	18N50W-10dB	13-Mar-16(CTTL,No.J16X01547)	Mar-18
Reference20dBAttenuator	18N50W-20dB	13-Mar-16(CTTL, No.J16X01548)	Mar-18
Reference Probe EX3DV4	SN 7433	26-Sep-16(SPEAG,No.EX3-7433_Sep16)	Sep-17
DAE4	SN 549	13-Dec-16(SPEAG, No.DAE4-549_Dec16)	Dec -17
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
SignalGeneratorMG3700A	6201052605	27-Jun-16 (CTTL, No.J16X04776)	Jun-17
Network Analyzer E5071C	MY46110673	26-Jan-16 (CTTL, No.J16X00894)	Jan -17
	Name	Function	Signature
Calibrated by:	Yu Zongying	SAR Test Engineer	A TO
Reviewed by:	Qi Dianyuan	SAR Project Leader	a Contraction
Approved by:	Lu Bingsong	Deputy Director of the laboratory	Beneral !
Tit		Issued: Januar	y 24, 2017
i nis calibration certificate sn	all not be reprod	uced except in full without written approval of	the laboratory.

Certificate No: Z17-97012

Page 1 of 11

In Collaboration with

S P E B G

CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel; +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters

Polarization Φ rotation around probe axis

Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i

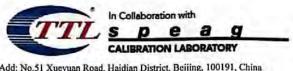
 θ =0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005

c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010


d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the
 frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:A,B,C are numerical linearization parameters assessed based on the
 data of power sweep for specific modulation signal. The parameters do not depend on frequency nor
 media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: Z17-97012

Page 2 of 11

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Probe EX3DV4

SN: 3677

Calibrated: January 23, 2017

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: Z17-97012

Page 3 of 11

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3677

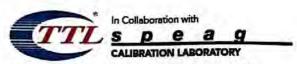
Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(µV/(V/m) ²) ^A	0.39	0.44	0.38	±10.8%
DCP(mV) ^B	97.3	102.2	101.1	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc ^E (k=2)
0	CW	Х	0.0	0.0	1.0	0.00	180.5	±2.0%
		Υ	0.0	0.0	1.0		195.3	
		Z	0.0	0.0	1.0		177.9	7

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.


^B Numerical linearization parameter: uncertainty not required.

Certificate No: Z17-97012

^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 5 and Page 6).

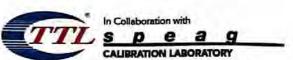
^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3677

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	9.58	9.58	9.58	0.30	0.75	±12%
835	41.5	0.90	9.31	9.31	9.31	0.11	1.55	±12%
1750	40.1	1.37	8.60	8.60	8.60	0.24	1.07	±12%
1900	40.0	1.40	8.39	8.39	8.39	0.23	1.10	±12%
2300	39.5	1.67	8.13	8.13	8.13	0.53	0.74	±12%
2450	39.2	1.80	7.90	7.90	7.90	0.61	0.71	±12%
2600	39.0	1.96	7.64	7.64	7.64	0.68	0.68	±12%
5250	35.9	4.71	5.66	5.66	5.66	0.40	1.20	±13%
5600	35.5	5.07	4.99	4.99	4.99	0.40	1.40	±13%
5750	35.4	5.22	5.00	5.00	5.00	0.40	1.40	±13%


^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

Certificate No: Z17-97012

Page 5 of 11

F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 Http://www.chinattl.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3677

Calibration Parameter Determined in Body Tissue Simulating Media

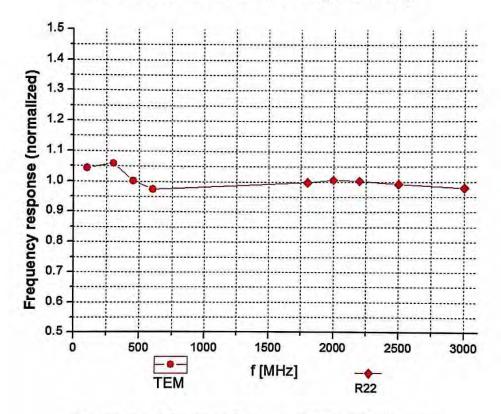
f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	9.99	9.99	9.99	0.30	0.95	±12%
835	55.2	0.97	9.74	9.74	9.74	0.14	1.66	±12%
1750	53.4	1.49	8.39	8.39	8.39	0.21	1.16	±12%
1900	53.3	1.52	7.98	7.98	7.98	0.22	1.24	±12%
2300	52.9	1.81	7.97	7.97	7.97	0.55	0.80	±12%
2450	52.7	1.95	7.85	7.85	7.85	0.50	0.86	±12%
2600	52.5	2.16	7.63	7.63	7.63	0.44	0.91	±12%
5250	48.9	5.36	5.03	5.03	5.03	0.50	1.60	±13%
5600	48.5	5.77	4.34	4.34	4.34	0.54	1.66	±13%
5750	48.3	5.94	4.52	4.52	4.52	0.57	1.95	±13%

 $^{^{\}rm C}$ Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz.

Certificate No: Z17-97012

Page 6 of 11

F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.


^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

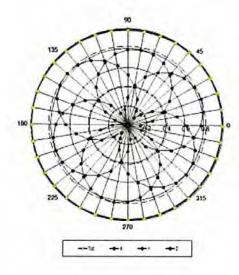
Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn

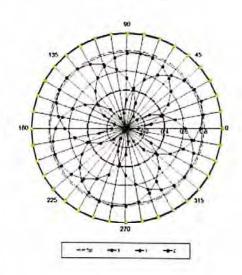
Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

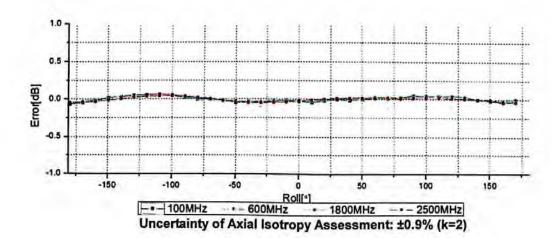
Uncertainty of Frequency Response of E-field: ±7.5% (k=2)

Certificate No: Z17-97012

Page 7 of 11


Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn


Receiving Pattern (Φ), θ=0°


f=600 MHz, TEM

f=1800 MHz, R22

Report No: RXA1710-0348SAR

Certificate No: Z17-97012

Page 8 of 11

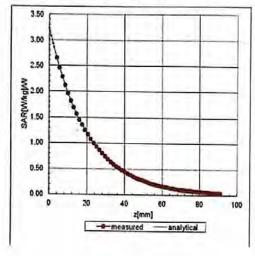

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn

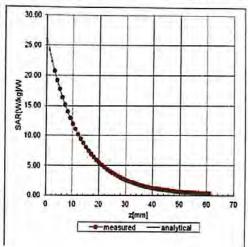
Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz) 10 Input Signal[µV] 10 10 102 10-2 10-10° 10² 10 103 SAR[mW/cm3] not compensated compensated Error[dB] -2 10" 101 SAR[mW/cm not compensated -e- compensated

Certificate No: Z17-97012

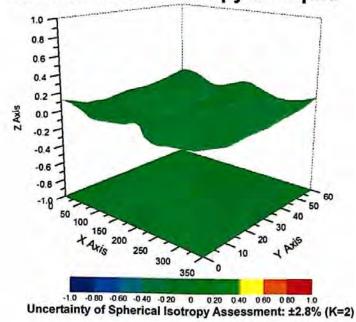
Page 9 of 11

Uncertainty of Linearity Assessment: ±0.9% (k=2)


Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn


Conversion Factor Assessment

f=835 MHz, WGLS R9(H_convF)


f=1750 MHz, WGLS R22(H_convF)

Report No: RXA1710-0348SAR

Deviation from Isotropy in Liquid

Certificate No: Z17-97012

Page 10 of 11

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3677

Other Probe Parameters


Sensor Arrangement	Triangular
Connector Angle (°)	117.9
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	9mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	1.4mm

Certificate No: Z17-97012

Page 11 of 11

ANNEX E: D835V2 Dipole Calibration Certificate

Client

TA(Shanghai)

Certificate No:

Z17-97114

CALIBRATION CERTIFICATE

Object

D835V2 - SN: 4d020

Calibration Procedure(s)

FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date:

August 28, 2017

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Name

Lin Hao

Qi Dianyuan

Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRVD	102083	22-Sep-16 (CTTL, No.J16X06809)	Sep-17
Power sensor NRV-Z5	100595	22-Sep-16 (CTTL, No.J16X06809)	Sep-17
Reference Probe EX3DV4	SN 3617	23-Jan-17(SPEAG,No.EX3-3617_Jan17)	Jan-18
DAE4	SN 1331	19-Jan-17(CTTL-SPEAG,No.Z17-97015)	Jan-18
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	13-Jan-17 (CTTL, No.J17X00286)	Jan-18
Network Analyzer E5071C	MY46110673	13-Jan-17 (CTTL, No.J17X00285)	Jan-18

Calibrated by:

Function

SAR Test Engineer

SAR Project Leader

Reviewed by:

Zhao Jing SAR Test Engineer

Approved by:

Issued: August 31

This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: Z17-97114

Page 1 of 8

In Collaboration with

S P E A G

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Glossary:

TSL ConvF N/A tissue simulating liquid sensitivity in TSL / NORMx,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z17-97114

Page 2 of 8

In Collaboration with

S P E A G

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.10.0.1446
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.2 ± 6 %	0.89 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	1
SAR measured	250 mW input power	2.34 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	9.45 mW /g ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.51 mW/g
SAR for nominal Head TSL parameters	normalized to 1W	6.09 mW /g ± 18.7 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.6 ± 6 %	0.98 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.46 mW/g
SAR for nominal Body TSL parameters	normalized to 1W	9.75 mW /g ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	1.63 mW/g
SAR for nominal Body TSL parameters	normalized to 1W	6.47 mW /g ± 18.7 % (k=2)

Certificate No: Z17-97114

Page 3 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.3Ω- 2.54jΩ
Return Loss	- 31.9dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.8Ω- 4.57jΩ	
Return Loss	- 24.8dB	

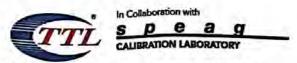
General Antenna Parameters and Design

Electrical Delay (one direction)	1.495 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.


Additional EUT Data

Manufactured by	SPEAG
A STATE OF THE STA	OI ENO

Certificate No: Z17-97114

Page 4 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

DASY5 Validation Report for Head TSL

Date: 08.28.2017

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d020

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 0.887$ S/m; $\varepsilon_r = 41.22$; $\rho = 1000$ kg/m³

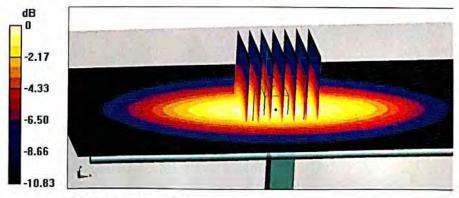
Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(9.73, 9.73, 9.73); Calibrated: 1/23/2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1331; Calibrated: 1/19/2017
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,

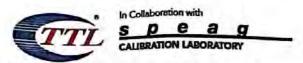

dy=5mm, dz=5mm

Reference Value = 58.74V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 3.60 W/kg

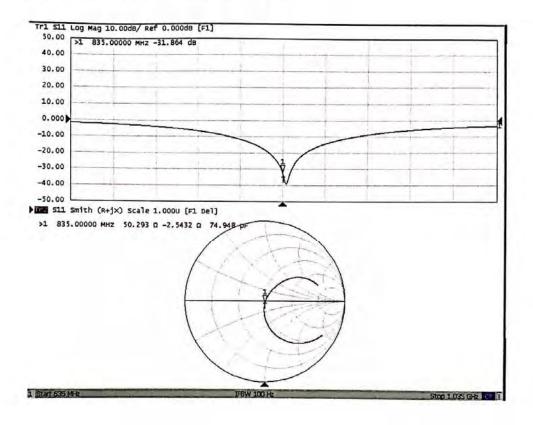
SAR(1 g) = 2.34 W/kg; SAR(10 g) = 1.51 W/kg

Maximum value of SAR (measured) = 3.16 W/kg



0 dB = 3.16 W/kg = 5.00 dBW/kg

Certificate No: Z17-97114


Page 5 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Impedance Measurement Plot for Head TSL

Certificate No: Z17-97114

Page 6 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.en

DASY5 Validation Report for Body TSL

Date: 08.27.2017

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d020

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 0.984$ S/m; $\varepsilon_r = 55.62$; $\rho = 1000$ kg/m³

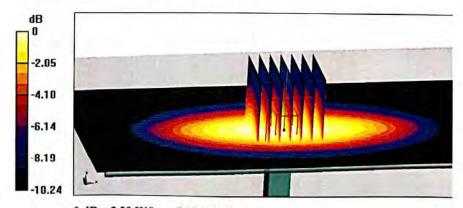
Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(9.64, 9.64, 9.64); Calibrated: 1/23/2017;
- · Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1331; Calibrated: 1/19/2017
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,


dy=5mm, dz=5mm

Reference Value = 56.55 V/m; Power Drift = 0.02 dB

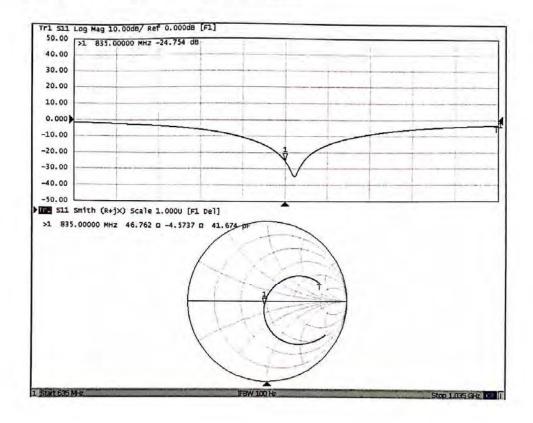
Peak SAR (extrapolated) = 3.71 W/kg

SAR(1 g) = 2.46 W/kg; SAR(10 g) = 1.63 W/kg

Maximum value of SAR (measured) = 3.29 W/kg

0 dB = 3.29 W/kg = 5.17 dBW/kg

Certificate No: Z17-97114


Page 7 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Impedance Measurement Plot for Body TSL

Certificate No: Z17-97114

Page 8 of 8

ANNEX F: D1900V2 Dipole Calibration Certificate

E-mail: cttl@chinattl.com Client

http://www.chinattl.cn TA(Shanghai)

CNAS L0570

Z17-97115 Certificate No:

CALIBRATION CERTIFICATE

Object

D1900V2 - SN: 5d060

Calibration Procedure(s)

FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date:

August 26, 2017

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Name

Qi Dianyuan

Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRVD	102083	22-Sep-16 (CTTL, No.J16X06809)	Sep-17
Power sensor NRV-Z5	100595	22-Sep-16 (CTTL, No.J16X06809)	Sep-17
Reference Probe EX3DV4	SN 3617	23-Jan-17(SPEAG,No.EX3-3617_Jan17)	Jan-18
DAE4	SN 1331	19-Jan-17(CTTL-SPEAG,No.Z17-97015)	Jan-18
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	13-Jan-17 (CTTL, No.J17X00286)	Jan-18
Network Analyzer E5071C	MY46110673	13-Jan-17 (CTTL, No.J17X00285)	Jan-18

Function

SAR Project Leader

Calibrated by:

Zhao Jing SAR Test Engineer

Reviewed by:

Approved by:

Lin Hao SAR Test Engineer

Issued: August 30, 20

This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: Z17-97115

Page 1 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China E-mail: cttl@chinattl.com Fax: +86-10-62304633-2504 http://www.chinattl.cn

Glossary:

TSL ConvF N/A

tissue simulating liquid sensitivity in TSL / NORMx,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016

c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010

d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z17-97115

Page 2 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far

DASY Version	DASY52	52.10.0.1446
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.9 ± 6 %	1.41 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		-

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.1 mW/g
SAR for nominal Head TSL parameters	normalized to 1W	40.1 mW /g ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.19 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	20.7 mW /g ± 18.7 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.6 ± 6 %	1.53 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C	-	_

SAR result with Body TSI

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.90 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	39.5 mW /g ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	5.21 mW/g
SAR for nominal Body TSL parameters	normalized to 1W	20.8 mW /g ± 18.7 % (k=2)

Certificate No: Z17-97115

Page 3 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.0Ω+ 6.59jΩ
Return Loss	- 23.4dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	52.7Ω+ 8.35jΩ	
Return Loss	-21,4dB	

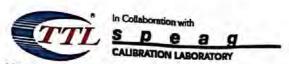
General Antenna Parameters and Design

Electrical Delay (one direction)	1.302 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.


Additional EUT Data

	Value of the second sec
SPEAG	Manufactured by
SPEAG	Manufactured by

Certificate No: Z17-97115

Page 4 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

DASY5 Validation Report for Head TSL

Date: 08.26.2017

Test Laboratory: CTTL, Beijing, China

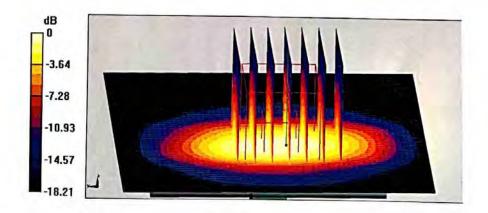
DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d060 Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.413$ S/m; $\epsilon r = 39.85$; $\rho = 1000$ kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(8.26, 8.26, 8.26); Calibrated: 1/23/2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1331; Calibrated: 1/19/2017
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

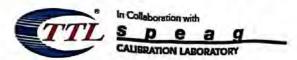

System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 94.94 V/m; Power Drift = 0.01 dB

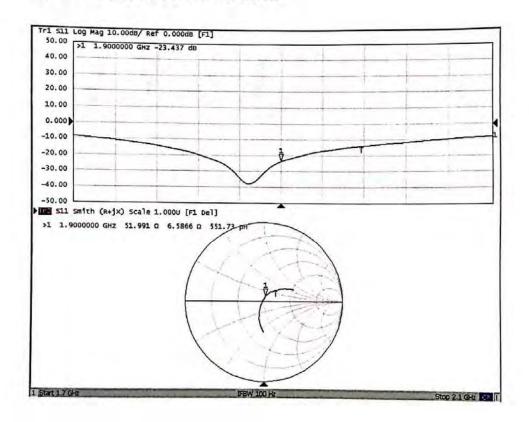
Peak SAR (extrapolated) = 19.5 W/kg

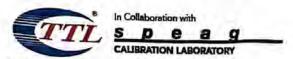
SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.19 W/kgMaximum value of SAR (measured) = 15.9 W/kg



0 dB = 15.9 W/kg = 12.01 dBW/kg

Certificate No: Z17-97115


Page 5 of 8


Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Impedance Measurement Plot for Head TSL

Certificate No: Z17-97115 Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 08.26.2017

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d060 Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.528$ S/m; $\varepsilon_r = 53.55$; $\rho = 1000$ kg/m³

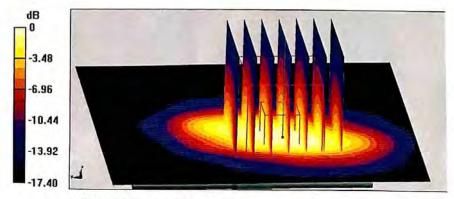
Phantom section: Center Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(7.95, 7.95, 7.95); Calibrated: 1/23/2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1331; Calibrated: 1/19/2017
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

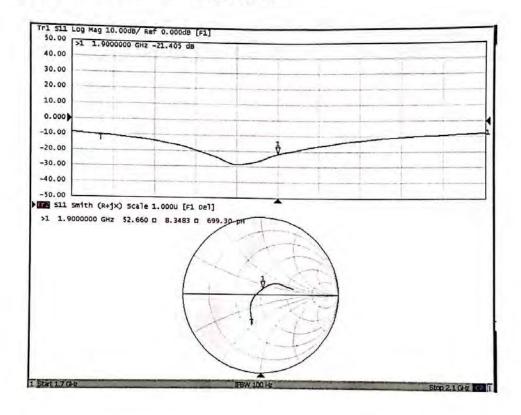
Reference Value = 91.19 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 18.1 W/kg

SAR(1 g) = 9.9 W/kg; SAR(10 g) = 5.21 W/kg

Maximum value of SAR (measured) = 15.3 W/kg

0 dB = 15.3 W/kg = 11.85 dBW/kg


Certificate No: Z17-97115

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel; +86-10-62304633-2079 Fax; +86-10-62304633-2504 http://www.chinattl.cn

Impedance Measurement Plot for Body TSL

Certificate No: Z17-97115

Page 8 of 8

ANNEX G: DAE4 Calibration Certificate

E-mail: cttl@chinattl.com TA(Shanghai)

Certificate No: Z17-97011

CALIBRATION CERTIFICATE

Object

DAE4 - SN: 1291

Http://www.chinattl.cn

Calibration Procedure(s)

Client :

FD-Z11-002-01

Calibration Procedure for the Data Acquisition Electronics

(DAEx)

Calibration date:

January 19, 2017

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards ID# Cal Date(Calibrated by, Certificate No.) Scheduled Calibration

Process Calibrator 753 1971018 27-June-16 (CTTL, No:J16X04778) June-17

Calibrated by:

Name Function

Yu Zongying SAR Test Engineer

Reviewed by:

Qi Dianyuan SAR Project Leader

Approved by:

Lu Bingsong Deputy Director of the laboratory

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z17-97011

Page 1 of 3

In Colleboration with

S P E B G

CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: ettl@chinattl.com Http://www.chinattl.cn

Glossary:

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X

to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Certificate No: Z17-97011

Page 2 of 3

In Collaboration with

S P E B G

CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: 1LSB = $6.1\mu V$, full range = -100...+300 mVLow Range: 1LSB = 61nV, full range = -1......+3mVDASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec


Calibration Factors	x	Y	z
High Range	402.659 ± 0.15% (k=2)	403.334 ± 0.15% (k=2)	403.248 ± 0.15% (k=2)
Low Range	3.97545 ± 0.7% (k=2)	3.93432 ± 0.7% (k=2)	3.99217 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	309° ± 1 °
---	------------

Certificate No: Z17-97011

Page 3 of 3

ANNEX H: The EUT Appearances and Test Configuration

Front Side

Back Side a: EUT

b: Adapter

c: Charging cradle

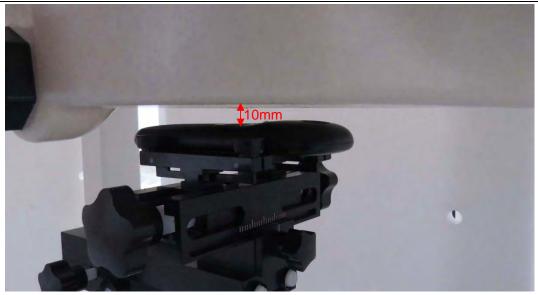
d: Battery

e: Earphone

Picture 7: Constituents of EUT

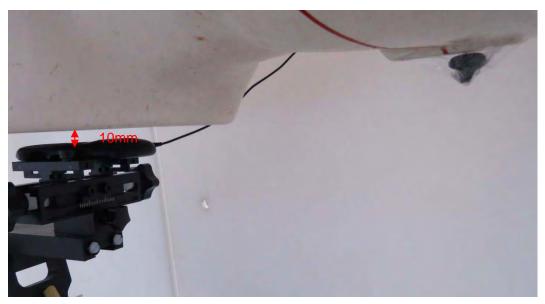
Picture 8: Left Hand Touch Cheek Position

Picture 9: Left Hand Tilt 15 Degree Position



Picture 10: Right Hand Touch Cheek Position

Picture 11: Right Hand Tilt 15 Degree Position



Picture 12: Back Side, the distance from handset to the bottom of the Phantom is 10mm

Picture 13: Front Side, the distance from handset to the bottom of the Phantom is 10mm

Picture 14: Back Side with Earphone, the distance from handset to the bottom of the Phantom is 10mm