

SAR TEST REPORT

Applicant Mobiwire SAS

FCC ID QPN-LINIWA

Product 4G Smart Phone

Brand MobiWire, ALTICE

Model MobiWire Liniwa, Altice S24

Report No. R2104A0308-S1V2

Issue Date April 28, 2021

TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in **IEEE 1528-2013**, **ANSI C95.1**: **1992**,**IEEE C95.1**: **1991**. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Performed by: Yu Wang

Approved by: Guangchang Fan

Guangchang Fan

TA Technology (Shanghai) Co., Ltd.

No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China TEL: +86-021-50791141/2/3

FAX: +86-021-50791141/2/3-8000

Report No.: R2104A0308-S1V2

Table of Contents

1	Tes	t Laboratory	5
	1.1	Notes of the Test Report	5
	1.2.	Test facility	5
	1.3	Testing Location	5
	1.4	Laboratory Environment	6
2	Sta	tement of Compliance	7
3	Des	scription of Equipment under Test	8
4	Tes	t Specification, Methods and Procedures	11
5	Ope	erational Conditions during Test	12
;	5.3	Test Positions	12
		5.3.1 Against Phantom Head	12
		5.3.2 Body Worn Configuration	12
		5.3.3 Phablet SAR test considerations	13
;	5.4	Measurement Variability	14
;	5.5	Test Configuration	15
		5.5.1 GSM Test Configuration	15
		5.5.2 UMTS Test Configuration	15
		5.5.3 LTE Test Configuration	19
		5.5.4 Wi-Fi Test Configuration	21
		5.5.5 BT Test Configuration	22
6	SA	R Measurements System Configuration	23
(6.3	SAR Measurement Set-up	23
(6.4	DASY5 E-field Probe System	24
(6.5	SAR Measurement Procedure	25
7	Ma	in Test Equipment	27
8	Tiss	sue Dielectric Parameter Measurements & System Verification	28
	8.3	Tissue Verification	28
	8.4	System Performance Check	30
9	Noi	mal and Maximum Output Power	32
,	9.3	GSM Mode	32
,	9.4	WCDMA Mode	33
,	9.5	LTE Mode	
,	9.6	WLAN Mode	39
!	9.7	Bluetooth Mode	40
10	Me	asured and Reported (Scaled) SAR Results	41
	10.1	EUT Antenna Locations	41
	10.2	Standalone SAR test exclusion considerations	
	10.3	Measured SAR Results	
		Simultaneous Transmission Analysis	
		asurement Uncertainty	
A١	NEX	A: Test Layout	59

FCC SAR Test Report	
FCC SAR Test Report	Report No.: R2104A0308-S1V2
ANNEX B: System Check Results	6°
ANNEX C: Highest Graph Results	6·
ANNEX D. Calibration Certificate	6.

VersionRevision descriptionIssue DateRev.0Initial issue of report.April 25, 2021Rev.1Update Brand.April 25, 2021Rev.2Update Adapter 3.April 28, 2021

Note: This revised report (Report No. R2104A0308-S1V2) supersedes and replaces the previously issued report (Report No. R2104A0308-S1V1). Please discard or destroy the previously issued report and dispose of it accordingly.

FCC SAR Test Report No.: R2104A0308-S1V2

1 Test Laboratory

1.1 Notes of the Test Report

(shanghai) co., Ltd. The results documented in this report apply only to the tested sample, under the

conditions and modes of operation as described herein .Measurement Uncertainties were not taken

This report shall not be reproduced in full or partial, without the written approval of TA technology

into account and are published for informational purposes only. This report is written to support

regulatory compliance of the applicable standards stated above.

1.2. Test facility

FCC (Designation number: CN1179, Test Firm Registration Number: 446626)

TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform measurements.

A2LA (Certificate Number: 3857.01)

TA Technology (Shanghai) Co., Ltd. has been listed by American Association for Laboratory

Accreditation to perform measurement.

1.3 Testing Location

Company: TA Technology (Shanghai) Co., Ltd.

Address: No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China

City: Shanghai

Post code: 201201

Country: P. R. China

Contact: Fan Guangchang

Telephone: +86-021-50791141/2/3

Fax: +86-021-50791141/2/3-8000

Website: http://www.ta-shanghai.com

E-mail: fanguangchang@ta-shanghai.com

1.4 Laboratory Environment

Temperature	Min. = 18°C, Max. = 25 °C
Relative humidity	Min. = 30%, Max. = 70%
Ground system resistance	< 0.5 Ω

Ambient noise is checked and found very low and in compliance with requirement of standards. Reflection of surrounding objects is minimized and in compliance with requirement of standards.

CC SAR Test Report No.: R2104A0308-S1V2

2 Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for the EUT are as follows: Table 1: Highest Reported SAR

	Highest Reported SAR (W/kg)								
Mode	1g SAR Head	1g SAR Body-worn (Separation 10mm)	1g SAR Hotspot (Separation 10mm)						
GSM 850	0.40	0.69	0.69						
GSM 1900	0.36	0.45	0.53						
WCDMA Band II	0.48	0.63	0.74						
WCDMA Band V	0.26	0.39	0.39						
LTE FDD 2	0.97	1.05	1.29						
LTE FDD 7	0.33	0.68	0.68						
Wi-Fi (2.4G)	0.39	0.07	0.09						
ВТ	NA	NA	NA						
Date of Testing:	March 25, 2020~ March 29, 2020								

Note: All indications of Pass/Fail in this report are opinions expressed by TA Technology (Shanghai) Co., Ltd. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only.

Table 2: Highest Simultaneous Transmission SAR

Exposure Configuration	1g SAR Head	1g SAR Body-worn (Separation 10mm)	1g SAR Hotspot (Separation 10mm)	
Highest Simultaneous Transmission SAR (W/kg)	1.32	1.17	1.34	

Note: 1. The detail for simultaneous transmission consideration is described in chapter 10.4.

MobiWire Liniwa, Altice S24 (Report No.: R2104A0308-S1V2) is a variant model of MobiWire Liniwa, ALTICE S23 (Report No.: R1912A0709-S1). Only the software version, shell and model have been updated, and the product has not been changed. After laboratory evaluation, the software version update does not need to add any tests. The detailed product change description please refers to the Difference Declaration Letter.

3 Description of Equipment under Test

Client Information

Applicant	Mobiwire SAS
Applicant address	79 AVENUE FRANCOIS ARAGO 92017 NANTERRE CEDEX
Applicant address	France
Manufacturer	Mobiwire SAS
Manufacturar address	79 AVENUE FRANCOIS ARAGO 92017 NANTERRE CEDEX
Manufacturer address	France

General Technologies

eneral rechnologies						
Application Purpose:	Original Grant					
EUT Stage:	Identical Prototype					
Model:	MobiWire Liniwa, Altice S24					
IMEI:	353633110000503					
Hardware Version:	V01					
Software Version:	ALTICE_S24_DS_O_T_V01.1					
Antenna Type:	Internal Antenna					
Device Class:	В					
Wi-Fi Hotspot:	Wi-Fi 2.4G					
Power Class:	GSM 850:4 GSM 1900:1 UMTS Band II/ V:3 LTE FDD 2/7:3					
Power Level:	GSM 850:level 5 GSM 1900:level 0 UMTS Band II/ V:all up bits LTE FDD 2/7:max power					
	EUT Accessory					
Adapter 1	Manufacturer: Dongguan Aohai Power Technology CO.,LTD Model: A31A-050100U-EU1					
Adapter 2	Manufacturer: Dongguan Aohai Power Technology CO.,LTD Model: A31A-050100U-US1					
Adapter 3	Manufacturer: Dongguan Aohai Technology CO.,LTD Model: A18A-050100U-US2					
Battery	Manufacturer: GUANGDONG FENGHUA NEW ENERGY CO.,LTD Model: 178172056					
Earphone	Manufacturer: Shenzhen Juwei Electronics Co.,Ltd Model: JWEP0957-M01R					

FCC SAR Test Report No.: R2104A0308-S1V2

Manufacturer: SHENZHEN FKY-QY HARDWARE ELECTRONIC

USB Cable CO.,LTD

Model: 2CA0MBWE001

Note: The EUT is sent from the applicant to TA and the information of the EUT is declared by the

applicant.

Report No.: R2104A0308-S1V2

Wireless Technology and Frequency Range

Wireless Technology		Modulation	Operating mode	Tx (MHz)				
	850	Voice(GMSK) GPRS(GMSK)	☐Multi-slot Class:8-1UP ☐Multi-slot Class:10-2UP	824 ~ 849				
GSM	1900	EGPRS(GMSK,8PSK)	⊠Multi-slot Class:12-4UP □Multi-slot Class:33-4UP	1850 ~ 1910				
	Does this dev	vice support DTM (Dual Ti	ransfer Mode)? □Yes ⊠No					
UMTS	Band II	QPSK,16QAM	HSDPA UE Category:24 HSUPA UE Category:7	1850 ~ 1910				
OWITS	Band V	QF3N, IOQAIVI	DC-HSDPA UE Category:24 HSPA+ Category:7	824 ~ 849				
	FDD 2	QPSK, 16QAM	Rel.9	1850 ~ 1910				
LTE	FDD 7			2500 ~ 2570				
	Does this device support Carrier Aggregation (CA) □Yes ⊠No							
	Does this device support SV-LTE (1xRTT-LTE)? □Yes ⊠No							
ВТ	2.4G	Ver	2402 ~2480					
	2.40	DSSS,OFDM	802.11b/g/n HT20	2412 ~ 2462				
Wi-Fi	2.4G	OFDM	802.11n HT40	2422 ~ 2452				
	Does this dev	vice support MIMO □Yes	⊠No					

4 Test Specification, Methods and Procedures

The tests documented in this report were performed in accordance with FCC 47 CFR § 2.1093, IEEE 1528- 2013, ANSI C95.1: 1992,IEEE C95.1: 1991, the following FCC Published RF exposure KDB procedures:

IEC 62209-1

Reference Standards

KDB 248227 D01 802.11Wi-Fi SAR v02r02

KDB 447498 D01 General RF Exposure Guidance v06

KDB 648474 D04 Handset SAR v01r03

KDB 690783 D01 SAR Listings on Grants v01r03

KDB 865664 D01 SAR measurement 100 MHz to 6 GHz v01r04

KDB 865664 D02 RF Exposure Reporting v01r02

KDB 941225 D01 3G SAR Procedures v03r01

KDB 941225 D05 SAR for LTE Devices v02r05

KDB 941225 D06 Hotspot Mode v02r01

Note: KDB 248227 D01 is not within TA's scope of A2LA

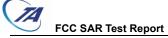
5 Operational Conditions during Test

5.3 Test Positions

5.3.1 Against Phantom Head

Measurements were made in "cheek" and "tilt" positions on both the left hand and right hand sides of the phantom.

The positions used in the measurements were according to IEEE 1528 - 2013 "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate(SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques".


5.3.2 Body Worn Configuration

Body-worn operating configurations should be tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in normal use configurations.

Per FCC KDB Publication 648474 D04, Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB Publication 447498 D01 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented. Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

5.3.3 Phablet SAR test considerations

For smart phones, with a display diagonal dimension > 15.0 cm or an overall diagonal dimension > 16.0 cm, that can provide similar mobile web access and multimedia support found in mini-tablets or UMPC mini-tablets and support voice calls next to the ear, unless it is confirmed otherwise through KDB inquiries, the following phablet procedures should be applied to evaluate SAR compliance for each applicable wireless modes and frequency band. Devices marketed as phablets, regardless of form factors and operating characteristics must be tested as a phablet to determine SAR compliance.

- a) The normally required head and body-worn accessory SAR test procedures for handsets, including hotspot mode, must be applied.
- b) The UMPC mini-tablet procedures must also be applied to test the SAR of all surfaces and edges with an antenna located at ≤ 25 mm from that surface or edge, in direct contact with a flat phantom, for product specific 10-g SAR according to the body-equivalent tissue dielectric parameters in KDB Publication 865664 D01 to address interactive hand use exposure conditions. The 1-g SAR at 5 mm for UMPC mini-tablets is not required. When hotspot mode applies, product specific 10-g SAR is required only for the surfaces and edges with hotspot mode 1-g reported SAR > 1.2 W/kg; however, when power reduction applies to hotspot mode the measured SAR must be scaled to the maximum output power, including tolerance, allowed for phablet modes to compare with the 1.2 W/kg SAR test reduction threshold. The normal tablet procedures in KDB Publication 616217 are required when the overall diagonal dimension of the device is > 20.0 cm. Hotspot mode SAR is not required when normal tablet procedures are applied. Product specific 10-g SAR is also not required for the front (top) surface of larger form factor full size tablets. The more conservative normal tablet SAR results can be used to support phablet mode product specific 10-g SAR.
- c) The simultaneous transmission operating configurations applicable to voice and data transmissions for both phone and mini-tablet modes must be taken into consideration separately for 1-g and 10-g SAR to determine the simultaneous transmission SAR test exclusion and measurement requirements for the relevant wireless modes and exposure conditions.

5.4 Measurement Variability

Per FCC KDB Publication 865664 D01, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media were required for SAR measurements in a frequency band, the variability measurement procedures were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. These additional measurements were repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR Measurement Variability was assessed using the following procedures for each frequency band:

- 1) When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once.
- 2) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).
- 3) A third repeated measurement was performed only if the original, first or second repeated measurement was \geq 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- 4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg

The same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds.

5.5 Test Configuration

5.5.1 GSM Test Configuration

According to specification 3GPP TS 51.010, the maximum power of the GSM can do the power reduction for the multi-slot. The allowed power reduction in the multi-slot configuration is as following: Output power of reductions:

Table 3: The allowed power reduction in the multi-slot configuration

Number of timeslots in uplink assignment	Permissible nominal reduction of maximum output power,(dB)
1	0
2	0 to 3,0
3	1,8 to 4,8
4	3,0 to 6,0

SAR test reduction for GPRS and EDGE modes is determined by the source-based time-averaged output power specified for production units, including tune-up tolerance. The data mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested. GSM voice and GPRS data use GMSK, which is a constant amplitude modulation with minimal peak to average power difference within the time-slot burst. For EDGE, GMSK is used for MCS 1 – MCS 4 and 8-PSK is used for MCS 5 – MCS 9; where 8-PSK has an inherently higher peak-to-average power ratio. The GMSK and 8-PSK EDGE configurations are grouped with GPRS and considered with respect to time-averaged maximum output power to determine compliance. The 3G SAR test reduction procedure is applied to 8-PSK EDGE with GMSK GPRS/EDGE as the primary mode.

5.5.2 UMTS Test Configuration

5.5.2.1 3G SAR Test Reduction Procedure

The default test configuration is to measure SAR with an established radio link between the EUT and a communication test set using a 12.2 kbps RMC (reference measurement channel) configured in Test Loop Mode 1. SAR is selectively confirmed for other physical channel configurations modes according to output power, exposure conditions and device operating capabilities. Maximum output power is verified by applying the applicable versions of 3GPP TS 34.121.

5.5.2.2 Head SAR

SAR for next to the ear head exposure is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to AMR configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for 12.2 kbps AMR in 3.4 kbps SRB (signaling radio bearer) using the highest SAR configuration in 12.2 kbps RMC for head exposure.

5.5.2.3 Body-worn accessory SAR

SAR for body-worn accessory configurations is measured using a 12.2 kbps RMC with TPC bits

FCC SAR Test Report No.: R2104A0308-S1V2

configured to all "1's". The 3G SAR test reduction procedure is applied to other spreading codes and multiple DPDCHn configurations supported by the EUT with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured using an applicable RMC configuration with the corresponding spreading code or DPDCHn, for the highest reported body-worn accessory exposure SAR configuration in 12.2 kbps RMC. When more than 2 DPDCHn are supported by the EUT, it may be necessary to configure additional DPDCHn using FTM (Factory Test Mode) or other chipset based test approaches with parameters similar to those used in 384 kbps and 768 kbps RMC

5.5.2.4 Release 5 HSDPA Test Configuration

The 3G SAR test reduction procedure is applied to HSDPA body-worn accessory configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for HSDPA using the HSDPA body SAR procedures in the "Release 5 HSDPA Data Devices" section of this document, for the highest SAR body-worn accessory exposure configuration in 12.2 kbps RMC. EUT with both HSDPA and HSUPA are tested according to Release 6 HSPA test procedures.

HSDPA should be configured according to the UE category of a test device. The number of HSDSCH/ HS-PDSCHs, HARQ processes, minimum inter-TTI interval, transport block sizes and RV coding sequence are defined by the H-set. To maintain a consistent test configuration and stable transmission conditions, QPSK is used in the H-set for SAR testing. HS-DPCCH should be configured with a CQI feedback cycle of 4 ms with a CQI repetition factor of 2 to maintain a constant rate of active CQI slots. DPCCH and DPDCH gain factors(β c, β d), and HS-DPCCH power offset parameters (Δ ACK, Δ NACK, Δ CQI) should be set according to values indicated in the Table below. The CQI value is determined by the UE category, transport block size, number of HS-PDSCHs and modulation used in the H-set.

Table 4: Subtests for UMTS Release 5 HSDPA

Sub-set	ρ	β_{d}	β_{d}	Q /Q	eta_{hs}	CM(dB)	MPR(dB)	
Sub-set	β _c		(SF)	β_c/β_d	(note 1, note 2)	(note 3)		
1	2/15	15/15	64	2/15	4/15	0.0	0.0	
2	12/15	15/15	64	12/15	24/15	1.0	0.0	
2	(note 4)	(note 4)	04	(note 4)	24/15	1.0	0.0	
3	15/15	8/15	64	15/8	30/15	1.5	0.5	
4	15/15	4/15	64	15/4	30/15	1.5	0.5	

Note1: Δ_{ACK} , Δ_{NACK} and Δ_{CQI} = $8 \leftrightarrow \Delta_{hs} = \beta_{hs}/\beta_c = 30/15 \leftrightarrow \beta_{hs} = 30/15 * \beta_c$

Note2: CM=1 for β_c/β_d =12/15, β_{hs}/β_c =24/15.

Note3: For subtest 2 the $\beta_c\beta_d$ ratio of 12/15 for the TFC during the measurement period(TF1,TF0) is achieved by setting the signaled gain factors for the reference TFC (TFC1,TF1) to β_c =11/15 and β_d =15/15.

5.5.2.5 Release 6 HSUPA Test Configuration

The 3G SAR test reduction procedure is applied to HSPA (HSUPA/HSDPA with RMC) body-worn accessory configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for HSPA using the HSPA body SAR procedures in the "Release 6 HSPA Data Devices" section of this document, for the highest body-worn accessory exposure SAR configuration in 12.2 kbps RMC.

FCC SAR Test Report No.: R2104A0308-S1V2

When VOIP is applicable for next to the ear head exposure in HSPA, the 3G SAR test reduction procedure is applied to HSPA with 12.2 kbps RMC as the primary mode; otherwise, the same HSPA configuration used for body-worn accessory measurements is tested for next to the ear head exposure.

Due to inner loop power control requirements in HSPA, a communication test set is required for output power and SAR tests. The 12.2 kbps RMC, FRC H-set 1 and E-DCH configurations for HSPA are configured according to the β values indicated in Table 2 and other applicable procedures described in the 'WCDMA EUT and 'Release 5 HSDPA Data Devices' sections of this document

Table 5: Sub-Test 5 Setup for Release 6 HSUPA

Sub- set	β _c	β_d	β _d (SF)	β_c/β_d	β _{hs} ⁽¹⁾	$eta_{ ext{ec}}$	$eta_{\sf ed}$	β _{ed} (SF)	β_{ed} (codes)	CM (2) (dB)	MPR (dB)	AG ⁽⁴⁾ Index	E-TFCI
1	11/15 ⁽³⁾	15/15 ⁽³⁾	64	11/15 ⁽³⁾	22/15	209/225	1039/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	311/15	$\beta_{ed1} 47/15$ $\beta_{ed2} 47/15$	4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 ⁽⁴⁾	15/15 ⁽⁴⁾	64	15/15 ⁽⁴⁾	30/15	24/15	134/15	4	1	1.0	0.0	21	81

- Note 1: Δ_{ACK} , $\Delta NACK$ and $\Delta_{CQI} = 8 \Leftrightarrow A_{hs} = \underline{\beta}_{hs}/\underline{\beta}_{c} = 30/15 \Leftrightarrow \underline{\beta}_{hs} = 30/15 *\beta_{c}$.
- Note 2: CM = 1 for $\beta c/\beta d$ =12/15, $\underline{\beta}_{hs}/\underline{\beta}_{c}$ =24/15. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.
- Note 3: For subtest 1 the β c/ β d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to β c = 10/15 and β d = 15/15.
- Note 4: For subtest 5 the $\beta c/\beta d$ ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta c = 14/15$ and $\beta d = 15/15$.
- Note 5: Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Figure 5.1g.
- Note 6: ßed can not be set directly; it is set by Absolute Grant Value.

Table 6: HSUPA UE category

UE E-DCH Category	E-DCH Codes		E- DCH TTI (ms)	Minimum Spreading Factor	Maximum E-DCH Transport Block Bits	Max Rate (Mbps)
1	1	4	10	4	7110	0.7296
•	2	8	2	4	2798	4.4500
2	2	4	10	4	14484	1.4592
3	2	4	10	4	14484	1.4592
	2	8	2	2	5772	2.9185
4	2	4	10	2	20000	2.00
5	2	4	10	2	20000	2.00

FCC SAR Test Report

FCC SAR	Test Report	Report No.: R2104A0308-S1V2				
6	4	8	2		11484	5.76
(No DPDCH)	4	4	10	2 SF2 & 2 SF4	20000	2.00
7	4	8	2	2 SF2 & 2 SF4	22996	?
(No DPDCH)	4	4	10		20000	?

NOTE: When 4 codes are transmitted in parallel, two codes shall be transmitted with SF2 and two with SF4.

UE Categories 1 to 6 supports QPSK only. UE Category 7 supports QPSK and 16QAM. (TS25.306-7.3.0)

5.2.2.1 HSPA, HSPA+ and DC-HSDPA Test Configuration

SAR test exclusion for HSPA, HSPA+ and DC-HSDPA is determined according to the following:

- 1) The HSPA procedures are applied to configure 3GPP Rel. 6 HSPA devices in the required sub-test mode(s) to determine SAR test exclusion.
- 2) SAR is required for Rel. 7 HSPA+ when SAR is required for Rel. 6 HSPA; otherwise, the 3G SAR test reduction procedure is applied to (uplink) HSPA+ with 12.2 kbps RMC as the primary mode.36 Power is measured for HSPA+ that supports uplink 16 QAM according to configurations in Table C.11.1.4 of 3GPP TS 34.121-1 to determine SAR test reduction.
- 3) SAR is required for Rel. 8 DC-HSDPA when SAR is required for Rel. 5 HSDPA; otherwise, the 3G SAR test reduction procedure is applied to DC-HSDPA with 12.2 kbps RMC as the primary mode. Power is measured for DC-HSDPA according to the H-Set 12, FRC configuration in Table C.8.1.12 of 3GPP TS 34.121-1 to determine SAR test reduction. A primary and a secondary serving HS-DSCH Cell are required to perform the power measurement and for the results to be acceptable.
- 4) When the devices supporting HSPA, HSPA+ or DC-HSDPA:
- a) The output power measurement results and applicable release version(s) of 3GPP TS 34.121.
- b) Power measurement difficulties due to test equipment setup or availability must be resolved between the grantee and its test lab.
- c) The power measurement results are in agreement with the individual device implementation and specifications. When Enhanced MPR (E-MPR) applies, the normal MPR targets may be modified according to the Cubic Metric (CM) measured by the device, which must be taken into consideration.
- d) The UE category, operating parameters, such as the β and Δ values used to configure the device for testing, power setback procedures described in 3GGPP TS 34.121 for the power measurements, and HSPA/HSPA+ channel conditions (active and stable) for the entire duration of the measurement according to the required E-TFCI and AG index values.
- 5) When SAR measurement is required, the test configurations, procedures and power measurement results must be clearly described to confirm that the required test parameters are used, including E-TFCI and AG index stability and output power conditions.

Table 7: HS-DSCH UE category

Table 5.1a: FDD HS-DSCH physical layer categories

HS-DSCH category	Maximum number of HS-DSCH codes received	Minimum inter-TTI interval	Maximum number of bits of an HS- DSCH transport block received within an HS-DSCH TTI NOTE 1	Total number of soft channel bits	Supported modulations without MIMO operation or dual cell operation	Supported modulatio ns with MIMO operation and without dual cell operation	Supported modulatio ns with dual cell operation
Category 1	5	3	7298	19200			
Category 2	5	3	7298	28800	1		
Category 3	5	2	7298	28800			
Category 4	5	2	7298	38400	1		
Category 5	5	1	7298	57600	ODCK 4004M		
Category 6	5	1	7298	67200	QPSK, 16QAM		
Category 7	10	1	14411	115200	1	Not	
Category 8	10	1	14411	134400	1	applicable	
Category 9	15	1	20251	172800		(MIMO not supported)	
Category 10	15	1	27952	172800	1		Not applicable
Category 11	5	2	3630	14400	ODOK		
Category 12	5	1	3630	28800	QPSK		
Category 13	15	1	35280	259200	QPSK,		
Category 14	15	1	42192	259200	16QAM, 64QAM		(dual cell operation
Category 15	15	1	23370	345600	QPSK, 16	MAG	not
Category 16	15	1	27952	345600	UPSK, I	QAIVI	supported)
Category 17 NOTE 2	15	1	35280	259200	QPSK, 16QAM, 64QAM	-	capportos
NOTEZ			23370	345600	-	QPSK, 16QAM	
Category 18 NOTE 3	15	1	42192	259200	QPSK, 16QAM, 64QAM	7-	
MOTES	0.000		27952	345600	-	QPSK, 16QAM	
Category 19	15	1	35280	518400	ODEK 400A	STANDOOM VINE	
Category 20	15	1	42192	518400	QPSK, 16QAI	WI, 04QAM	
Category 21	15	1	23370	345600			QPSK,
Category 22	15	1	27952	345600	1		16QAM
Category 23	15	1	35280	518400	-		
Category 24	15	1	42192	518400			16QAM, 64QAM

5.5.3 LTE Test Configuration

LTE modes were tested according to FCC KDB 941225 D05 publication. Please see notes after the tabulated SAR data for required test configurations. Establishing connections with base station simulators ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. The R&S CMW500 was used for LTE output power measurements and SAR testing. Max power control was used so the UE transmits with maximum output power during SAR testing. SAR must be measured with the maximum TTI (transmit time interval) supported by the device in each LTE configuration.

A) Spectrum Plots for RB Configurations

A properly configured base station simulator was used for SAR tests and power measurements. Therefore, spectrum plots for RB configurations were not required to be included in this report.

B) MPR

MPR is permanently implemented for this device by the manufacturer. The specific manufacturer

FCC SAR Test Report Report No.: R2104A0308-S1V2

target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 – 6.2.5 under Table 6.2.3-1.

C)A-MPR

A-MPR (Additional MPR) has been disabled for all SAR tests by setting NS=01 on the base station simulator.

D) Largest channel bandwidth standalone SAR test requirements

1) QPSK with 1 RB allocation

Start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel. When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required for 1 RB allocation; otherwise, SAR is required for the remaining required test channels and only for the RB offset configuration with the highest output power for that channel. When the reported SAR of a required test channel is > 1.45 W/kg, SAR is required for all three RB offset configurations for that required test channel.

2) QPSK with 50% RB allocation

The procedures required for 1 RB allocation in 1) are applied to measure the SAR for QPSK with 50% RB allocation.

3) QPSK with 100% RB allocation

For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation in 1) and 2) are ≤ 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.

4) Higher order modulations

For each modulation besides QPSK; e.g., 16-QAM, 64-QAM, apply the QPSK procedures in above sections to determine the QAM configurations that may need SAR measurement. For each configuration identified as required for testing, SAR is required only when the highest maximum output power for the configuration in the higher order modulation is $> \frac{1}{2}$ dB higher than the same configuration in QPSK or when the reported SAR for the QPSK configuration is > 1.45 W/kg.

E) Other channel bandwidth standalone SAR test requirements

For the other channel bandwidths used by the device in a frequency band, apply all the procedures required for the largest channel bandwidth in section A) to determine the channels and RB configurations that need SAR testing and only measure SAR when the highest maximum output power of a configuration requiring testing in the smaller channel bandwidth is > $\frac{1}{2}$ dB higher than the equivalent channel configurations in the largest channel bandwidth configuration or the *reported* SAR of a configuration for the largest channel bandwidth is > 1.45 W/kg.

5.5.4 Wi-Fi Test Configuration

SAR test reduction for 802.11 Wi-Fi transmission mode configurations are considered separately for DSSS and OFDM. An initial test position is determined to reduce the number of tests required for certain exposure configurations with multiple test positions. An initial test configuration is determined for each frequency band and aggregated band according to maximum output power, channel bandwidth, wireless mode configurations and other operating parameters to streamline the

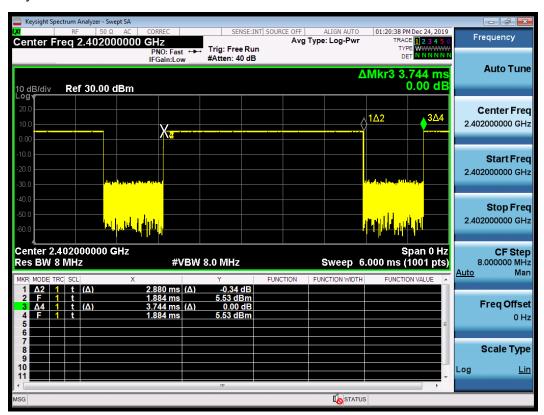
for each frequency band and aggregated band according to maximum output power, channel bandwidth, wireless mode configurations and other operating parameters to streamline the measurement requirements. For 2.4 GHz DSSS, either the initial test position or DSSS procedure is applied to reduce the number of SAR tests; these are mutually exclusive. For OFDM, an initial test position is only applicable to next to the ear, UMPC mini-tablet and hotspot mode configurations, which is tested using the initial test configuration to facilitate test reduction. For other exposure conditions with a fixed test position, SAR test reduction is determined using only the initial test configuration.

The multiple test positions require SAR measurements in head, hotspot mode or UMPC mini-tablet configurations may be reduced according to the highest reported SAR determined using the *initial test position(s)* by applying the DSSS or OFDM SAR measurement procedures in the required wireless mode test configuration(s). The *initial test position(s)* is measured using the highest measured maximum output power channel in the required wireless mode test configuration(s). When the *reported* SAR for the *initial test position* is:

- ≤ 0.4 W/kg, further SAR measurement is not required for the other test positions in that exposure configuration and wireless mode combination within the frequency band or aggregated band. DSSS and OFDM configurations are considered separately according to the required SAR procedures.
- 0.4 W/kg, SAR is repeated using the same wireless mode test configuration tested in the initial test position to measure the subsequent next closet/smallest test separation distance and maximum coupling test position, on the highest maximum output power channel, until the reported SAR is ≤ 0.8 W/kg or all required test positions are tested.
 - → For subsequent test positions with equivalent test separation distance or when exposure is dominated by coupling conditions, the position for maximum coupling condition should be tested.
 - ♦ When it is unclear, all equivalent conditions must be tested.
- For all positions/configurations tested using the *initial test position* and subsequent test positions, when the *reported* SAR is > 0.8 W/kg, measure the SAR for these positions/configurations on the subsequent next highest measured output power channel(s) until the *reported* SAR is ≤ 1.2 W/kg or all required test channels are considered.
 - The additional power measurements required for this step should be limited to those necessary for identifying subsequent highest output power channels to apply the test reduction.

To determine the initial test position, Area Scans were performed to determine the position with the Maximum Value of SAR (measured). The position that produced the highest Maximum Value of SAR is considered the worst case position; thus used as the initial test position.

A Wi-Fi device must be configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools for SAR measurement.

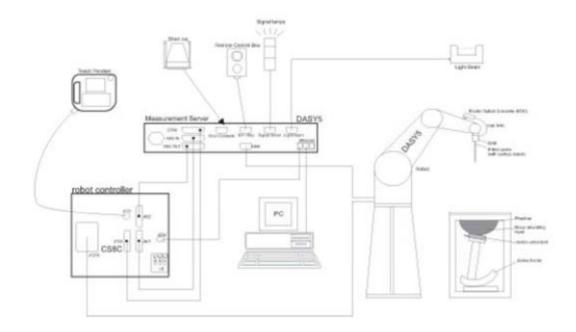


FCC SAR Test Report No.: R2104A0308-S1V2

5.5.5 BT Test Configuration

For BT SAR testing, BT engineering testing software installed on the EUT can provide continuous transmitting RF signal with maximum output power. And the CBT control the EUT operating with hoping off and data rate set for DH5.

The SAR measurement takes full account of the BT duty cycle and is reflected in the report, and the duty factor of the device is as follow:


Note: Duty factor= Ton (ms)/ T(on+off) (ms)=2.880/3.744=76.9%

6 SAR Measurements System Configuration

6.3 SAR Measurement Set-up

The DASY system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- > The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- > The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP or Win7 and the DASY software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

6.4 DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe EX3DV4(manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

EX3DV4 Probe Specification

Construction Symmetrical design with triangular core

Built-in shielding against static charges PEEK enclosure material (resistant to

organic solvents, e.g., DGBE)

Calibration ISO/IEC 17025 calibration

service available

Frequency 10 MHz to > 6 GHz

Linearity: ± 0.2 dB (30 MHz to 6 GHz)

Directivity ± 0.3 dB in HSL (rotation around probe

axis) \pm 0.5 dB in tissue material (rotation

normal to probe axis)

Dynamic 10 μ W/g to > 100 mW/g Linearity: Range \pm 0.2dB (noise: typically < 1 μ W/g) Dimensions Overall length: 330 mm (Tip: 20 mm) Tip

diameter: 2.5 mm (Body: 12 mm)

Typical distance from probe tip to dipole

centers: 1 mm

Application High precision dosimetric

measurements in any exposure Scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6 GHz with precision of better 30%.

Report No.: R2104A0308-S1V2

E-field Probe Calibration

Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy was evaluated and found to be better than \pm 0.25dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1 GHz, and in a wave guide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

SAR=CAT/At

Where: Δt = Exposure time (30 seconds),

C = Heat capacity of tissue (brain or muscle),

 ΔT = Temperature increase due to RF exposure.

Or

SAR=IEI²σ/ρ

Where: σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m³).

6.5 SAR Measurement Procedure

Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Area Scan

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly. Area scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz.

	≤3 GHz	> 3 GHz
Maximum distance from closest		
measurement point (geometric center of	5 ± 1 mm	½·δ·ln(2) ± 0.5 mm
probe sensors) to phantom surface		
Maximum probe angle from probe axis to		
phantom surface normal at the	30° ± 1°	20° ± 1°
measurement location		
	≤ 2 GHz: ≤ 15 mm	3 – 4 GHz: ≤ 12 mm
	2 – 3 GHz: ≤ 12 mm	4 – 6 GHz: ≤ 10 mm
	When the x or y dimens	sion of the test device, in
Maximum area scan spatial resolution:	the measurement plar	ne orientation, is smaller
ΔxArea, ΔyArea	than the above, the m	neasurement resolution
	must be ≤ the correspo	nding x or y dimension of
	the test device with at	least one measurement
	point on the	e test device.

Zoom Scan

Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10 gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label.

Zoom scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz.

			≤3GHz	> 3 GHz	
Maximum zoom	coop coo	tial resolution:△x _{zoom} △y _{zoom}	≤2GHz: ≤8mm	3 – 4GHz: ≤5mm*	
Maximum 200m	і эсап эра		2 – 3GHz: ≤5mm*	4 – 6GHz: ≤4mm*	
Maximum				3 – 4GHz: ≤4mm	
Maximum	Uı	niform grid: $\triangle z_{zoom}(n)$	≤5mm	4 – 5GHz: ≤3mm	
zoom scan				5 – 6GHz: ≤2mm	
spatial		$\triangle z_{zoom}(1)$: between 1 st two		3 – 4GHz: ≤3mm	
resolution,	0	points closest to phantom	≤4mm	4 – 5GHz: ≤2.5mm	
normal to	Graded	surface		5 – 6GHz: ≤2mm	
phantom surface	grid	$\triangle z_{zoom}(n>1)$: between	14.5 \(\)		
Surface		subsequent points	≤1.5•∆z _{zoom} (n-1)		
Minimum				3 – 4GHz: ≥28mm	
zoom scan		X, y, z	≥30mm	4 – 5GHz: ≥25mm	
volume				5 – 6GHz: ≥22mm	

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drifts more than 5%, the SAR will be retested.

^{*} When zoom scan is required and the <u>reported</u> SAR from the <u>area scan based 1-g SAR estimation</u> procedures of KDB 447498 is ≤ 1.4W/kg, ≤8mm, ≤7mm and ≤5mm zoom scan resolution may be applied, respectively, for 2GHz to 3GHz, 3GHz to 4GHz and 4GHz to 6GHz.

7 Main Test Equipment

Equipment	Manufacturer	Model	SN	Cal. Data	Cal.
System Validation Dipole	SPEAG	D835V2	4d242	Jun. 06, 2018	3 years
System Validation Dipole	SPEAG	D1900V2	5d229	Jun. 12, 2018	3 years
System Validation Dipole	SPEAG	D2450V2	1014	Jun. 07, 2018	3 years
System Validation Dipole	SPEAG	D2600V2	1153	Jun. 07, 2018	3 years
Dosimetric E-Field Probe	SPEAG	EX3DV4	7506	Jun. 27, 2019	1 year
Data Acquisition Electronics	SPEAG	DAE4	1557	Jun. 18, 2019	1 year
Radio Communication Analyzer	Anritsu	MT8820C	6200918396	Nov. 24, 2019	1 Year
ENA Series Network Analyzer	Agilent	8753ES	US39170317	Nov. 24, 2019	1 Year
Dielectric Assessment Kit	SPEAG	DAK-3.5	1056	N/A	N/A
USB/GPIB Interface	Agilent	82357B	N10149	N/A	N/A
Signal Generator	R&S	SMT06	100796	May. 14, 2019	1 Year
Signal Generator	R&S	SMB100A	103718	Nov. 24, 2019	1 Year
POWER METER	R&S	NRP	101293	Nov. 24, 2019	1 Year
Thermometer	Shanghai Gao Zhi Precision Instrument	HB6801	120100323	May. 16, 2019	1 Year
	Co., Ltd.				
Coupler	REBES	TC-05180-10S	161221001	N/A	N/A
Amplifier	Mini-Circuit	ZHL42	QA1252001	N/A	N/A
DC Source	Agilent	66319B	MY43000795	N/A	N/A

8 Tissue Dielectric Parameter Measurements & System Verification

8.3 Tissue Verification

The temperature of the tissue-equivalent medium used during measurement must also be within 18° C to 25° C and within \pm 2° C of the temperature when the tissue parameters are characterized. The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements. The parameters should be re-measured after each 3-4 days of use; or earlier if the dielectric parameters can become out of tolerance.

Target values

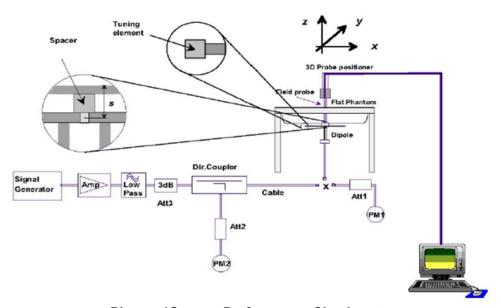
Frequency (MHz)	Water (%)	Salt (%)	Sugar (%)	Glycol (%)	Preventol (%)	Cellulose (%)	٤r	σ(s/m)
835	41.45	1.45	56	0	0.1	1.0	41.5	0.90
1900	55.242	0.306	0	44.452	0	0	40.0	1.40
2450	62.7	0.5	0	36.8	0	0	39.2	1.80
2600	55.242	0.306	0	44.452	0	0	39.0	1.96

CC SAR Test Report No.: R2104A0308-S1V2

Measurements results

Frequen				Dielectric		ielectric	Limit	
су	Test Date	Temp	Paran	neters	Paran	neters	(Within ±5%)	
(MHz)		℃	σ(s/m)	٤r	σ(s/m)	٤r	Dev	Dev
()			0 (0/111)	er er	O (O/III)	∽ r	ε _r (%)	σ(%)
835	Mar. 27, 2020	21.5	0.93	41.23	0.90	41.50	2.78	-0.65
1900	Mar. 28, 2020	21.5	1.46	39.26	1.40	40.00	3.93	-1.84
1900	Mar. 29, 2020	21.5	1.46	39.26	1.40	40.00	3.93	-1.84
2450	Mar. 24, 2020	21.5	1.83	37.99	1.80	39.20	1.50	-3.08
2600	Mar. 25, 2020	21.5	1.95	37.71	1.96	39.00	-0.61	-3.30

Note: The depth of tissue-equivalent liquid in a phantom must be \geq 15.0 cm for SAR measurements \leq 3 GHz and \geq 10.0 cm for measurements > 3 GHz.



FCC SAR Test Report Report No.: R2104A0308-S1V2

8.4 System Performance Check

The manufacturer calibrates the probes annually. Dielectric parameters of the tissue simulates were measured using the dielectric probe kit and the network analyzer. A system check measurement for every day was made following the determination of the dielectric parameters of the Tissue simulates, using the dipole validation kit. The dipole antenna was placed under the flat section of the twin SAM phantom.

System check is performed regularly on all frequency bands where tests are performed with the DASY system.

Picture 1System Performance Check setup

Picture 2 Setup Photo

CC SAR Test Report No.: R2104A0308-S1V2

Justification for Extended SAR Dipole Calibrations

Usage of SAR dipoles calibrated less than 3 years ago but more than 1 year ago were confirmed in maintaining return loss (< - 20 dB, within 20% of prior calibration) and impedance (within 5 ohm from prior calibration) requirements per extended calibrations in KDB 865664 D01:

Dipole		Date of Measurement	Return Loss(dB)	Δ%	Impedance (Ω)	ΔΩ
Dipole		8/28/2017	-31.9	/	50.3	/
D835V2	Head Liquid	8/27/2018	-29.0	10.0	46.6	3.7
SN: 4d020	Liquid	8/26/2019	-29.4	-1.4	45.9	0.7
Dipole		8/26/2017	-23.4	/	52.0	/
D1900V2	Head Liquid	8/25/2018	-24.7	-5.3	54.4	-2.4
SN: 5d060	Liquid	8/24/2019	-24.9	-0.8	56.2	-1.8
Dipole	I I a a al	8/29/2017	-25.5	/	53.4	1
D2450V2	Head Liquid	8/28/2018	-23.0	10.9	57.2	-3.8
SN: 786	Liquid	8/27/2019	-22.2	3.6	56.4	8.0
Dipole	Head	5/2/2018	-22.0	/	48.1	/
D2600V2 SN: 1025	Liquid	5/1/2019	-22.5	-2.2	48.7	-0.6

System Check results

Frequency (MHz)	Test Date	Temp ℃	Measured SAR _{1g} (W/kg)	Normalized SAR _{1g} (W/kg)	Target SAR _{1g} (W/kg)	Δ % (Limit ±10%)
835	Mar. 27, 2020	21.5	2.30	9.20	9.21	-0.11
1000	Mar. 28, 2020	21.5	9.87	39.48	39.90	-1.05
1900	Mar. 29, 2020	21.5	9.96	39.84	39.90	-0.15
2450	Mar. 24, 2020	21.5	13.00	52.00	51.40	1.17
2600	Mar. 25, 2020	21.5	13.90	55.60	56.00	-0.71
Note: Target	Values used derive	from the	e calibration ce	rtificate Data St	orage and Eva	luation.

9 Normal and Maximum Output Power

KDB 447498 D01 at the maximum rated output power and within the tune-up tolerance range specified for the product, but not more than 2 dB lower than the maximum tune-up tolerance limit.

9.3 GSM Mode

Main-Antenna

		Burst-Ave	eraged or	itnut nov	rer(dRm)		Frame-A	veraged o	output pov	ver(dRm)
		Tune-up			, ,	Division	Tune-up		el/Frenguc	,
GSN	Л 850	Turie-up	up Channel/Frenqucy(MHz) 128 190 251			Factors	Turie-up			,
		MAX	/824.2	/836.6	/848.8	1 actors	MAX	128 /824.2	190 /836.6	251 /848.8
0014	-00	22.0				0.00	04.0			
GSM	CS	33.0	32.83	32.71	32.60	9.03	24.0	23.83	23.71	23.60
GPRS/ EGPRS 1 Tx Slots	1 Tx Slot	33.0	32.82	32.69	32.59	9.03	24.0	23.82	23.69	23.59
	2 Tx Slots	31.5	31.14	31.13	31.06	6.02	25.5	25.14	25.13	25.06
(GMSK)	3 Tx Slots	29.5	29.20	29.08	28.98	4.26	25.2	24.94	24.82	24.72
(Giviort)	4 Tx Slots	28.5	28.17	28.05	27.97	3.01	25.5	25.17	25.05	24.97
	1 Tx Slot	27.5	27.34	27.24	27.05	9.03	18.5	18.34	18.24	18.05
EGPRS	2 Tx Slots	26.5	26.17	26.05	25.92	6.02	20.5	20.17	20.05	19.92
(8PSK)	3 Tx Slots	24.0	23.82	23.71	23.51	4.26	19.7	19.56	19.45	19.25
	4 Tx Slots	23.0	22.68	22.63	22.57	3.01	20.0	19.68	19.63	19.57
		Burst-Averaged output power(dBm)								
		Burst-Ave	eraged ou	utput pow	ver(dBm)		Frame-A	veraged o	output pov	ver(dBm)
GSM	1 1000	Burst-Ave		utput pow	, ,	Division	Frame-A Tune-up		output pov el/Frenquo	,
GSM	l 1900	Tune-up			, ,	Division Factors	Tune-up			,
GSM	l 1900		Channe	l/Frenqu	cy(MHz)			Channe	el/Frenquo	cy(MHz)
GSM GSM	I 1900 CS	Tune-up	Channe 512	l/Frenque	810		Tune-up	Channe 512	el/Frenquo	810
GSM		Tune-up MAX	Channe 512 /1850.2	661 /1880	810 /1909.8	Factors	Tune-up MAX	Channe 512 /1850.2	661 /1880	810 /1909.8
GSM GPRS/	CS	Tune-up MAX 30.0	Channe 512 /1850.2 29.75	661 /1880 29.78	810 /1909.8 29.61	Factors 9.03	Tune-up MAX 21.0	Channe 512 /1850.2 20.75	661 /1880 20.78	810 /1909.8 20.61
GSM GPRS/ EGPRS	CS 1 Tx Slot	Tune-up MAX 30.0 30.0	Channe 512 /1850.2 29.75 29.74	661 /1880 29.78 29.77	810 /1909.8 29.61 29.60	9.03 9.03	Tune-up MAX 21.0 21.0	Channe 512 /1850.2 20.75 20.74	661 /1880 20.78	810 /1909.8 20.61 20.60
GSM GPRS/	CS 1 Tx Slot 2 Tx Slots	Tune-up MAX 30.0 30.0 28.5	Channe 512 /1850.2 29.75 29.74 28.22	661 /1880 29.78 29.77 28.25	810 /1909.8 29.61 29.60 28.10	9.03 9.03 6.02	Tune-up MAX 21.0 21.0 22.5	Channe 512 /1850.2 20.75 20.74 22.22	661 /1880 20.78 20.77 22.25	810 /1909.8 20.61 20.60 22.10
GSM GPRS/ EGPRS	CS 1 Tx Slot 2 Tx Slots 3 Tx Slots	Tune-up MAX 30.0 30.0 28.5 26.5	Channe 512 /1850.2 29.75 29.74 28.22 26.19	661 /1880 29.78 29.77 28.25 26.25	810 /1909.8 29.61 29.60 28.10 26.12	9.03 9.03 6.02 4.26	Tune-up MAX 21.0 21.0 22.5 22.2	Channe 512 /1850.2 20.75 20.74 22.22 21.93	661 /1880 20.78 20.77 22.25 21.99	810 /1909.8 20.61 20.60 22.10 21.86
GSM GPRS/ EGPRS	CS 1 Tx Slot 2 Tx Slots 3 Tx Slots 4 Tx Slots	Tune-up MAX 30.0 30.0 28.5 26.5 25.5	Channe 512 /1850.2 29.75 29.74 28.22 26.19 25.26	661 /1880 29.78 29.77 28.25 26.25 25.35	810 /1909.8 29.61 29.60 28.10 26.12 25.24	9.03 9.03 6.02 4.26 3.01	Tune-up MAX 21.0 21.0 22.5 22.2 22.5	Channe 512 /1850.2 20.75 20.74 22.22 21.93 22.26	661 /1880 20.78 20.77 22.25 21.99 22.35	810 /1909.8 20.61 20.60 22.10 21.86 22.24
GSM GPRS/ EGPRS (GMSK)	CS 1 Tx Slot 2 Tx Slots 3 Tx Slots 4 Tx Slots 1 Tx Slot	Tune-up MAX 30.0 30.0 28.5 26.5 25.5 27.0	Channe 512 /1850.2 29.75 29.74 28.22 26.19 25.26 26.38	661 /1880 29.78 29.77 28.25 26.25 25.35 26.39	810 /1909.8 29.61 29.60 28.10 26.12 25.24 26.62	9.03 9.03 6.02 4.26 3.01 9.03	Tune-up MAX 21.0 21.0 22.5 22.2 22.5 18.0	Channe 512 /1850.2 20.75 20.74 22.22 21.93 22.26 17.38	661 /1880 20.78 20.77 22.25 21.99 22.35 17.39	810 /1909.8 20.61 20.60 22.10 21.86 22.24 17.62

Notes: The worst-case configuration and mode for SAR testing is determined to be as follows:

^{1.} Standalone: GSM 850 GMSK (GPRS) mode with 4 time slots for Max power, GSM 1900 GMSK (GPRS) mode with 4 time slots for Max power, based on the output power measurements above.

9.4 WCDMA Mode

The following tests were completed according to the test requirements outlined in the 3GPP TS34.121 specification.

Main-Antenna

WC	DMA		Band II(dBm) Band V(dBm)						
Tx Channel		9262	9400	9538	Tune-up	4132	4183	4233	Tune-up
Frequency(MHz)		1852.4	1880	1907.6	Limit	826.4	836.6	846.6	Limit
RMC	12.2kbps	22.65	22.67	22.72	23.0	22.85	22.84	22.86	23.0
	Sub 1	21.44	21.46	21.51	22.0	21.64	21.63	21.65	22.0
HSDPA	Sub 2	21.42	21.41	21.48	22.0	21.62	21.60	21.63	22.0
ПЗДРА	Sub 3	20.91	20.92	21.04	21.5	21.13	21.16	21.12	21.5
	Sub 4	20.96	20.94	20.99	21.5	21.14	21.16	21.12	21.5
	Sub 1	21.43	21.35	21.37	22.0	21.63	21.57	21.64	22.0
	Sub 2	19.16	19.18	19.23	20.0	19.36	19.35	19.37	20.0
HSUPA	Sub 3	20.18	20.20	20.25	21.0	20.38	20.37	20.39	21.0
	Sub 4	19.33	19.35	19.40	20.0	19.53	19.52	19.54	20.0
	Sub 5	21.62	21.65	21.70	22.0	21.83	21.82	21.84	22.0

Note: 1.Per KDB 941225 D01, SAR for each exposure is measured using a 12.2 kbps RMC with TPC bits configured to all "1's".

CC SAR Test Report No.: R2104A0308-S1V2

9.5 LTE Mode

UE Power Class: 3 (23 +/- 2dBm). The allowed Maximum Power Reduction (MPR) for the maximum output power due to higher order modulation and transmit bandwidth configuration (resource blocks) is specified in Table 6.2.3-1 of the 3GPP TS36.101.

Table 6.2.3-1: Maximum Power Reduction (MPR) for Power Class 3

Modulation	Cha	Channel bandwidth / Transmission bandwidth (N_{RB})									
	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz					
QPSK	> 5	> 4	> 8	> 12	> 16	> 18	≤ 1				
16 QAM	≤ 5	≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	≤ 1				
16 QAM	> 5	> 4	> 8	> 12	> 16	> 18	≤ 2				

Main-Antenna

LTE FDD Band 2				Conducted Power(dBm)			Tune-up
Bandwidth	Modulation	RB size	RB offset	Channel/Frequency (MHz)			Limit
				18607/1850.7	18900/1880	19193/1909.3	LIIIII
1.4MHz	QPSK	1	0	22.46	22.33	22.34	23.5
		1	2	22.81	22.82	22.84	23.5
		1	5	22.40	22.15	22.34	23.5
		3	0	22.79	22.61	22.63	23.5
		3	2	22.73	22.52	22.71	23.5
		3	3	22.72	22.58	22.64	23.5
		6	0	21.66	21.69	21.77	22.5
	16QAM	1	0	21.97	21.77	21.94	22.5
		1	2	21.88	21.66	21.73	22.5
		1	5	21.82	21.79	21.71	22.5
		3	0	21.75	21.50	21.67	22.5
		3	2	21.71	21.51	21.61	22.5
		3	3	21.61	21.51	21.65	22.5
		6	0	20.70	20.74	20.65	21.5
Bandwidth	Modulation	RB size	RB offset	Channel/Frequency (MHz)			Tune-up
				18615/1851.5	18900/1880	19185/1908.5	Limit
3MHz	QPSK	1	0	22.32	22.23	22.26	23.5
		1	7	22.75	22.75	22.79	23.5
		1	14	22.24	22.16	22.21	23.5
		8	0	21.69	21.60	21.73	22.5
		8	4	21.69	21.67	21.65	22.5
		8	7	21.60	21.68	21.78	22.5
		15	0	21.65	21.55	21.72	22.5
	16QAM	1	0	21.98	21.77	21.78	22.5
		1	7	21.80	21.72	21.71	22.5
		1	14	21.73	21.81	21.82	22.5
		8	0	20.64	20.61	20.66	21.5

TA Technology (Shanghai) Co., Ltd.

TA-MB-05-003S

Page 34 of 61

20.67 20.58 8 4 20.58 21.5 20.67 20.53 20.65 21.5 8 7 15 0 20.83 20.57 20.75 21.5 Channel/Frequency (MHz) Tune-up **Bandwidth** Modulation RB size **RB** offset 18625/1852.5 18900/1880 19175/1907.5 Limit 1 0 22.47 22.25 22.33 23.5 22.65 1 13 22.86 22.84 23.5 1 24 22.35 22.15 22.30 23.5 **QPSK** 12 21.56 21.74 22.5 0 21.62 21.76 12 6 21.60 21.61 22.5 12 13 21.77 21.62 21.67 22.5 25 0 21.59 21.71 22.5 21.75 5MHz 1 0 21.91 21.70 21.79 22.5 1 13 21.70 21.76 21.79 22.5 1 24 21.75 21.65 21.85 22.5 12 20.57 16QAM 0 20.74 20.65 21.5 20.56 20.59 12 6 20.70 21.5 12 13 20.70 20.42 20.65 21.5 0 25 20.80 20.62 20.77 21.5 Channel/Frequency (MHz) Tune-up Modulation RB size **Bandwidth RB** offset 18650/1855 18900/1880 19150/1905 Limit 1 0 22.41 22.27 22.38 23.5 25 22.80 1 22.91 22.68 23.5 22.28 1 49 22.31 22.31 23.5 21.77 21.53 **QPSK** 25 0 21.66 22.5 13 25 21.70 21.60 21.64 22.5 25 25 22.5 21.66 21.59 21.72 21.70 21.68 21.77 22.5 50 0 10MHz 1 0 21.86 21.79 21.96 22.5 1 25 21.71 21.61 21.82 22.5 1 22.5 49 21.73 21.64 21.82 16QAM 25 0 20.62 20.66 20.73 21.5 25 13 20.68 20.60 20.54 21.5 25 25 20.63 20.55 20.54 21.5 0 20.64 50 20.66 20.77 21.5 Channel/Frequency (MHz) Tune-up **Bandwidth** Modulation RB size **RB** offset 18675/1857.5 18900/1880 19125/1902.5 Limit 1 0 22.40 22.32 22.33 23.5 1 38 22.73 22.79 22.79 23.5 74 22.42 22.31 22.27 1 23.5 **QPSK** 15MHz 22.5 36 0 21.74 21.68 21.63 36 18 21.62 21.71 22.5 21.68 36 39 21.67 21.69 22.5 21.65

Report No.: R2104A0308-S1V2 75 0 21.62 21.67 22.5 21.66 0 21.84 21.78 21.91 22.5 1 1 38 21.87 21.68 21.82 22.5 1 74 22.5 21.87 21.69 21.77 16QAM 36 0 20.70 20.63 20.71 21.5 36 18 20.55 20.58 20.58 21.5 39 20.69 20.59 20.63 21.5 36 20.56 75 0 20.65 20.75 21.5 Channel/Frequency (MHz) Tune-up **Bandwidth** Modulation RB size **RB** offset 18900/1880 18700/1860 19100/1900 Limit 0 22.48 22.38 22.45 23.5 1 50 22.93 22.83 22.90 23.5 1 99 22.43 22.33 22.40 23.5 21.72 21.79 **QPSK** 50 0 21.82 22.5 50 25 21.79 21.69 21.76 22.5 50 50 21.80 21.74 21.81 22.5 21.81 100 0 21.71 21.78 22.5 20MHz 0 21.99 21.89 22.5 1 21.96 1 50 21.79 21.89 21.86 22.5 1 99 21.92 21.82 22.5 21.89 50 0 20.80 20.70 20.77 16QAM 21.5 50 25 20.74 20.64 20.71 21.5 50 50 20.72 20.62 20.69 21.5 100 0 20.85 20.75 20.82 21.5

LTE FDD Band 7				Conducted Power(dBm)			Tungun
Bandwidth	Modulation	RB size	RB offset	Channel/Frequency (MHz)			Tune-up Limit
				20775/2502.5	21100/2535	21425/2567.5	
5MHz	QPSK	1	0	21.73	21.72	21.78	23.0
		1	13	21.98	22.16	21.93	23.0
		1	24	21.88	21.79	21.79	23.0
		12	0	20.98	21.15	21.07	22.0
		12	6	20.98	21.15	21.09	22.0
		12	13	20.91	20.96	20.96	22.0
		25	0	21.07	21.10	20.98	22.0
	16QAM	1	0	20.98	21.14	21.00	22.0
		1	13	21.08	20.98	21.06	22.0
		1	24	21.04	21.01	21.07	22.0
		12	0	19.99	20.12	19.94	21.0
		12	6	19.97	20.13	20.09	21.0
		12	13	20.00	19.91	20.05	21.0
		25	0	20.15	20.05	20.12	21.0

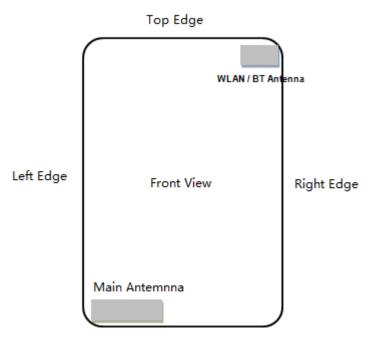
100	SAR Test Report			0.1		Report No.: R2104A0	
Bandwidth	Modulation	RB size	RB offset			,	Tune-up
		4	0				Limit
							23.0
							23.0
	0.0014						23.0
	QPSK						22.0
			20800/2505 21100/2535 21400/2 0 21.75 21.62 21.84 25 22.09 22.15 21.97 49 21.87 21.86 21.92 0 21.06 21.17 21.06 13 20.99 21.06 21.02 25 20.90 20.95 21.00 0 21.11 20.96 21.11 0 21.02 21.04 21.05 25 20.97 20.98 20.94 49 21.01 21.02 20.94 0 19.97 20.03 20.04 13 20.07 20.09 19.93 25 19.99 19.99 20.05 0 20.09 20.18 20.06 25 19.99 19.99 20.05 0 20.09 20.18 20.06 20 20 21.66 21.87 38 21.98 22.26 22.04 74 21.92 21.73 21.85 0 21.01 20.98 20.95 0 21.01 20.98 20.95 0 21.01 20.98 20.95 0 21.13 21.08 21.07 18 21.11 21.09 20.05 0 21.13 21.08 21.07 0 21.13 21.08 21.07 18 20.11 20.99 20.05 0 21.88 21.78 21.85 0 21.88 21.78 21.85 0 21.16 21.17 21.15 25 21.12 21.15 21.14 0 21.14 21.15 21.14 0 21.14 21.16 21.15 0 21.14 21.16 21.15 0 21.14 21.16 21.15 0 21.14 21.18 21.15 0 21.14 21.1		22.0		
							22.0
10MHz							22.0
			_				22.0
							22.0
	400414						22.0
	16QAM		-				21.0
							21.0
							21.0
		50	0				21.0
Bandwidth	Modulation	RB size	RB offset		. ,	,	Tune-up
							Limit
			_				23.0
							23.0
		1		23.0			
	QPSK					21400/2565 21.84 21.97 21.92 21.01 21.02 21.00 21.11 21.05 20.94 20.91 20.04 19.93 20.05 20.06 (MHz) 21375/2562.5 21.82 22.04 21.89 21.13 21.02 21.03 20.95 21.04 21.11 20.96 20.09 20.04 19.87 20.09 (MHz) Tu 21350/2560 21.85 22.13 21.15 21.15 21.14 21.03 21.15	22.0
							22.0
							22.0
15MHz							22.0
			_				22.0
		1	38	21.07	21.14	21.11	22.0
		-					22.0
	16QAM		-				21.0
							21.0
							21.0
		75	0				21.0
Bandwidth	Modulation	RB size	RB offset		. ,	,	Tune-up
							Limit
							23.0
							23.0
			99		21.87	21.98	23.0
	QPSK	50					22.0
20MHz		50	25			21.14	22.0
		50	50	21.08	21.14	21.03	22.0
		100	0	21.12	21.16	21.13	22.0
10MHz QPSK 25 25 25 25 25 25 25 2	1	0	21.14	21.18	21.15	22.0	
	1 J G/ (IVI	1	50	21.11	21.15	21.12	22.0

FCC SAR Test Report Report No.: R2104A0308-S1V2

1	99	21.08	21.12	21.09	22.0
50	0	20.12	20.16	20.13	21.0
50	25	20.11	20.15	20.12	21.0
50	50	20.05	20.09	20.06	21.0
100	0	20.16	20.20	20.17	21.0

9.6 WLAN Mode

Wi-Fi 2.4G	Channal	Maxi	imum Output Power (d	IBm)
WI-FI 2.4G	Channel /Frequency(MHz)	Tune-up	Meas.	TP Set Level
Mode	, , , , , , , , , , , , , , , , , , ,	rano ap	Wiodo.	11 000 2000
000 446	1/2412	16.50	15.85	19.00
802.11b (1M)	6/2437	16.50	16.28	19.00
(1101)	11/2462	16.50	16.35	19.00
000.44	1/2412	13.00	12.06	17.00
802.11g (6M)	6/2437	13.00	14.42	17.00
(OIVI)	11/2462	13.00	12.68	17.00
000 44 UT00	1/2412	13.00	12.29	17.00
802.11n-HT20 (MCS0)	6/2437	13.00	14.47	17.00
(IVICSO)	11/2462	13.00	12.47	17.00
000 44 11740	3/2422	13.00	10.90	16.50
802.11n-HT40 (MCS0)	6/2437	13.00	14.26	16.50
(IVICSU)	9/2452	13.00	11.01	16.50
Note: Initial test config	uration is 802.11b mod	e.		


9.7 Bluetooth Mode

	C	onducted Power(dBr	n)	T
ВТ	Ch	Tune-up Limit (dBm)		
	Ch 0/2402 MHz	Ch 39/2441 MHz	Ch 78/2480 MHz	Lillit (dBill)
GFSK	5.47	7.08	5.71	7.50
π/4DQPSK	4.60	6.33	5.05	7.00
8DPSK	4.84	6.54	5.10	7.00
BLE	Ch 0/2402 MHz	Ch 19/2440 MHz	Ch 39/2480 MHz	Tune-up Limit (dBm)
GFSK	2.58	4.35	2.97	5.00

10 Measured and Reported (Scaled) SAR Results

10.1 EUT Antenna Locations

Bottom Edge

	Overall (Length x Width): 146 mm x 74 mm										
Overall Diagonal: 163 mm											
Distance of the Antenna to the EUT surface/edge											
Antenna	Antenna Back Side Front side Left Edge Right Edge Top Edge Bottom Edge										
Main-Antenna	Main-Antenna <25mm <25mm <25mm >25mm >25mm <25mm										
BT/Wi-Fi Antenna	<25mm	<25mm	>25mm	<25mm	<25mm	>25mm					
	Hotspot m	node, Position	s for SAR tes	sts							
Mode	Back Side	Front side	Left Edge	Right Edge	Top Edge	Bottom Edge					
Main-Antenna	Main-Antenna Yes Yes Yes N/A N/A Yes										
BT/Wi-Fi Antenna	Yes	Yes	N/A	Yes	Yes	N/A					

Note: 1. Per KDB 941225 D06, when the overall device length and width are ≥ 9cm*5cm, the test distance is 10mm. SAR must be measured for all sides and surfaces with a transmitting antenna located within 25mm from that surface or edge.

- 2.For smart phones with an overall diagonal dimension is 165.5mm.Per KDB 648474 D04, for smart phones with a display diagonal dimension > 15.0 cm or an overall diagonal dimension > 16.0 cm, product specific 10-g SAR must be tested as a phablet to determine SAR compliance.For Phablet, Since hotspot mode 1-g *reported* SAR < 1.2 W/kg, product specific 10-g SAR is no required.
- 3. Per FCC KDB 447498 D01,

for each exposure position, testing of other requised channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:

- a) ≤0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100MHz
- b) ≤0.6 W/kg or 1.5 W/kg, for1-g or 10-g respectively, when the transmission band is between 100 MHz and

200 MHz.

c) \leq 0.4 W/kg or 1.0 Wkg, for 1-g or 10-g respectively, when the transmission band is \geq 200 MHz.

- 4. When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once.
- 5. Per FCC KDB Publication 648474 D04, SAR was evaluated without a headset connected to the device. Since the reported SAR was ≤ 1.2 W/kg, no additional SAR evaluations using a headset cable were required.

CC SAR Test Report No.: R2104A0308-S1V2

10.2 Standalone SAR test exclusion considerations

Per KDB 447498 D01, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for product specific 10-g SAR

- > f(GHz) is the RF channel transmit frequency in GHz
- > Power and distance are rounded to the nearest mW and mm before calculation
- > The result is rounded to one decimal place for comparison

Per KDB 447498 D01, when the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

Bluetooth	Distance (mm)	MAXPower (dBm)	Frequency (MHz)	Ratio	Evaluation
Head	5	7.50	2480	1.77	No
Body-worn	10	7.50	2480	0.89	No
Hotspot	10	7.50	2480	0.89	No

10.3 Measured SAR Results

Table 8: GSM 850 (Main-antenna)

Toot	C	Times		T	Measured	Limi	t of SAR 1.6	W/kg (mV	/ /g)	Diet
Test Position	Cover Type	Time slot	Channel	Tune-up (dBm)	power	Power	Measured	Scaling	Report	Plot No.
	-71			()	(dBm)	Drift (dB)	SAR1g	Factor	SAR1g	
				Head	d SAR					
Right Cheek	standard	4 Tx Slots	128	28.5	28.17	-0.01	0.321	1.08	0.35	1
Right Tilted	standard	4 Tx Slots	128	28.5	28.17	0.08	0.218	1.08	0.24	/
Left Cheek	standard	4 Tx Slots	128	28.5	28.17	-0.09	0.368	1.08	0.40	P01
Left Tilted	standard	4 Tx Slots	128	28.5	28.17	0.15	0.224	1.08	0.24	1
Left Cheek	SIM 2	4 Tx Slots	128	28.5	28.17	0.02	0.361	1.08	0.39	1
			Body-	worn SAR	(Distance 1	0mm)				
Front Face	standard	4 Tx Slots	128	28.5	28.17	0.03	0.43	1.08	0.46	1
Rear Face	standard	4 Tx Slots	128	28.5	28.17	-0.04	0.635	1.08	0.69	P08
Rear Face	SIM 2	4 Tx Slots	128	28.5	28.17	0.03	0.626	1.08	0.68	1
			Hot	spot SAR(Distance 10	mm)				
Front Face	standard	4 Tx Slots	128	28.5	28.17	0.03	0.43	1.08	0.46	1
Rear Face	standard	4 Tx Slots	128	28.5	28.17	-0.04	0.635	1.08	0.69	1
Left Side	standard	4 Tx Slots	128	28.5	28.17	0.01	0.416	1.08	0.45	1
Right Side	standard	4 Tx Slots	128	28.5	28.17	0.05	0.37	1.08	0.40	/
Top Side	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Bottom Side	standard	4 Tx Slots	128	28.5	28.17	0.05	0.164	1.08	0.18	1
Rear Face	SIM 2	4 Tx Slots	128	28.5	28.17	0.03	0.626	1.08	0.68	1

Note: 1.The value with blue color is the maximum SAR Value of each test band.

2. When multiple slots are used, SAR should be tested to account for the maximum source-based time-averaged output power.

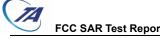


Table 9: GSM 1900(Main-antenna)

Table 5.	GOINI 190	o(mani an	tomaj							
Test	Cover	Time		Tune-up	Measured	Limi	it of SAR 1.6	W/kg (mV	V/g)	Plot
Position	Type	slot	Channel	(dBm)	power	Power	Measured	Scaling	Report	No.
Fosition	туре	SIOL		(dBiii)	(dBm)	Drift (dB)	SAR1g	Factor	SAR1g	140.
				Head	d SAR					
Right Cheek	standard	4 Tx Slots	661	25.5	25.35	0.01	0.198	1.04	0.20	/
Right Tilted	standard	4 Tx Slots	661	25.5	25.35	0.12	0.123	1.04	0.13	/
Left Cheek	standard	4 Tx Slots	661	25.5	25.35	-0.09	0.351	1.04	0.36	P02
Left Tilted	standard	4 Tx Slots	661	25.5	25.35	0.09	0.077	1.04	0.08	/
Left Cheek	SIM 2	4 Tx Slots	661	25.5	25.35	-0.02	0.334	1.04	0.35	/
			Body-	worn SAR	(Distance 1	0mm)				
Front Face	standard	4 Tx Slots	661	25.5	25.35	-0.07	0.428	1.04	0.44	/
Rear Face	standard	4 Tx Slots	661	25.5	25.35	0.04	0.432	1.04	0.45	P09
Rear Face	SIM 2	4 Tx Slots	661	25.5	25.35	-0.02	0.424	1.04	0.44	/
			Hot	spot SAR(Distance 10	mm)				
Front Face	standard	4 Tx Slots	661	25.5	25.35	-0.07	0.428	1.04	0.44	/
Rear Face	standard	4 Tx Slots	661	25.5	25.35	0.04	0.432	1.04	0.45	/
Left Side	standard	4 Tx Slots	661	25.5	25.35	0.09	0.268	1.04	0.28	/
Right Side	standard	4 Tx Slots	661	25.5	25.35	0.00	0.05	1.04	0.05	/
Top Side	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Bottom Side	standard	4 Tx Slots	661	25.5	25.35	-0.06	0.513	1.04	0.53	P15
Rear Face	SIM 2	4 Tx Slots	661	25.5	25.35	-0.02	0.424	1.04	0.44	/

Note: 1.The value with blue color is the maximum SAR Value of each test band.

2. When multiple slots are used, SAR should be tested to account for the maximum source-based time-averaged output power.

Table 10: UMTS Band II (Main-antenna)

10.010		and ii (iviali		· /						
Test	Cover	Time		Tune-up	Measured	Limi	t of SAR 1.6	W/kg (mV	V/g)	Plot
Position		slot	Channel	(dBm)	power	Power	Measured	Scaling	Report	No.
Position	Туре	SIOL		(ивііі)	(dBm)	Drift (dB)	SAR1g	Factor	SAR1g	NO.
				Head	d SAR					
Right Cheek	standard	RMC 12.2K	9538	23.0	22.72	0.06	0.272	1.07	0.29	/
Right Tilted	standard	RMC 12.2K	9538	23.0	22.72	-0.07	0.19	1.07	0.20	/
Left Cheek	standard	RMC 12.2K	9538	23.0	22.72	-0.01	0.45	1.07	0.48	P03
Left Tilted	standard	RMC 12.2K	9538	23.0	22.72	0.00	0.094	1.07	0.10	/
Left Cheek	SIM 2	RMC 12.2K	9538	23.0	22.72	0.02	0.431	1.07	0.46	/
			Body-	worn SAR	(Distance 1	0mm)				
Front Face	standard	RMC 12.2K	9538	23.0	22.72	-0.03	0.525	1.07	0.56	/
Rear Face	standard	RMC 12.2K	9538	23.0	22.72	-0.08	0.586	1.07	0.63	P10
Rear Face	SIM 2	RMC 12.2K	9538	23.0	22.72	-0.02	0.571	1.07	0.61	/
			Hot	spot SAR(Distance 10	mm)				
Front Face	standard	RMC 12.2K	9538	23.0	22.72	-0.03	0.525	1.07	0.56	/
Rear Face	standard	RMC 12.2K	9538	23.0	22.72	-0.08	0.586	1.07	0.63	/
Left Side	standard	RMC 12.2K	9538	23.0	22.72	0.14	0.368	1.07	0.39	/
Right Side	standard	RMC 12.2K	9538	23.0	22.72	0.03	0.051	1.07	0.05	/
Top Side	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Bottom Side	standard	RMC 12.2K	9538	23.0	22.72	-0.06	0.696	1.07	0.74	P16
Bottom Side	SIM 2	RMC 12.2K	9538	23.0	22.72	0.01	0.681	1.07	0.73	/

Note: 1.The value with blue color is the maximum SAR Value of each test band.

^{2.} When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq \frac{1}{4}$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is \leq 1.2 W/kg, SAR measurement is not required for the secondary mode.

FCC SAR Test Report Report No.: R2104A0308-S1V2

Table 11: UMTS Band V (Main-antenna)

Toot	Cover	Time		Tuna un	Measured	Limi	t of SAR 1.6	W/kg (mV	V/g)	Diet
Test Position	Type	Time slot	Channel	Tune-up (dBm)	power	Power	Measured	Scaling	Report	Plot No.
	-77-			(3.2.1.)	(dBm)	Drift (dB)	SAR1g	Factor	SAR1g	
				Head	d SAR					
Right Cheek	standard	RMC 12.2K	4233	23.0	22.86	0.08	0.219	1.03	0.23	1
Right Tilted	standard	RMC 12.2K	4233	23.0	22.86	0.08	0.136	1.03	0.14	/
Left Cheek	standard	RMC 12.2K	4233	23.0	22.86	-0.07	0.253	1.03	0.26	P04
Left Tilted	standard	RMC 12.2K	4233	23.0	22.86	0.18	0.143	1.03	0.15	/
Left Cheek	SIM 2	RMC 12.2K	4233	23.0	22.86	0.03	0.247	1.03	0.26	/
			Body-	worn SAR	(Distance 1	0mm)				
Front Face	standard	RMC 12.2K	4233	23.0	22.86	-0.09	0.276	1.03	0.29	/
Rear Face	standard	RMC 12.2K	4233	23.0	22.86	-0.13	0.382	1.03	0.39	P11
Rear Face	SIM 2	RMC 12.2K	4233	23.0	22.86	-0.02	0.374	1.03	0.39	/
			Hot	spot SAR(Distance 10	mm)				
Front Face	standard	RMC 12.2K	4233	23.0	22.86	-0.09	0.276	1.03	0.29	/
Rear Face	standard	RMC 12.2K	4233	23.0	22.86	-0.13	0.382	1.03	0.39	1
Left Side	standard	RMC 12.2K	4233	23.0	22.86	-0.03	0.202	1.03	0.21	/
Right Side	standard	RMC 12.2K	4233	23.0	22.86	0.03	0.193	1.03	0.20	/
Top Side	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Bottom Side	standard	RMC 12.2K	4233	23.0	22.86	0.02	0.118	1.03	0.12	1
Rear Face	SIM 2	RMC 12.2K	4233	23.0	22.86	-0.02	0.374	1.03	0.39	1

Note: 1.The value with blue color is the maximum SAR Value of each test band.

^{2.} When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq \frac{1}{4}$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is \leq 1.2 W/kg, SAR measurement is not required for the secondary mode.

Table 12: LTE Band 2 (20MHz, Main-antenna)

		,		iam-antenn		Measured	Limit	of SAR 1.6	W/kg (mV	V/g)	5 1 (
Test Position	Cover	RB	RB	Channel	Tune-up	power	Power	Measured	Scaling	Report	Plot
Position	Туре	allocation	offset		(dBm)	(dBm)	Drift (dB)	SAR1g	Factor	SAR1g	No.
				Hea	d SAR (QP	SK)					
Right Cheek	standard	1	50	18700	23.5	22.93	0.05	0.398	1.14	0.45	1
Right Tilted	standard	1	50	18700	23.5	22.93	0.18	0.262	1.14	0.30	1
Left Cheek	standard	1	50	18700	23.5	22.93	-0.12	0.853	1.14	0.97	P05
Left Tilted	standard	1	50	18700	23.5	22.93	0.15	0.173	1.14	0.20	1
Right Cheek	standard	50	0	18700	22.5	21.82	0.06	0.378	1.17	0.44	1
Right Tilted	standard	50	0	18700	22.5	21.82	0.04	0.249	1.17	0.29	/
Left Cheek	standard	50	0	18700	22.5	21.82	-0.07	0.811	1.17	0.95	/
Left Tilted	standard	50	0	18700	22.5	21.82	0.11	0.173	1.17	0.20	1
Left Cheek	standard	1	50	18900	23.5	22.83	-0.18	0.731	1.17	0.85	/
Left Cheek	standard	1	50	19100	23.5	22.90	0.14	0.776	1.15	0.89	1
Left Cheek	standard	50	0	18900	22.5	21.75	0.03	0.659	1.19	0.78	/
Left Cheek	standard	50	50	19100	22.5	21.81	0.01	0.7	1.17	0.82	1
Left Cheek	standard	100	0	18700	22.5	21.81	0.06	0.802	1.17	0.94	1
Left Cheek	SIM 2	1	50	18700	23.5	22.93	-0.02	0.837	1.14	0.95	1
Left Cheek	Repeated	1	50	18700	23.5	22.93	0.05	0.847	1.14	0.97	/
				Body-worn	SAR (Dista	nce 10mm)					
Front Face	standard	1	50	18700	23.5	22.93	-0.02	0.882	1.14	1.01	/
Rear Face	standard	1	50	18700	23.5	22.93	-0.04	0.776	1.14	0.88	1
Front Face	standard	50	0	18700	22.5	21.82	-0.02	0.887	1.17	1.04	1
Rear Face	standard	50	0	18700	22.5	21.82	0.03	0.763	1.17	0.89	/
Front Face	standard	1	50	18900	23.5	22.83	0.00	0.824	1.17	0.96	1
Front Face	standard	1	50	19100	23.5	22.90	-0.08	0.896	1.15	1.03	1
Rear Face	standard	1	50	18900	23.5	22.83	0.03	0.725	1.17	0.85	1
Rear Face	standard	1	50	19100	23.5	22.90	0.08	0.788	1.15	0.90	1
Front Face	standard	50	0	18900	22.5	21.75	0.15	0.873	1.19	1.04	1
Front Face	standard	50	50	19100	22.5	21.81	-0.12	0.898	1.17	1.05	P12
Rear Face	standard	50	0	18900	22.5	21.75	0.06	0.705	1.19	0.84	1
Rear Face	standard	50	50	19100	22.5	21.81	0.01	0.762	1.17	0.89	1
Front Face	standard	100	0	18700	22.5	21.81	-0.07	0.872	1.17	1.02	1
Rear Face	standard	100	0	18700	22.5	21.81	0.05	0.764	1.17	0.90	1
Front Face	SIM 2	50	50	19100	22.5	21.81	0.02	0.881	1.17	1.03	1
Front Face	Repeated	50	50	19100	22.5	21.81	0.03	0.871	1.17	1.02	1
Front Face	Earphone	50	50	19100	22.5	21.81	0.04	0.677	1.17	0.79	1
				Hotspot SAR(QPSK, Dis	tance 10mm	 n)				

FCC SAR Test Report

Report No.: R2104A0308-S1V2

Front Face	standard	1	50	18700	23.5	22.93	-0.02	0.882	1.14	1.01	/
Rear Face	standard	1	50	18700	23.5	22.93	-0.04	0.776	1.14	0.88	/
Left Side	standard	1	50	18700	23.5	22.93	0.09	0.639	1.14	0.73	/
Right Side	standard	1	50	18700	23.5	22.93	0.10	0.129	1.14	0.15	/
Top Side	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Bottom Side	standard	1	50	18700	23.5	22.93	-0.11	1.05	1.14	1.20	/
Front Face	standard	50	0	18700	22.5	21.82	-0.02	0.887	1.17	1.04	/
Rear Face	standard	50	0	18700	22.5	21.82	0.03	0.763	1.17	0.89	/
Left Side	standard	50	0	18700	22.5	21.82	0.05	0.628	1.17	0.73	/
Right Side	standard	50	0	18700	22.5	21.82	0.01	0.129	1.17	0.15	/
Top Side	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Bottom Side	standard	50	0	18700	22.5	21.82	-0.06	1.01	1.17	1.18	/
Front Face	standard	1	50	18900	23.5	22.83	0.00	0.824	1.17	0.96	/
Front Face	standard	1	50	19100	23.5	22.90	-0.08	0.896	1.15	1.03	/
Rear Face	standard	1	50	18900	23.5	22.83	0.03	0.725	1.17	0.85	/
Rear Face	standard	1	50	19100	23.5	22.90	0.08	0.788	1.15	0.90	/
Top Side	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Bottom Side	standard	1	50	18900	23.5	22.83	0.09	1.03	1.17	1.20	/
Bottom Side	standard	1	50	19100	23.5	22.90	-0.10	1.12	1.15	1.29	P17
Front Face	standard	50	0	18900	22.5	21.75	0.15	0.873	1.19	1.04	/
Front Face	standard	50	50	19100	22.5	21.81	-0.12	0.898	1.17	1.05	/
Rear Face	standard	50	0	18900	22.5	21.75	0.06	0.705	1.19	0.84	/
Rear Face	standard	50	50	19100	22.5	21.81	0.01	0.762	1.17	0.89	/
Top Side	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Bottom Side	standard	50	0	18900	22.5	21.75	0.08	0.984	1.19	1.17	/
Bottom Side	standard	50	50	19100	22.5	21.81	0.06	1.02	1.17	1.20	/
Front Face	standard	100	0	18700	22.5	21.81	-0.07	0.872	1.17	1.02	/
Rear Face	standard	100	0	18700	22.5	21.81	0.05	0.764	1.17	0.90	/
Bottom Side	standard	100	0	18700	22.5	21.81	0.14	0.993	1.17	1.16	/
Bottom Side	SIM 2	1	50	19100	23.5	22.90	0.02	1.04	1.15	1.19	1
Bottom Side	Repeated	1	50	19100	23.5	22.90	-0.06	1.09	1.15	1.25	1
Front Face	Earphone	1	50	19100	22.5	21.81	0.04	0.677	1.17	0.79	/

Note: 1. The value with blue color is the maximum SAR Value of each test band.

2.For QPSK with 100% RB allocation, SAR is required when and the highest reported SAR for 1 RB and 50% RB allocation in are ≥ 50% limit(1g).

Measurement Variability MAX Measured SAR_{1g} (W/kg) 1st Repeated SAR_{1g} (W/kg) **Test Position** Channel Ratio 18700 Left Cheek 0.847 0.97 1.15 Front Face 19100 0.871 1.02 1.17 **Bottom Side** 19100 1.090 1.25 1.15

Note: 1) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).

2) A third repeated measurement was performed only if the original, first or second repeated measurement was \geq 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Table 13: LTE Band 7 (20MHz, Main-antenna)

Tabl	e 13: LTE	Band 7 (20	MHz, N	lain-antenn	a)						
Toot	Cover	RB	RB		Tuna un	Measured	Limit	of SAR 1.6	W/kg (mV	V /g)	Plot
Test Position	Type	allocation	offset	Channel	Tune-up (dBm)	power	Power	Measured	Scaling	Report	No.
1 00111011	1,700	unocation	Onoot		(abiii)	(dBm)	Drift (dB)	SAR1g	Factor	SAR1g	140.
Head SAR (QPSK)											
Right Cheek	standard	1	50	21100	23.0	22.27	0.05	0.141	1.18	0.17	/
Right Tilted	standard	1	50	21100	23.0	22.27	0.02	0.112	1.18	0.13	/
Left Cheek	standard	1	50	21100	23.0	22.27	-0.07	0.275	1.18	0.33	P06
Left Tilted	standard	1	50	21100	23.0	22.27	0.03	0.117	1.18	0.14	1
Right Cheek	standard	50	0	21100	22.0	21.17	0.03	0.115	1.21	0.14	/
Right Tilted	standard	50	0	21100	22.0	21.17	0.01	0.092	1.21	0.11	/
Left Cheek	standard	50	0	21100	22.0	21.17	0.06	0.221	1.21	0.27	/
Left Tilted	standard	50	0	21100	22.0	21.17	-0.02	0.096	1.21	0.12	/
Left Cheek	SIM 2	1	50	21100	23.0	22.27	0.08	0.269	1.18	0.32	/
Body-worn SAR (Distance 10mm)											
Front Face	standard	1	50	21100	23.0	22.27	-0.16	0.311	1.18	0.37	/
Rear Face	standard	1	50	21100	23.0	22.27	-0.04	0.578	1.18	0.68	P13
Front Face	standard	50	0	21100	22.0	21.17	0.06	0.249	1.21	0.30	/
Rear Face	standard	50	0	21100	22.0	21.17	-0.13	0.499	1.21	0.60	/
Rear Face	SIM 2	1	50	21100	23.0	22.27	0.02	0.568	1.18	0.67	/
				Hotspot SAR(QPSK, Dist	tance 10mm	1)				
Front Face	standard	1	50	21100	23.0	22.27	-0.16	0.311	1.18	0.37	/
Rear Face	standard	1	50	21100	23.0	22.27	-0.04	0.578	1.18	0.68	/
Left Side	standard	1	50	21100	23.0	22.27	0.04	0.308	1.18	0.36	/
Right Side	standard	1	50	21100	23.0	22.27	0.07	0.051	1.18	0.06	/
Top Side	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Bottom Side	standard	1	50	21100	23.0	22.27	-0.10	0.338	1.18	0.40	/
Front Face	standard	50	0	21100	22.0	21.17	0.06	0.249	1.21	0.30	/
Rear Face	standard	50	0	21100	22.0	21.17	-0.13	0.499	1.21	0.60	/
Left Side	standard	50	0	21100	22.0	21.17	-0.06	0.254	1.21	0.31	1
Right Side	standard	50	0	21100	22.0	21.17	0.00	0.039	1.21	0.05	1
Top Side	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Bottom Side	standard	50	0	21100	22.0	21.17	0.05	0.271	1.21	0.33	/
Rear Face	SIM 2	1	50	21100	23.0	22.27	0.02	0.568	1.18	0.67	/
			·	i .							

Note: 1.The value with blue color is the maximum SAR Value of each test band.

^{2.}For QPSK with 100% RB allocation, SAR is required when and the highest reported SAR for 1 RB and 50% RB allocation in are \geq 50% limit(1g).

FCC SAR Test Report No.: R2104A0308-S1V2

Test	Cover	Mode	Channel	Tune-up	Measured	Lir	nit of SAR 1.	6 W/kg (mW	//g)	Plot
Position	Туре	802.11b	Gildillici	dBm)	power (dBm)	Power Drift (dB)	Measured SAR1g	Scaling Factor	Report SAR 1g	No.
	•			Н	ead SAR				•	
Right Cheek	standard	DSSS	11	16.5	16.35	-0.08	0.179	1.04	0.19	/
Right Tilted	standard	DSSS	11	16.5	16.35	0.02	0.203	1.04	0.21	/
Left Cheek	standard	DSSS	11	16.5	16.35	-0.07	0.341	1.04	0.35	/
Left Tilted	standard	DSSS	11	16.5	16.35	0.14	0.373	1.04	0.39	P07
			Boo	ly-worn S	AR (Distanc	e 10mm)				•
Front Face	standard	DSSS	11	16.5	16.35	0.03	0.072	1.04	0.07	P14
Rear Face	standard	DSSS	11	16.5	16.35	0.08	0.058	1.04	0.06	/
			H	otspot SA	R(Distance	10mm)				•
Front Face	standard	DSSS	11	16.5	16.35	0.03	0.072	1.04	0.07	/
Rear Face	standard	DSSS	11	16.5	16.35	0.08	0.058	1.04	0.06	/
Right Side	standard	DSSS	11	16.5	16.35	0.02	0.024	1.04	0.02	/
Top Side	standard	DSSS	11	16.5	16.35	-0.09	0.086	1.04	0.09	P18
Note: 1. The val	lue with blu	e color is th	e maximum S	AR Value	of each test	band.	<u> </u>		1	1

MAX Adjusted SAR									
Mode	Test Position	Channel/(MHz)	MAX Reported SAR _{1g} (W/kg)	802.11b Tune-up limit (dBm)	Tune-up limit (dBm)	Scaling Factor	Adjusted SAR _{1g} (W/kg)		
802.11g	Left Tilted	11	0.373	16.50	13.00	0.45	0.167		
802.11n HT20	Left Tilted	11	0.373	16.50	13.00	0.45	0.167		
802.11n HT40	Left Tilted	11	0.373	16.50	13.00	0.45	0.167		

Note: SAR is not required for OFDM when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.

FCC SAR Test Report Report No.: R2104A0308-S1V2

Table 15: BT

Band	Configuration	Frequency (MHz)	Maximum Power (dBm)	Separation Distance (mm)	Estimated SAR (W/kg)
	Head SAR	2480	7.5	5	0.24
Bluetooth	Body-worn SAR	2480	7.5	10	0.12
	Hotspot SAR	2480	7.5	10	0.05

For simultaneous transmission analysis, Bluetooth SAR is estimated per KDB 447498 D01 based on the formula below.

(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]· $[\sqrt{f(GHz)/x}]$ W/kg for test separation distances \leq 50 mm; where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.

FCC SAR Test Report No.: R2104A0308-S1V2

10.4 Simultaneous Transmission Analysis

Simultaneous Transmission Configurations	Head	Body-worn	Hotspot
GSM + Bluetooth	Yes	Yes	Yes
WCDMA + Bluetooth	Yes	Yes	Yes
LTE + Bluetooth	Yes	Yes	Yes
GSM + Wi-Fi-2.4GHz	Yes	Yes	Yes
WCDMA + Wi-Fi-2.4GHz	Yes	Yes	Yes
LTE + Wi-Fi-2.4GHz	Yes	Yes	Yes
Wi-Fi-2.4GHz + Bluetooth	N/A	N/A	N/A

General Note:

- 1. The Scaled SAR summation is calculated based on the same configuration and test position.
- 2. Per KDB 447498 D01, simultaneous transmission SAR is compliant if,
- i) Scalar SAR summation < 1.6W/kg, simultaneously transmission SAR measurement is not necessary.
 - ii) SPLSR = (SAR1 + SAR2)^1.5 / (min. separation distance, mm), and the peak separation distance is determined from the square root of [(x1-x2)2 + (y1-y2)2 + (z1-z2)2], where (x1, y1, z1) and (x2, y2, z2) are the coordinates of the extrapolated peak SAR locations in the zoom scan.
 - iii) If SPLSR ≤ 0.04, simultaneously transmission SAR measurement is not necessary.

The maximum SAR_{1g} Value for Main-Antenna

Test Posi	SAR _{1g} (W/kg)	GSM 850	GSM 1900	WCDMA Band II	WCDMA Band V	LTE FDD 2	LTE FDD 7	MAX. SAR _{1g}
Right Cheek		0.35	0.20	0.29	0.23	0.45	0.17	0.45
Right Tilted		0.24	0.13	0.20	0.14	0.30	0.13	0.30
Lef	t Cheek	0.40	0.36	0.48	0.26	0.97	0.33	0.97
Le	ft Tilted	0.24	0.08	0.10	0.15	0.20	0.14	0.24
Body	Front Face	0.46	0.44	0.56	0.29	1.05	0.37	1.05
worn	Rear Face	0.69	0.45	0.63	0.39	0.90	0.68	0.90
	Front Face	0.46	0.44	0.56	0.29	1.05	0.37	1.05
	Rear Face	0.69	0.45	0.63	0.39	0.90	0.68	0.90
Hatanat	Left Side	0.45	0.28	0.39	0.21	0.73	0.36	0.73
Hotspot	Right Side	0.40	0.05	0.05	0.20	0.15	0.06	0.40
	Top Side	N/A	N/A	N/A	N/A	N/A	N/A	0.00
	Bottom Side	0.18	0.53	0.74	0.12	1.29	0.40	1.29

About BT and Main-Antenna

SAR _{1g} (W/kg) Test Position		Main-antenna	ВТ	MAX. ΣSAR _{1g}
Used	Right Cheek	0.45	0.24	0.69
	Right Tilted	0.30	0.24	0.54
Head	Left Cheek	0.97	0.24	1.21
	Left Tilted	0.24	0.24	0.48
Body worn	Front Face	1.05	0.12	1.17
	Rear Face	0.90	0.12	1.02
	Front Face	1.05	0.05	1.10
	Rear Face	0.90	0.05	0.95
Hotonot	Left Side	0.73	0.05	0.78
Hotspot	Right Side	0.40	0.05	0.45
	Top Side	0.00	0.05	0.05
	Bottom Side	1.29	0.05	1.34

Note: 1. The value with blue color is the maximum ΣSAR_{1g} Value.

2.MAX. ΣSAR_{1g} =Unlicensed SAR_{MAX} +Licensed SAR_{MAX}

MAX. ΣSAR_{1g} =1.34W/kg<1.6W/kg, so the Simultaneous transimition SAR with volum scan are not required for BT and Main-Antenna.

About Wi-Fi and Main-Antenna

	SAR _{1g} (W/kg)	Main-	Wi-Fi	DA27 VAM
Test Position		antenna	2.4G	MAX. ΣSAR _{1g}
	Right Cheek	0.45	0.19	0.64
Head	Right Tilted	0.30	0.21	0.51
пеац	Left Cheek	0.97	0.35	1.32
	Left Tilted	0.24	0.39	0.63
Pody worn	Front Face	1.05	0.07	1.12
Body worn	Rear Face	0.90	0.06	0.96
	Front Face	1.05	0.07	1.12
	Rear Face	0.90	0.06	0.96
Hotonot	Left Side	0.73	0.00	0.73
Hotspot	Right Side	0.40	0.02	0.42
	Top Side	0.00	0.09	0.09
	Bottom Side	1.29	0.00	1.29

Note: 1. The value with blue color is the maximum $\Sigma SAR_{1g}\ Value.$

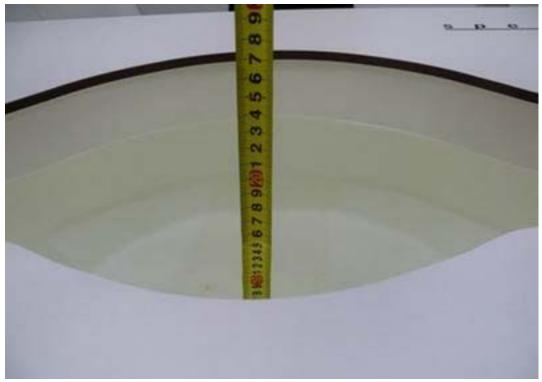
 $2.\text{MAX. }\Sigma\text{SAR}_{1g} \text{ =Unlicensed SAR}_{\text{MAX}} \text{ +Licensed SAR}_{\text{MAX}}$

MAX. $\Sigma SAR_{1g} = 1.32W/kg < 1.6W/kg$, so the Simultaneous transimition SAR with volum scan are not required for Wi-Fi and Main-Antenna.

11 Measurement Uncertainty

Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528- 2013 is not required in SAR reports submitted for equipment approval. This also applies to the 10-g SAR required for phablets in KDB Publication 648474.

ANNEX A: Test Layout


FCC SAR Test Report No.: R2104A0308-S1V2

Tissue Simulating Liquids

For the measurement of the field distribution inside the flat phantom with DASY, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For Head and Body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm, which is shown in Picture 3 and Picture 4.

Picture 3: liquid depth in the head Phantom

Picture 4: Liquid depth in the flat Phantom

FCC SAR Test Report No.: R2104A0308-S1V2

ANNEX B: System Check Results

ANNEX C: Highest Graph Results

ANNEX D: Calibration Certificate

******END OF REPORT ******