

TEST REPORT

No. C20T00033-SRD03

For

Client: MobiWire SAS

Production: 4G Smart Phone

Model Name: Mobiwire Honaw, Altice S33

Brand Name: MobiWire, Altice

FCC ID: QPN-HONAW

Hardware Version: V00B

Software Version: Honaw32_V02

Issued date: 2020-12-22

Industrial Internet Innovation Center (Shanghai) Co.,Ltd

NOTE

- 1. The test results in this test report relate only to the devices specified in this report.
- 2. This report shall not be reproduced except in full without the written approval of Industrial Internet Innovation Center (Shanghai) Co.,Ltd.
- For the test results, the uncertainty of measurement is not taken into account when
 judging the compliance with specification, and the results of measurement or the average
 value of measurement results are taken as the criterion of the compliance with
 specification directly.

Test Laboratory:

Industrial Internet Innovation Center (Shanghai) Co.,Ltd

Add: Block No.4, No.766, Jingang Road, Pudong District, Shanghai, P. R. China

Page Number: 2 of 20 Report Issued Date: Dec. 22, 2020

Revision Version

Report Number	Revision Date Memo		Memo
C20T00033-SRD03	00	2020-12-22	Initial creation of test report

CONTENTS

1. TEST L	ABORATORY	. 6
1.1.	TESTING LOCATION	. 6
1.2.	TESTING ENVIRONMENT	. 6
1.3.	PROJECT DATA	. 6
1.4.	SIGNATURE	. 6
2. CLIENT	INFORMATION	. 7
2.1.	APPLICANT INFORMATION	. 7
2.2.	MANUFACTURER INFORMATION	. 7
3. EQUIPI	MENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	. 8
3.1.	ABOUT EUT	. 8
3.2.	INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST	. 8
3.3.	INTERNAL IDENTIFICATION OF AE USED DURING THE TEST	. 8
4. REFER	ENCE DOCUMENTS	. 9
4.1.	DOCUMENTS SUPPLIED BY APPLICANT	. 9
4.2.	REFERENCE DOCUMENTS FOR TESTING	. 9
5. TEST R	ESULTS	10
5.1.	SUMMARY OF TEST RESULTS	10
5.2.	STATEMENTS	11
6. TEST E	QUIPMENTS UTILIZED	12
6.1.	RADIATED EMISSION TEST SYSTEM	12
7. MEASU	REMENT UNCERTAINTY	13
8. TEST E	NVIRONMENT	14
ANNEX A	. DETAILED TEST RESULTS	15
ANNEX A	.1. TRANSMITTER SPURIOUS EMISSION-RADIATED	15

ANNEX B. ACCREDITATION CERTIFICATE20

Page Number: 5 of 20 Report Issued Date: Dec. 22, 2020

1. Test Laboratory

1.1. Testing Location

Company Name	Industrial Internet Innovation Center (Shanghai) Co.,Ltd
Address	Block No.4, No.766, Jingang Road, Pudong District, Shanghai, P. R. China
Postal Code	201206
Telephone	+86 21 63843300
FCC registration No	CN1177

1.2. Testing Environment

Normal Temperature	15°C-35°C
Relative Humidity	20%-75%

1.3. Project Data

Project Leader	Xu Yuting
Testing Start Date	2020-12-07
Testing End Date	2020-12-09

1.4. Signature

, Liv Von

(Prepared this test report)

Fan Songyan

(Reviewed this test report)

Xiong Zengxin

(Approved this test report)

2. Client Information

2.1. Applicant Information

Company Name	MobiWire SAS
Address	79 avenue Francois Arago, 92017 NANTERRE France
Telephone	0625 028 368-33
Postcode	1

2.2. Manufacturer Information

Company Name	MobiWire SAS
Address	79 avenue Francois Arago, 92017 NANTERRE France
Telephone	0625 028 368-33
Postcode	

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1. About EUT

Production	4G Smart Phone
Model name	Mobiwire Honaw, Altice S33
WLAN Frequency	2412MHz-2462MHz
WLAN Channel	Ch1-11
WLAN type of modulation	802.11b: DSSS
	802.11g/n: OFDM
Extreme Temperature	-10/+55°C
Nominal Voltage	3.80V
Extreme High Voltage	4.35V
Extreme Low Voltage	3.60V

Note:

- a. Photographs of EUT are shown in ANNEX A of this test report.
- b. The value of the antenna gain is provided by the customer. For specific antenna information, please check the antenna specifications of the customer.

3.2.Internal Identification of EUT used during the test

EUT ID*	SN or IMEI	HW Version	SW Version	Date of receipt
N01	356290110440960	V00B	Honaw32_V02	2020-12-07
INUT	356290110440978	V00B		

^{*}EUT ID: is used to identify the test sample in the lab internally.

3.3. Internal Identification of AE used during the test

AE ID*	Description	Туре	Manufacturer
AE1	RF cable	1	AE1

^{*}AE ID: is used to identify the test sample in the lab internally.

Page Number: 8 of 20 Report Issued Date: Dec. 22, 2020

4. Reference Documents

4.1. Documents supplied by applicant

All technical documents are supplied by the client or manufacturer, which is the basis of testing.

4.2. Reference Documents for testing

The following documents listed in this section are referred for testing.

Reference	Title	Version	
	FCC CFR 47, Part 15, Subpart C:		
	15.205 Restricted bands of operation;		
FCC Part15	15.209 Radiated emission limits, general requirements;	2018-10-01	
	15.247 Operation within the bands 902-928MHz,		
	2400-2483.5MHz, and 5725-5850MHz.		
ANSI 63.10	American National Standard of Procedures for Compliance Testing	2013	
ANSI 63.10	of Unlicensed Wireless Devices		
KDD 559074	Guidance for Performing Compliance Measurements on	v05r02	
KDB 558074	Digital Transmission Systems (DTS) Operating Under §15.247	VU31U2	

5. Test Results

5.1. Summary of Test Results

Measurement Items	Sub-clause of Part15C	Verdict
Transmitter Spurious Emission-Radiated	15.209,15.247	Р

Note: please refer to Annex A in this test report for the detailed test results.

Please refer to part 5 for detail.

The measurements are according to Public notice KDB558074 and ANSI C63.10.

Terms used in Verdict column

The following terms are used in the above table.

Р	Pass, the EUT complies with the essential requirements in the standard.
NP	Not Perform, the test was not performed by 3IN.
NA	Not Applicable, the test was not applicable.
F	Fail, the EUT does not comply with the essential requirements in the standard.

Test Conditions

Tnom	Normal Temperature
Tmin	Low Temperature
Tmax	High Temperature
Vnom	Normal Voltage
Vmin	Low Voltage
Vmax	High Voltage
Hnom	Norm Humidity
Anom	Norm Air Pressure

For this report, all the test case listed above are tested under Normal Temperature and Normal Voltage, and also under norm humidity, the specific conditions as following:

Temperature	Tnom	25℃
Voltage	Vnom	3.8V
Humidity	Hnom	48%
Air Pressure	Anom	1010hPa

5.2. Statements

The Mobiwire Honaw, Altice S33 is a parent model for testing. 3IN only performed test cases which identified with P/NP/NA/F results in Annex A.

In this report, we only retest the radiation emission. And the conduct test results please refer to report No: I20D00050-SRD03-2.4GWLAN, which was prepared by ECIT Shanghai, East China Institute of Telecommunications.

3IN has verified that the compliance of the tested device specified in section 3 of this test report is successfully evaluated according to the procedure and test methods as defined in type certification requirement listed in section 4 of this test report.

6. Test Equipments Utilized

6.1. Radiated Emission Test System

Item	Instrument Name	Туре	Serial Number	Manufacturer	Cal. Date	Cal. interval
1	Universal Radio Communication Tester	CMU200	123123	R&S	2020-05-10	1 year
2	EMI Test Receiver	ESU40	100307	R&S	2020-05-10	1 year
3	TRILOG Broadband Antenna	VULB9163	VULB9163- 515	Schwarzbeck	2020-02-28	2 years
4	Double- ridged Waveguide Antenna	ETS-3117	00135890	ETS	2020-02-28	2 years
5	2-Line V-Network	ENV216	101380	R&S	2020-05-10	1 year

Anechoic chamber

Fully anechoic chamber by ETS

7. Measurement Uncertainty

Measurement uncertainty for all the testing in this report are within the limit specified in 3IN documents. The detailed measurement uncertainty is defined in 3IN documents.

Measurement Items	leasurement Items Range		Calculated Uncertainty
Peak Output Power-Conducted	2412MHz-2462MHz	95%	\pm 0.544dB
Peak Power Spectral Density	2412MHz-2462MHz	95%	±0.544dB
Occupied 6dB Bandwidth	2412MHz-2462MHz	95%	\pm 62.04Hz
Frequency Band Edges-Conducted	2412MHz-2462MHz	95%	±0.544dB
Conducted Emission	30MHz-2GHz	95%	\pm 0.90dB
Conducted Emission	2GHz-3.6GHz	95%	±0.88dB
Conducted Emission	3.6GHz-8GHz	95%	\pm 0.96dB
Conducted Emission	8GHz-20GHz	95%	±0.94dB
Conducted Emission	20GHz-22GHz	95%	\pm 0.88dB
Conducted Emission	22GHz-26GHz	95%	\pm 0.86dB
Transmitter Spurious Emission-Radiated	9KHz-30MHz	95%	±5.66dB
Transmitter Spurious Emission-Radiated	30MHz-1000MHz	95%	±4.98dB
Transmitter Spurious Emission-Radiated	1000MHz -18000MHz	95%	±5.06dB
Transmitter Spurious Emission-Radiated	18000MHz -40000MHz	95%	±5.20dB
AC Power line Conducted Emission	0.15MHz-30MHz	95%	$\pm 3.66\mathrm{dB}$

8. Test Environment

Shielding Room1 (6.0 meters×3.0 meters×2.7 meters) did not exceed following limits along the conducted RF performance testing:

Temperature	Min. = 15 °C, Max. = 35 °C	
Relative humidity	Min. = 20 %, Max. = 75 %	
Shielding effectiveness	> 100 dB	
Ground system resistance	< 0.5 Ω	

Control room did not exceed following limits along the EMC testing:

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. =30 %, Max. = 60 %
Shielding effectiveness	> 100 dB
Electrical insulation	> 10 kΩ
Ground system resistance	< 0.5 Ω

Fully-anechoic chamber1 (6.9 meters×10.9 meters×5.4 meters) did not exceed following limits along the EMC testing:

Temperature	Min. = 15 °C, Max. = 35 °C	
Relative humidity	Min. = 25 %, Max. = 75 %	
Shielding effectiveness	> 100 dB	
Electrical insulation	> 10 kΩ	
Ground system resistance	< 0.5 Ω	
VSWR	Between 0 and 6 dB, from 1GHz to 18GHz	
Site Attenuation Deviation	Between -4 and 4 dB,30MHz to 1GHz	
Uniformity of field strength	Between 0 and 6 dB, from 80MHz to 3000 MHz	

ANNEX A. Detailed Test Results

ANNEX A.1. Transmitter Spurious Emission-Radiated

A.6.1 Measurement Limit:

Standard	Limit	
FCC 47 Part 15.247,15.205,15.209	20dB below peak output power	

In addition, radiated emissions which fall in the restricted bands, as defined in 25.205(a), must also comply with the radiated emission limits specified in 15.209(a)(see 15.205(c)).

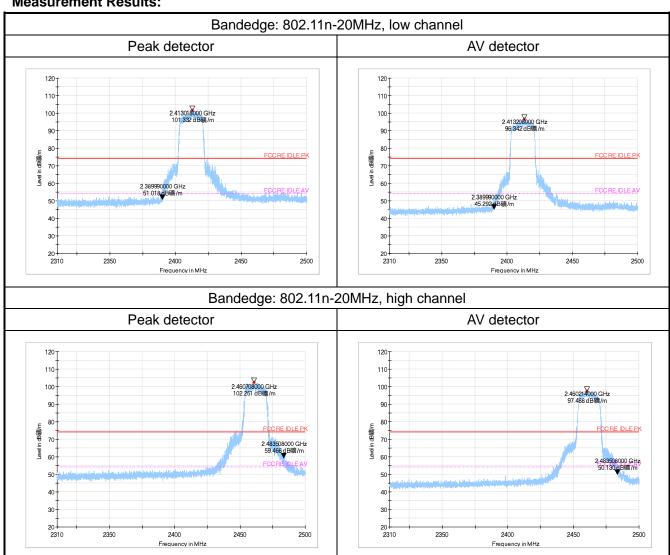
The measurement is according to ANSI C63.10 clause 11.11 and 11.12.

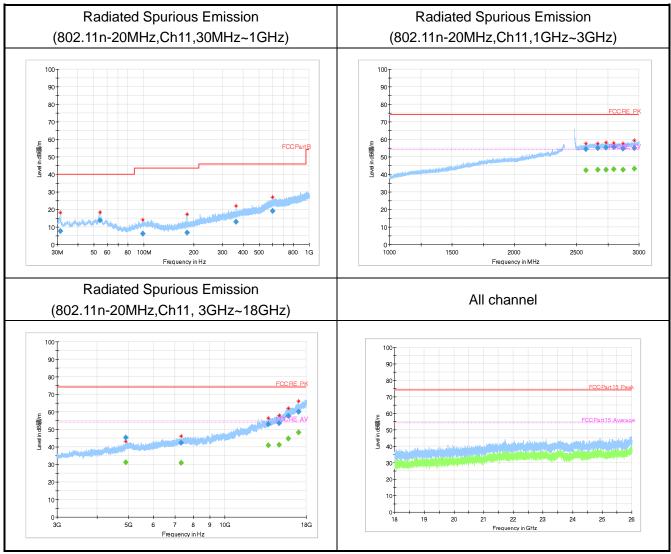
A.6.2 Limit in restricted band:

Frequency of emission (MHz)	Field strength(uV/m)	Field strength(dBuV/m)
30~88	100	40
88~216	150	43.5
216~960	200	46
Above 960	500	54

A.6.3 Test procedures

Portable, small, lightweight, or modular devices that may be handheld, worn on the body, or placed on a table during operation shall be positioned on a nonconducting platform, the top of which is 80 cm above the reference ground plane. The preferred area occupied by the EUT arrangement is 1 m by 1.5 m, but it may be larger or smaller to accommodate various sized EUTs. For testing purposes, ceiling- and wall-mounted devices also shall be positioned on a tabletop (see also ANSI C63.4-2013 section 6.3.4 and 6.3.5). In making any tests involving handheld, body-worn, or ceiling-mounted equipment, it is essential to recognize that the measured levels may be dependent on the orientation (attitude) of the three orthogonal axes of the EUT. Thus, exploratory tests as specified in 8.3.1 shall be carried out for various axes orientations to determine the attitude having maximum or near-maximum emission level.


Page Number: 15 of 20 Report Issued Date: Dec. 22, 2020


The EUT was placed on a non-conductive table. The measurement antenna was placed at a distance of 3 meters from the EUT. During testing, the antenna height and the EUT azimuth were varied in order to identify the maximum level of emission from the EUT. This maximization process was repeated with the EUT positioned in each of its three rthogonal orientations

Frequency of emission (MHz) RBW/VBW		Sweep Times (s)
30~1000 100KHz/300KH		5
1000~4000	1MHz/3MHz	15
4000~18000	1MHz/3MHz	40
18000~26500	1MHz/3MHz	20

Measurement Results:

Note:

A "reference path loss" is established and A_{Rpi} is the attenuation of "reference path loss", and including the gain of receive antenna, the gain of the preamplifier, the cable loss.

 P_{Mea} is the field strength recorded from the instrument.

The measurement results are obtained as described below:

ARpi = Cable loss + Antenna Gain-Preamplifier gain

 $Result = P_{Mea} + Cable loss + Antenna Gain-Preamplifier gain = P_{Mea} + ARpi$.

802.11n-20MHz Ch11 30MHz~1GHz

Frequency(MHz)	Result(dBuV/m)	ARpl (dB)	PMea(dBuV/m)	Polarity
31.4	7.62	-16.9	24.52	V
54.4	13.7	-15.4	29.1	V
98.9	6.26	-16	22.26	Н
182.3	6.66	-15.8	22.46	V
361.4	13.02	-9.6	22.62	Н
599.4	19.13	-3.1	22.23	Н

Ch11 1GHz~3GHz (Peak)

Frequency(MHz)	Result(dBuV/m)	ARpl (dB)	PMea(dBuV/m)	Polarity
2576.3	54.27	17.4	36.87	Н
2671.4	54.93	17.8	37.13	Н
2736.4	55.24	17.9	37.34	V
2797.6	55.7	18.2	37.5	V
2871.7	54.62	18.5	36.12	Н
2961.3	55.03	19	36.03	V

Ch11 1GHz~3GHz (Average)

Frequency(MHz)	Result(dBuV/m)	ARpl (dB)	PMea(dBuV/m)	Polarity
2576.3	42.4	17.4	25	Н
2671.4	42.62	17.8	24.82	Н
2736.4	42.77	17.9	24.87	V
2797.6	42.98	18.2	24.78	V
2871.7	42.71	18.5	24.21	Н
2961.3	43.31	19	24.31	V

Ch11 3GHz~18GHz (Peak)

Frequency(MHz)	Result(dBuV/m)	ARpl (dB)	PMea(dBuV/m)	Polarity
4924.9	45.35	3.1	42.25	Н
7311.6	42.37	6.2	36.17	V
13694.5	52.98	18.4	34.58	Н
14827.7	53.5	20.7	32.8	Н
15819.9	57.63	24.3	33.33	V
17002.2	60.13	28.3	31.83	Н

Ch11 3GHz~18GHz (Average))

Frequency(MHz)	Result(dBuV/m)	ARpl (dB)	PMea(dBuV/m)	Polarity
15819.9	44.63	24.3	20.33	V
17002.2	48.1	28.3	19.8	Н

Note: Only the worst case is written in the report.

Page Number: 19 of 20 Report Issued Date: Dec. 22, 2020

Accreditation Certificate ANNEX B.

Accredited Laboratory

A2LA has accredited

3IN (Industrial Internet Innovation Center (Shanghai) Co., Ltd.)

Shanghai, People's Republic of China

for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. This laboratory also meets the requirements of any additional program requirements in the «field» field. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Presented this 6th day of May 2019.

Vice President, Accreditation Services For the Accreditation Council Certificate Number 3682.01 Valid to February 28, 2021

For the tests to which this accreditation applies, please refer to the laboratory's Electrical(field)) Scope of Accreditation.

********END OF REPORT*******