

RF TEST REPORT

Applicant MobiWire SAS

FCC ID QPN-H6511

Product 4G Smart Phone

Brand MobiWire; MobiWire; Vodafone

Model MobiWire H6511; MBW Vodafone

Smart T23; Vodafone Pro 4G

Report No. R2209A0850-R4

Issue Date November 23, 2022

TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in **FCC CFR47 Part 15C (2021)**. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Prepared by: Xu Ying

Approved by: Xu Kai

TA Technology (Shanghai) Co., Ltd.

Building 3, No.145, Jintang Rd, Pudong Shanghai, P.R.China TEL: +86-021-50791141/2/3 FAX: +86-021-50791141/2/3-8000

TABLE OF CONTENT

Report No.: R2209A0850-R4

1. Tes	st Laboratory	4
1.1.	Notes of the test report	4
1.2.	Test facility	4
1.3.	Testing Location	4
2. Ge	neral Description of Equipment under Test	5
2.1.	Applicant and Manufacturer Information	
2.2.	General information	5
3. App	olied Standards	7
4. Tes	st Configuration	8
5. Tes	st Case Results	9
5.1.	Maximum output power	9
5.2.	99% Bandwidth and 6dB Bandwidth	11
5.3.	Band Edge	27
5.4.	Power Spectral Density	36
5.5.	Spurious RF Conducted Emissions	46
5.6.	Unwanted Emission	60
5.7.	Conducted Emission	94
6. Ma	in Test Instruments	99
ANNEX	A: The EUT Appearance	100
ANNEX	B: Test Setup Photos	101

Summary of measurement results

Number	Test Case	Clause in FCC rules	Verdict
1	Maximum output power	15.247(b)(3)	PASS
2	99% Bandwidth and 6dB Bandwidth	15.247(a)(2) C63.10 6.7	PASS
3	Power spectral density	15.247(e)	PASS
4	Band Edge	15.247(d)	PASS
5	Spurious RF Conducted Emissions	15.247(d)	PASS
6	Unwanted Emissions	15.247(d),15.205,15.209	PASS
7	Conducted Emissions	15.207	PASS

Date of Testing: September 18, 2022 ~ November 14, 2022

Date of Sample Received: September 15, 2022

Note: All indications of Pass/Fail in this report are opinions expressed by TA Technology (Shanghai) Co., Ltd. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only.

1. Test Laboratory

1.1. Notes of the test report

This report shall not be reproduced in full or partial, without the written approval of TA Technology

(Shanghai) Co., Ltd. The results documented in this report apply only to the tested sample, under

the conditions and modes of operation as described herein . Measurement Uncertainties were not

taken into account and are published for informational purposes only. This report is written to support

regulatory compliance of the applicable standards stated above.

1.2. Test facility

FCC (Designation number: CN1179, Test Firm Registration Number: 446626)

TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications

Commission list of test facilities recognized to perform measurements.

A2LA (Certificate Number: 3857.01)

TA Technology (Shanghai) Co., Ltd. has been listed by American Association for Laboratory

Accreditation to perform measurement.

1.3. Testing Location

Company:

TA Technology (Shanghai) Co., Ltd.

Address:

Building 3, No.145, Jintang Rd, Pudong Shanghai, P.R.China

City:

Shanghai

Post code:

201201

Country:

P. R. China

Contact:

Xu Kai

Telephone:

+86-021-50791141/2/3

Fax:

+86-021-50791141/2/3-8000

Website:

http://www.ta-shanghai.com

E-mail:

xukai@ta-shanghai.com

2. General Description of Equipment under Test

2.1. Applicant and Manufacturer Information

Applicant	MobiWire SAS
Applicant address	107 Boulevard de la Mission Marchand, 92400 Courbevoie, France.
Manufacturer	MobiWire SAS
Manufacturer address	107 Boulevard de la Mission Marchand, 92400 Courbevoie, France.

2.2. General information

EUT Description				
Model	MobiWire H6511; MBW Vodafone Smart T23; Vodafone Pro 4G			
IMEI 356662530000212				
Hardware Version	V00			
Software Version	MobiWire_H6511M_V01			
Power Supply	Battery / AC adapter			
Antenna Type	Internal Antenna			
Antenna Connector A permanently attached antenna (meet with the standard F 15.203 requirement)				
Antenna Gain	-2 dBi for Wi-Fi and Bluetooth LE			
additional beamforming gain	NA			
Operating Frequency Range(s)	802.11b/g/n(HT20): 2412 ~ 2462 MHz Bluetooth LE V5.0: 2402 ~2480 MHz			
Modulation Type	802.11b: DSSS 802.11g/n(HT20): OFDM Bluetooth LE: GFSK			
Max. Output Power	Wi-Fi 2.4G: 17.51 dBm Bluetooth LE: -2.16 dBm			
EUT Accessory				
Adapter 1	Manufacturer: Jiangxi Jian Aohai Technology Co., Ltd. Model: A103A-050100U-AU2			
Adapter 2	Manufacturer:. Dongguan Aohai Technology Co., Ltd. Model: A18A-050100U-US2			
Battery	Manufacturer: Shenzhen Aerospace Electronic Co.,Ltd. Model: 178249224			
Earphone	Manufacturer: JIU JIANG JUWEI ELECTRONICS CO.,LTD Model: JWEP0957-M01R			
USB Cable	Manufacturer: SHENZHENFKY-QYHARDWARE ELECTRONIC CO.,LTD			

TA Technology (Shanghai) Co., Ltd. TA-MB-04-005R Page 5 of 101 This report shall not be reproduced except in full, without the written approval of TA Technology (Shanghai) Co., Ltd.

RF Test Report Report No.: R2209A0850-R4

Model: AM/MICRO5P

Note: 1. The EUT is sent from the applicant to TA and the information of the EUT is declared by the applicant.

2. There is more than one Adapter, each one should be applied throughout the compliance test respectively, and however, only the worst case (Adapter 2) will be recorded in this report.

Item	Configure 1	Configure 2
Components on PCB changes	1	add second flash
LCD changes	1	add second flash
Others	The same	The same

Note: Customer declaration, two configures is the same, except for flash. There are more than one Configure, each one should be applied throughout the compliance test respectively, and however, only the worst case (Configure 1) will be recorded in this report.

Three models: MobiWire H6511; Vodafone Pro 4G; MBW Vodafone Smart T23

The difference:

Vodafone Pro 4G; MBW Vodafone Smart T23:

1: Battery cover silkscreen logo is different.

MobiWire H6511 is same as Vodafone Pro 4G, no difference. And only the data for MobiWire H6511 is recorded in this report.

RF Test Report Report Report No.: R2209A0850-R4

3. Applied Standards

According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

Test standards:

FCC CFR47 Part 15C (2021) Radio Frequency Devices

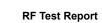
ANSI C63.10-2013

Reference standard:

KDB 558074 D01 15.247 Meas Guidance v05r02

4. Test Configuration

Test Mode


The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application.

The radiated emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis). The worst emission was found in lie-down position (X axis) and the loop antenna is vertical, the others are vertical and horizontal. and the worst case was recorded.

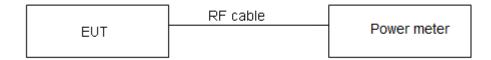
In order to find the worst case condition, Pre-tests are needed at the presence of different data rate. Preliminary tests have been done on all the configuration for confirming worst case. Data rate below means worst-case rate of each test item.

Worst-case data rates are shown as following table.

Test Mode	Data Rate
Bluetooth(Low Energy)	1Mbps
802.11b	1 Mbps
802.11g	6 Mbps
802.11n HT20	MCS0

5. Test Case Results

5.1. Maximum output power


Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

Methods of Measurement

During the process of the testing, The EUT was connected to Power meter with a known loss. The EUT is max power transmission with proper modulation.

Test Setup

Limits

Rule Part 15.247 (b) (3) specifies that "For systems using digital modulation in the 902–928 MHz, 2400-2483.5 MHz: 1 Watt."

Average Output Power ≤ 1W (30dBm)

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 0.44 dB.

F Test Report No.: R2209A0850-R4

Test Results

Power Index					
Channel	802.11b	802.11g	802.11n HT20	Channel	Bluetooth LE
CH1	19.5	17.5	17.5	СН0	1
CH6	19.5	17.5	17.5	CH19	1
CH11	19.5	17.5	17.5	CH39	1

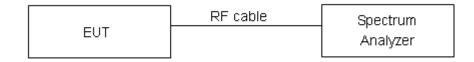
Test Mode	Duty cycle	Duty cycle correction Factor(dB)		
802.11b	1.000	0.0		
802.11g	1.000	0.0		
802.11n HT20 1.000 0.0				
Bluetooth LE 0.851 0.7				
Note: when Duty cycle ≥0.98, Duty cycle correction Factor not required.				

Average Power Average Power Carrier frequency Limit **Test Mode** with duty factor Conclusion Measured (MHz))/ Channel (dBm) (dBm) (dBm) 2412/CH 1 17.35 17.35 **PASS** 30 802.11b 2437/CH 6 17.42 17.42 30 **PASS** 2462/CH11 17.51 17.51 **PASS** 30 15.34 15.34 2412/CH 1 30 **PASS** 802.11g 2437/CH 6 15.29 15.29 30 **PASS** 2462/CH11 15.36 15.36 30 **PASS** 2412/CH 1 14.95 14.95 30 **PASS** 802.11n **PASS** 2437/CH 6 14.97 14.97 30 HT20 2462/CH11 15.24 15.24 30 **PASS** 2402/CH0 -3.89 -3.19 30 **PASS** Bluetooth 2440/CH19 -2.86-2.16 30 **PASS** (Low Energy) -3.23 **PASS** 2480/CH39 -3.93 30 Note: Average Power with duty factor = Average Power Measured +Duty cycle correction factor

RF Test Report Report Report No.: R2209A0850-R4

5.2. 99% Bandwidth and 6dB Bandwidth

Ambient condition


Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

Method of Measurement

The EUT was connected to the spectrum analyzer through an external attenuator (20dB) and a known loss cable. RBW is set to 100 kHz; VBW is set to 300 kHz on spectrum analyzer. Dector=Peak, Trace mode=max hold.

The EUT was connected to the spectrum analyzer through a known loss cable. The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the actual occupied / x dB bandwidth and the video bandwidth (VBW) shall not be smaller than three times the RBW value.

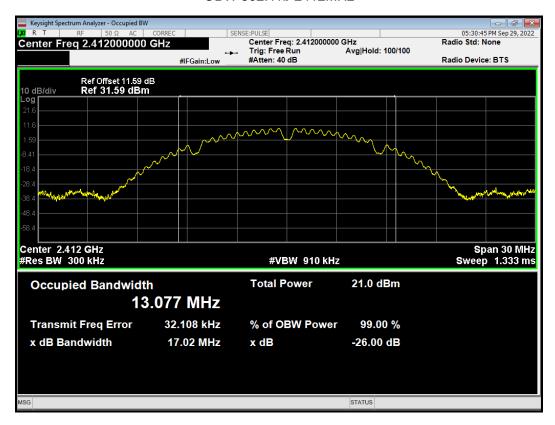
Test Setup

Limits

Rule Part 15.247 (a) (2) specifies that "Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz."

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 936 Hz.


Test Results:

Test Mode	Carrier frequency (MHz)	99% bandwidth (MHz)	Minimum 6 dB bandwidth (MHz)	Limit (kHz)	Conclusion
802.11b	2412	13.077	8.02	500	PASS
	2437	12.796	7.54	500	PASS
	2462	13.188	9.05	500	PASS
802.11g	2412	16.616	13.40	500	PASS
	2437	16.511	14.00	500	PASS
	2462	16.735	15.87	500	PASS
802.11n HT20	2412	17.698	14.74	500	PASS
	2437	17.625	15.25	500	PASS
	2462	17.750	16.04	500	PASS
Bluetooth (Low Energy)	2402	1.040	0.70	500	PASS
	2440	1.040	0.66	500	PASS
	2480	1.039	0.66	500	PASS

99%bandwidth

RF Test Report Report Report No.: R2209A0850-R4

OBW 802.11b 2412MHz

OBW 802.11b 2437MHz

OBW 802.11b 2462MHz

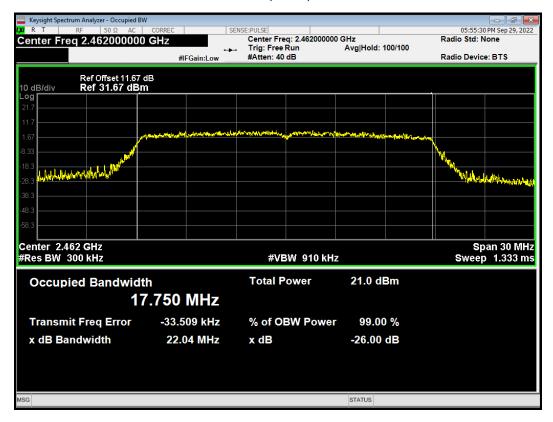


OBW 802.11g 2412MHz

OBW 802.11g 2437MHz

OBW 802.11g 2462MHz

OBW 802.11n(HT20) 2412MHz


OBW 802.11n(HT20) 2437MHz

RF Test Report Report No.: R2209A0850-R4

OBW 802.11n(HT20) 2462MHz

OBW BLE 2440MHz

OBW BLE 2480MHz

6 dB bandwidth

-6dB Bandwidth 802.11b 2412MHz

Report No.: R2209A0850-R4

-6dB Bandwidth 802.11b 2437MHz

RF Test Report No.: R2209A0850-R4

-6dB Bandwidth 802.11b 2462MHz

-6dB Bandwidth 802.11g 2412MHz

-6dB Bandwidth 802.11g 2437MHz

-6dB Bandwidth 802.11g 2462MHz

-6dB Bandwidth 802.11n (HT20) 2412MHz

-6dB Bandwidth 802.11n (HT20) 2437MHz

-6dB Bandwidth 802.11n (HT20) 2462MHz

-6dB Bandwidth BLE 2402MHz

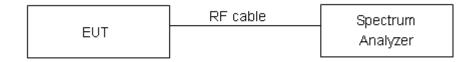
Report No.: R2209A0850-R4

-6dB Bandwidth BLE 2440MHz

-6dB Bandwidth BLE 2480MHz

5.3. Band Edge

Ambient condition


Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

Report No.: R2209A0850-R4

Method of Measurement

The EUT was connected to the spectrum analyzer through an external attenuator (20dB) and a known loss cable the band edge of the lowest and highest channels were measured. The peak detector is used and RBW is set to 100 kHz and VBW is set to 300 kHz on spectrum analyzer. Spectrum analyzer plots are included on the following pages.

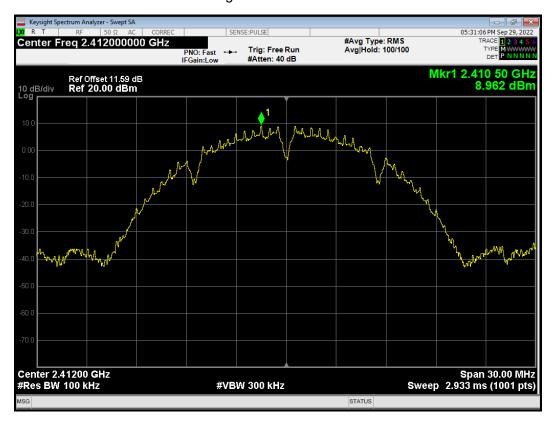
Test Setup

Limits

Rule Part 15.247(d) specifies that "In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits." If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB."

Measurement Uncertainty

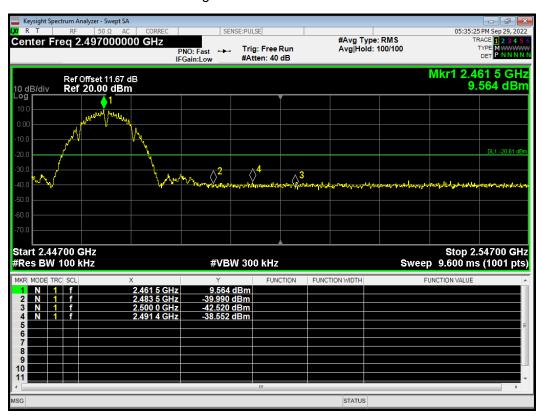
The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96.


Frequency	Uncertainty	
2GHz-3GHz	1.407 dB	

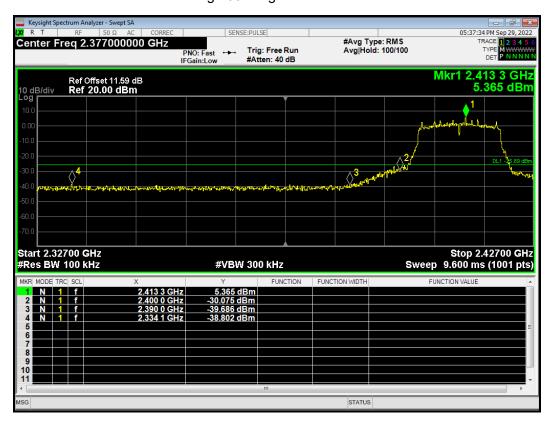
TA Technology (Shanghai) Co., Ltd.

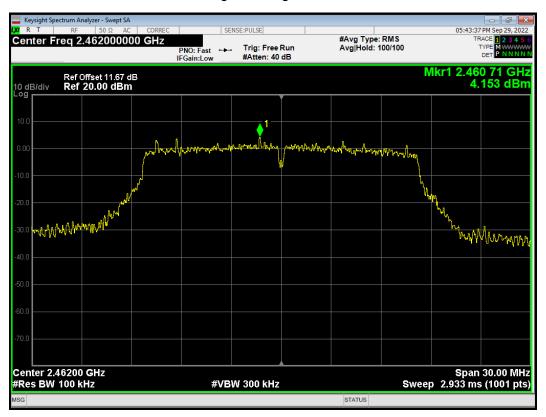
RF Test Report No.: R2209A0850-R4
Test Results: PASS

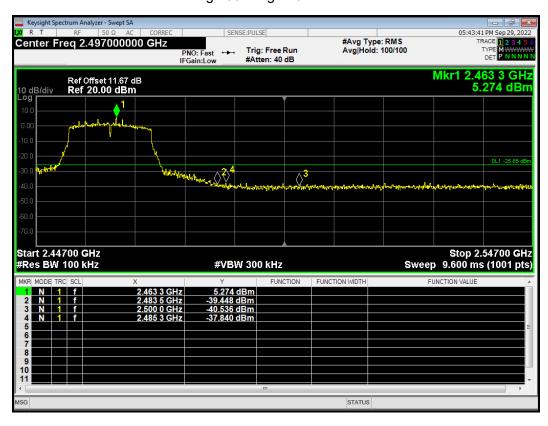
Band Edge 802.11b 2412MHz Ref

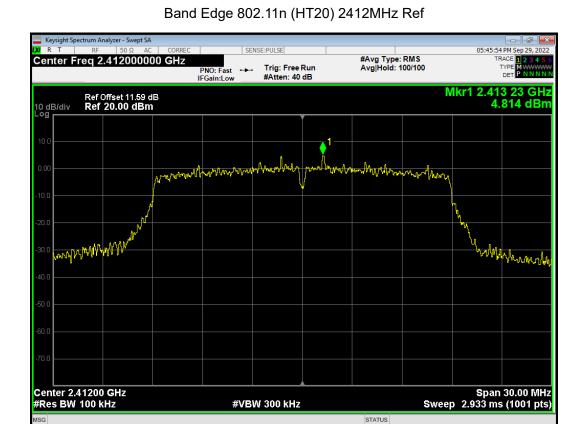


Band Edge 802.11b 2412MHz Emission

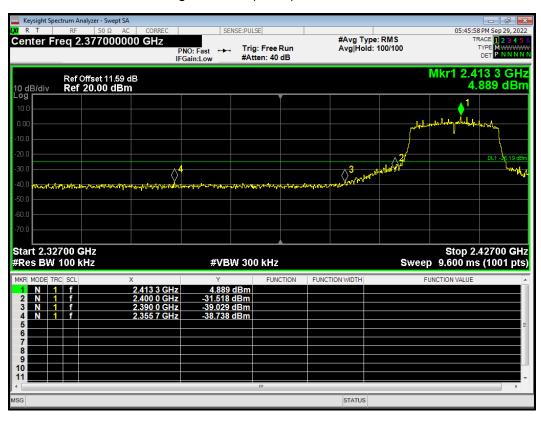

Band Edge 802.11b 2462MHz Emission


Band Edge 802.11g 2412MHz Ref

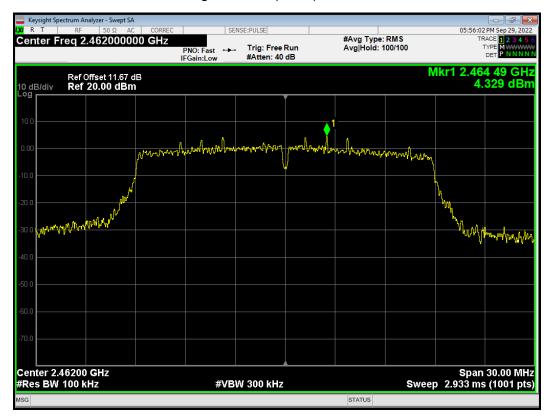

Band Edge 802.11g 2412MHz Emission



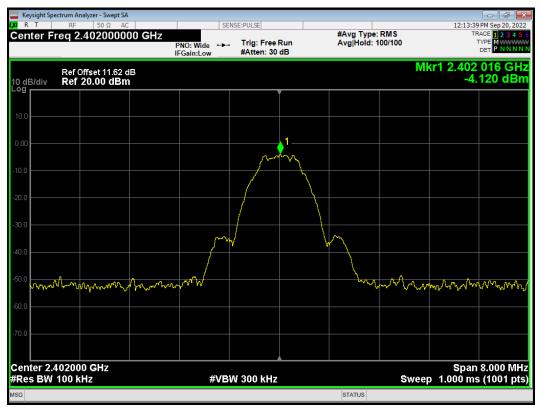
Band Edge 802.11g 2462MHz Ref

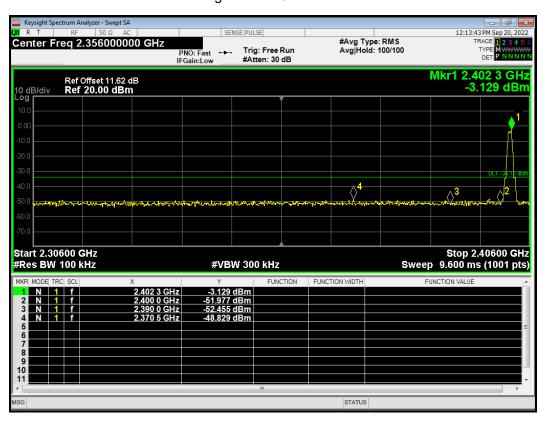


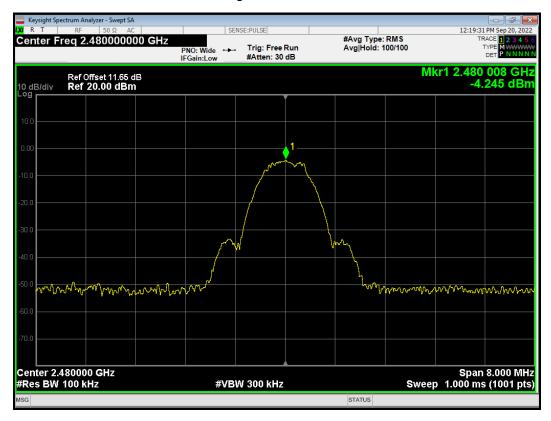
Band Edge 802.11g 2462MHz Emission



Band Edge 802.11n (HT20) 2412MHz Emission


Band Edge 802.11n (HT20) 2462MHz Ref


Band Edge 802.11n (HT20) 2462MHz Emission


Band Edge BLE 2402MHz Ref

Band Edge BLE 2402MHz Emission

Band Edge BLE 2480MHz Ref

Band Edge BLE 2480MHz Emission

5.4. Power Spectral Density

Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

Method of Measurement

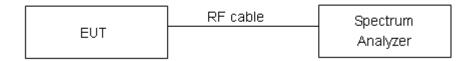
During the process of the testing, The EUT was connected to Spectrum Analyzer with a known loss.

The EUT is max power transmission with proper modulation.

Method AVGPSD-1 was used for this test.

- a) Set instrument center frequency to DTS channel center frequency
- b) Set span to at least 1.5 times the OBW
- c) Set RBW to:3kHz≤RBW≤100kHz
- d) Set VBW ≥ [3x RBW]
- e) Detector=power averaging (rms) or sample detector (when rms not available)
- f) Ensure that the number of measurement points in the sweep ≥ [2 X span/RBW]
- g) Sweep time auto couple
- h) Employ trace averaging (rms) mode over a minimum of 100 traces
- i) Use the peak marker function to determine the maximum amplitude level.
- j) If the measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat (note that this may require zooming in on the emission of interest and reducing the span to meet the minimum measurement point requirement as the RBW is reduced)

Method AVGPSD-2 was used for this test.


- a) Measure the duty cycle (D)of the transmitter output signal as described in 11.6
- b) Set instrument center frequency to DTS channel center frequency
- c) Set span to at least 1.5 times the OBW
- d) Set RBW to:3kHz≤RBW≤100Kh
- e) Set VBW ≥ [3x RBW]
- f) Detector= power averaging (rms) or sample detector (when rms not available)
- g) Ensure that the number of measurement points in the sweep ≥ [2 X span/RBW]
- h) Sweep time =auto couple
- i) Do not use sweep triggering; allow sweep to "free run"
- j) Employ trace averaging (rms) mode over a minimum of 100 traces
- k) Use the peak marker function to determine the maximum amplitude level

I) Add [10 log(1/ D)], where D is the duty cycle measured in step a), to the measured PSD to compute the average PSD during the actual transmission time

m) If measured value exceeds requirement specified by regulatory agency then reduce RBW (but no less than 3 kHz) and repeat (note that this may require zooming in on the emission of interest and reducing the span to meet the minimum measurement point requirement as the RBW is reduced)

Test setup

Limits

Rule Part 15.247(e) specifies that" For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. "

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 0.75dB.

Test Results:

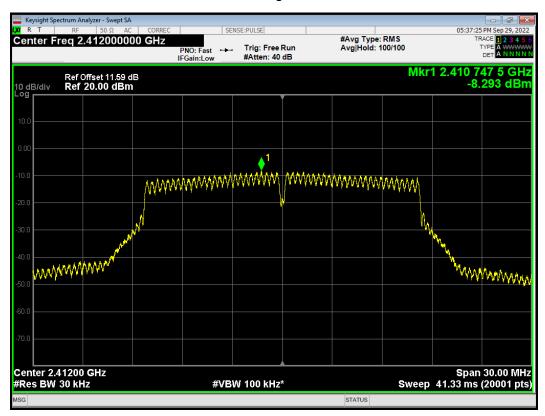
Test Mode	Channel Number	Read Value (dBm / 30kHz)	Power Spectral Density (dBm / 3kHz)	Limit (dBm / 3kHz)	Conclusion
	1	-3.82	-13.82	8	PASS
802.11b	6	-3.67	-13.67	8	PASS
	11	-3.86	-13.86	8	PASS
802.11g	1	-8.29	-18.29	8	PASS
	6	-7.88	-17.88	8	PASS
	11	-8.36	-18.36	8	PASS
	1	-8.84	-18.84	8	PASS
802.11n HT20	6	-8.23	-18.23	8	PASS
	11	-8.61	-18.61	8	PASS

Test Mode	Channel Number	Read Value (dBm / 3kHz)	Power Spectral Density (dBm / 3kHz)	Limit (dBm / 3kHz)	Conclusion
Bluetooth (Low Energy)	0	-25.17	-24.47	8	PASS
	19	-24.15	-23.45	8	PASS
	39	-25.39	-24.69	8	PASS

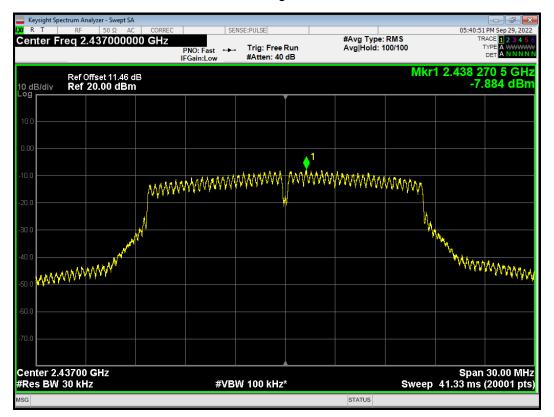
Note: Power Spectral Density =Read Value+Duty cycle correction factor

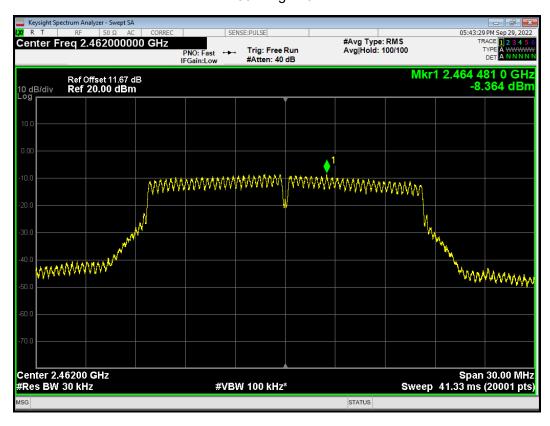
PSD 802.11b 2412MHz

PSD 802.11b 2437MHz



PSD 802.11b 2462MHz

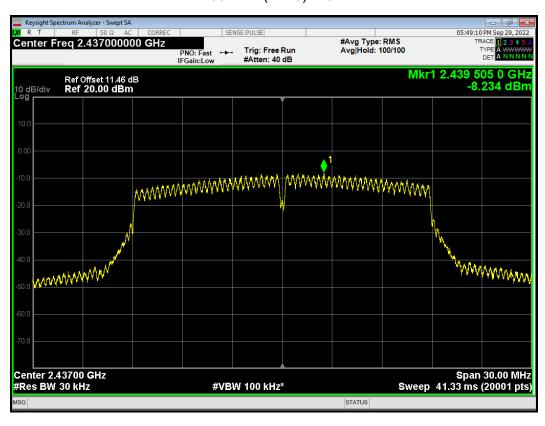

PSD 802.11g 2412MHz


Report No.: R2209A0850-R4

PSD 802.11g 2437MHz

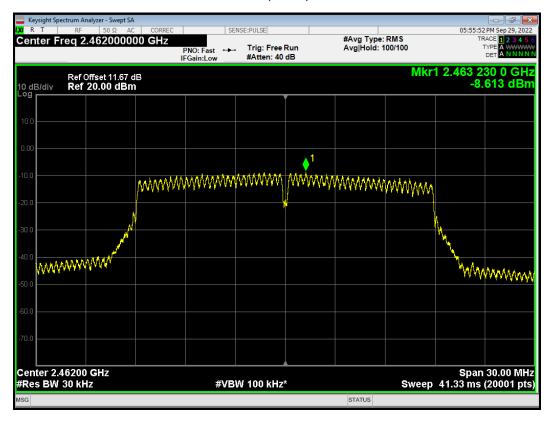
Report No.: R2209A0850-R4

PSD 802.11g 2462MHz

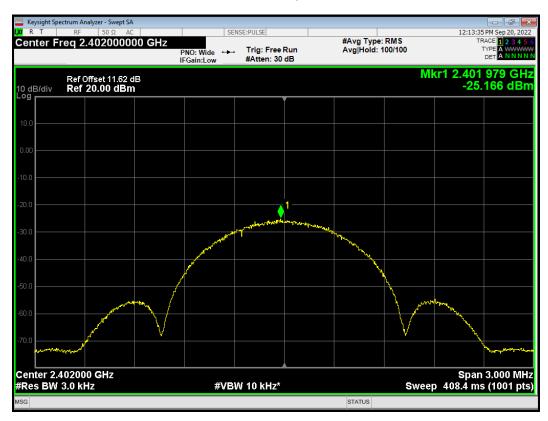


PSD 802.11n (HT20) 2412MHz

Report No.: R2209A0850-R4

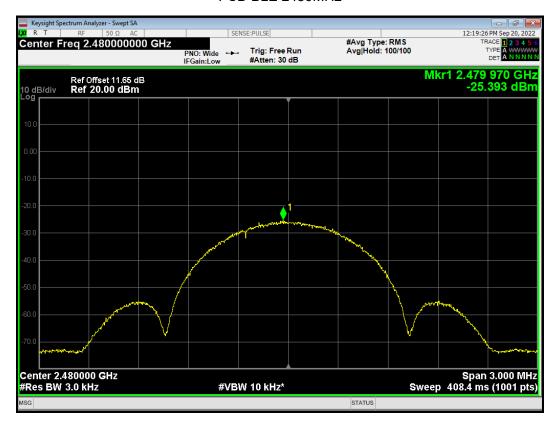


PSD 802.11n (HT20) 2437MHz



PSD 802.11n (HT20) 2462MHz

PSD BLE 2402MHz



PSD BLE 2440MHz

PSD BLE 2480MHz

5.5. Spurious RF Conducted Emissions

Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

Method of Measurement

The EUT was connected to the spectrum analyzer with a known loss. The spectrum analyzer scans from 30MHz to the 10th harmonic of the carrier. The peak detector is used. Set RBW to 100 kHz and VBW to 300 kHz, Sweep is set to ATUO.

The test is in transmitting mode.

Test setup

Limits

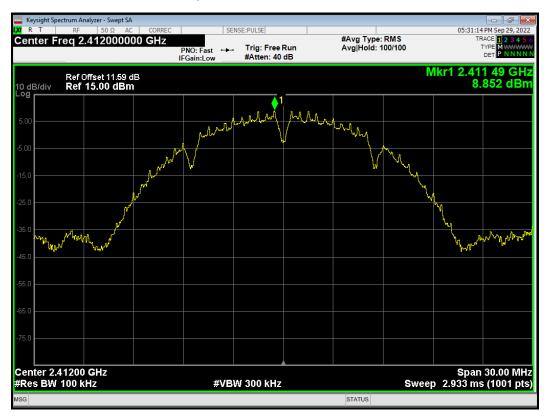
Rule Part 15.247(d) pacifies that "In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB."

Test Mode	Carrier frequency (MHz)	Reference value (dBm)	Limit
	2412	8.85	-21.15
802.11b	2437	9.64	-20.36
	2462	8.62	-21.38
	2412	4.69	-25.31
802.11g	2437	5.76	-24.24
	2462	4.99	-25.01
000 11m	2412	4.96	-25.04
802.11n HT20	2437	4.75	-25.25
11120	2462	4.25	-25.75
Divoto eth	2402	-3.40	-33.40
Bluetooth (Low Energy)	2440	-2.10	-32.10
(LOW Lileigy)	2480	-3.15	-33.15

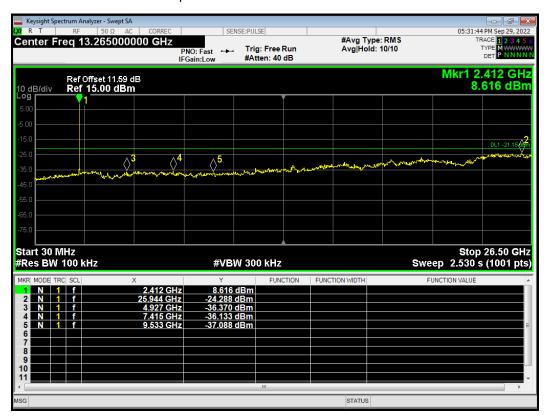
TA Technology (Shanghai) Co., Ltd.

TA-MB-04-005R

Page 46 of 101

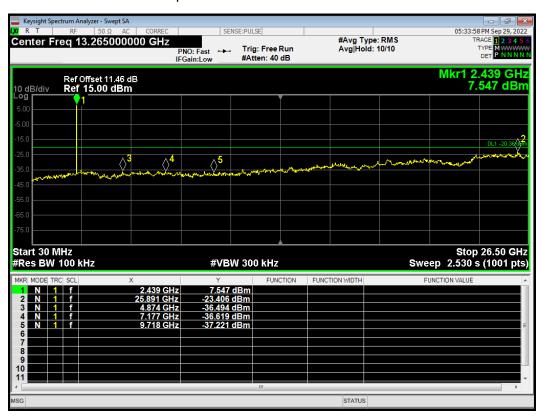

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96.


Frequency	Uncertainty
100kHz-2GHz	0.684 dB
2GHz-26GHz	1.407 dB

Test Results:

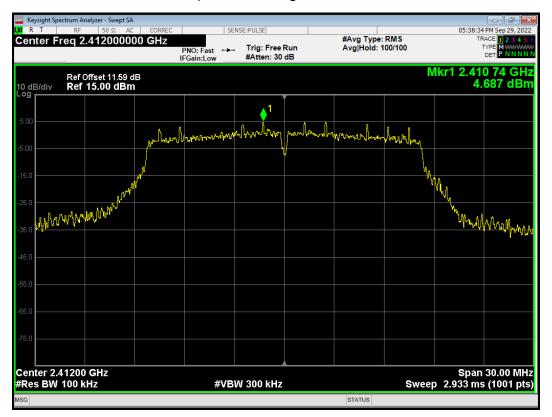

Tx. Spurious 802.11b 2412MHz Ref

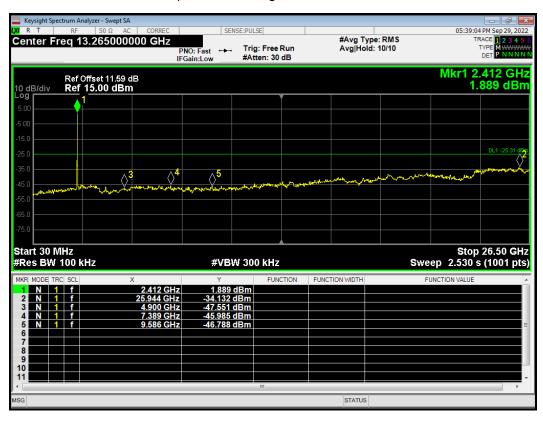

Tx. Spurious 802.11b 2412MHz Emission

Tx. Spurious 802.11b 2437MHz Ref

Tx. Spurious 802.11b 2437MHz Emission

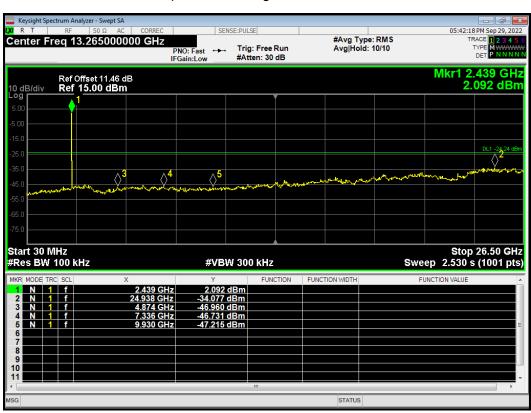
Report No.: R2209A0850-R4


Tx. Spurious 802.11b 2462MHz Ref

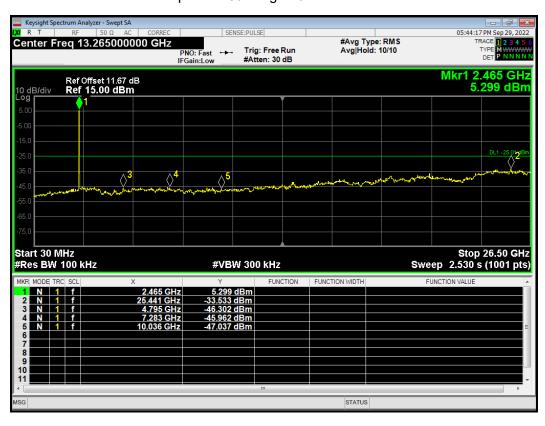

Tx. Spurious 802.11b 2462MHz Emission

Tx. Spurious 802.11g 2412MHz Ref

Tx. Spurious 802.11g 2412MHz Emission



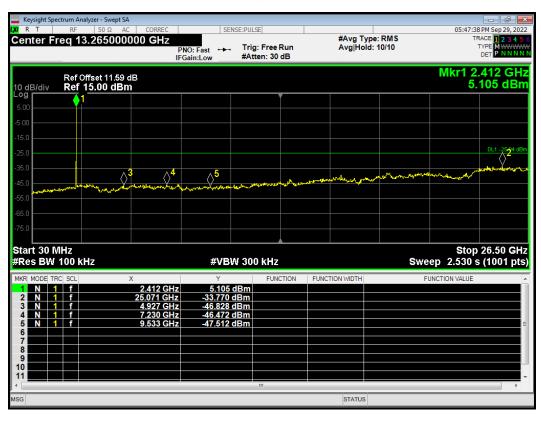
Tx. Spurious 802.11g 2437MHz Emission

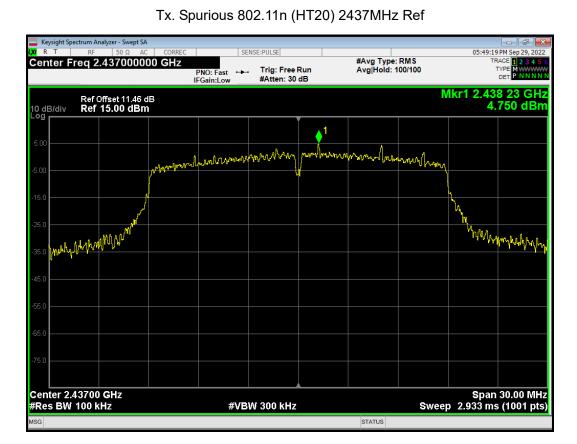

STATUS

#VBW 300 kHz

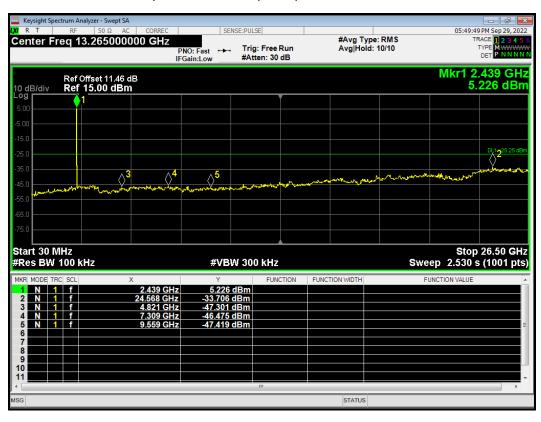


Tx. Spurious 802.11g 2462MHz Emission

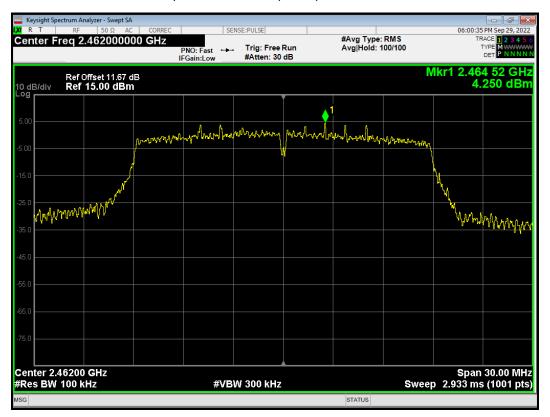




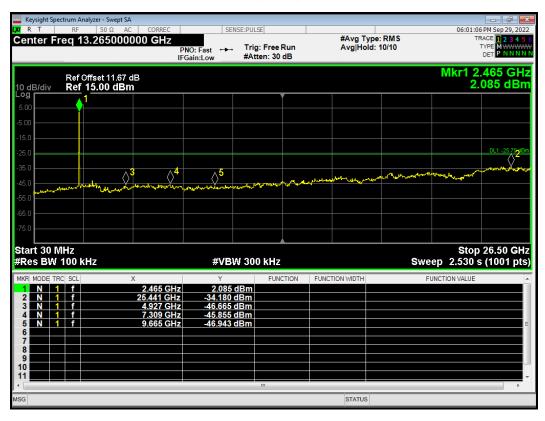
Tx. Spurious 802.11n (HT20) 2412MHz Ref



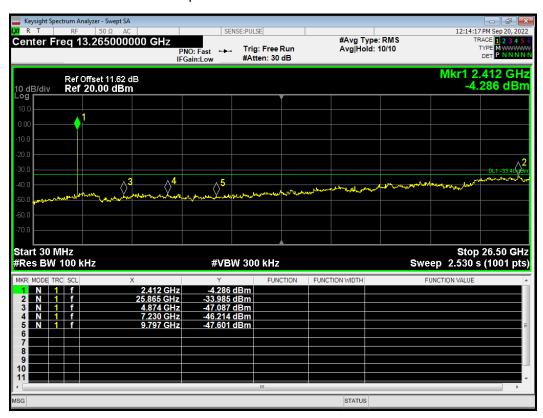
Tx. Spurious 802.11n (HT20) 2412MHz Emission



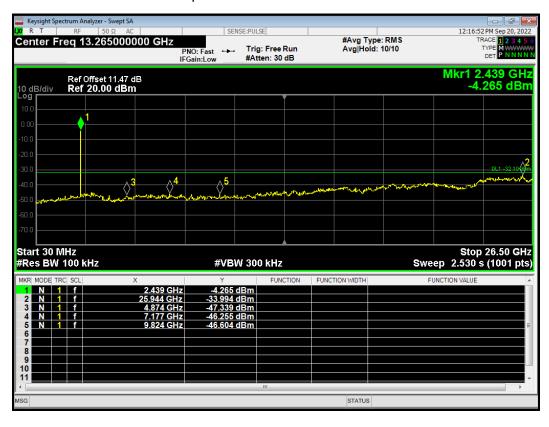
Tx. Spurious 802.11n (HT20) 2437MHz Emission



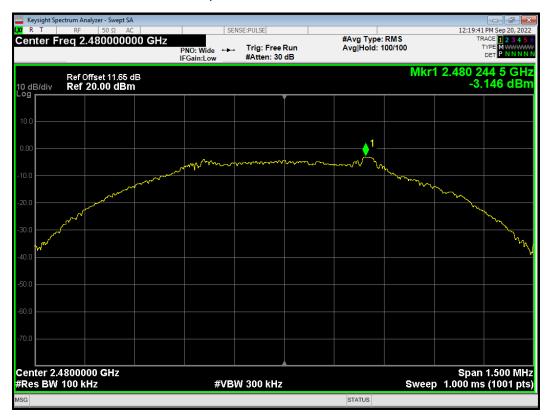

Tx. Spurious 802.11n (HT20) 2462MHz Ref


Tx. Spurious 802.11n (HT20) 2462MHz Emission

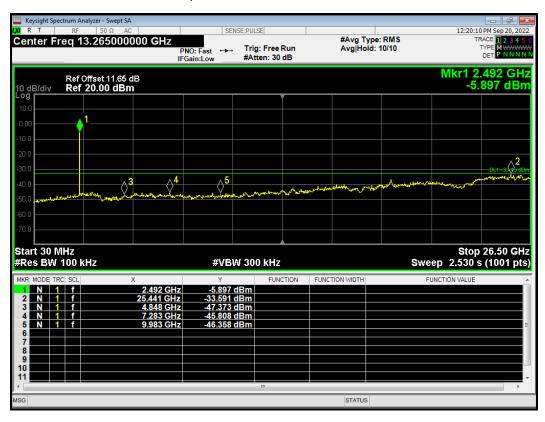
Tx. Spurious BLE 2402MHz Ref


Tx. Spurious BLE 2402MHz Emission

Tx. Spurious BLE 2440MHz Ref



Tx. Spurious BLE 2440MHz Emission



Report No.: R2209A0850-R4

Tx. Spurious BLE 2480MHz Ref

Tx. Spurious BLE 2480MHz Emission

5.6. Unwanted Emission

Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	102.5kPa

Method of Measurement

The test set-up was made in accordance to the general provisions of ANSI C63.10.

The Equipment Under Test (EUT) was set up on a non-conductive table in the semi-anechoic chamber. The test was performed at the distance of 3 m between the EUT and the receiving antenna.

The turntable shall be rotated from 0 to 360 degrees for detecting the maximum of radiated spurious signal level. The measurements shall be repeated with orthogonal polarization of the test antenna. The data of cable loss and antenna factor has been calibrated in full testing frequency range before the testing. Sweep the Restricted Band and the emissions less than 20 dB below the permissible value are reported.

The radiated emissions measurements were made in a typical installation configuration.

Sweep the whole frequency band through the range from 9 kHz to the 10th harmonic of the carrier, and the emissions less than 20 dB below the permissible value are reported.

This method refer to ANSI C63.10.

The procedure for peak unwanted emissions measurements above 1000 MHz is as follows:

Set the spectrum analyzer in the following:

9kHz~150 kHz

RBW=200Hz, VBW=1kHz/ Sweep=AUTO

150 kHz~30MHz

RBW=9KHz, VBW=30KHz,/ Sweep=AUTO

Below 1GHz

RBW=100kHz / VBW=300kHz / Sweep=AUTO

a) Peak emission levels are measured by setting the instrument as follows:

Above 1GHz

PEAK: RBW=1MHz VBW=3MHz/ Sweep=AUTO

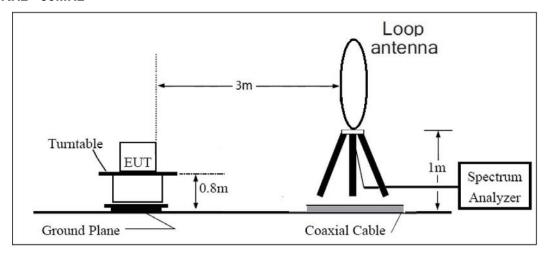
b) Average emission levels are measured by setting the instrument as follows:

Above 1GHz

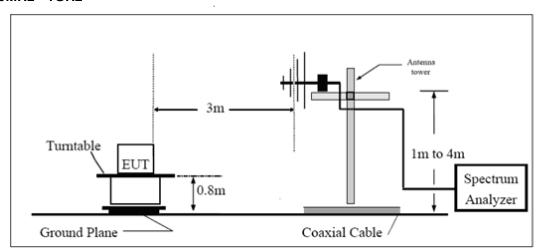
AVERAGE: RBW=1MHz / VBW=3MHz / Sweep=AUTO

- c) Detector: The measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.
- d) Averaging type = power (i.e., rms) (As an alternative, the detector and averaging type may be set for linear voltage averaging. Some instruments require linear display mode to use linear voltage

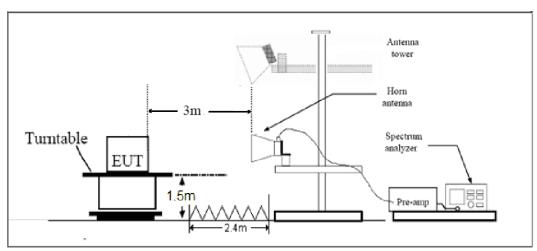
averaging. Log or dB averaging shall not be used.)


- e) Sweep time = auto.
- f) Perform a trace average of at least 100 traces if the transmission is continuous. If the transmission is not continuous, then the number of traces shall be increased by a factor of 1 / D, where D is the duty cycle. For example, with 50% duty cycle, at least 200 traces shall be averaged. (If a specific emission is demonstrated to be continuous—i.e., 100% duty cycle—then rather than turning ON and OFF with the transmit cycle, at least 100 traces shall be averaged.)
- g) If tests are performed with the EUT transmitting at a duty cycle less than 98%, then a correction factor shall be added to the measurement results prior to comparing with the emission limit, to compute the emission level that would have been measured had the test been performed at 100% duty cycle. The correction factor is computed as follows:
- 1) If power averaging (rms) mode was used in the preceding step e), then the correction factor is [10 log (1 / D)], where D is the duty cycle. For example, if the transmit duty cycle was 50%, then 3 dB shall be added to the measured emission levels.
- 2) If linear voltage averaging mode was used in the preceding step e), then the correction factor is [20 log (1 / D)], where D is the duty cycle. For example, if the transmit duty cycle was 50%, then 6 dB shall be added to the measured emission levels.
- 3) If a specific emission is demonstrated to be continuous (100% duty cycle) rather than turning ON and OFF with the transmit cycle, then no duty cycle correction is required for that emission.

The test is in transmitting mode.



Test setup


9KHz~30MHz

30MHz~1GHz

Above 1GHz

Note: Area side:2.4mX3.6m

Limits

Rule Part 15.247(d) specifies that "In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c))."

Limit in restricted band

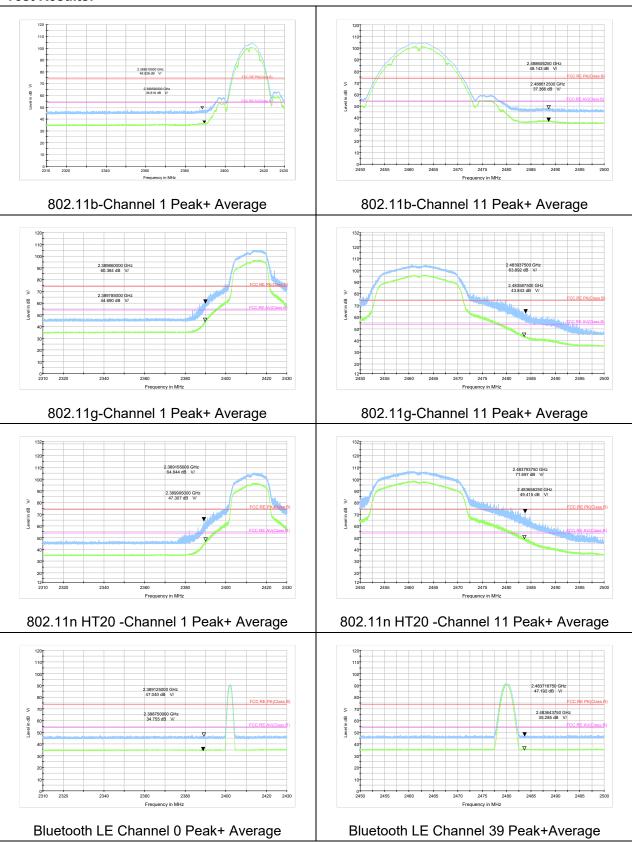
Frequency of emission (MHz)	Field strength(µV/m)	Field strength(dBµV/m)
0.009-0.490	2400/F(kHz)	1
0.490–1.705	24000/F(kHz)	1
1.705–30.0	30	1
30-88	100	40
88-216	150	43.5
216-960	200	46
Above960	500	54

§15.35(b)

There is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit. Peak Limit=74 dBuV/m

Average Limit=54 dBuV/m

Spurious Radiated Emissions are permitted in any of the frequency bands listed below:


MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
1 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96.

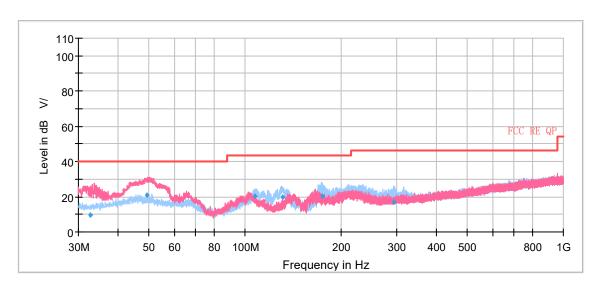
Frequency	Uncertainty		
9KHz-30MHz	3.55 dB		
30MHz-200MHz	4.17 dB		
200MHz-1GHz	4.84 dB		
1-18GHz	4.35 dB		
18-26.5GHz	5.90 dB		
26.5GHz~40GHz	5.92 dB		

Test Results:

Result of RE

Test result

Sweep the whole frequency band through the range from 9kHz to the 10th harmonic of the carrier, the Emissions in the frequency band 9kHz-30MHz and 18GHz-26.5GHz are more than 20dB below the limit are not reported.

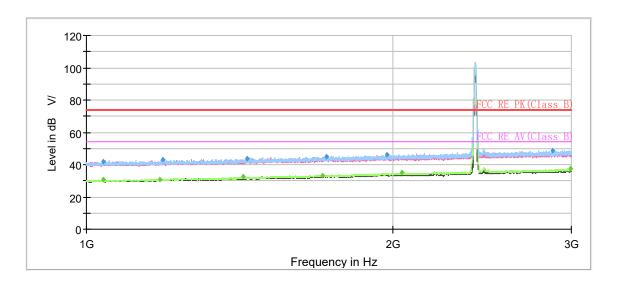

The following graphs display the maximum values of horizontal and vertical by software. For above 1GHz, Blue trace uses the peak detection, Green trace uses the average detection.

Continuous TX mode:

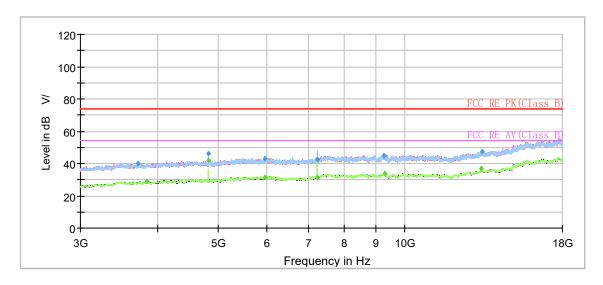
Wi-Fi 2.4G

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes with all channels, 802.11b, Channel 6 are selected as the worst condition. The test data of the worst-case condition was recorded in this report.

A symbol (dB V/) in the test plot below means ($^{dB}\mu$ V/m)


Radiates Emission from 30MHz to 1GHz

Frequency (MHz)	Quasi-Peak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Polarization	Azimuth (deg)	Correct Factor (dB)
32.67	9.82	40.00	30.18	100.0	V	130.00	17
49.30	20.76	40.00	19.24	100.0	V	49.00	21
107.18	20.30	43.50	23.20	225.0	Н	292.00	19
131.08	19.51	43.50	23.99	175.0	Н	125.00	15
174.57	20.52	43.50	22.98	184.0	Н	269.00	16
292.52	17.06	46.00	28.94	100.0	Н	89.00	20

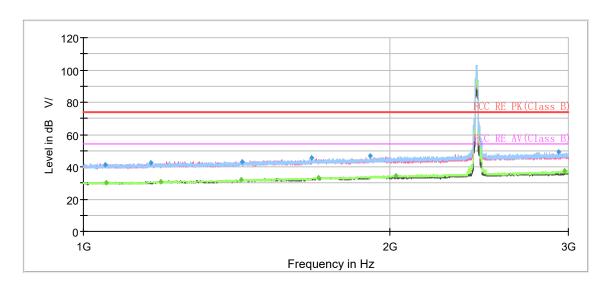

Remark: 1. Correction Factor = Antenna factor + Insertion loss (cable loss + amplifier gain)

2. Margin = Limit - Quasi-Peak

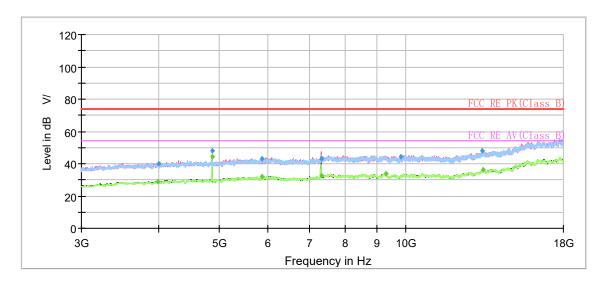
802.11b CH1

Note: The signal beyond the limit is carrier.
Radiates Emission from 1GHz to 3GHz

Radiates Emission from 3GHz to 18GHz



Frequency (MHz)	MaxPeak (dBµV/m)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
1038.75		30.66	54.00	23.34	500.00	200.0	Η	1.00	-9
1039.25	41.82		74.00	32.18	500.00	200.0	Н	0.00	-9
1182.00		30.99	54.00	23.01	500.00	100.0	Н	0.00	-8
1188.00	42.88		74.00	31.12	500.00	200.0	Н	23.00	-8
1427.00		32.52	54.00	21.48	500.00	200.0	Н	135.00	-6
1438.00	43.45		74.00	30.55	500.00	200.0	Н	81.00	-6
1706.00		33.47	54.00	20.53	500.00	100.0	Н	259.00	-4
1722.50	44.63		74.00	29.37	500.00	200.0	V	330.00	-4
1973.50	46.31		74.00	27.69	500.00	200.0	Н	60.00	-3
2043.50		34.77	54.00	19.23	500.00	200.0	Н	141.00	-3
2873.75	48.69		74.00	25.31	500.00	200.0	V	78.00	1
2994.00		37.33	54.00	16.67	500.00	100.0	Н	319.00	1

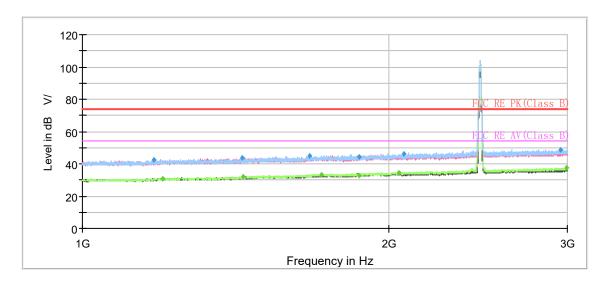

Remark: 1. Correction Factor = Antenna factor + Insertion loss (cable loss + amplifier gain)

^{2.} Margin = Limit –MAX Peak/ Average

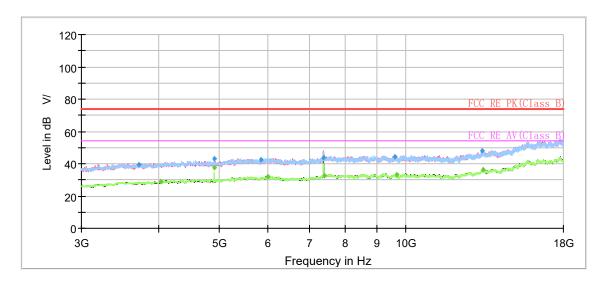
802.11b CH6

Note: The signal beyond the limit is carrier.
Radiates Emission from 1GHz to 3GHz

Radiates Emission from 3GHz to 18GHz


Frequency **MaxPeak** Limit Meas. Time Average Margin Height Azimuth Corr. Pol (MHz) (dBµV/m) (dBµV/m) (dBµV/m) (dB) (ms) (cm) (deg) (dB/m) 1050.50 41.22 74.00 32.78 500.00 100.0 V 11.00 -8 1052.75 29.93 54.00 24.07 500.00 200.0 V 189.00 -8 500.00 74.00 31.39 280.00 1164.25 42.61 100.0 Н -8 1191.75 54.00 23.04 500.00 200.0 Н 1.00 -7 30.96 1428.25 54.00 22.24 500.00 200.0 0.00 31.76 Н -6 ---1433.50 43.15 74.00 30.85 500.00 200.0 V 82.00 -6 1675.75 45.34 74.00 500.00 100.0 238.00 -5 28.66 Η 1704.00 33.23 54.00 20.77 500.00 200.0 Н 34.00 -5 1913.50 46.94 74.00 27.06 500.00 100.0 Η 314.00 -3 2031.25 54.00 19.35 500.00 200.0 Η 139.00 -3 34.65 1 2932.00 48.99 74.00 25.01 500.00 200.0 Н 23.00 2973.75 37.62 54.00 16.38 500.00 100.0 Н 329.00 1 4874.07 44.23 54.00 9.77 500.00 100.0 Н 254.00 -3 ---

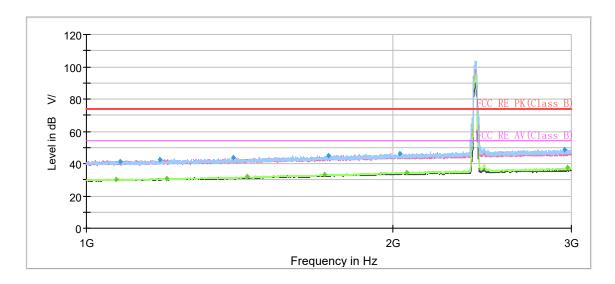
Remark: 1. Correction Factor = Antenna factor + Insertion loss (cable loss + amplifier gain)

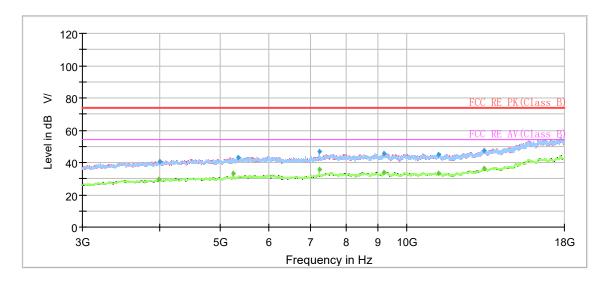

2. Margin = Limit -MAX Peak/ Average

Report No.: R2209A0850-R4

802.11b CH11

Note: The signal beyond the limit is carrier.
Radiates Emission from 1GHz to 3GHz


Radiates Emission from 3GHz to 18GHz

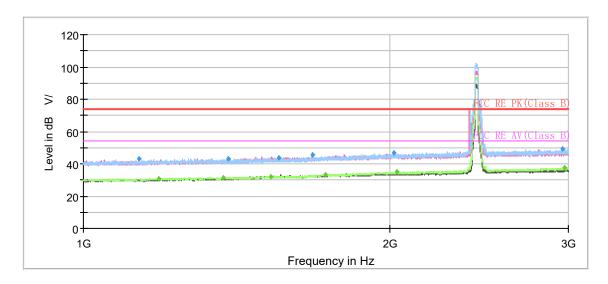

Frequency (MHz)	MaxPeak (dBµV/m)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
1175.75	42.33		74.00	31.67	500.00	200.0	Н	142.00	-8
1198.75		30.88	54.00	23.12	500.00	200.0	V	89.00	-7
1436.50	43.55		74.00	30.45	500.00	100.0	V	285.00	-6
1440.25		31.95	54.00	22.05	500.00	200.0	Н	49.00	-6
1673.50	44.77		74.00	29.23	500.00	100.0	V	0.00	-5
1717.25		33.39	54.00	20.61	500.00	200.0	Н	33.00	-4
1871.25	44.58		74.00	29.42	500.00	100.0	Н	312.00	-4
1871.25		32.70	54.00	21.30	500.00	100.0	V	166.00	-4
2049.25		34.68	54.00	19.32	500.00	100.0	Н	192.00	-3
2073.00	46.44		74.00	27.56	500.00	100.0	Н	302.00	-3
2951.00	48.78		74.00	25.22	500.00	100.0	Н	291.00	1
2994.50		37.28	54.00	16.72	500.00	200.0	Н	16.00	1

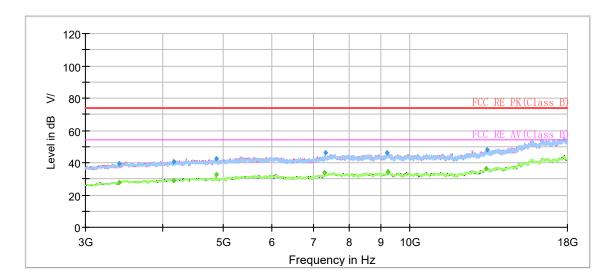
Remark: 1. Correction Factor = Antenna factor + Insertion loss (cable loss + amplifier gain)

2. Margin = Limit -MAX Peak/ Average

802.11g CH1

Radiates Emission from 3GHz to 18GHz



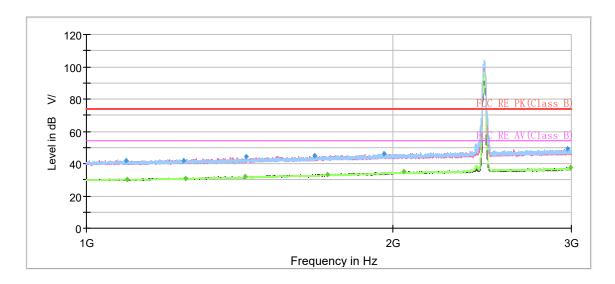

Frequency **MaxPeak** Limit Meas. Time Average Margin Height **Azimuth** Corr. Pol (MHz) (dBµV/m) (dBµV/m) (dBµV/m) (dB) (ms) (cm) (deg) (dB/m) 1069.50 29.94 54.00 24.06 500.00 100.0 V 100.00 -8 1078.50 41.35 74.00 32.65 500.00 100.0 V 299.00 -8 42.30 31.70 1179.75 74.00 500.00 200.0 Н 69.00 -8 ---1200.00 54.00 23.00 500.00 200.0 81.00 -7 31.00 Н 1394.50 74.00 30.42 500.00 200.0 75.00 43.58 Н -6 ---1437.50 32.02 54.00 21.98 500.00 200.0 Η 26.00 -6 1715.75 100.0 33.26 54.00 20.74 500.00 Η 311.00 -4 1730.25 44.85 74.00 29.15 500.00 200.0 V 231.00 -4 2036.00 45.97 74.00 28.03 500.00 100.0 V 159.00 -3 2066.50 54.00 19.31 500.00 100.0 356.00 -3 ---34.69 Η 74.00 25.29 2950.75 48.71 500.00 200.0 Н 22.00 1 2974.50 37.34 54.00 16.66 500.00 100.0 Н 127.00 1

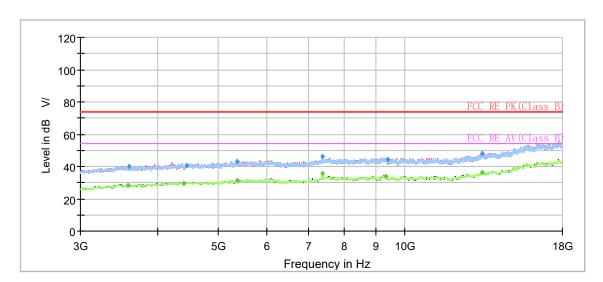
Remark: 1. Correction Factor = Antenna factor + Insertion loss (cable loss + amplifier gain)

^{2.} Margin = Limit -MAX Peak/ Average

802.11g CH6

Radiates Emission from 3GHz to 18GHz



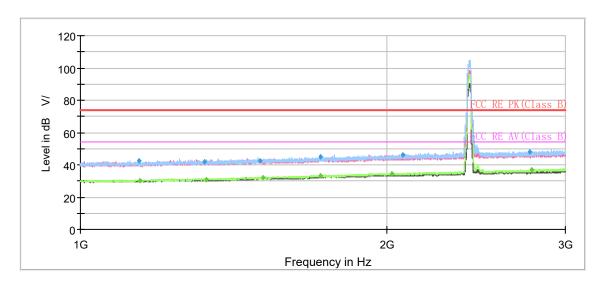

Frequency (MHz)	MaxPeak (dBµV/m)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
1134.50	42.93		74.00	31.07	500.00	200.0	Н	348.00	-8
1186.75		31.05	54.00	22.95	500.00	200.0	Н	332.00	-8
1372.50		31.60	54.00	22.40	500.00	200.0	Н	204.00	-6
1387.25	43.26		74.00	30.74	500.00	100.0	V	103.00	-6
1528.50		31.88	54.00	22.12	500.00	100.0	V	49.00	-5
1555.50	43.44		74.00	30.56	500.00	100.0	Н	87.00	-5
1678.50	45.28		74.00	28.72	500.00	200.0	Н	0.00	-5
1729.00		33.36	54.00	20.64	500.00	200.0	Н	265.00	-4
2018.00	46.80		74.00	27.20	500.00	100.0	Н	44.00	-3
2035.00		34.80	54.00	19.20	500.00	200.0	Н	176.00	-3
2959.75	49.13		74.00	24.87	500.00	100.0	Н	0.00	1
2972.00		37.35	54.00	16.65	500.00	200.0	Н	306.00	1

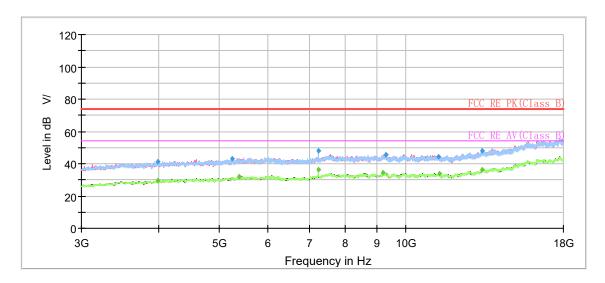
Remark: 1. Correction Factor = Antenna factor + Insertion loss (cable loss + amplifier gain)

^{2.} Margin = Limit –MAX Peak/ Average

802.11g CH11

Radiates Emission from 3GHz to 18GHz




Frequency **MaxPeak** Limit Meas. Time Average Margin Height **Azimuth** Corr. Pol (MHz) (dBµV/m) (dBµV/m) (dBµV/m) (dB) (ms) (cm) (deg) (dB/m) 1093.00 41.76 74.00 32.24 500.00 100.0 V 180.00 -8 1097.00 30.25 54.00 23.75 500.00 100.0 V 48.00 -8 41.77 32.23 22.00 -7 1245.50 74.00 500.00 200.0 Н 1252.75 54.00 23.16 500.00 100.0 V 120.00 -7 30.84 54.00 21.90 500.00 100.0 V 158.00 1433.75 32.10 -6 1436.75 44.08 74.00 29.92 500.00 100.0 V 42.00 -6 1677.50 44.69 74.00 500.00 100.0 V -5 29.31 48.00 1725.00 33.39 54.00 20.61 500.00 100.0 V 42.00 -4 1962.75 46.36 74.00 27.64 500.00 200.0 ٧ 355.00 -3 V 2050.25 54.00 19.18 500.00 100.0 21.00 -3 34.82 74.00 2972.75 49.07 24.93 500.00 200.0 Н 5.00 1 2996.50 37.69 54.00 16.31 500.00 100.0 V 0.00 1

Remark: 1. Correction Factor = Antenna factor + Insertion loss (cable loss + amplifier gain)

^{2.} Margin = Limit -MAX Peak/ Average

802.11n (HT20) CH1

Radiates Emission from 3GHz to 18GHz

2779.50

Frequency **MaxPeak** Limit Meas. Time Average Margin Height **Azimuth** Corr. Pol (MHz) (dBµV/m) (dBµV/m) (dBµV/m) (dB) (ms) (cm) (deg) (dB/m) 1141.75 42.53 74.00 31.47 500.00 200.0 Н 16.00 -8 1144.25 30.16 54.00 23.84 500.00 200.0 Η 123.00 -8 -7 1325.50 41.89 74.00 32.11 500.00 100.0 V 6.00 1329.00 54.00 23.34 500.00 200.0 V 293.00 -7 30.66 74.00 500.00 200.0 V 1503.00 42.62 31.38 293.00 -6 ---1511.00 32.29 54.00 21.71 500.00 100.0 V 129.00 -5 1720.75 200.0 -4 33.37 54.00 20.63 500.00 Η 11.00 1723.25 44.85 74.00 29.15 500.00 200.0 Н 95.00 -4 2023.75 34.75 54.00 19.25 500.00 100.0 Η 314.00 -3 2077.25 46.07 74.00 27.93 500.00 100.0 Η 336.00 -3 74.00 0 2768.25 48.05 25.95 500.00 200.0 181.00

Remark: 1. Correction Factor = Antenna factor + Insertion loss (cable loss + amplifier gain)

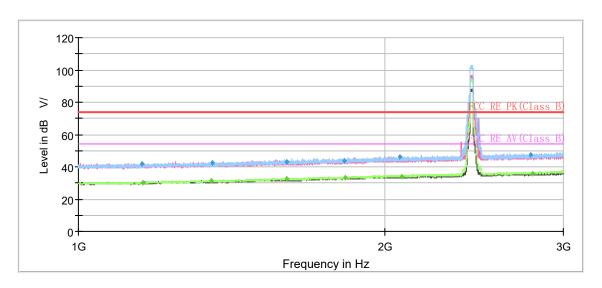
17.37

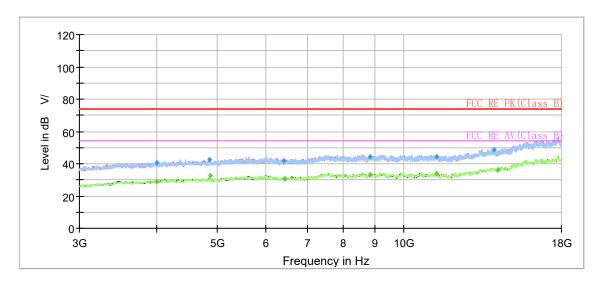
500.00

100.0

Н

298.00


0

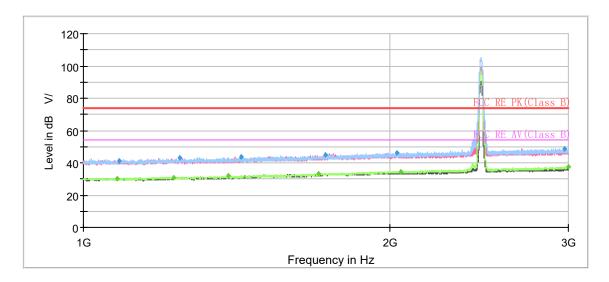

54.00

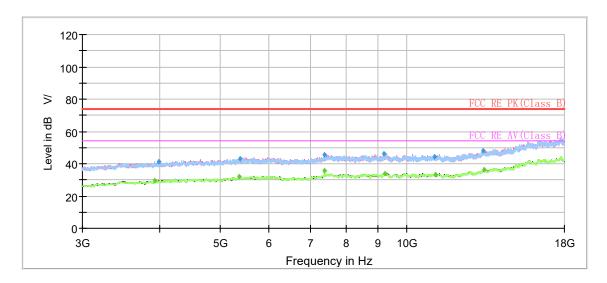
36.63

^{2.} Margin = Limit -MAX Peak/ Average

802.11n (HT20) CH6

Radiates Emission from 3GHz to 18GHz



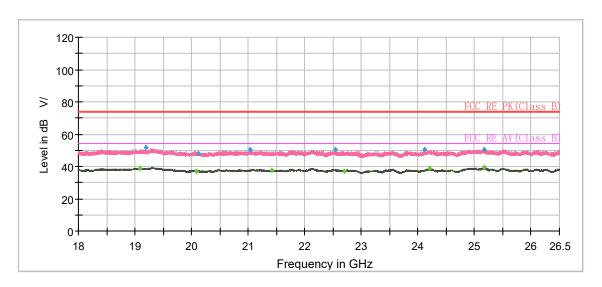

Frequency **MaxPeak** Limit Meas. Time Average Margin Height **Azimuth** Corr. Pol (MHz) (dBµV/m) (dBµV/m) (dBµV/m) (dB) (ms) (cm) (deg) (dB/m) 1155.50 41.90 74.00 32.10 500.00 200.0 Н 153.00 -8 1156.75 30.01 54.00 23.99 500.00 200.0 V 185.00 -8 22.52 -7 1350.25 31.48 54.00 500.00 200.0 Н 153.00 1355.00 42.53 74.00 31.47 500.00 200.0 54.00 -7 Н 1601.75 74.00 500.00 100.0 V 215.00 43.34 30.66 -5 ---1603.25 32.77 54.00 21.23 500.00 200.0 Η 0.00 -5 1825.75 74.00 100.0 V 268.00 43.87 30.13 500.00 -4 1829.50 33.48 54.00 20.52 500.00 200.0 Н 131.00 -4 2070.50 46.18 74.00 27.82 500.00 100.0 Η 8.00 -3 2081.75 54.00 19.93 500.00 200.0 Η 2.00 -3 34.07 47.17 74.00 26.83 V 2785.50 500.00 200.0 329.00 0 2800.00 35.97 54.00 18.03 500.00 200.0 V 48.00 0

Remark: 1. Correction Factor = Antenna factor + Insertion loss (cable loss + amplifier gain)

^{2.} Margin = Limit –MAX Peak/ Average

802.11n (HT20) CH11

Radiates Emission from 3GHz to 18GHz

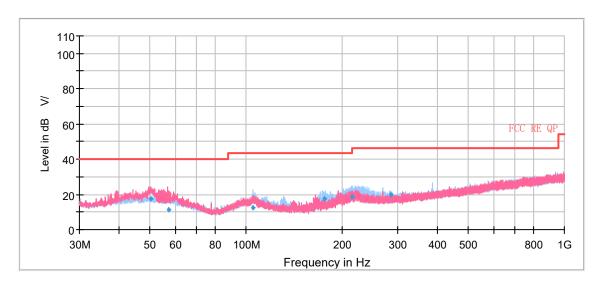

Frequency (MHz)	MaxPeak (dBµV/m)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
1079.50		29.97	54.00	24.03	500.00	200.0	V	285.00	-8
1083.50	41.29		74.00	32.71	500.00	200.0	V	30.00	-8
1227.00		30.51	54.00	23.49	500.00	200.0	Н	68.00	-7
1244.00	43.19		74.00	30.81	500.00	100.0	Н	295.00	-7
1389.75		32.03	54.00	21.97	500.00	200.0	Н	36.00	-6
1430.25	43.61		74.00	30.39	500.00	200.0	Н	136.00	-6
1704.00		33.37	54.00	20.63	500.00	100.0	V	163.00	-5
1729.25	44.87		74.00	29.13	500.00	100.0	Н	279.00	-4
2036.00	46.09		74.00	27.91	500.00	100.0	Н	228.00	-3
2051.75		34.66	54.00	19.34	500.00	200.0	Н	25.00	-3
2970.50	48.79		74.00	25.21	500.00	200.0	Н	20.00	1
2997.00		37.60	54.00	16.40	500.00	100.0	Н	326.00	1

Remark: 1. Correction Factor = Antenna factor + Insertion loss (cable loss + amplifier gain)

^{2.} Margin = Limit –MAX Peak/ Average

During the test, the Radiates Emission from 18GHz to 26.5GHz was performed in all modes with all channels, 802.11b, Channel 6 are selected as the worst condition. The test data of the worst-case condition was recorded in this report.

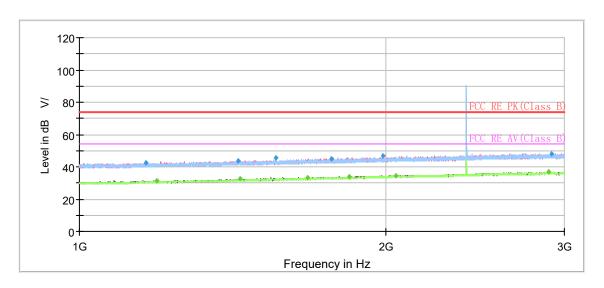
Radiates Emission from 18GHz to 26.5GHz

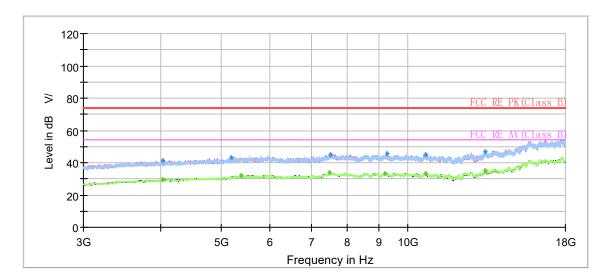

Frequency (MHz)	MaxPeak (dBµV/m)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
19084.81		39.06	54.00	14.94	500.00	200.0	Η	325.00	-7
19196.38	51.47		74.00	22.53	500.00	200.0	V	117.00	-7
20080.38		37.13	54.00	16.87	500.00	100.0	Н	5.00	-8
20127.13	47.98		74.00	26.02	500.00	200.0	V	79.00	-8
21024.94	50.64		74.00	23.36	500.00	200.0	V	22.00	-7
21422.31		37.72	54.00	16.28	500.00	100.0	V	4.00	-7
22544.31	50.35		74.00	23.65	500.00	100.0	Н	25.00	-6
22701.56		37.17	54.00	16.83	500.00	100.0	Н	35.00	-6
24114.69	50.20		74.00	23.80	500.00	200.0	V	107.00	-4
24202.88		38.66	54.00	15.34	500.00	200.0	Н	108.00	-4
25161.25		39.40	54.00	14.60	500.00	200.0	Н	340.00	-3
25172.94	50.58		74.00	23.42	500.00	200.0	Η	219.00	-3

Bluetooth LE

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes with all channels, Bluetooth LE-Channel 19 are selected as the worst condition. The test data of the worst-case condition was recorded in this report.

A symbol (dB V/) in the test plot below means (dBμV/m)


Radiates Emission from 30MHz to 1GHz

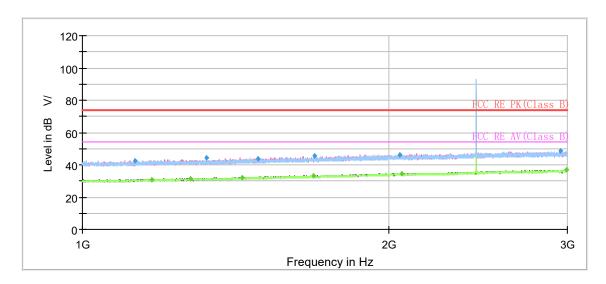

Frequency (MHz)	Quasi-Peak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Polarization	Azimuth (deg)	Correct Factor (dB)
50.12	17.53	40.00	22.47	100.0	V	116.00	21
57.14	11.33	40.00	28.67	125.0	V	0.00	20
105.51	12.49	43.50	31.01	207.0	Н	283.00	19
176.68	17.61	43.50	25.89	186.0	Н	254.00	16
215.39	18.71	43.50	24.79	175.0	Н	264.00	18
286.01	19.85	46.00	26.15	100.0	Н	95.00	20

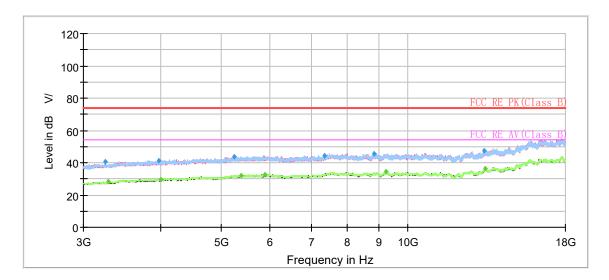
Remark: 1. Correction Factor = Antenna factor + Insertion loss (cable loss + amplifier gain) 2. Margin = Limit - Quasi-Peak

TA Technology (Shanghai) Co., Ltd. TA-MB-04-005R Page 86 of 101 This report shall not be reproduced except in full, without the written approval of TA Technology (Shanghai) Co., Ltd.

Bluetooth LE-Channel 0

Radiates Emission from 3GHz to 18GHz

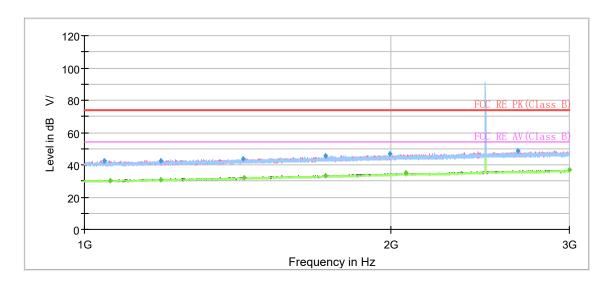


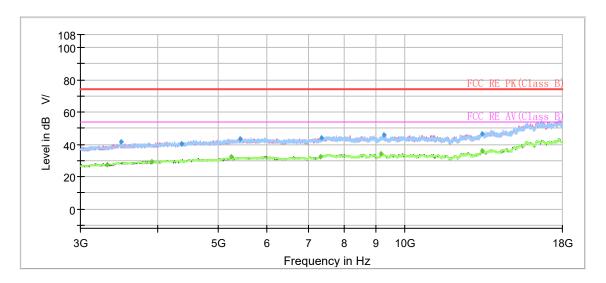

Frequency (MHz)	MaxPeak (dBµV/m)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
1162.25	42.45		74.00	31.55	500.00	100.0	Η	292.00	-8
1191.00		31.19	54.00	22.81	500.00	100.0	V	244.00	-7
1433.25	43.47		74.00	30.53	500.00	100.0	V	15.00	-6
1437.50		32.36	54.00	21.64	500.00	200.0	Н	209.00	-6
1561.75	45.52		74.00	28.48	500.00	100.0	V	0.00	-5
1676.25		33.31	54.00	20.69	500.00	200.0	Н	14.00	-5
1770.75	44.81		74.00	29.19	500.00	200.0	V	299.00	-4
1841.25		33.81	54.00	20.19	500.00	200.0	V	125.00	-4
1987.25	46.49		74.00	27.51	500.00	100.0	Н	205.00	-3
2045.50		34.58	54.00	19.42	500.00	200.0	V	211.00	-3
2892.75		36.64	54.00	17.36	500.00	200.0	Н	23.00	1
2912.75	48.16		74.00	25.84	500.00	100.0	V	221.00	1

Remark: 1. Correction Factor = Antenna factor + Insertion loss (cable loss + amplifier gain)

2. Margin = Limit –MAX Peak/ Average

Bluetooth LE-Channel 19


Radiates Emission from 3GHz to 18GHz

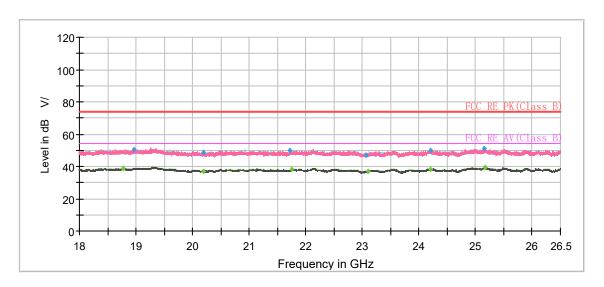

Frequency (MHz)	MaxPeak (dBµV/m)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
1125.75	42.73		74.00	31.27	500.00	100.0	V	130.00	-8
1170.75		31.06	54.00	22.94	500.00	200.0	Н	98.00	-8
1278.00		31.10	54.00	22.90	500.00	100.0	V	107.00	-7
1324.50	44.09		74.00	29.91	500.00	200.0	V	84.00	-7
1434.50		32.13	54.00	21.87	500.00	200.0	V	288.00	-6
1489.25	43.87		74.00	30.13	500.00	200.0	Н	147.00	-6
1686.00		33.43	54.00	20.57	500.00	100.0	V	197.00	-5
1690.25	45.44		74.00	28.56	500.00	200.0	Н	0.00	-5
2053.50	46.10		74.00	27.90	500.00	100.0	Н	112.00	-3
2061.00		34.66	54.00	19.34	500.00	100.0	V	233.00	-3
2953.00	48.64		74.00	25.36	500.00	100.0	V	130.00	1
2994.75		36.73	54.00	17.27	500.00	100.0	V	1.00	1

Remark: 1. Correction Factor = Antenna factor + Insertion loss (cable loss + amplifier gain)

2. Margin = Limit -MAX Peak/ Average

Bluetooth LE-Channel 39

Radiates Emission from 3GHz to 18GHz


Frequency **MaxPeak** Limit Meas. Time Average Margin Height **Azimuth** Corr. Pol (MHz) (dBµV/m) (dBµV/m) (dBµV/m) (dB) (ms) (cm) (deg) (dB/m) 1045.75 42.23 74.00 31.77 500.00 200.0 V 205.00 -8 1061.25 30.02 54.00 23.98 500.00 100.0 V 28.00 -8 22.97 171.00 1188.75 31.03 54.00 500.00 100.0 V -8 1189.25 42.20 74.00 31.80 500.00 100.0 V 32.00 -8 74.00 500.00 200.0 V 1431.75 43.71 30.29 338.00 -6 ---1437.00 32.03 54.00 21.97 500.00 200.0 V 146.00 -6 1724.75 74.00 100.0 177.00 -4 45.39 28.61 500.00 Η 1725.25 33.28 54.00 20.72 500.00 100.0 Н 34.00 -4 1998.25 46.51 74.00 27.49 500.00 200.0 V 316.00 -3 2068.75 54.00 19.10 500.00 100.0 ٧ 217.00 -3 34.90 74.00 25.52 2671.00 48.48 500.00 200.0 V 263.00 0 2996.75 36.70 54.00 17.30 500.00 200.0 V 197.00 1

Remark: 1. Correction Factor = Antenna factor + Insertion loss (cable loss + amplifier gain)

^{2.} Margin = Limit –MAX Peak/ Average

During the test, the Radiates Emission from 18GHz to 26.5GHz was performed in all modes with all channels, Bluetooth LE-Channel 19 are selected as the worst condition. The test data of the worst-case condition was recorded in this report.

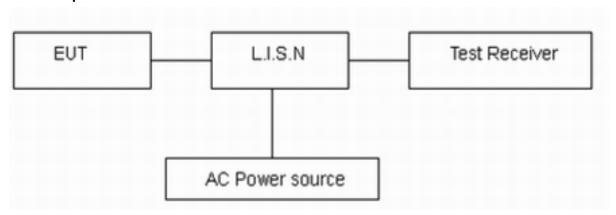
Radiates Emission from 18GHz to 26.5GHz

Frequency (MHz)	MaxPeak (dBµV/m)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
18763.94		39.04	54.00	14.96	500.00	100.0	Н	135.00	-7
18957.31	50.73		74.00	23.27	500.00	100.0	V	306.00	-7
20197.25		37.13	54.00	16.87	500.00	100.0	Н	199.00	-7
20197.25	48.47		74.00	25.53	500.00	200.0	Н	246.00	-7
21713.44	49.67		74.00	24.33	500.00	200.0	Н	0.00	-6
21744.25		38.32	54.00	15.68	500.00	200.0	V	0.00	-6
23072.38	46.97		74.00	27.03	500.00	100.0	Н	71.00	-6
23092.56		37.18	54.00	16.82	500.00	100.0	Н	204.00	-6
24197.56	49.63		74.00	24.37	500.00	200.0	Н	284.00	-4
24197.56		38.38	54.00	15.62	500.00	100.0	Н	3.00	-4
25157.00	50.95		74.00	23.06	500.00	200.0	Н	313.00	-3
25165.50		39.50	54.00	14.50	500.00	200.0	V	1.00	-3

5.7. Conducted Emission

Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa


Methods of Measurement

The EUT is placed on a non-metallic table of 80cm height above the horizontal metal reference ground plane. During the test, the EUT was operating in its typical mode. The test method is according to ANSI C63.10. Connect the AC power line of the EUT to the L.I.S.N. Use EMI receiver to detect the average and Quasi-peak value. RBW is set to 9 kHz, VBW is set to 30kHz.

The measurement result should include both L line and N line.

The test is in transmitting mode.

Test Setup

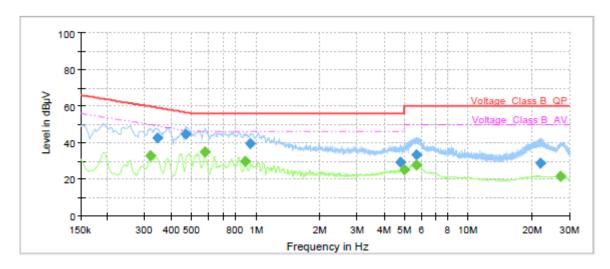
Note: AC Power source is used to change the voltage 110V/60Hz.

Limits

Frequency	Conducted L	Limits(dΒμV)					
(MHz)	Quasi-peak	Average					
0.15 - 0.5	66 to 56 *	56 to 46*					
0.5 - 5	56	46					
5 - 30	60	50					
* Decreases with the logarithm of the frequency.							

Measurement Uncertainty

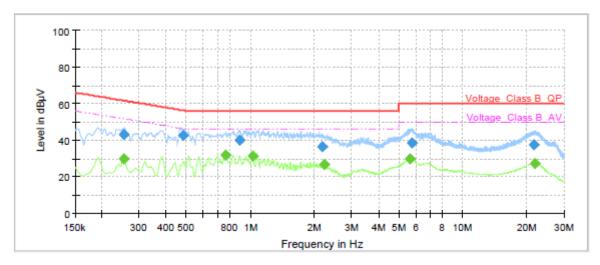
The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96, U = 2.69 dB.



Test Results:

Following plots, Blue trace uses the peak detection and Green trace uses the average detection.

Wi-Fi 2.4G

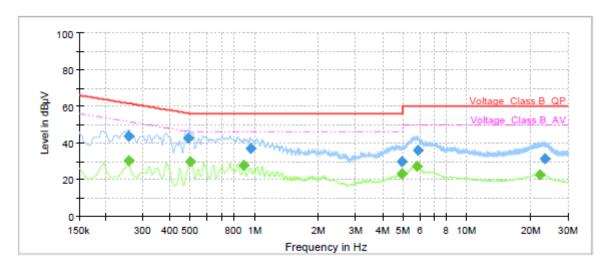

During the test, the Conducted Emission was performed in all modes (WIFI 2.4G) with all channels, 802.11b, Channel 6 are selected as the worst condition. The test data of the worst-case condition was recorded in this report.

Frequency (MHz)	QuasiPeak (dΒμV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.318750		33.07	49.74	16.67	1000.0	9.000	L1	ON	20.6
0.343500	42.46	-	59.12	16.66	1000.0	9.000	L1	ON	20.5
0.469500	44.41		56.52	12.11	1000.0	9.000	L1	ON	20.4
0.575250		34.64	46.00	11.36	1000.0	9.000	L1	ON	20.3
0.894750		29.95	46.00	16.05	1000.0	9.000	L1	ON	20.0
0.942000	39.32		56.00	16.68	1000.0	9.000	L1	ON	19.9
4.785000	29.38		56.00	26.62	1000.0	9.000	L1	ON	19.5
4.978500		24.89	46.00	21.11	1000.0	9.000	L1	ON	19.5
5.707500	33.46		60.00	26.54	1000.0	9.000	L1	ON	19.5
5.732250		27.72	50.00	22.28	1000.0	9.000	L1	ON	19.5
21.763500	28.69		60.00	31.31	1000.0	9.000	L1	ON	19.8
27.253500		21.58	50.00	28.42	1000.0	9.000	L1	ON	19.9

Remark: Correct factor=cable loss + LISN factor

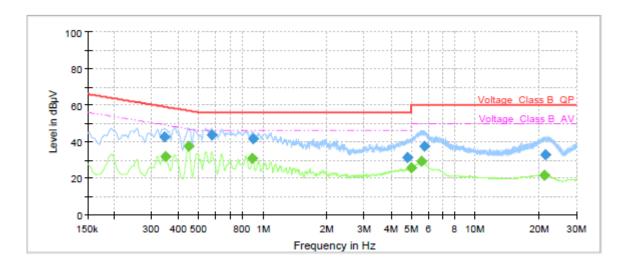
L line Conducted Emission from 150 KHz to 30 MHz

Frequency (MHz)	QuasiPeak (dΒμV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.253500		29.82	51.64	21.82	1000.0	9.000	N	ON	20.7
0.253500	43.19		61.64	18.45	1000.0	9.000	N	ON	20.7
0.483000	42.61		56.29	13.68	1000.0	9.000	N	ON	20.4
0.764250		31.87	46.00	14.13	1000.0	9.000	N	ON	20.1
0.888000	40.21		56.00	15.79	1000.0	9.000	N	ON	20.0
1.029750		31.49	46.00	14.51	1000.0	9.000	N	ON	19.9
2.170500	36.46		56.00	19.54	1000.0	9.000	N	ON	19.5
2.238000		26.44	46.00	19.56	1000.0	9.000	N	ON	19.5
5.644500		30.00	50.00	20.00	1000.0	9.000	N	ON	19.5
5.766000	38.59		60.00	21.41	1000.0	9.000	N	ON	19.5
21.619500	37.37		60.00	22.63	1000.0	9.000	N	ON	19.8
21.808500		27.27	50.00	22.73	1000.0	9.000	N	ON	19.8


Remark: Correct factor=cable loss + LISN factor

N line Conducted Emission from 150 KHz to 30 MHz

Bluetooth LE


During the test, the Conducted Emission was performed in all modes with all channels, Bluetooth LE-Channel 19 are selected as the worst condition. The test data of the worst-case condition was recorded in this report.

Frequency (MHz)	QuasiPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.255750	43.36		61.57	18.21	1000.0	9.000	L1	ON	20.6
0.255750		30.03	51.57	21.54	1000.0	9.000	L1	ON	20.6
0.487500	42.56		56.21	13.65	1000.0	9.000	L1	ON	20.4
0.496500		29.67	46.06	16.39	1000.0	9.000	L1	ON	20.4
0.894750		27.45	46.00	18.55	1000.0	9.000	L1	ON	20.0
0.962250	37.08		56.00	18.92	1000.0	9.000	L1	ON	19.9
4.924500	29.68		56.00	26.32	1000.0	9.000	L1	ON	19.5
4.971750		22.86	46.00	23.14	1000.0	9.000	L1	ON	19.5
5.808750		27.33	50.00	22.67	1000.0	9.000	L1	ON	19.5
5.874000	36.09		60.00	23.91	1000.0	9.000	L1	ON	19.5
22.080750		22.68	50.00	27.32	1000.0	9.000	L1	ON	19.8
23.271000	31.47		60.00	28.53	1000.0	9.000	L1	ON	19.9

Remark: Correct factor=cable loss + LISN factor

L line Conducted Emission from 150 KHz to 30 MHz

Frequency (MHz)	QuasiPeak (dΒμV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.345750	42.51	-	59.06	16.55	1000.0	9.000	N	ON	20.6
0.348000		31.56	49.01	17.45	1000.0	9.000	N	ON	20.6
0.447000		37.33	46.93	9.60	1000.0	9.000	N	ON	20.4
0.575250	43.45		56.00	12.55	1000.0	9.000	N	ON	20.3
0.892500		30.60	46.00	15.40	1000.0	9.000	N	ON	20.0
0.901500	41.37		56.00	14.63	1000.0	9.000	N	ON	20.0
4.796250	31.37		56.00	24.63	1000.0	9.000	N	ON	19.5
4.998750		25.77	46.00	20.23	1000.0	9.000	N	ON	19.5
5.590500		29.13	50.00	20.87	1000.0	9.000	N	ON	19.5
5.763750	37.26		60.00	22.74	1000.0	9.000	N	ON	19.5
21.151500		21.41	50.00	28.59	1000.0	9.000	N	ON	19.8
21.356250	33.00		60.00	27.00	1000.0	9.000	N	ON	19.8

Remark: Correct factor=cable loss + LISN factor

N line Conducted Emission from 150 KHz to 30 MHz

6. Main Test Instruments

Name Manufacture		Туре	Serial Number	Calibration Date	Expiration Date							
Power sensor	R&S	OSP-B157W8	100924	2021-12-12	2022-12-11							
Spectrum Analyzer	KEYSIGHT	N9020A	MY54420163	2021-12-12	2022-12-11							
Unwanted Emission												
EMI Test Receiver	R&S	ESR 102389		2022-05-25	2023-05-24							
Signal Analyzer	R&S	FSV40	100816	2021-12-12	2022-12-11							
Loop Antenna	SCHWARZBEC K	FMZB1519	1519-047	2020-04-02	2023-04-01							
TRILOG Broadband Antenna	SCHWARZBEC K	VULB 9163	1023	2020-05-05	2023-05-04							
Horn Antenna	R&S	HF907	102723	2020-08-11	2023-08-10							
Horn Antenna	ETS-Lindgren	3160-09 00102643		2021-10-10	2024-10-09							
Software	R&S	EMC32	9.26.01	1	1							
Conducted Emission												
Artificial main network	R&S	ENV216	102191	2020-12-13	2022-12-12							
EMI Test Receiver R&S		ESR	101667	2022-05-25	2023-05-24							
Software	R&S	EMC32	10.35.10	1	1							

*****END OF REPORT *****

ANNEX A: The EUT Appearance

The EUT Appearance are submitted separately.

ANNEX B: Test Setup Photos

The Test Setup Photos are submitted separately.