Add: No.51 Xueyuan Road, Haidian District, Beljing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz ## Additional Documentation: e) DASY4/5 System Handbook ## Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z20-60405 Page 2 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn ## **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.0 ± 6 % | 1.81 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | /200 | ## SAR result with Head TSL | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.5 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 53.8 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 6.18 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.7 W/kg ± 18.7 % (k=2) | **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.7 | 1.95 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 53.2 ± 6 % | 1.96 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | **** | | SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 12,9 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 51.7 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 5.97 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 23.9 W/kg ± 18.7 % (k=2) | Certificate No: Z20-60405 Page 3 of 8 Add: No.51 Xueyuan Road, Haidian District, Beljing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn ## Appendix (Additional assessments outside the scope of CNAS L0570) ### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 52.2Ω+ 3.85 jΩ | | |--------------------------------------|----------------|--| | Return Loss | - 27.2dB | | ## Antenna Parameters with Body TSL | Impedance, transformed to feed point | 50.5Ω+ 4.57 jΩ | | |--------------------------------------|----------------|--| | Return Loss | - 26.8dB | | ## General Antenna Parameters and Design | Electrical Delay (one direction) | 1.024 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ## Additional EUT Data | Manufactured by | SPEAG | |------------------|-------| | Wallalacialea by | SPEAG | Certificate No: Z20-60405 Page 4 of 8 Date: 10.13.2020 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn ## DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 886 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.809$ S/m; $\epsilon_r = 39.02$; $\rho = 1000$ kg/m³ Phantom section: Center Section DASY5 Configuration: Probe: EX3DV4 - SN3617; ConvF(7.65, 7.65, 7.65) @ 2450 MHz; Calibrated: 2020-01-30 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn771; Calibrated: 2020-02-10 Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 106.1 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 28.3 W/kg SAR(1 g) = 13.5 W/kg; SAR(10 g) = 6.18 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 47.9% Maximum value of SAR (measured) = 22.7 W/kg 0 dB = 22.7 W/kg = 13.56 dBW/kg Certificate No: Z20-60405 Page 5 of 8 ## Impedance Measurement Plot for Head TSL Certificate No: Z20-60405 Page 6 of 8 Date: 10.13.2020 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn ## DASY5 Validation Report for Body TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 886 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.955$ S/m; $\epsilon_r = 53.24$; $\rho = 1000$ kg/m³ Phantom section: Center Section DASY5 Configuration: - Probe: EX3DV4 SN3617; ConvF(7.76, 7.76, 7.76) @ 2450 MHz; Calibrated: 2020-01-30 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn771; Calibrated: 2020-02-10 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 100.1 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 26.5 W/kg SAR(1 g) = 12.9 W/kg; SAR(10 g) = 5.97 W/kg Smallest distance from peaks to all points 3 dB below = 8 mm Ratio of SAR at M2 to SAR at M1 = 50% Maximum value of SAR (measured) = 21.5 W/kg 0 dB = 21.5 W/kg = 13.32 dBW/kg Certificate No: Z20-60405 Page 7 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn ## Impedance Measurement Plot for Body TSL Certificate No: Z20-60405 Page 8 of 8 Client CATR(Chongqing) Certificate No: Z20-60406 ## **CALIBRATION CERTIFICATE** Object D2600V2 - SN: 1045 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: October 13, 2020 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature $(22\pm3)^{\circ}$ C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|------------------------------------------|-----------------------| | Power Meter NRP2 | 106276 | 12-May-20 (CTTL, No.J20X02965) | May-21 | | Power sensor NRP6A | 101369 | 12-May-20 (CTTL, No.J20X02965) | May-21 | | Reference Probe EX3DV4 | SN 3617 | 30-Jan-20(SPEAG,No.EX3-3617_Jan20) | Jan-21 | | DAE4 | SN 771 | 10-Feb-20(CTTL-SPEAG,No.Z20-60017) | Feb-21 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 25-Feb-20 (CTTL, No.J20X00516) | Feb-21 | | Network Analyzer E5071C | MY46110673 | 10-Feb-20 (CTTL, No.J20X00515) | Feb-21 | | | Name | Function | Signature | |----------------|-------------|--------------------|-----------| | Calibrated by: | Zhao Jing | SAR Test Engineer | 是到 | | Reviewed by: | Lin Hao | SAR Test Engineer | 林光 | | Approved by: | Qi Dianyuan | SAR Project Leader | 200 | Issued: October 22, 2020 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z20-60406 Page 1 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### **Additional Documentation:** e) DASY4/5 System Handbook ## Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z20-60406 Page 2 of 8 In Collaboration with e CALIBRATION LABORATORY Add: No.51 Xueyuan Road, Haidian District, Bejjing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn ## **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2600 MHz ± 1 MHz | | ## **Head TSL parameters** s and calculations were applied | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.0 | 1.96 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.7 ± 6 % | 1.95 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | ump. | | ## SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.9 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 56.0 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 6.14 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.7 W/kg ± 18.7 % (k=2) | Body TSL parameters The following parameters and calculations were applied | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.5 | 2.16 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.1 ± 6 % | 2.17 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | 4144 | | ## SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.6 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 54.2 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm^3 (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 6.04 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 24.1 W/kg ± 18.7 % (k=2) | Certificate No: Z20-60406 Page 3 of 8 ## Appendix(Additional assessments outside the scope of CNAS L0570) ### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 49.6Ω- 6.17jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 24.2dB | | ## Antenna Parameters with Body TSL | Impedance, transformed to feed point | 46.9Ω- 5.61jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 23.6dB | | ## General Antenna Parameters and Design | Electrical Delay (one direction) | 1.016 ns | | |----------------------------------|----------|--| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ## **Additional EUT Data** | SPEAG | |-------| | | Certificate No: Z20-60406 Page 4 of 8 Date: 10.13.2020 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn ## **DASY5 Validation Report for Head TSL** Test Laboratory: CTTL, Beijing, China DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1045 Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2600 MHz; $\sigma = 1.948 \text{ S/m}$; $\varepsilon_r = 39.72$; $\rho = 1000 \text{ kg/m}^3$ e Phantom section: Center Section DASY5 Configuration: - Probe: EX3DV4 SN3617; ConvF(7.52, 7.52, 7.52) @ 2600 MHz; Calibrated: 2020-01-30 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn771; Calibrated: 2020-02-10 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 105.3 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 30.3 W/kg SAR(1 g) = 13.9 W/kg; SAR(10 g) = 6.14 W/kg Smallest distance from peaks to all points 3 dB below = 8.1 mm Ratio of SAR at M2 to SAR at M1 = 46.1% Maximum value of SAR (measured) = 24.2 W/kg 0 dB = 24.2 W/kg = 13.84 dBW/kg Certificate No: Z20-60406 Page 5 of 8 Certificate No: Z20-60406 Page 6 of 8 Date: 10.13.2020 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn ### DASY5 Validation Report for Body TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1045 Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2600 MHz; $\sigma = 2.168$ S/m; $\epsilon_r = 52.1$; $\rho = 1000$ kg/m³ Phantom section: Center Section DASY5 Configuration: - Probe: EX3DV4 SN3617; ConvF(7.45, 7.45, 7.45) @ 2600 MHz; Calibrated: 2020-01-30 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn771; Calibrated: 2020-02-10 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) **Dipole Calibration**/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm dy-Shiin, dz-Shiin Reference Value = 98.54 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 29.4 W/kg SAR(1 g) = 13.6 W/kg; SAR(10 g) = 6.04 W/kg Smallest distance from peaks to all points 3 dB below = 8 mm Ratio of SAR at M2 to SAR at M1 = 47.3% Maximum value of SAR (measured) = 23.5 W/kg 0 dB = 23.5 W/kg = 13.71 dBW/kg Certificate No: Z20-60406 Page 7 of 8 Certificate No: Z20-60406 Page 8 of 8 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191 Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn Certificate No: Z22-60065 3in Client ## **CALIBRATION CERTIFICATE** Object D5GHzV2 - SN: 1172 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: March 15, 2022 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)℃ and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|-------------------------------------------|-----------------------| | Power Meter NRP2 | 106277 | 24-Sep-21 (CTTL, No.J21X08326) | Sep-22 | | Power sensor NRP8S | 104291 | 24-Sep-21 (CTTL, No.J21X08326) | Sep-22 | | Reference Probe EX3DV4 | SN 7307 | 26-May-21(SPEAG,No.EX3-7307_May21) | May-22 | | DAE4 | SN 1556 | 12-Jan-22(CTTL-SPEAG,No.Z22-60007) | Jan-23 | | Secondary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 13-Jan-22 (CTTL, No. J22X00409) | Jan-23 | | Network Analyzer E5071C | MY46110673 | 14-Jan-22 (CTTL, No.J22X00406) | Jan-23 | | | | | | | | Name | Function | Signature | |-------------------------|----------------------------|--------------------|----------------------| | Calibrated by: | Zhao Jing | SAR Test Engineer | | | Reviewed by: | Lin Hao | SAR Test Engineer | THE STEET | | Approved by: | Qi Dianyuan | SAR Project Leader | Das | | This calibration certif | icate shall not be reprodu | ls | sued: March 19, 2022 | Certificate No: Z22-60065 Page 1 of 10 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn Glossary: TSL ConvF N/A tissue simulating liquid sensitivity in TSL / NORMx,y,z not applicable or not measured Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020 - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** c) DASY4/5 System Handbook ## Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z22-60065 Page 2 of 10 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn ## **Measurement Conditions** | ASY system configuration, as far as | not given on page 1. | | 1 | |-------------------------------------|------------------------------------------------------------------------------|----------------|-------------------| | DASY Version | DASY52 | | 52.10.4 | | Extrapolation | Advanced Extrapolation | | 1 | | Phantom | Triple Flat Phantom 5.1¢ | | | | Distance Dipole Center - TSL | 10 mm | with | Spacer | | Zoom Scan Resolution | dx, dy = 4 mm, dz = 1.4 mm | Graded Ratio = | 1.4 (Z direction) | | Frequency | 5200 MHz ± 1 MHz
5300 MHz ± 1 MHz
5500 MHz ± 1 MHz
5600 MHz + 1 MHz | | | 5800 MHz ± 1 MHz ## Head TSL parameters at 5200MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 36.0 | 4.66 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.9 ± 6 % | 4.64 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | PH_ | | ## SAR result with Head TSL at 5200MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 7.58 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 75.7 W/kg ± 24.4 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 2.18 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 21.8 W/kg ± 24.2 % (k=2) | Certificate No: Z22-60065 Page 3 of 10 IPE. 1112 41 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn s at Head TSL parameters at 5300MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.9 | 4.76 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.7 ± 6 % | 4.75 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | ## SAR result with Head TSL at 5300MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.88 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 78.7 W/kg ± 24.4 % (k=2) | | SAR averaged over 10 cm^3 (10 g) of Head TSL | Condition | | | SAR measured | 100 mW input power | 2.26 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.6 W/kg ± 24.2 % (k=2) | ## Head TSL parameters at 5500MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.6 | 4.96 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.3 ± 6 % | 4.96 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | ## SAR result with Head TSL at 5500MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | 1 | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.23 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 82.2 W/kg ± 24.4 % (k=2) | | SAR averaged over 10 cm^3 (10 g) of Head TSL | Condition | 世 世 | | SAR measured | 100 mW input power | 2.33 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.3 W/kg ± 24.2 % (k=2) | Certificate No: Z22-60065 109 pile. Page 4 of 10 ## **Chongqing Academy of Information and Communication Technology** Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn Head TSL parameters at 5600MHz he following parameters and calculations were applied | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.5 | 5.07 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.2 ± 6 % | 5.07 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | SAR result with Head TSL at 5600MHz | SAR averaged over 1 cm^3 (1 g) of Head TSL | Condition | | |--|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.02 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 80.0 W/kg ± 24.4 % (k=2) | | SAR averaged over 10 cm^3 (10 g) of Head TSL | Condition | | | SAR measured | 100 mW input power | 2.29 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.8 W/kg ± 24.2 % (k=2) | Head TSL parameters at 5800MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.3 | 5.27 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.9 ± 6 % | 5.26 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | (manual) | SAR result with Head TSL at 5800MHz | SAR averaged over 1 cm^3 (1 g) of Head TSL | Condition | | |--|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.69 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 76.7 W/kg ± 24.4 % (k=2) | | SAR averaged over 10 cm^3 (10 g) of Head TSL | Condition | | | SAR measured | 100 mW input power | 2.16 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 21.5 W/kg ± 24.2 % (k=2) | Certificate No: Z22-60065 Page 5 of 10 ## **Chongqing Academy of Information and Communication Technology** Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn E-mail: ctil@cninatti.com http://www.cninatti.cn ## Appendix (Additional assessments outside the scope of CNAS L0570) ## Antenna Parameters with Head TSL at 5200MHz | Impedance, transformed to feed point | 49.3Ω- 8.81jΩ | |--------------------------------------|---------------| | Return Loss | - 21.0dB | ## Antenna Parameters with Head TSL at 5300MHz | Impedance, transformed to feed point | 49.7Ω- 6.44jΩ | |--------------------------------------|---------------| | Return Loss | - 23.8dB | ## Antenna Parameters with Head TSL at 5500MHz | Impedance, transformed to feed point | 52.9Ω- 5.05jΩ | |--------------------------------------|---------------| | Return Loss | - 24.9dB | ### Antenna Parameters with Head TSL at 5600MHz | Impedance, transformed to feed point | 56.2Ω- 3.42jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 23.5dB | | ## Antenna Parameters with Head TSL at 5800MHz | Impedance, transformed to feed point | 56.3Ω- 5.84jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 21.8dB | | Certificate No: Z22-60065 Page 6 of 10 ## **Chongqing Academy of Information and Communication Technology** Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn ## General Antenna Parameters and Design | Electrical Delay (one direction) | 1.111 ns | | |----------------------------------|----------|--| After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged. #### **Additional EUT Data** | | | | the transfer of the second | |-----------------------|-------|--|--| | Manufactured by | | | SPEAG | | 1.41 | | THE STATE OF S | | | | | | | | kan di | | | | | | | | | | 4 8 | | 1 1 1 1 | | | | | 1 | | | . F | | 100 | 그게 [1] 그 없었다. 그는 모든 유민들은 요즘 | | | | | | | | | 1 1 1 1 1 1 1 | | | 11 | | | | | p is H | | 101 | | | THE RESERVE | | | | | | | | | | Non M | | | | | 10 PM | | | TO A STATE OF THE | | Man B | 45 th | 28 | the design of the second | | Total B | | 200 | | | ting H | | 21 | | | P-78 | | 1 | | | | | | | | 14 | | 77 | | | RAB II | 114 | | | | EAB E | | | THE RESERVE TO SERVE THE PROPERTY OF PROPE | | The second second | | 100 | | | SEG II | | | | | 135 - 1 | | 1 175 1 | | | PAH 9 | | The state of s | | | BAS In | | - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 | Cold State | | Fried Inc. | | 1 7 1 1 1 1 1 1 | | | EAF H | | 1 100 100 100 | THE WAY THE TANK THE TANK | | e-12- | | 50000 | | | A P | | The state of the | | | pT b | | | | | E 争 | | 100 | | | ificate No: Z22-60065 | | Page 7 of 10 | The second second | | PO 2 | | 100 | | | Nicht H | 117 | 384 | | | Naua is | | 420 | | | 1000 | | | A DESCRIPTION OF THE PROPERTY | | LIUH la | | | | ## **Chongqing Academy of Information and Communication Technology** Date: 2022-03-15 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn ## **DASY5 Validation Report for Head TSL** Test Laboratory: CTTL, Beijing, China **DASY5 Configuration:** DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1172 Communication System: CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz, Duty Cycle: 1:1 Medium parameters used: f = 5200 MHz; σ = 4.64 S/m; ϵ_r = 35.88; ρ = 1000 kg/m³ Medium parameters used: f = 5300 MHz; σ = 4.745 S/m; ϵ_r = 35.68; ρ = 1000 kg/m³ Medium parameters used: f = 5500 MHz; σ = 4.955 S/m; ϵ_r = 35.32; ρ = 1000 kg/m³ Medium parameters used: f = 5600 MHz; σ = 5.067 S/m; ϵ_r = 35.17; ρ = 1000 kg/m³ Medium parameters used: f = 5800 MHz; σ = 5.264 S/m; ϵ_r = 34.9; ρ = 1000 kg/m³ Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) - Probe: EX3DV4 SN7307; ConvF(5.77, 5.77, 5.77) @ 5200 MHz; ConvF(5.6, 5.6, 5.6) @ 5300 MHz; ConvF(5.25, 5.25, 5.25) @ 5500 MHz; ConvF(5.1, 5.1, 5.1) @ 5600 MHz; ConvF(5, 5, 5) @ 5800 MHz; Calibrated: 2021-05-26 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1556; Calibrated: 2022-01-12 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) Dipole Calibration /Pin=100mW, d=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 62.58 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 29.1 W/kg SAR(1 g) = 7.58 W/kg; SAR(10 g) = 2.18 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 66.7% Maximum value of SAR (measured) = 17.3 W/kg Dipole Calibration /Pin=100mW, d=10mm, f=5300 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 63.71 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 31.3 W/kg SAR(1 g) = 7.88 W/kg; SAR(10 g) = 2.26 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 65.7% Maximum value of SAR (measured) = 18.4 W/kg Certificate No: Z22-60065 Page 8 of 10 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn Dipole Calibration /Pin=100mW, d=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 64.62 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 34.7 W/kg SAR(1 g) = 8.23 W/kg; SAR(10 g) = 2.33 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 63.9% Maximum value of SAR (measured) = 19.6 W/kg Dipole Calibration /Pin=100mW, d=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 68.14 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 33.8 W/kg SAR(1 g) = 8.02 W/kg; SAR(10 g) = 2.29 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 63.4% Maximum value of SAR (measured) = 19.4 W/kg Dipole Calibration /Pin=100mW, d=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 61.10 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 35.1 W/kg SAR(1 g) = 7.69 W/kg; SAR(10 g) = 2.16 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 61.4% Maximum value of SAR (measured) = 18.8 W/kg 0 dB = 18.8 W/kg = 12.74 dBW/kg Certificate No: Z22-60065 Page 9 of 10 ## **ANNEX D. Accreditation Certificate** ## **Accredited Laboratory** A2LA has accredited # CHONGQING ACADEMY OF INFORMATION AND COMMUNICATIONS TECHNOLOGY Chongqing, People's Republic of China for technical competence in the field of ## **Electrical Testing** This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. This laboratory also meets the requirements of any additional program requirements in the Electrical field. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017). SEAL AZLA Presented this 20th day of July 2022 Mr. Trace MoInturff, Vice President, Accreditation Services For the Accreditation Council Certificate Number 4897-01 Valid to May 31, 2024 For the tests or types of tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.