

TEST REPORT

REPORT NUMBER: 123W00020-DFS

ON

Type of Equipment:

4G Smart Phone

Type of Designation:

MobiWire H6322, Altice S35

Brand Name:

Manufacturer:

FCC ID:

MobiWire, Altice

MobiWire SAS

QPN-H6322

ACCORDING TO

FCC Part15

Chongqing Academy of Information and Communications Technology

Month date, year Jun 16, 2023

Signature

、可勇勇

Xiang Luoyong Director Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of Chongqing Academy of Information and Communications Technology.

Revision Version

Report Number	Revision	Date	Memo
123W00020-DFS	00	2023-06-16	Initial creation of test report

CONTENTS

1.	Test Laboratory
1.1.	Testing Location
1.2.	Testing Environment
1.3.	Project data5
1.4.	Signature
2.	Client Information
2.1.	Applicant Information
2.2.	Manufacturer Information6
3.	Equipment under Test (EUT) and Ancillary Equipment (AE)7
3.1.	About EUT7
3.2.	Internal Identification of EUT used during the test7
3.3.	Outline of Equipment under Test
3.4.	Internal Identification of AE used during the test8
3.5.	EUT Test RF Confagle Configuration8
4.	Reference Documents
4.1.	Documents supplied by applicant9
4.2.	Reference Documents for testing9
5.	Test Equipments Utilized
5.1.	RF Test System
5.2.	RSE Test System 10
5.3.	Climate Chamber
5.4.	Anechoic chamber Vibration table10
5.5.	Test software
6.	Test Requirements
6.1.	DFS Technical Requirements and Radar Test Waveforms
6.1.1	Permanent Facilities

CAICT

Report No.: 123W00020-DFS

6.1.2	Measurement Uncertainty:	
6.1.3	Test Procedure	
6.2	Test Set-up	17
7	Test Results	
7.1	DFS Detection Thresholds	
7.2	In-Service Monitoring for Channel Move Time, Channel Clo	sing Transmission Time and
Non-Oc	cupancy Period	
Annex A	A EUT Photos	
ANNEX	B Deviations from Prescribed Test Methods	

Test Laboratory 1.

1.1. Testing Location

Name:	Chongqing Academy of Information and Communications Technology
FCC/IC Registration Number:	CN1239
Address:	Building C, Technology Innovation Center, No.8, Yuma Road, Chayuan New Area, Nan'an District, Chongqing, People's Republic of China
Postal Code:	401336
Telephone:	0086-23-88069965
Fax:	0086-23-88608777

1.2. Testing Environment

Normal Temperature:	15-35°C
Relative Humidity:	25-75%

1.3. Project data

Testing Start Date:	2023-05-23
Testing End Date:	2023-05-26

1.4. Signature

董儀巖	2023-06-16
Dong Junxin (Prepared this test report)	Date
to Hote	2023-06-16
Li Xu (Reviewed this test report)	Date
同勇勇	2023-06-16
Xiang Luoyong Director of the laboratory (Approved this test report)	Date

Client Information 2.

2.1. Applicant Information

Company Name:	MobiWire SAS
Address /Post:	107 Boulevard de la Mission Marchand 92400 Courbevoie,France
City:	Courbevoie
Country:	France
Telephone:	+33625028368
Fax:	N/A
Email:	olivier.tiennault@mobiwire.com
Contact Person:	Olivier Tiennault

2.2. Manufacturer Information

Company Name:	MobiWire SAS		
Address /Post:	107 Boulevard de la Mission Marchand 92400 Courbevoie, France		
City:	France		
Country:	France		
Telephone:	+33625028368		
Fax:	N/A		
Email:	olivier.tiennault@mobiwire.com		
Contact Person:	Olivier Tiennault		

3. Equipment under Test (EUT) and Ancillary Equipment (AE)

3.1. About EUT

EUT Description	4G Smart Phone
Model name	MobiWire H6322, Altice S35
Brand name	MobiWire, Altice
Product Type	client devices
GSM Frequency Band	GSM:850/ 900/ 1800/1900
WCDMA Frequency Band	WCDMA:B1/B2/B5/B8
LTE Frequency Band	LTE: B1/2/3/4/5/7/8/20/28/38/41
BLUETOOTH Frequency Band	2402MHz-2480MHz
WLAN Frequency Band	Wi-Fi 2.4G:802.11b/g/n, Wi-Fi 5G U-NII-1/ U-NII-2a/U-NII-2c/U-NII-3:802.11a/n/ac
Type of modulation	OFDM
Extreme Temperature	-10-55°C
Nominal Voltage	3.85V
Extreme High Voltage	4.4V
Extreme Low Voltage	3.6V

Note: Photographs of EUT are shown in ANNEX A of this test report.

Note: High and low voltage values in extreme condition test are given by manufacturer.

3.2. Internal Identification of EUT used during the test

EUT ID*	SN or IMEI	HW Version	SW Version	Date of receipt
S4	354365420003740 354365420003757	V01	Mobiwire_H6322_V01	2023-05-23

*EUT ID: is used to identify the test sample in the lab internally.

Technology	Band	UL Freq.(MHz)	DL Freq.(MHz)	Note
DFS	U-NII-2A	5250MHz-5350MHz		Slave without radar
DFS	U-NII-2C	5500MHz-5700MHz		detection

Chongqing Academy of Information and Communication Technology

 Address:
 No. 8,Yuma Road, Chayuan New City, Nan'an District, Chongqing, P. R. China,401336

 Tel:
 0086-23-88069965

 FAX:0086-23-88608777

3.3. Outline of Equipment under Test

3.4. Internal Identification of AE used during the test

AE ID*	Description	dB*
AE1	RF cable	1dB

*AE ID: is used to identify the test sample in the lab internally.

dB*: is provided customer.

3.5. EUT Test RF Confagle Configuration

EUT uses MTK working control emission measurement, Change power level, channel, rate and HT .

Chongqing Academy of Information and Communication Technology

 Address:
 No. 8, Yuma Road, Chayuan New City, Nan'an District, Chongqing, P. R. China,401336

 Tel:
 0086-23-88069965

 FAX:0086-23-88069977

4. **Reference Documents**

4.1. Documents supplied by applicant

PICS/PIXIT, referring to Annex B for detailed information, is supplied by the client or manufacturer, which is the basis of testing.

4.2. Reference Documents for testing

The following documents listed in this section are referred for testing.

Reference	Title
FCC Part15	Title 47 of the Code of Federal Regulations; Chapter I Part 15 - Radio frequency devices
KDB 789033	Information Infrastructure (U-NII) Devices - Part 15, Subpart E
KDB 905462	COMPLIANCE MEASUREMENT PROCEDURES FOR UNLICENSED-NATIONAL INFORMATION INFRASTRUCTURE DEVICES OPERATING IN THE 5250-5350 MHz AND 5470-5725 MHz BANDS INCORPORATING DYNAMIC FREQUENCY SELECTION

Test Equipments Utilized 5.

5.1. RF Test System

No.	Equipment	Model	SN	HW Version	SW Version	Manufacture	Cal.Due Date
1	Spectrum analyzer	FSQ 26	201137/02 6			R&S	2023-06-29
2	Spectrum analyzer	FSW26	104280			R&S	2023-06-29
3	DC Power Supply	3303D	801128			Topward	2023-06-29

5.2. RSE Test System

No.	Equipment	Model	SN	HW Version	SW Version	Manufacture	Cal.Due Date
1	EMI Test Receiver	ESU40	100307			R&S	2023-06-29
2	TRILOG Broadband Antenna	VULB9163	9163-586			Schwarzbeck	2024-10-28
3	Horn antenna	9120D	1083			Schwarzbeck	2024-12-14
4	Horn antenna	DATE 1152	LM7127			ETS	2024-09-06
5	Horn antenna	DATE 1012	LM5945			ETS	2024-09-06
6	Amplifier1	SCU-08F1	8320027			R&S	2023-06-29
7	Amplifier2	SCU-18F	180093			R&S	2023-06-29

5.3. Climate Chamber

No).	Name	Туре	SN	Manufacture	Cal.Due Date
1		Climate chamber	SH-241	92010759	ESPEC	2023-06-29

5.4. Anechoic chamber Vibration table

No.	Name	Туре	SN	Manufacture	Cal.Due Date
1	Fully-Anechoic Chamber	FAC5		TDK	2024-09-22

5.5. Test software

No.	Name	version	SN	Manufacture
1	EMI Test Software	EMC32 V9.26.01		R&S

Chongqing Academy of Information and Communication Technology Address: No. 8,Yuma Road, Chayuan New City, Nan'an District, Chongqing, P. R. China,401336 Tel: 0086-23-88069965 FAX:0086-23-88608777

Page 11 of 30

6. Test Requirements

6.1. DFS Technical Requirements and Radar Test Waveforms

6.1.1 Permanent Facilities

Specifications:	FCC 47 Part 15.407
DUT Serial Number:	S4
Test conditions:	Ambient Temperature:-10°C-55°C Relative Humidity:45%-57% Air pressure: 86-106kPa
Test Results:	Pass

6.1.2 Measurement Uncertainty:

Frequency Range	Uncertainty(dB)
$30MHz \le f \le 2GHz$	± 4.98
$2GHz \le f \le 12.75GHz$	±5.06

6.1.3 Test Procedure

DFS Overview

Applicability of DFS requirements Prior to Use of a Channel

	DFS Operational mode			
Requirement —	Master	Slave without radar detection	Slave with radar detection	
Channel Availability Check	Required	Not required	Required (see note 2)	
Off-Channel CAC (see note 1)	Required	Not required	Required (see note 2)	
In-Service Monitoring	Required	Not required	Required	
Channel Shutdown	Required	Required	Required	
Non-Occupancy Period	Required	Not required	Required	
Uniform Spreading	Required	Not required	Not required	

NOTE 1: Where implemented by the manufacturer.

NOTE 2: A slave with radar detection is not required to perform a CAC or Off-Channel CAC at initial use of the channel but only after the slave has detected a radar signal on the Operating Channel by In-Service Monitoring and the Non-Occupancy Period resulting from this etection has elapsed.

Chongqing Academy of Information and Communication Technology

 Address:
 No. 8,Yuma Road, Chayuan New City, Nan'an District, Chongqing, P. R. China,401336

 Tel:
 0086-23-88069965

 FAX:0086-23-88608777

DFS Detection Thresholds

DFS Requirement Values

Parameter	Value	
Channel Availability Check Time	60 s (see note 1)	
Minimum Off-Channel CAC Time	6 minutes (see note 2)	
Maximum Off-Channel CAC Time	4 hours (see note 2)	
Channel Move Time	10 s	
Channel Closing Transmission Time	1 s	
Non-Occupancy Period	30 minutes	
NOTE 1: For channels whose nominal handwidth	falls completely or partly within the hand 5 600 MHz	

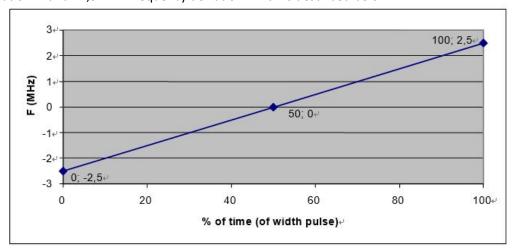
NOTE 1: For channels whose nominal bandwidth falls completely or partly within the band 5 600 MHz to 5 650 MHz, the Channel Availability Check Time shall be 10 minutes.

NOTE 2: For channels whose nominal bandwidth falls completely or partly within the band 5 600 MHz to 5 650 MHz, the Off-Channel CAC Time shall be within the range 1 hour to 24 hours.

EIRP Spectral Density (dBm/MHz)	Value (see note 1 and note 2)	
10	-62 dBm	
NOTE 1: This is the level at the input of the receiver of an RLAN device with a maximum EIRP density of 1		

NOTE 1: This is the level at the input of the receiver of an RLAN device with a maximum EIRP density of 10 dBm/MHz and assuming a 0 dBi receive antenna. For devices employing different EIRP spectral density and/or a different receive antenna gain G (dBi) the Radar Detection Threshold Level at the receiver input follows the following relationship: DFS Detection Threshold (dBm) = -62 + 10 - EIRP Spectral Density (dBm/MHz)+ G (dBi); however the Radar Detection Threshold Level shall not be less than -64 dBm assuming a 0 dBi receive antenna gain.

NOTE 2: Slave devices with a maximum e.i.r.p. of less than 23 dBm do not have to implement radar detection unless these devices are used in fixed outdoor point to point or fixed outdoor point to multi point applications (see clause 4.2.6.1.3).



Radar Test Waveforms

Parameters of the reference DFS test signal

5							
Pulse width W (μs)			Pulse repetition frequency PRF (PPS)			Pulses per burst (PPB)	
1			700		18		
Parameters of rad	Parameters of radar test signals						
Radar test signal # (see note 1	Pulse width W (μs)		Pulse repetition frequency PRF (PPS)		Number of different	Pulses per burst for each PRF (PPB)	
to note 3)	Min	Max	Min	Max	PRFs	(see note 5)	
1	0,5	5	200	1 000	1	10 (see note 6)	
2	0,5	15	200	1 600	1	15 (see note 6)	
3	0,5	15	2 300	4 000	1	25	
4	20	30	2 000	4 000	1	20	
5	0,5	2	300	400	2/3	10 (see note 6)	
6	0,5	2	400	1 200	2/3	15 (see note 6)	

NOTE 1: Radar test signals #1 to #4 are constant PRF based signals. See figure D.1. These radar test signals are intended to simulate also radars using a packet based Staggered PRF. See figure D.2. NOTE 2: Radar test signal #4 is a modulated radar test signal. The modulation to be used is a chirp modulation with a ±2,5 MHz frequency deviation which is described below.

NOTE 3: Radar test signals #5 and #6 are single pulse based Staggered PRF radar test signals using 2 or 3 different PRF values. For radar test signal #5, the difference between the PRF values chosen shall be between 20 PPS and 50 PPS. For radar test signal #6, the difference between the PRF values chosen shall be between 80 PPS and 400 PPS. See figure D.3.

NOTE 4: Apart for the Off-Channel CAC testing, the radar test signals above shall only contain a single burst of pulses. See figure D.1, figure D.3 and figure D.4.

For the Off-Channel CAC testing, repetitive bursts shall be used for the total duration of the test.

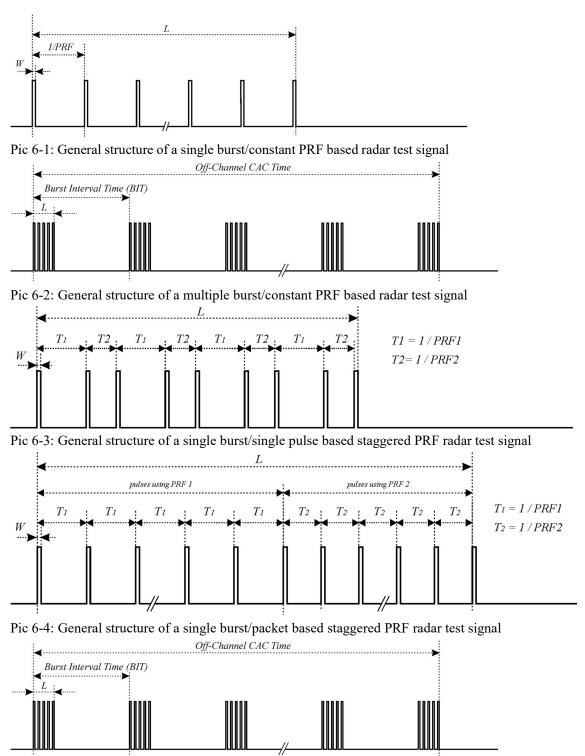
Chongqing Academy of Information and Communication Technology

 Address:
 No. 8, Yuma Road, Chayuan New City, Nan'an District, Chongqing, P. R. China,401336

 Tel:
 0086-23-88069965

 FAX:0086-23-88608777

See figure D.2 and figure D.5. See also clause 4.2.6.2.3, clause 5.4.8.2.1.4.2 and clause 5.4.8.2.1.4.3. NOTE 5: The total number of pulses in a burst is equal to the number of pulses for a single PRF multiplied by the number of different PRFs used.


NOTE 6: For the CAC and Off-Channel CAC requirements, the minimum number of pulses (for each PRF) for any of the radar test signals to be detected in the band 5 600 MHz to 5 650 MHz shall be 18.

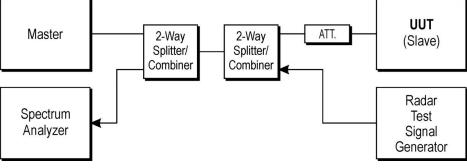
Detection probability

	Detection Probability (P _d)			
Parameter	Channels whose nominal bandwidth falls partly or completely within the 5 600 MHz to 5 650 MHz band	Other channels		
CAC, Off-Channel CAC	99,99 %	60 %		
In-Service Monitoring	60 %	60 %		
NOTE:Pd gives the probability of detection per simulated radar burst and represents a minimum				
level of detection performance under defined conditions. Therefore Pd does not represent the overall				

detection probability for any particular radar under real life conditions.

Pic 6-5: General structure of a multiple burst/packet based staggered PRF based radar test signal

Chongqing Academy of Information and Communication Technology


Address: No. 8, Yuma Road, Chayuan New City, Nan'an District, Chongqing, P. R. China, 401336 Tel: 0086-23-88069965 FAX:0086-23-88608777

6.2 Test Set-up

Set-up B is a set-up whereby the UUT is an RLAN device operating in slave mode, with or without Radar Interference Detection function. This set-up also contains an RLAN device operating in master mode. The radar test signals are injected into the master device. The UUT (slave device) is associated with the master device.

Pic 6-6: Set-up B

7 Test Results

7.1 DFS Detection Thresholds

Test Instructions

Radar Detection Threshold during the Channel Availability Check

- a) The signal generator and UUT are connected using Set-up A described. The power of the UUT is switched off.
- b) The UUT is powered on at T0. T1 denotes the instant when the UUT has completed its power-up sequence (Tpower_up) and is ready to start the radar detection. The Channel Availability Check on Chr is expected to commence at instant T1 and is expected to end no sooner than T1 + Tch_avail_check unless the radar test signal is detected sooner.

Additional verification may be needed to define T1 in case it is not exactly known or indicated by the UUT.

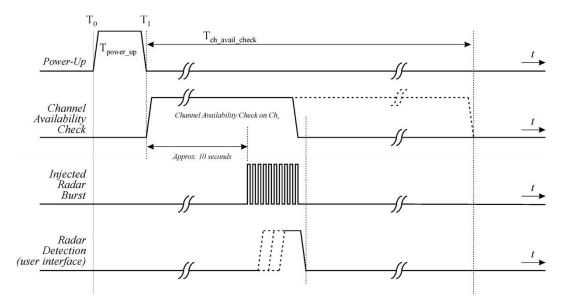
c) A single burst radar test signal is generated on Chr using any of the radar test signals defined in table D.4 at a level defined. This single-burst radar test signal may commence at any time within the applicable Channel Availability Check Time.

For the purpose of reducing test time, it is recommended that the single-burst radar test signal starts approximately 10 s after T1.

- d) It shall be recorded if the radar test signal was detected.
- e) Step c) to step d) shall be performed 20 times and each time a unique radar test signal shall be generated from options provided in table D.4. When selecting these 20 unique radar test signals, the radar test signals #1 to #6 from table D.4 shall be included as well as variations of pulse width, pulse repetition frequency and number of different PRFs (if applicable) within the ranges given. The radar test signals used shall be recorded in the report. The radar test signal shall be detected at least 12 times out of the 20 trials in order to comply with the detection probability specified for this frequency range in table D.5.

Where the declared channel plan includes channels whose nominal bandwidth falls completely or partly within the 5 600 MHz to 5 650 MHz band, additional testing as described in the steps below shall be performed on a channel within this band.

- f) A single burst radar test signal is generated on Chr using any of the radar test signals defined in table D.4 (except signals #3 and #4) at a level of 10 dB above the level defined. This single burst radar test signal may commence at any time within the applicable Channel Availability Check Time. For the purpose of reducing test time, it is recommended that the single burst radar test signal starts approximately 10 s after T1.
- g) Step f) shall be performed 20 times, each time a different radar test signal shall be generated from options provided in table D.4 (except signals #3 and #4). The radar test signals used shall be recorded in the report. The radar test signal shall be detected during each of these tests and this shall be recorded.


Chongqing Academy of Information and Communication Technology

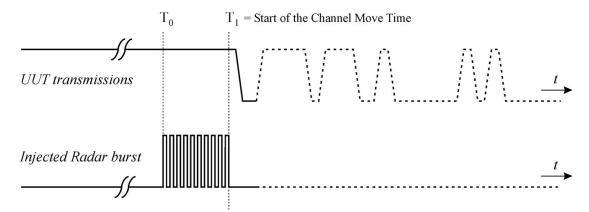
 Address:
 No. 8, Yuma Road, Chayuan New City, Nan'an District, Chongqing, P. R. China,401336

 Tel:
 0086-23-88069965

 FAX:0086-23-88608777

Pic 6-7: Example of timing for radar testing during the Channel Availability Check

Radar Detection Threshold during the In-Service Monitoring


- a) When the UUT is a master device, a slave device will be used that associates with the UUT. The signal generator and the UUT are connected using Set-up A described .When the UUT is a slave device with a Radar Interference Detection function, the UUT shall associate with a master device. The signal generator and the UUT are connected using Set-up C described.
- b) The UUT shall transmit a test transmission sequence in accordance with clause 5.3.1.2 on the selected channel Chr. While the testing is performed on Chr, the equipment is allowed to have simultaneous transmissions on other adjacent or non-adjacent Operating Channels.
- c) At a certain time T0, a single burst radar test signal is generated on Chr using radar test signal #1 defined in table D.4 and at a level defined.

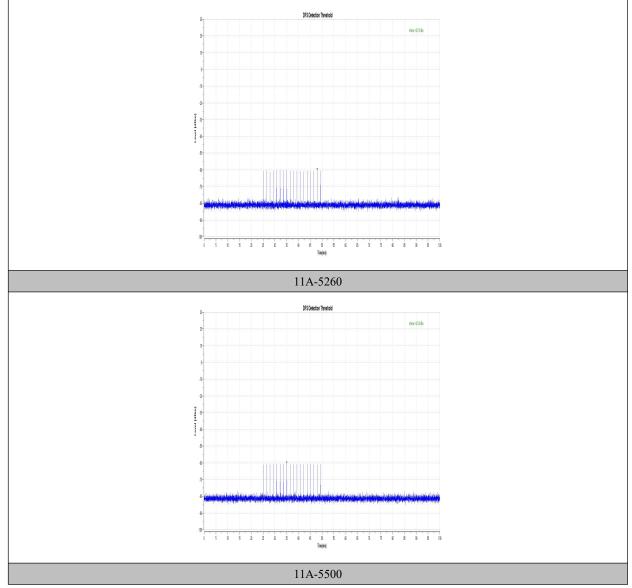
T1 denotes the end of the radar burst.

- d) It shall be recorded if the radar test signal was detected.
- e) Step b) to step d) shall be performed 20 times, each time a random value shall be chosen for pulse width and pulse repetition frequency from the corresponding ranges provided in table D.4. For radar test signal #5 and radar test signal #6 provided in table D.4 the number of PRF values shall vary between 2 or 3. The radar test signal shall be detected at least 12 times out of the 20 trials in order to comply with the detection probability specified in table D.5.
- f) Step b) to step e) shall be repeated for each of the radar test signals defined in table D.4 and as described.

Pic 6-8: Example of timing for radar testing during the In-Service Monitoring

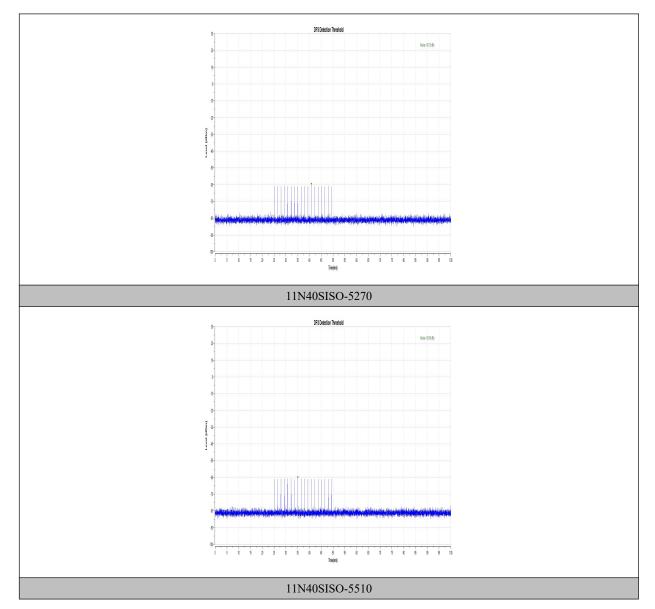
Frequency of Calibration		
Bandwidth	Central Frequency	
2014	5260MHz	
20MHz	5500MHz	
40) (11	5270 MHz	
40MHz	5510MHz	
	5290MHz	
80MHz	5530MHz	

The Calibration is listed below

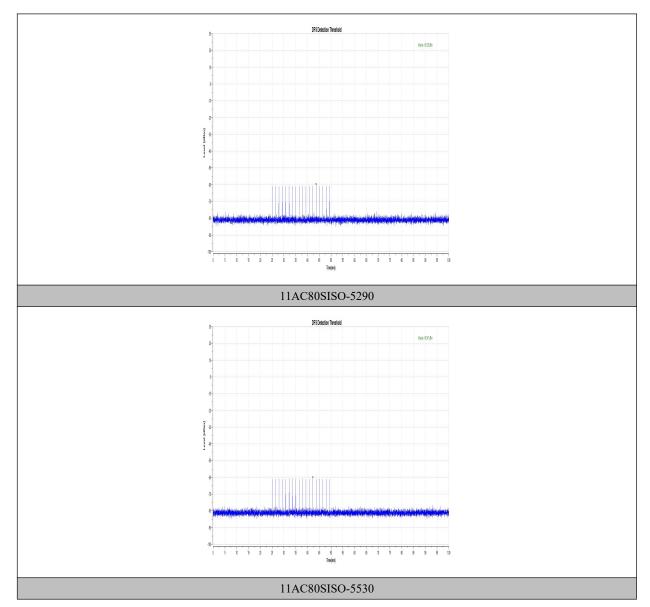

Relative Humidity: 50%~60% at normal and high temperature.

Calibration Measurement Results:

Radar Test Waveforms


TestMode	Frequency[dbm]	Radar Type	Result	Limit[dbm]	Verdict
11A	5260	Type0	-60.15	-60.00	PASS
11A	5500	Type0	-60.24	-60.00	PASS
11N40SISO	5270	Type0	-60.16	-60.00	PASS
11N40SISO	5510	Type0	-60.46	-60.00	PASS
11AC80SISO	5290	Type0	-60.28	-60.00	PASS
11AC80SISO	5530	Type0	-60.47	-60.00	PASS

Test Graphs

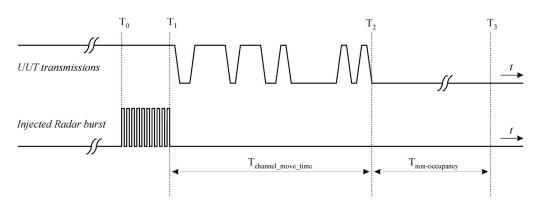


7.2 In-Service Monitoring for Channel Move Time, Channel Closing Transmission Time and Non-Occupancy Period

Test Instructions

Method of Measurement These tests define how the following DFS parameters are verified during In-Service Monitoring; Channel Closing Transmission Time Channel Move Time Non-Occupancy Period

The steps below define the procedure to determine the above mentioned parameters when a radar Burst with a level equal to the DFS Detection Threshold + 1dB is generated on the Operating Channel of the U-NII device (In- Service Monitoring).


- a) One frequency will be chosen from the Operating Channels of the EUT within the 5250-5350 MHz or 5470-5725 MHz bands. For 802.11 devices, the test frequency must contain control signals. This can be verified by disabling channel loading and monitoring the spectrum analyzer. If no control signals are detected, another frequency must be selected within the emission bandwidth where control signals are detected.
- b) In case the EUT is a U-NII device operating as a Client Device (with or without DFS), a U-NII device operating as a Master Device will be used to allow the EUT (Client device) to Associate wit the Master Device. In case the EUT is a Master Device, a U-NII device operating as a Client Device will be used and it is assumed that the Client will Associate with the EUT (Master). In both cases for conducted tests, the Radar Waveform generator will be connected to the Master Device. For radiated tests, the emissions of the Radar Waveform generator will be directed towards the Master Device. If the Master Device has antenna gain, the main beam of the antenna will be directed toward the radar emitter.
- c) Vertical polarization is used for testing.
- d) Stream the channel loading test file from the Master Device to the Client Device on the test Channel for the entire period of the test.
- e) At time T0 the Radar Waveform generator sends a Burst of pulses for one of the Radar Type 0 in Table 5 at levels defined in Table 3, on the Operating Channel. An additional 1 dB is added to the radar test signal to ensure it is at or above the DFS Detection Threshold, accounting for equipment variation /errors.
- f) Observe the transmissions of the EUT at the end of the radar Burst on the Operating Channel for duration greater than 10 seconds. Measure and record the transmissions from the EUT during the observation time (Channel Move Time). Measure and r cord the Channel Move Time and Channel Closing Transmission Time if radar detection occurs. Figure 17 illustrates Channel Closing Transmission Time.
- g) When operating as a Master Device, monitor the EUT for more than 30 minutes following instant

T2 to verify that the EUT does not resume any transmissions on this Channel. Perform this test once and record the measurement result.

h) In case the EUT is a U-NII device operating as a Client Device with In-Service Monitoring, perform steps 1 to 6.

Pic 6-9: Channel Closing Transmission Time, Channel Move Time and Non-Occupancy Period

Limits:

Channel Move Time	≤10s
Channel Closi g Transmission Time	≤200ms + 60ms (over remaining 10s period)
Non-Occupancy Period	≥30min

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2:The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitateaChannel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

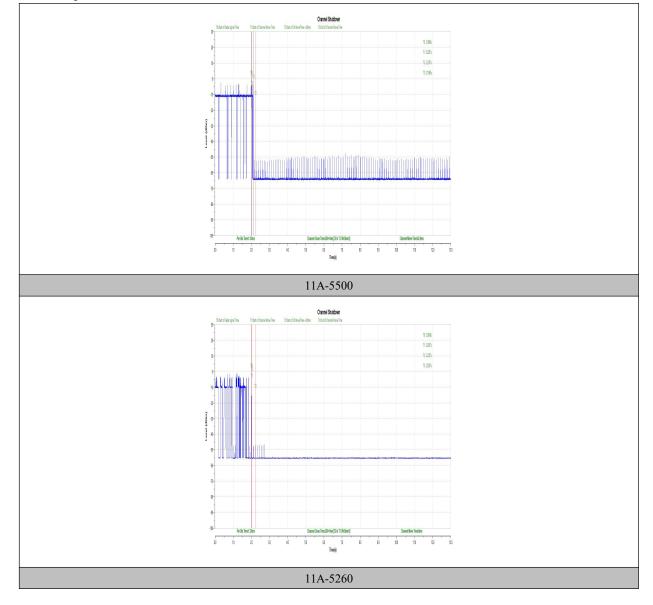
Note 3: The Channel Closing Transmission Time is calculated by The computer .

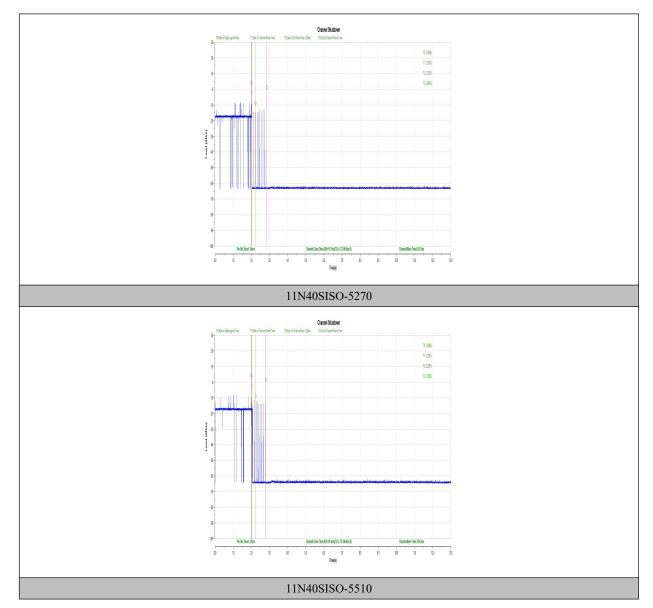
Method of calculation:

The Channel Closing Transmission Time=

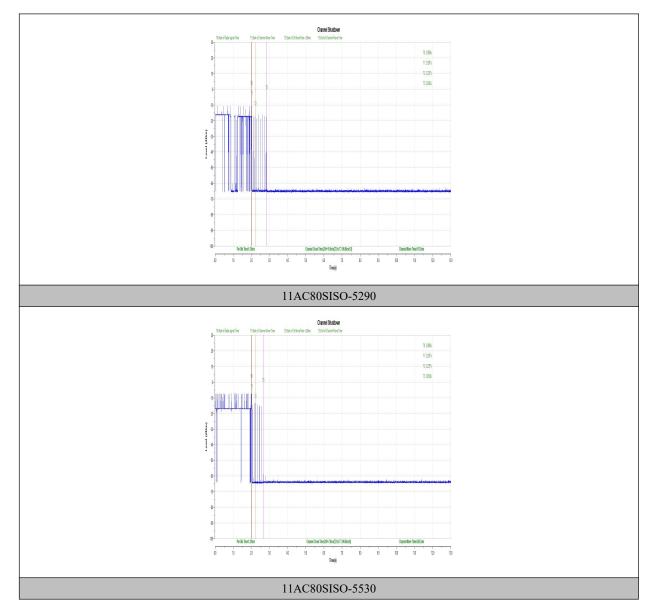
Time to start the test and stop the transfer - The time between the start of the test and the insertion of the jamming signal.

The whole process is controlled and timed by a computer.




In-Service Monitoring for Channel Move Time and Channel Closing Transmission Time

Slave						
TestMode	Frequency[MHz]	CCTT[ms]	Limit[ms]	CMT[ms]	Limit[ms]	Verdict
11A	5500	200+0	200+60	82.9	10000	PASS
11A	5260	200+0	200+60	0	10000	PASS
11N40SISO	5270	200+11.7	200+60	821.3	10000	PASS
11N40SISO	5510	200+10.4	200+60	756.3	10000	PASS
11AC80SISO	5290	200+15.6	200+60	813.5	10000	PASS
11AC80SISO	5530	200+7.8	200+60	626.3	10000	PASS


Test Graphs

Chongqing Academy of Information and Communication Technology Address: No. 8,Yuma Road, Chayuan New City, Nan'an District, Chongqing, P. R. China,401336 Tel: 0086-23-88069965 FAX:0086-23-88608777

Page 28 of 30

Annex A EUT Photos

See the document" I23W00020-External Photos". See the document" I23W00020-Internal Photos".

Chongqing Academy of Information and Communication Technology Address: No. 8,Yuma Road, Chayuan New City, Nan'an District, Chongqing, P. R. China,401336 Tel: 0086-23-88069965 FAX:0086-23-88608777

Page 29 of 30

ANNEX B Deviations from Prescribed Test Methods

No deviation from Prescribed Test Methods.

END OF REPORT

Chongqing Academy of Information and Communication Technology Address: No. 8,Yuma Road, Chayuan New City, Nan'an District, Chongqing, P. R. China,401336 Tel: 0086-23-88069965 FAX:0086-23-88608777

Page 30 of 30