TTL泰爾實驗室

Report No: I22I30102-RF04-V01

Industrial Internet Innovation Center (Shanghai) Co., Ltd.

FCC LTE TEST REPORT

PRODUCT	4G Smart Phone	
BRAND	MobiWire,MobiWire,Vodafone,Orange	
MODEL	H5028,Smart Green,Vodafone Lite,Orange Neva sparkle	
APPLICANT	MobiWire SAS	
FCC ID	QPN-H5028	
ISSUE DATE	November 11, 2022	
STANDARD(S)	FCC Part 2, FCC Part 22, FCC P	art 24, FCC Part 27
Prepared by: Wu Rui	Reviewed by: Yang Fan	Approved by: Zhang Min
Signature	Signature	Signature
the the	杨帆	272 2

CAUTION:

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

Report No: I22I30102-RF04-V01

CONTENTS

1. 9	SUMMARY OF TEST REPORT	
1.1	Test Standard (s)	
1.2	REFERENCE DOCUMENTS	
1.3	SUMMARY OF TEST RESULTS	
1.4	Data Provided by Applicant	4
2. (GENERAL INFORMATION OF THE LABORATORY	5
2.1	Testing Laboratory	
2.2	LABORATORY ENVIRONMENTAL REQUIREMENTS	
2.3	PROJECT INFORMATION	5
3. (GENERAL INFORMATION OF THE CUSTOMER	6
3.1	APPLICANT	6
3.2	Manufacturer	6
4.	GENERAL INFORMATION OF THE PRODUCT	7
4.1	PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	7
4.2	Description for Auxiliary Equipment (AE)	7
4.3	Additional Information	7
5. 1	TEST CONFIGURATION INFORMATION	
5.1	LABORATORY ENVIRONMENTAL CONDITIONS	8
5.2	2 TEST EQUIPMENTS UTILIZED	
5.3	B MEASUREMENT UNCERTAINTY	9
6. 1	TEST RESULTS	
6.1	Output Power	
6.2	2 Emission Limt	
6.3	B FRQENCY STABILITY	
6.4	Occupied Bandwidth	
6.5	Emission Bandwidth	
6.6	BAND EDGE COMPLIANCE	
6.7	CONDUCTED SPURIOUS EMISSION	42
ANNE	EX A: REVISED HISTORY	
ANNE	EX B: ACCREDITATION CERTIFICATE	

1. Summary of Test Report

1.1 Test Standard (s)

No.	Test Standard	Title	Version
1	FCC Part 2	FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS	2020-10-01
2	FCC Part 22	PUBLIC MOBILE SERVICES	2020-10-01
3	FCC Part 24	PERSONAL COMMUNICATIONS SERVICES	2020-10-01
4	FCC Part 27	MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES	2020-10-01

1.2 Reference Documents

No.	Test Standard	Title	Version
1	ANSI/TIA-603-E	Land Mobile FM or PM Communications Equipment Measurement and Performance Standards	2016
2	ANSI C63.26	American National Standard of Procedures for Compliance Testing of Licensed Transmitters Used in Licensed Radio	2015
3	KDB 971168 D01	Measurement Guidance for Certification of Licensed Digital Transmitters	v03r01

1.3 Summary of Test Results

LTE Band 7

Items	Test Name	Clause in FCC rules	Verdict
1	Output Power	27.50(d)(4)	Pass
2	Emission Limit	27.53(h), 2.1051	Pass
3	Frequency Stability	27.54, 2.1055	Pass
4	Occupied Bandwidth	2.1049(h)(i)	Pass
5	Emission Bandwidth	27.53(h)	Pass
6	Band Edge Compliance	27.53(h)	Pass
7	Conducted Spurious Emission	27.53(h), 2.1057	Pass
8	Peak to Average Power Ratio	27.50(a)	Pass

Industrial Internet Innovation Center (Shanghai) Co., Ltd.

Report No: I22I30102-RF04-V01

Items	Test Name	Clause in FCC rules	Verdict
product for testi	ng	X3 BY	
Industrial Interne	et Innovation Center (Shanghai) Co., Ltd. c	only performed test cases wh	ich identified with
Pass/Fail/Inc res	ult in section 1.3.		
Industrial Interne	et Innovation Center (Shanghai) Co., Ltd.	has verified that the complia	ance of the tested
device specified	in section 5.3 of this test report is success	fully evaluated according to t	the procedure and
test methods as	defined in type certification requirement	listed in section 6 of this tes	t report.

1.4 Data Provided by Applicant

No.	Item(s)	Data
1	LTE band 7	-1.5dBi

2. General Information of The Laboratory

2.1 Testing Laboratory

Lab Name	Industrial Internet Innovation Center (Shanghai) Co.,Ltd.	
Address	Building 4, No. 766, Jingang Road, Pudong, Shanghai, China	
Telephone	021-68866880	
FCC Registration No.	958356	
FCC Designation No.	CN1177	

2.2 Laboratory Environmental Requirements

Temperature	15℃~35℃
Relative Humidity	25%RH~75%RH
Atmospheric Pressure	101kPa

2.3 Project Information

Project Manager	Xu Yuting
Test Date	September 20, 2022 to November 11, 2022

Report No: I22I30102-RF04-V01

3. General Information of The Customer

3.1 Applicant

Company	MobiWire SAS
Address	107 Boulevard de la Mission Marchand, 92400 Courbevoie, France.
Telephone	+33625028368

3.2 Manufacturer

Company	MobiWire SAS
Address	107 Boulevard de la Mission Marchand, 92400 Courbevoie, France.

CAICT 中国信通院 Report No: I22I30102-RF04-V01

4. General Information of The Product

4.1 Product Description for Equipment under Test (EUT)

Product	4G Smart Phone			
Model	H5028,Smart Green,Vodafone Lite,Orange Neva sparkle	Ģ		
Data of Dessint	S02aa :September 22, 2022			
Date of Receipt	S06aa: September 22, 2022			
EUT ID*	S02aa/S06aa			
VX XX A	S02aa : 352243540001872			
	352243540001880			
SN/IMEI	S06aa: 352243540002615			
	352243540002623			
	GSM850/GSM900/DCS1800/PCS1900			
	WCDMA Band I/II/V/VIII			
	LTE Band 1/3/7/20/28			
	BT 5.0 BLE/BR/EDR			
Supported Radio	WLAN 802.11b/g/n			
Technology and Bands	WLAN 802.11a/n			
	GPS			
	GLONASS			
	Gallileo			
	FM			
Hardware Version	V01A			
Software Version	Mobiwire_H5028_V01	3		
FCC ID	QPN-H5028			
NOTE: EUT ID is the internal	identification code of the laboratory.	2		

4.2 Description for Auxiliary Equipment (AE)

AE ID*	Description	Model	SN/Remark
AE1	RF Cable	N/A	N/A

4.3 Additional Information

Type of modulation

QPSK/16QAM

CAICT 中国信通院 Report No: I22I30102-RF04-V01

5. Test Configuration Information

5.1 Laboratory Environmental Conditions

5.1.1 Permanent Facilities

Relative Humidity	Min. = 45%, Max. = 55%					
Atmospheric Pressure	101kPa					
	Normal	Minimum	Maximum			
lemperature	25℃	-10°C	55°C			
Working Voltage of	Normal	Minimum	Maximum			
EUT	3.8V	3.6V	4.2V			

5.2 Test Equipments Utilized

Radiated emission test system

No.	Name	Model	S/N	Manufacturer	Cal. Date	Cal. Interval
1	Universal Radio Communication Tester	CMU200	123123	R&S	May 10,2021	1.5 Years
2	Universal Radio Communication Tester	CMW500	104178	R&S	May 10, 2021	1.5 Years
3	EMI Test Receiver	ESU40	100307	R&S	February 23, 2022	1 Year
4	TRILOG Broadband Antenna	VULB9163	VULB9163- 515	Schwarzbeck	March 11, 2022	1 Year
5	Double- ridged Waveguide Antenna	ETS-3117	00135890	ETS	March 9, 2022	2 Years
6	2-Line V-Network	ENV216	101380	R&S	February 21, 2022	1 Year
7	EMI Test Software	EMC32 V9.15.00	N/A	R&S	N/A	N/A

Anechoic chamber

Fully anechoic chamber by ETS.

Conducted Test System

No.	Name	Model	s/N	Manufacturer	Cal. Date	Cal. Interval
1	Universal Radio Communication Tester	CMW500	148874	R&S	August. 23,2022	1 Year
2	Vector Signal Analyzer	FSQ26	101091	R&S	August. 23,2022	1 Year

Report No: I22I30102-RF04-V01

3	Programmable power supply	Keithley 2303	4039070	Keithley	July 12,2022	1 Year
4	Eagle Test Software	Eagle V3.3 FCC BT/WIFI	N/A	ECIT	N/A	N/A
5	Temperature Chamber	B-TF-107C	BTF107C- 201804107	BoYi	June 30,2022	1Year

5.3 Measurement Uncertainty

Measurement Items	Range	Confidence Level	Calculated Uncertainty
Peak Output Power-Conducted	2412MHz-2462MHz	95%	0.544dB
Peak Power Spectral Density	2412MHz-2462MHz	95%	0.502dB
Occupied 6dB Bandwidth	2412MHz-2462MHz	95%	69.26kHz
Band Edges-Conducted	2412MHz-2462MHz	95%	0.544dB
Conducted Emission	30MHz-2GHz	95%	0.90dB
Conducted Emission	2GHz-3.6GHz	95%	0.88dB
Conducted Emission	3.6GHz-8GHz	95%	0.96dB
Conducted Emission	8GHz-20GHz	95%	0.94dB
Conducted Emission	20GHz-22GHz	95%	0.88dB
Conducted Emission	22GHz-26GHz	95%	0.86dB
Transmitter Spurious Emission- Radiated	9KHz-30MHz	95%	5.66dB
Transmitter Spurious Emission- Radiated	30MHz-1000MHz	95%	4.98dB
Transmitter Spurious Emission- Radiated	1000MHz -18000MHz	95%	5.06dB
Transmitter Spurious Emission- Radiated	18000MHz -40000MHz	95%	5.20dB
AC Power line Conducted Emission	0.15MHz-30MHz	95%	3.66 dB

6. Test Results

6.1 Output Power

6.1.1 Summary

During the process of testing, the EUT was controlled via Rhode & Schwarz Digital Radio Communication tester (CMW500) to ensure max power transmission and proper modulation. In all cases, output power is within the specified limits.

CMW500 setting:

1: CMW500 is connected to the DUT

2: Set RX Expected PEP to 30 dBm

6.1.2 Conducted

6.1.2.1 Method of Measurements

The EUT was set up for the max output power with pseudo random data modulation. These measurements were done at 3 frequencies (bottom, middle and top of operational frequency range) for each bandwidth.

6.1.2.2 Measurement result

LTE band 7

		LTE B7				
Medulation	DD		Turne	No 1	5MHz	
	KB	RB Offset	iune up	20775/2502.5	21100/2535	21425/2567.5
1 38 10	X3	Low		21.64	21.59	21.60
	1	Middle	22.80	21.80	21.95	21.82
ALL AND		High	Y 18	21.60	21.58	21.61
QPSK	1 2 ST	Low	N° J	20.68	20.70	20.77
50'	50%	Middle	21.80	20.78	20.82	20.87
		High		20.74	20.69	20.71
	100%		21.80	20.77	20.80	20.74
	0.4	Low	21.80	20.99	20.89	20.73
	1	Middle		21.24	21.17	20.98
		High		21.00	20.93	20.72
16QAM	50%	Low	20.80	19.80	19.75	19.86
Y IN C		Middle		19.89	19.82	19.92
		High		19.86	19.69	19.84
s ys	100%		20.80	19.76	19.74	19.74
			11 8	38	10MHz	5 10 5
wodulation	RB	RB Offset	Tune up	20800/2505	21100/2535	21400/2565
	x v	Low		21.74	21.68	21.68
	1	Middle	22.80	21.86	21.92	21.80
		High		21.73	21.72	21.73
QPSK	Mar 1	Low	X.3 _0	20.74	20.76	20.89
	50%	Middle	21.80	20.75	20.85	20.83
		High	10 3	20.81	20.86	20.76
Y AN	100%		21.80	20.79	20.83	20.88
16QAM	1 (Low	21.80	20.91	20.90	20.95

Industrial Internet Innovation Center (Shanghai) Co., Ltd.

Report No: I22I30102-RF04-V01

	6	Middle	100 5	21.02	21.14	21.15
Y R		High	V. Sol	20.95	20.93	20.95
	50%	Low	5 .6	19.79	19.87	19.88
		Middle	20.80	19.84	19.87	19.90
		High	1 5	19.85	19.91	19.85
	100%	15	20.80	19.87	19.75	19.86
			N.S. S		15MHz	SHIT
wodulation	KB	RB Offset	Tune up	20825/2507.5	21100/2535	21375/2562.
	No.	Low		21.68	21.67	21.61
A Star	1	Middle	22.80	21.81	21.76	21.77
		High		21.69	21.63	21.69
QPSK	the 'n	Low	S IN	20.73	20.73	20.87
	50%	Middle	21.80	20.78	20.76	20.88
and the		High	SHA	20.83	20.82	20.78
	100%		21.80	20.84	20.78	20.83
1 16QAM 50%	S .3	Low	21.80	20.94	20.95	20.85
	1	Middle		21.13	21.01	21.01
	3. 2/	High		20.99	20.87	20.91
	50%	Low	20.80	19.87	19.75	19.77
		Middle		19.81	19.82	19.87
10 3		High		19.89	19.83	19.86
A Start	100%	\sim 1	20.80	19.80	19.76	19.79
	DD	DD Offeet	Turne un		20MHz	
wooulation	KD	RD Oliset	rune up	20850/2510	21100/2535	21350/2560
IL Sh	. (a) 5°	Low	XIN	21.51	21.46	21.42
N Star	1	Middle	22.80	21.95	21.89	21.83
N EN L	5 .8	High		21.59	21.53	21.59
QPSK		Low	No.	20.79	20.82	20.86
JO S	50%	Middle	21.80	20.80	20.83	20.83
15 1		High		20.82	20.84	20.85
	100%		21.80	20.80	20.78	20.83
in YS		Low		20.63	20.93	20.85
A SALAN	1	Middle	21.80	21.12	21.25	21.05
SHE D	X3	High	Y RY	20.90	20.98	20.81
16QAM	ST 19	Low		19.77	19.76	19.85
1 3	50%	Middle	20.80	19.79	19.86	19.91
Nº 8		High	N.	19.83	19.78	19.83
	100%		20.80	19.73	19.80	19.78

6.1.3 Radiated

6.1.3.1 Description

This is the test for the maximum radiated power from the EUT.

Rule Part 24.232(b) specifies, "Mobile/portable stations are limited to 2 watts e.i.r.p. Peak power"and 24.232(c) specifies that "Peak transmit power must be measured over any interval of continuousIndustrial Internet Innovation Center (Shanghai) Co.,Ltd.Page 11 of 45

CAICT 中国信通院 Report No: I22I30102-RF04-V01

transmission using instrumentation calibrated in terms of an rms-equivalent voltage."

Rule Part 27.50(d) specifies "Fixed, mobile, and portable (handheld) stations operating in the 1710–1755 MHz band are limited to 1 watt EIRP".

Rule Part 27.50(h)(2) specifies "Mobile stations are limited to 2.0 watts EIRP.".

Rule Part 27.50(c) specifies "Portable stations (hand-held de-vices) are limited to 3 watts ERP."

The measurements procedures in TIA-603E-2016 are used.

EUT was placed on a 1.5 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.5m. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector.

The EUT is then put into continuously transmitting mode at its maximum power level during the test. And the maximum value of the receiver should be recorded as (Pr).

The EUT shall be replaced by a substitution antenna. The test setup refers to figure below.

In the chamber, a substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (PMea) is applied to the input of the substitution antenna. Adjust the level of the signal generator output until the value of the receiver reaches the previously recorded (Pr). The power of signal source (PMea) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.

Industrial Internet Innovation Center (Shanghai) Co., Ltd.

An amplifier should be connected to the Signal Source output port. And the cable should be connected between the amplifier and the substitution antenna.

The cable loss (Pcl), the substitution antenna Gain (Ga) and the amplifier Gain (PAg) should be recorded after test.

The measurement results are obtained as described below:

Power (EIRP) = PMea + PAg - Pcl + Ga

This value is EIRP since the measurement is calibrated using an antenna of known gain (unit dBi) and known input power.

ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.15dBi.

6.1.3.3 Measurement result

LTE Band 7- EIRP 27.50(h)(2)

Limits: ≤33 dBm (2W)

LTE Band 7_5MHz_QPSK

Frequency(MHz)	EIRP(dBm)	Limit(dBm)	Polarization
2502.5	20.30	33.00	Н
2535	20.45	33.00	N 6 6
2567.5	20.32	33.00	C C C H C C

LTE Band 7_10MHz_QPSK

Frequency(MHz)	EIRP(dBm)	Limit(dBm)	Polarization
2505	20.36	33.00	H N
2535	20.42	33.00	A C H C S
2565	20.30	33.00	Н

LTE Band 7_15MHz_QPSK

Frequency(MHz)	EIRP(dBm)	Limit(dBm)	Polarization
2507.5	20.31	33.00	Н С
2535	20.26	33.00	HX HX
2562.5	20.27	33.00	с NH XX

LTE Band 7_20MHz_QPSK

Frequency(MHz)	EIRP(dBm)	Limit(dBm)	Polarization
2510	20.45	33.00	H
2535	20.39	33.00	H
2560	20.33	33.00	H N H

LTE Band 7_5MHz_16QAM

Frequency(MHz)	EIRP(dBm)	Limit(dBm)	Polarization
2502.5	19.74	33.00	H A
2535	19.67	33.00	с н
2567.5	19.48	33.00	H A

LTE Band 7_10MHz_16QAM

Frequency(MHz)	EIRP(dBm)	Limit(dBm)	Polarization
2505	19.52	33.00	Н
2535	19.64	33.00	G H
2565	19.65	33.00	H

LTE Band 7_15MHz_16QAM

Report No: I22I30102-RF04-V01

Frequency(MHz)	EIRP(dBm)	Limit(dBm)	Polarization
2507.5	19.63	33.00	H X
2535	19.51	33.00	Ha
2562.5	19.51	33.00	S H
and 7_20MHz_16QAM			
Frequency(MHz)	EIRP(dBm)	Limit(dBm)	Polarization
2510	19.62	33.00	C H
2535	19.75	33.00	Н
2560	10 55	33.00	

ANALYZER SETTINGS:

RBW = VBW = 8MHz for occupied bandwdiths equal to or less than 5MHz.

RBW = VBW = 20MHz for occupied bandwidths equal to or greater than 10MHz.

CAICT 中国信通院 Report No: I22I30102-RF04-V01

6.2 Emission Limt

Reference

CFR 2.1051,22.917.

6.2.1 Measurement Method

The measurements procedures in TIA-603E-2016 are used. This measurement is carried out in fully-anechoic chamber FAC-3.

The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment, which is the transmitted carrier. The resolution bandwidth is set 1MHz as outlined in Part 27.53(g), Part 27.53(h), Part 27.53(m). The spectrum was scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of the LTE Bands 7.

The procedure of radiated spurious emissions is as follows:

Below 1 GHz, EUT was placed on a 0.8 meter high non-conductive stand at a 3 meter test distance from the receive antenna. Above 1 GHz, EUT was placed on a 1.5 meter high non-conductive stand at a 3 meter test distance from the receive antenna.EUT was placed on a 1.5 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.5m. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all non-harmonic and harmonics of the transmit frequency through the 10th harmonic were measured with peak detector.

The EUT is then put into continuously transmitting mode at its maximum power level during the test. And the maximum value of the receiver should be recorded as (Pr).

The EUT shall be replaced by a substitution antenna. The test setup refers to figure below.

TL素育發室

Report No: I22I30102-RF04-V01

CAICT中国信通院

In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (PMea) is applied to the input of the substitution antenna. Adjust the level of the signal generator output until the value of the receiver reaches the previously recorded (Pr). The power of signal source (PMea) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.

The Path loss (Ppl) between the Signal Source with the Substitution Antenna and the Substitution Antenna Gain (Ga) should be recorded after test.

An amplifier should be connected in for the test.

The Path loss (Ppl) is the summation of the cable loss and the gain of the amplifier.

The measurement results are obtained as described below:

Power (EIRP) =PMea- Ppl + Ga

This value is EIRP since the measurement is calibrated using an antenna of known gain (unit: dBi) and known input power.

ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.15dBi.

6.2.2 Measurement Limit

Part 27.53(g),27.53(h), 27.53(m) state that on any frequency outside frequency band of the US Cellular/PCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log (P) dB. For all power levels +30 dBm to 0 dBm, this becomes a constant specification limit of -13 dBm.

According to KDB 971168 6, a relaxation of the reference bandwidth is often provided for measurements within a specified frequency range at the edge of the authorized frequency block/band. This is often implemented by permitting the use of a narrower RBW (typically limited to a minimum RBW of 1% of the OBW) for measuring the out-of-band emissions without a requirement to integrate the result over the full reference bandwidth.

Part 27.53(m) states that for mobile digital stations, the attenuation factor shall be not less than $40 + 10 \log (P) dB$ on all frequencies between the channel edge and 5 megahertz from the channel edge, $43 + 10 \log (P) dB$ on all frequencies between 5 megahertz and X megahertz from the channel edge, and 55 + 10 log (P) dB on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section. In addition, the attenuation factor shall not be less that $43 + 10 \log (P) dB$ on all

Report No: I22I30102-RF04-V01

CAICT 中国信通院

frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees operating on channel BRS Channel 1 on the same terms and conditions as adjacent channel BRS or EBS licensees.

6.2.3 Measurement Results

Radiated emissions measurements were made only at the upper, middle, and lower carrier frequencies of the LTE Bands 5.It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the LTE Bands 5. Into any of the other blocks. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this. The evaluated frequency range is from 30MHz to 26GHz.

BAND	Chan	inel	Result
Outer A Linde	Cart Dart Y	20775	Pass
7	М	21100	Pass
	H Charles	21425	Pass

Frequency (MHz)	PMea (dBm)	Pcl (dBm)	Ga (dBd)	Peak ERP (dBm)	Limit (dBm)	Polarization
5085.2 -49.15	085.2 -49.15 7.9	9.6	-47.45	-13	н	
6596.8	-48.31	9.1	10.6	-46.81	-13	v
8429.6	-50.51	10.2	12.6	-48.11	-13	V
10188.4	-45.65	11.3	12.5	-44.45	-13	v
12863.8	-40.53	13.0	12.3	-41.23	-13	н
15240.2	-35.74	14.5	12.3	-37.94	-13	Н

RSE-LTE7-S06aa-H

RSE-LTE7-S06aa-L

Frequency (MHz)	PMea (dBm)	Pcl (dBm)	Ga (dBd)	Peak ERP (dBm)	Limit (dBm)	Polarization
5180.0	-47.55	8.0	9.4	-46.15	-13	V
6473.2	-49.41	8.9	10.6	-47.71	-13	н
8658.0	-49.62	10.3	12.7	-47.22	-13	V
10547.2	-45.49	11.6	12.3	-44.79	-13	н
12191.8	-41.19	12.6	12.3	-41.49	-13	V
13775.5	-39.77	13.8	12.3	-41.27	-13	v

RSE-LTE7-S06aa-M

TTL泰爾實驗室

Frequency (MHz)	PMea (dBm)	Pcl (dBm)	Ga (dBd)	Peak ERP (dBm)	Limit (dBm)	Polarization
5312.8 -49.34	5312.8 -49.34 8.0 9.4		9.4	-47.94	-13	V
6848.8	-50.34	9.2	10.9	-48.64	-13	Н
8676.0	-49.26	10.4	12.7	-46.96	-13	н
10659.6	-44.76	11.7	12.3	-44.16	-13	v
12466.5	-42.58	12.7	12.3	-42.98	-13	н
14843.0	-37.86	14.3	12.3	-39.86	-13	V

CAICT 中国信通院 Report No: I22I30102-RF04-V01

6.3 Frgency Stability

Reference

CFR Part 2.1055,22.235.

6.3.1 Method of Measurement

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the EUT in a "call mode". This is accomplished with the use of R&S CMW500 DIGITAL RADIO COMMUNICATION TESTER.

- 1. Measure the carrier frequency at room temperature.
- 2. Subject the EUT to overnight soak at -10°℃.
- 3. With the EUT, powered via nominal voltage, connected to the CMW500 and in a simulated call on middle channel for LTE band 7. Measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.
- 4. Repeat the above measurements at 10° increments from -10° to $+50^{\circ}$. Allow at least 1.5 hours at each temperature, unpowered, before making measurements.
- Re-measure carrier frequency at room temperature with nominal voltage. Vary supply voltage from minimum voltage to maximum voltage, in 0.1Volt increments re-measuring carrier frequency at each voltage. Pause at nominal voltage for 1.5 hours unpowered, to allow any selfheating to stabilize, before continuing.
- 6. Subject the EUT to overnight soak at $+50^{\circ}$ C.
- 7. With the EUT, powered via nominal voltage, connected to the CMW500 and in a simulated call on the centre channel, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.
- 8. Repeat the above measurements at 10 $^{\circ}$ C decrements from +50 $^{\circ}$ C to -10 $^{\circ}$ C. Allow at least 1.5 hours at each temperature, unpowered, before making measurements.
- 9. At all temperature levels hold the temperature to +/- 0.5° during the measurement procedure.

6.3.2Measurement Limit

According to the JTC standard the frequency stability of the carrier shall be accurate to within 0.1 ppm of the received frequency from the base station. This accuracy is sufficient to meet Sec. 24.235, Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. As this transceiver is considered "Hand carried, battery powered equipment" Section 2.1055(d) (2) applies. This requires that the lower voltage for frequency stability testing be specified by the manufacturer. This transceiver is specified to operate with an input voltage of between 3.6VDC and 4.35VDC, with a nominal voltage of 3.8VDC. Operation above or below these voltage limits is prohibited by transceiver software in order to prevent improper operation as well as to protect components from overstress. For the purposes of measuring frequency stability these voltage limits are to be used.

6.3.3 Measurement results

LTE Band 7, 5MHz bandwidth (worst case of all bandwidths)

Frequency Error vs Voltage

Report No: I22I30102-RF04-V01

Voltage	Frequenc	Frequency error (Hz)		error (ppm)
(∨)	QPSK	16QAM	QPSK	16QAM
3.6	-15.163	17.481	0.006	0.007
3.8	-12.774	17.238	0.005	0.007
4.2	11.888	-15.407	0.005	0.006

Frequency Error vs Temperature

Temperature	Frequency	/ error (Hz)	Frequency	error (ppm)
(°C)	QPSK	16QAM	QPSK	16QAM
50	-13.032	-15.306	0.005	0.006
40	-18.01	-17.896	0.007	0.007
30	-9.027	-16.05	0.004	0.006
20	-18.854	-12.46	0.008	0.005
10	-6.952	-16.565	0.003	0.007
0	-11.044	19.841	0.004	0.008
-10	-17.996	-9.942	0.007	0.004
-20	-14.849	-11.916	0.006	0.005
-30	-11.859	-12.875	0.005	0.005

6.4 Occupied Bandwidth

Reference

CFR Part 2.1049(h) (i)

6.4.1 Occupied Bandwidth Results

Occupied bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies of the US Cellular/PCS frequency bands. The table below lists the measured 99% BW. Spectrum analyzer plots are included on the following pages.

The measurement method is from KDB 971168 4:

a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be set wide enough to capture all modulation products including the emission skirts (i.e., two to five times the OBW).

b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1 to 5 % of the anticipated OBW, and the VBW shall be at least 3 times the RBW.

c) Set the reference level of the instrument as required to keep the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope must be at least 10log (OBW / RBW) below the reference level.

d) Set the detection mode to peak, and the trace mode to max hold.

e) Use the 99 % power bandwidth function of the spectrum analyzer and report the measured bandwidth.

Report No: I22I30102-RF04-V01

Occupied Bandwidth Measurement Results:

LTE band 7,5MHz (99%)low

LTE band 7, 10MHz (99%) low

LTE band 7,15MHz (99%)low

Frequency(MHz)	Occupied Bandw	vidth (99%)(MHz)
2507.5	QPSK	16QAM
2507.5	14.78	14.71
QPSK(99% BW)	16QAM((99% BW)

Report No: I22I30102-RF04-V01

LTE band 7,20MHz (99%)low

Report No: I22I30102-RF04-V01

LTE band 7, 5MHz (99%)mid

LTE band 7, 10MHz (99%)mid

Frequency(MHz)	Occupied Bandy	vidth (99%)(MHz)
2525	QPSK	16QAM
2535	14.57	14.50
QPSK(99% BW)	16QAM	(99% BW)

Report No: I22I30102-RF04-V01

LTE band 7, 20MHz (99%)mid

Report No: I22I30102-RF04-V01

Occupied Bandwidth (99%)(MHz) Frequency(MHz) **QPSK** 16QAM 2567.5 4.47 4.50 **QPSK(99% BW)** 16QAM(99% BW) × * RBW 50 kHz * VBW 200 kHz * SWT 40 ms • RBW 50 kHz • VBW 200 kHz • SWT 40 ms 1 520 1 220 a the party of the Walder Alfandalate al and marcula Date: 13.0CT.2022 15:25:33 Date: 13.0CT.2022 15:25:44

LTE band 7, 5MHz (99%)high

Frequency(MHz)	Occupied Bandy	vidth (99%)(MHz)
2562.5	QPSK	16QAM
	14.57	14.78
QPSK(99% BW)	16QAM(99% BW)	

Report No: I22I30102-RF04-V01

LTE band 7, 20MHz (99%)high

6.5 Emission Bandwidth

Reference

CFR Part 22.917(b).

6.5.1Emission Bandwidth Results

The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power. Table below lists the measured -26dBc BW. Spectrum analyzer plots are included on the followinag pages.

LTE band 7,5MHz (-26dBc) ,low

LTE band 7, 10MHz (-26dBc) ,low

Frequency(MHz)	Occupied Bandwid	dth (-26dBc)(MHz)	
2505	QPSK	16QAM	2
	9.71	9.76	à
QPSK (-26dBc)	16QAM (-26dBc)		1

2510	QPSK	16QAM	Ì
2510	19.42	19.52	Nº S
QPSK (-26dBc)	16QAM (-	26dBc)	<u> </u>

Report No: I22I30102-RF04-V01

LTE band 7, 5MHz (-26dBc)mid

LTE band 7, 10MHz (-26dBc)mid

Frequency(MHz)	Occupied Bandwid	dth (-26dBc)(MHz)
2535	QPSK	16QAM
	14.57	14.50
QPSK (-26dBc)	16QAM (-26dBc)	

Industrial Internet Innovation Center (Shanghai) Co., Ltd.

Report No: I22I30102-RF04-V01

LTE band 7, 5MHz (-26dBc)high

LTE band 7, 10MHz (-26dBc)high

LTE band 7, 15MHz (-26dBc)high

Frequency(MHz)	Occupied Bandwid	th (-26dBc)(MHz)
2562.5	QPSK	16QAM
	14.57	14.78
QPSK (-26dBc)	16QAM (-26dBc)	

Industrial Internet Innovation Center (Shanghai) Co., Ltd.

6.6 Band Edge Compliance

Reference

CFR Part 22.917(b)

6.6.1 Measurement limit

Part 27.53(g),27.53(h), 27.53(m) state that on any frequency outside frequency band of the US Cellular/PCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log (P) dB. For all power levels +30 dBm to 0 dBm, this becomes a constant specification limit of -13 dm.

According to KDB 971168 6, a relaxation of the reference bandwidth is often provided for measurements within a specified frequency range at the edge of the authorized frequency block/band. This is often implemented by permitting the use of a narrower RBW (typically limited to a minimum RBW of 1% of the OBW) for measuring the out-of-band emissions without a requirement to integrate the result over the full reference bandwidth.

Part 27.53(m) states that for mobile digital stations, the attenuation factor shall be not less than 40 + 10 log (P) dB on all frequencies between the channel edge and 5 megahertz from the channel edge, 43 + 10 log (P) dB on all frequencies between 5 megahertz and X megahertz from the channel edge, and 55 + 10 log (P) dB on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section. In addition, the attenuation factor shall not be less that 43 + 10 log (P) dB on all frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees operating on channel BRS Channel 1 on the same terms and conditions as adjacent channel BRS or EBS licensees.

Report No: I22I30102-RF04-V01

Net
30
(her
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-

6.7 Conducted Spurious Emission

6.7.1 Measurement Method

The following steps outline the procedure used to measure the conducted emissions from the EUT.

Determine frequency range for measurements: From CFR 2.1057 the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency. For the mobile station equipment tested, this equates to a frequency range of 13 MHz to 9 GHz, data taken from 10 MHz to 25 GHz.

Determine EUT transmit frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing.

The number of sweep points of spectrum analyzer is set to 30001 which is greater than span/RBW.

6.7.2 Measurement Limit

Part 27.53(g),27.53(h), 27.53(m) specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

Part 27.53(m)(4) specifies for mobile digital stations, the attenuation factor shall be not less than 40 + 10 log (P) dB on all frequencies between the channel edge and 5 megahertz from the channel edge, 43 + 10 log (P) dB on all frequencies between 5 megahertz and X megahertz from the channel edge, and 55 + 10 log (P) dB on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section. In addition, the attenuation factor shall not be less that 43 + 10 log (P) dB on all frequencies below 2490.5 MHz and 2496 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees operating on channel BRS Channel 1 on the same terms and conditions as adjacent channel BRS or EBS licensees.

Report No: I22I30102-RF04-V01

6.7.3 Measurement result

Report No: I22I30102-RF04-V01

Annex A: Revised History

Version	Revised Content
V00	Initial
V01	1.Add the test lab's registered MRA test site number 2.Added 10MHZ, 20MHZ related test case results

Report No: I22I30102-RF04-V01

Annex B: Accreditation Certificate

Accredited Laboratory

A2LA has accredited

INDUSTRIAL INTERNET INNOVATION CENTER (SHANGHAI) CO., LTD.

Shanghai, People's Republic of China

for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Presented this 12th day of April 2021.

For the tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.

END OF REPORT

Vice President, Accreditation Services For the Accreditation Council Certificate Number 3682.01 Valid to February 28, 2023