

Industrial Internet Innovation Center (Shanghai) Co.,Ltd.

FCC WCDMA TEST REPORT

PRODUCT 4G Smart Phone

BRAND MobiWire, MobiWire, Vodafone, Orange

MODEL H5028,Smart Green,Vodafone Lite,Orange Neva sparkle

APPLICANT MobiWire SAS

FCC ID QPN-H5028

ISSUE DATE November 11, 2022

STANDARD(S) FCC Part 2, FCC Part 22, FCC Part 24

Prepared by: Wu Rui Reviewed by: Yang Fan Approved by: Zhang Min

Signature Signature Signature

差稿 杨帆 深层

CAUTION:

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

CONTENTS

1. St	UNIMARY OF TEST REPORT	3
1.1	Test Standard (s)	3
1.2	REFERENCE DOCUMENTS	3
1.3	SUMMARY OF TEST RESULTS	3
1.4	DATA PROVIDED BY APPLICANT	4
2. GI	ENERAL INFORMATION OF THE LABORATORY	5
2.1	Testing Laboratory	5
2.2	LABORATORY ENVIRONMENTAL REQUIREMENTS	5
2.3	PROJECT INFORMATION	5
3. GI	ENERAL INFORMATION OF THE CUSTOMER	6
3.1	Applicant	6
3.2	Manufacturer	6
4. GI	ENERAL INFORMATION OF THE PRODUCT	7
4.1	PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	7
4.2	DESCRIPTION FOR AUXILIARY EQUIPMENT (AE)	7
4.3	Additional Information	7
5. TE	EST CONFIGURATION INFORMATION	8
5.1	LABORATORY ENVIRONMENTAL CONDITIONS	8
5.2	TEST EQUIPMENTS UTILIZED	8
5.3	MEASUREMENT UNCERTAINTY	9
6. TE	EST RESULTS	10
6.1	Output Power	10
6.2	PEAK-TO-AVERAGE POWER RATIO	11
6.3	99% Occupied Bandwidth	12
6.4	-26dB Emission Bandwidth	17
6.5	BAND EDGE AT ANTENNA TERMINALS	22
6.6	Frequency Stability	25
6.7	CONDUCTED SPURIOUS EMISSION	28
6.8	RADIATED	32
ANNEX	(A: REVISED HISTORY	38
ΔΝΝΕΥ	R. ACCREDITATION CERTIFICATE	30

1. Summary of Test Report

1.1 Test Standard (s)

No.	Test Standard(Include the version of standard)	Title	Version
1	FCC Part 2	FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS	2020-10-01
2	FCC Part 22	PUBLIC MOBILE SERVICES	2020-10-01
3	FCC Part 24	PERSONAL COMMUNICATIONS SERVICES	2020-10-01

1.2 Reference Documents

No.	Test Standard(Include the version of standard)	Title	Version
1	ANSI/TIA-603-E	Land Mobile FM or PM Communications Equipment Measurement and Performance Standards	2016
2	ANSI C63.26	American National Standard of Procedures for Compliance Testing of Licensed Transmitters Used in Licensed Radio	2015
3	KDB 971168 D01	Measurement Guidance for Certification of Licensed Digital Transmitters	v03r01

1.3 Summary of Test Results

Measurement Items	Sub-clause	Verdict
Output Power	2.1046/22.913(a)/24.232(c)	Pass
Peak-to-Average Ratio	24.232(d)	Pass
99%Occupied Bandwidth	2.1049(h)(i)/ 22.917(b)	Pass
-26dB Emission Bandwidth	22.917(b)/24.238(b)	Pass
Band Edge at antenna terminals	22.917(a)/24.238(a)	Pass
Frequency stability	2.1055/24.235	Pass
Conducted Spurious mission	2.1053/22.917(a)/24.238(a)	Pass
Emission Limit	2.1051/22.917/24.238/22.913/24.232	Pass

Note

The H5028,Smart Green,Vodafone Lite,Orange Neva sparkle, manufactured by MobiWire SAS is a new product for testing.

Industrial Internet Innovation Center (Shanghai) Co., Ltd. only performed test cases which identified with

Pass/Fail/Inc result in section 1.3.

Industrial Internet Innovation Center (Shanghai) Co., Ltd. has verified that the compliance of the tested device specified in section 5.3 of this test report is successfully evaluated according to the procedure and test methods as defined in type certification requirement listed in section 6 of this test report.

1.4 Data Provided by Applicant

No.	Item(s)	Data
1	WCDMA Band 2	-1dBi
2	WCDMA Band 5	-2.5dBi

2. General Information of The Laboratory

2.1 Testing Laboratory

in resting Laboratory	
Lab Name	Industrial Internet Innovation Center (Shanghai) Co.,Ltd.
Address	Building 4, No. 766, Jingang Road, Pudong, Shanghai, China
Telephone	021-68866880
FCC Registration No.	958356
FCC Designation No.	CN1177

2.2 Laboratory Environmental Requirements

Temperature	15℃~35℃
Relative Humidity	25%RH~75%RH
Atmospheric Pressure	101kPa

2.3 Project Information

Project Manager	Xu Yuting
Test Date	September 20, 2022 to October 20, 2022

3. General Information of The Customer

3.1 Applicant

Company	MobiWire SAS
Address	107 Boulevard de la Mission Marchand, 92400 Courbevoie, France.
Telephone	+33625028368

3.2 Manufacturer

Company	MobiWire SAS
Address	107 Boulevard de la Mission Marchand, 92400 Courbevoie, France.

4. General Information of The Product

4.1 Product Description for Equipment under Test (EUT)

Product	4G Smart Phone	
Model	H5028,Smart Green,Vodafone Lite,Orange Neva sparkle	
Date of Receipt	S02aa :September 22, 2022	
Date of Neceipt	S06aa: September 22, 2022	
EUT ID*	S02aa/S06aa	
YA AN A	S02aa: 352243540001872	
SN/IMEI	352243540001880	
SIN/TIVIET	S06aa: 352243540002615	
10° 10'	352243540002623	
	GSM850/GSM900/DCS1800/PCS1900	
	WCDMA Band I/II/V/VIII	
	LTE Band 1/3/7/20/28	
	BT 5.0 BLE/BR/EDR	
Supported Radio	WLAN 802.11b/g/n	
Technology and Bands	WLAN 802.11a/n	
	GPS	
	GLONASS	
	Gallileo	
XXX XXXX	FM	
Hardware Version	V01A	
Software Version	Mobiwire_H5028_V01	
FCC ID	QPN-H5028	

4.2 Description for Auxiliary Equipment (AE)

AE ID*	Description	Model	SN/Remark
AE1	RF Cable	N/A	N/A

4.3 Additional Information

(O) (V)	
Type of modulation	QPSK/16QAM

5. Test Configuration Information

5.1 Laboratory Environmental Conditions

5.1.1 Permanent Facilities

Relative Humidity	Min. = 45%, Max. = 55 %				
Atmospheric Pressure	ressure 101kPa				
	Normal	Minimum	Maximum		
Temperature	25℃	-10°C	55℃		
Working Voltage of	Normal	Minimum	Maximum		
EUT	3.8V	3.6V	4.2V		

5.2 Test Equipments Utilized

Radiated emission test system

No.	Name	Model	S/N	Manufacturer	Cal. Date	Cal. Interval
1	Universal Radio Communication Tester	CMU200	123123	R&S	May 10,2021	1.5 Years
2	Universal Radio Communication Tester	CMW500	104178	R&S	May 10, 2021	1.5 Years
3	EMI Test Receiver	ESU40	100307	R&S	February 23, 2022	1 Year
4	TRILOG Broadband Antenna	VULB9163	VULB9163- 515	Schwarzbeck	March 11, 2022	1 Year
5	Double- ridged Waveguide Antenna	ETS-3117	00135890	ETS	March 9, 2022	2 Years
6	2-Line V-Network	ENV216	101380	R&S	February 21, 2022	1 Year
7	EMI Test Software	EMC32 V9.15.00	N/A	R&S	N/A	N/A

Anechoic chamber

Fully anechoic chamber by ETS.

Conducted Test System

No.	Name	Model	S/N	Manufacturer	Cal. Date	Cal. Interval
1	Universal Radio Communication Tester	CMW500	148874	R&S	August. 23,2022	1 Year
2	Vector Signal Analyzer	FSQ26	101091	R&S	August. 23,2022	1 Year

3	Programmable power supply	Keithley 2303	4039070	Keithley	July 12,2022	1 Year
4	Eagle Test Software	Eagle V3.3	N/A	ECIT	N/A	N/A
5	Temperature Chamber	B-TF-107C	BTF107C- 201804107	BoYi	June 30,2022	1Year

5.3 Measurement Uncertainty

Measurement uncertainty for all the testing in this report are within the limit specified in 3IN documents. The detailed measurement uncertainty is defined in 3IN documents.

Measurement Items	Range	Confidence Level	Calculated Uncertainty	
Maximum Peak Output Power	30MHz-3600MHz	95%	±0.544dB	
EBW and VBW	30MHz-3600MHz	95%	±62.04Hz	
Transmitter Spurious Emission- Conducted	30MHz-2GHz	95%	±0.90dB	
Transmitter Spurious Emission- Conducted	2GHz-3.6GHz	95%	±0.88dB	
Transmitter Spurious Emission- Conducted	3.6GHz-8GHz	95%	±0.96dB	
Transmitter Spurious Emission- Conducted	8GHz-20GHz	95%	±0.94dB	
Transmitter Spurious Emission- Radiated	9KHz-30MHz	95%	±5.66dB	
Transmitter Spurious Emission- Radiated	30MHz-1000MHz	95%	±4.98dB	
Transmitter Spurious Emission- Radiated	1000MHz -18000MHz	95%	±5.06dB	
Transmitter Spurious Emission- Radiated	18000MHz -40000MHz	95%	±5.20dB	
Frequency stability	1MHz-16GHz	95%	±62.04Hz	

6. Test Results

6.1 Output Power

6.1.1 Summary

During the process of testing, the EUT was controlled Rhode & Schwarz Digital Radio.

Communication tester to ensure max power transmission and proper modulation.

This result contains peak output power and EIRP measurements for the EUT. In all cases, output power is within the specified limits.

6.1.2 Conducted

6.1.2.1Method of Measurements

Method of measurements please refer to KDB971168 D01 v03 clause 5.

The EUT was set up for the max output power with pseudo random data modulation.

The power was measured with Rhode & Schwarz Spectrum Analyzer FSQ(peak).

These measurements were done at 3 frequencies, 1852.4 MHz, 1880.0MHz and 1907.6MHz for WCDMA Band II; 1732.6 MHz, 1712.4MHz and 1752.6MHz for WCDMA Band IV; 826.4MHz, 836.6MHz and 846.6MHz for WCDMA Band V. (bottom, middle and top of operational frequency range).

6.1.2.2 Test procedures

The transmitter output port was connected to base station.

Set the EUT at maximum power through base station.

Select lowest, middle, and highest channels for each band and different modulation.

Measure maximum average power for other modulation signal.

6.1.2.3 Limit

22.913(a) Mobile stations are limited to 7 wead off the power in dBm. The power outputs at the transmitter antenna port was determined by adding the value of attenuator to the signal analyzer reading.

6.1.2.5 WCDMA Test Condition

RBW	VBW	Sweep time	Span
10MHz	30MHz	Auto	50MHz

6.1.2.6 Measurement results

WCDMA BAND 2				
Channel Peak power (dBm)				
Low 9262/1852.6	22.61			
Mid 9400 /1880	22.68			
High 9538/1907.4	22.51			

WCDMA BAND 5				
Channel	Peak power (dBm)			

4132/826.6	22.93
4183/835	22.92
4233/846.4	22.87

6.2 Peak-to-Average Power Ratio

Method of test measurements please refer to KDB971168 D01 v03 clause 5.7.

6.2.1 PAPR Limit

The peak-to-average power ratio (PAPR) of the transmission may not exceed 13dB

6.2.2 Test procedures

The EUT was connected to the spectrum analyzer and system simulator via a power divider.

Select the spectrum analyzer CCDF function.

Set RBW ≥ signal's occupied bandwidth.

Set the number of counts to a value that stabilizes the measured CCDF cure;

Sweep time $\geq 1s$.

Record the maximum PAPR level associated with a probability of 0.1%.

6.2.3 Test results:

WCDMA Band 2					
Channel	9262	9400	9538		
Frequency (MHz)	1852.6	1880	1907.4		
PAPR(dB)	2.69	2.92	2.76		

WCDMA Band 5				
Channel	4132	4183	4233	
Frequency (MHz)	826.4	836.4	846.6	
PAPR(dB)	3.01	2.98	3.08	

6.3 99% Occupied Bandwidth

Method of test please refer to KDB971168 D01 v03 clause 4.0.

6.3.1. Occupied Bandwidth

Similar to conducted emissions; occupied bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies of WCDMA BAND II and WCDMA BAND V.

6.3.2 Test Procedure

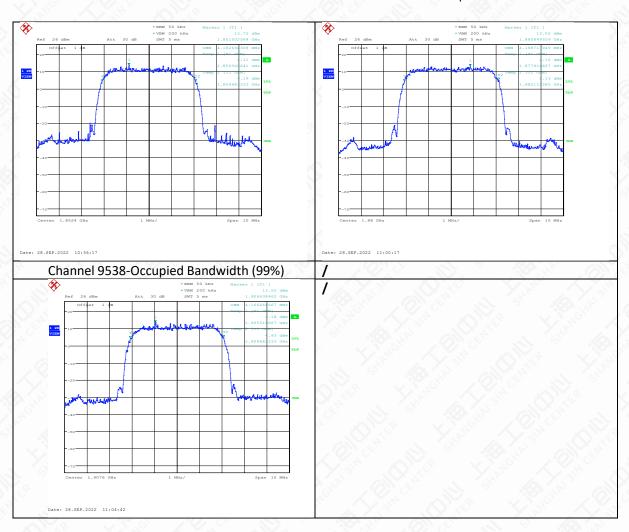
The EUT output RF connector was connected with a short cable to the signal analyzer.

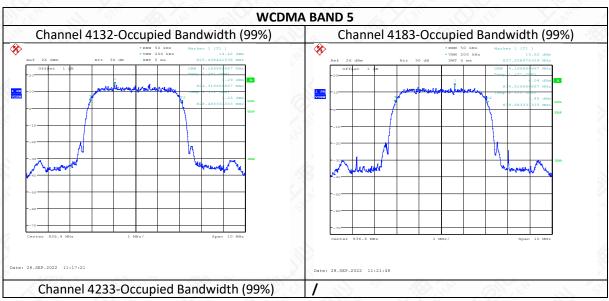
RBW was set to about 1% of emission BW, VBW >= 3 times RBW,.

99% bandwidth were measured, the occupied bandwidth is delta frequency between the two points where the display line intersects the signal trace.

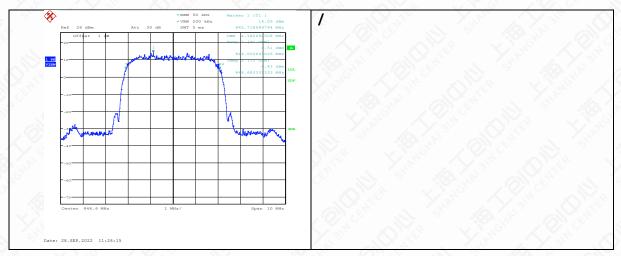
6.3.3 Test result

QPSK

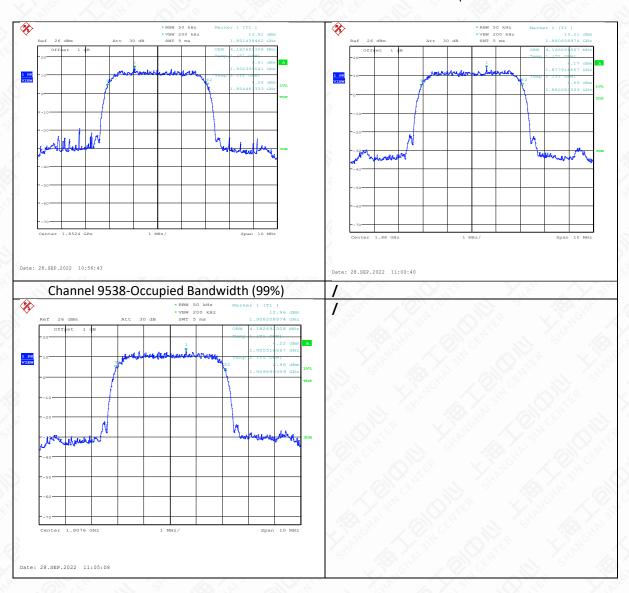

WCDMA BAND 2		
Test channel	Frequency (MHz)	99% Occupied Bandwidth(MHz)
Low 9262	1852.6	4.183
Mid 9400	1880	4.183
High 9538	1907.4	4.183

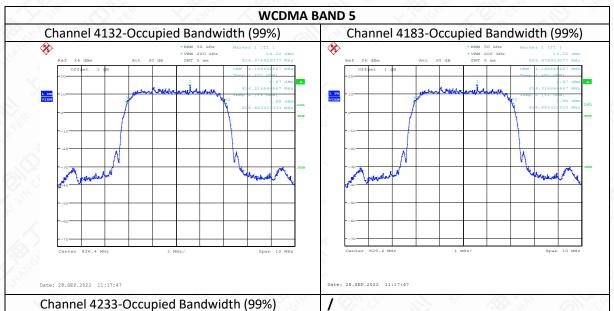

WCDMA BAND 5		
Test channel	Frequency (MHz)	99% Occupied Bandwidth(MHz)
Low 4132	826.4	4.167
Mid 4183	836.6	4.167
High 4233	846.6	4.183

Conclusion: PASS

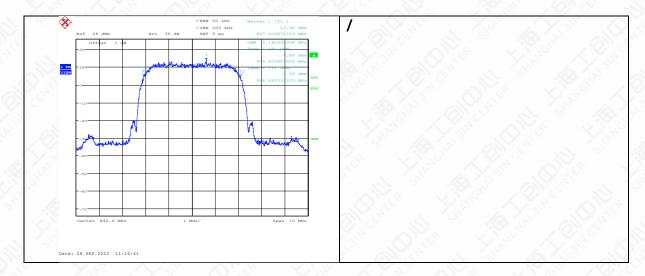

WCDMA BAND 2		
Channel 9262-Occupied Bandwidth (99%) Channel 9400-Occupied Bandwidth (99%)		

16QAM


WCDMA BAND 2		
Test channel	Frequency (MHz)	99% Occupied Bandwidth(MHz)
Low 9262	1852.6	4.167
Mid 9400	1880	4.183
High 9538	1907.4	4.183


WCDMA BAND 5		
Test channel	Frequency (MHz)	99% Occupied Bandwidth(MHz)
Low 4132	826.4	4.167
Mid 4183	836.6	4.167
High 4233	846.6	4.183

Conclusion: PASS


WCDMA BAND 2		
Channel 9262-Occupied Bandwidth (99%) Channel 9400-Occupied Bandwidth (99%)		

6.4 -26dB Emission Bandwidth

Method of test please refer to KDB971168 D01 v03 clause 4.0.

6.4.1. -26dB Emission Bandwidth

Similar to conducted emissions; occupied bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies of WCDMA BANDII, WCDMA BANDV.

6.4.2 Test Procedure:

The EUT output RF connector was connected with a short cable to the signal analyzer.

RBW was set to about 1% of emission BW, VBW >= 3 times RBW,.

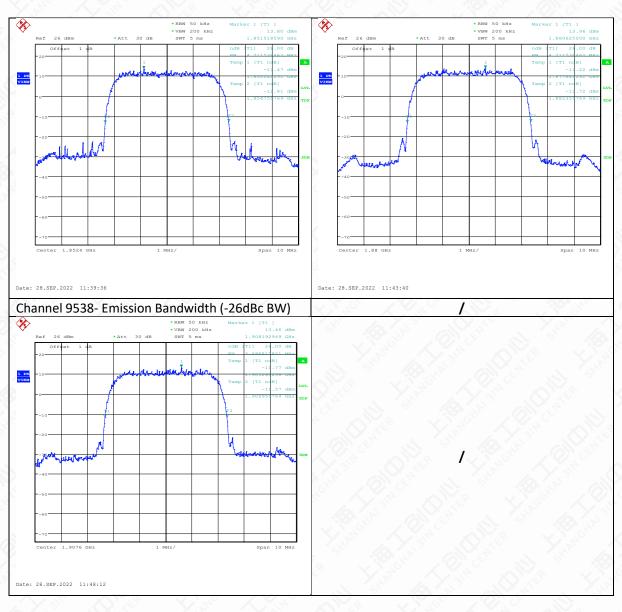
26dB bandwidth were measured, the occupied bandwidth is delta frequency between the two points where the display line intersects the signal trace.

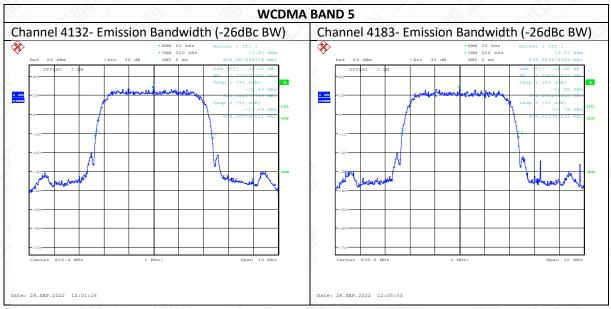
6.4.3 Measurement methods:

For WCDMA: signal analyzer setting as: RBW=50KHz; VBW=200KHz; Span=10MHz.

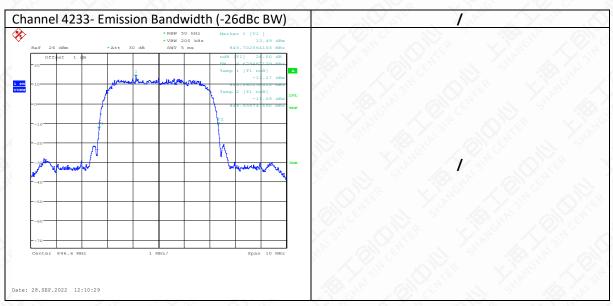
6.4.4 Test results:

QPSK

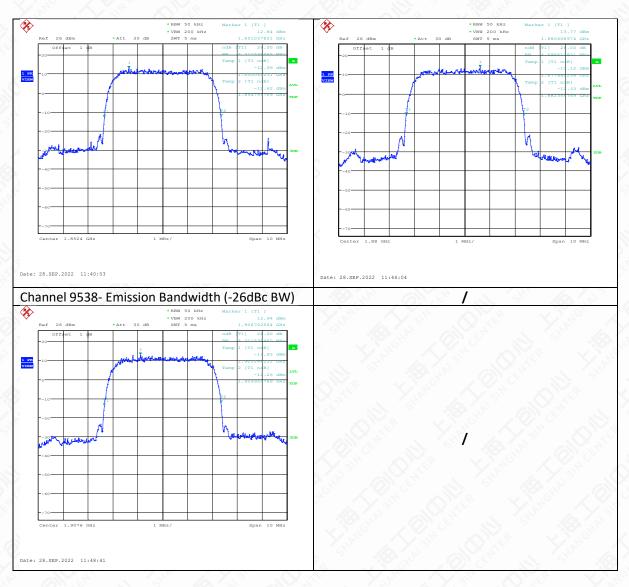

WCDMA BAND 2		
Test channel	Frequency (MHz)	-26dBc Emission Bandwidth(MHz)
Low 9262	1852.6	4.712
Mid 9400	1880	4.696
High 9538	1907.4	4.712

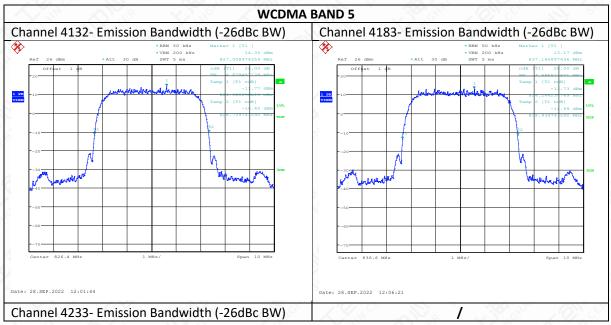

WCDMA BAND 5		
Test channel	Frequency (MHz)	-26dBc Emission Bandwidth(MHz
Low 4132	826.4	4.696
Mid 4183	836.6	4.679
High 4233	846.6	4.679

Conclusion: PASS


WCDMA BAND 2		
Channel 9262- Emission Bandwidth (-26dBc BW) Channel 9400- Emission Bandwidth (-26dBc BW)		

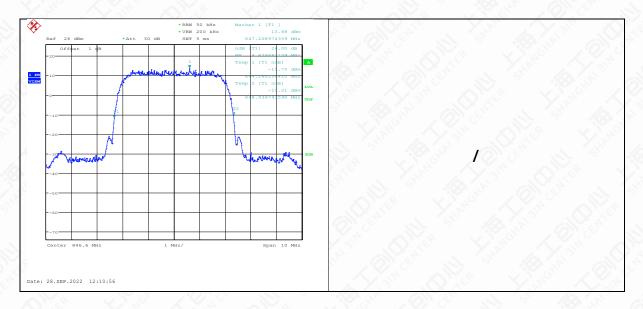
16QAM


WCDMA BAND 2		
Test channel	Frequency (MHz)	–26dBc Emission Bandwidth(MHz)
Low 9262	1852.6	4.679
Mid 9400	1880	4.696
High 9538	1907.4	4.696


WCDMA BAND 5		
Test channel	Frequency (MHz)	-26dBc Emission Bandwidth(MHz)
Low 4132	826.4	4.679
Mid 4183	836.6	4.697
High 4233	846.6	4.679

Conclusion: PASS

WCDMA BAND 2		
Channel 9262- Emission Bandwidth (-26dBc BW) Channel 9400- Emission Bandwidth (-26dBc BW)		



6.5 Band Edge at antenna terminals

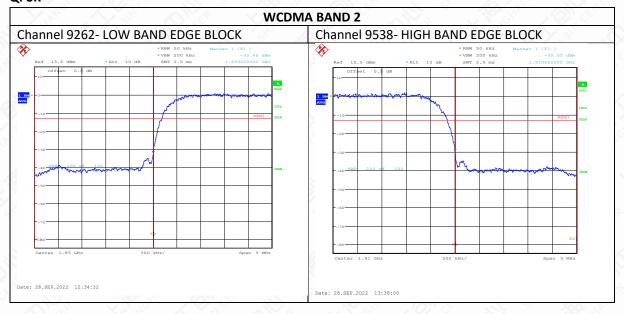
Method of test measurements please refer to KDB971168 D01 v03 clause 6

6.5.1 Limit:

The magnitude of each spurious and harmonic emission that can be detected when the equipment is operated under the conditions specification in the instruction manual and/or alignment procedure, shall not be less than 43+10log (Mean power in watts) dBc below the mean power output outside a license's frequency block(-13dBm).

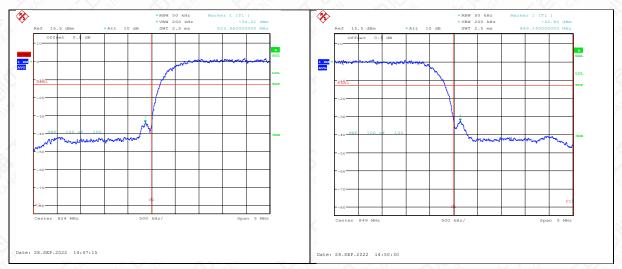
6.5.2 Test procedure:

The RF output of the transceiver was connected to a signal analyzer through appropriate attenuation.

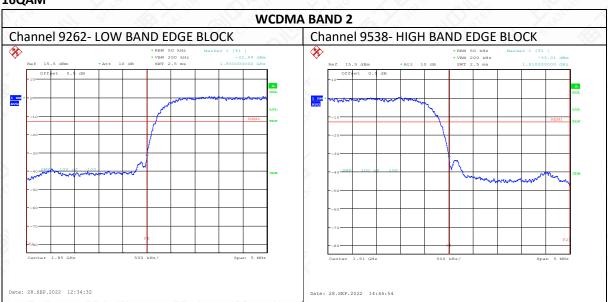

In the 1MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed.

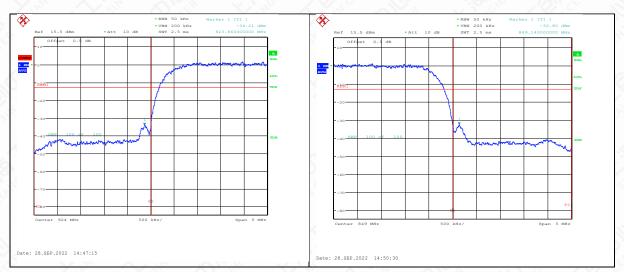
The RF fundamental frequency should be excluded against the limit line in the operating frequency band The limit line is derived from 43+10log(P) Db below the transmitter power P(Watts)

- =P(W)-[43+10log(P)](Db)
- =[30+10log(P)](dBm)-[43+10log(P)](Db)
- =-13dBm


6.5.3 Test Result:

QPSK


wo	CDMA BAND 5
Channel 4132- LOW BAND EDGE BLOCK	Channel 4233- HIGH BAND EDGE BLOCK


Conclusion: PASS

16QAM

WC WC	CDMA BAND 5
Channel 4132- LOW BAND EDGE BLOCK	Channel 4233- HIGH BAND EDGE BLOCK

Conclusion: PASS

6.6 Frequency Stability

Method of test measurements please refer to KDB971168 D01 v03 clause 9

6.6.1 Method of Measurement and test procedures

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the EUT in a "call mode". This is accomplished with the use of R&S CMU200 DIGITAL RADIO COMMUNICATION TESTER.

- 1. Measure the carrier frequency at room temperature.
- 2. Subject the EUT to overnight soak at -10 $^{\circ}$ C.
- 3. With the EUT, powered via nominal voltage, connected to the CMU200 and in a simulated call on mid channel of GSM850, PCS1900, WCDMA BANDII, WCDMA BANDIV and WCDMA BANDV, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.
- 4. Repeat the above measurements at -10 $^{\circ}$ C increments from -10 $^{\circ}$ C to +50 $^{\circ}$ C. Allow at least 1 1/2 hours at each temperature, unpowered, before making measurements.
- 5. Re-measure carrier frequency at room temperature with nominal voltage. Vary supply voltage from minimum voltage to maximum voltage, in 0.1Volt increments re-measuring carrier frequency at each voltage. Pause at nominal voltage for 1 1/2 hours unpowered, to allow any self-heating to stabilize, before continuing.
- 6. Subject the EUT to overnight soak at +50°C.
- 7. With the EUT, powered via nominal voltage, connected to the CMU200 and in a simulated call on the centre channel, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.
- 8. Repeat the above measurements at 10 C increments from +50 $^{\circ}$ C to -10 $^{\circ}$ C. Allow at least 1.5 hours at each temperature, unpowered, before making measurements.
- 9. At all temperature levels hold the temperature to $+/-0.5^{\circ}$ C during the measurement procedure.

6.6.2. Measurement Limit

6.6.2.1. For Hand carried battery powered equipment

According to the JTC standard the GSM frequency stability of the carrier shall be accurate to within 0.1ppm of the received frequency from the base station. And the WCDMA is 2.5ppm. This accuracy is sufficient to meet Sec.24.235, Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. As this transceiver is considered "Hand carried, battery powered equipment" Section 2.1055(d)(2) applies. This requires that the lower voltage for frequency stability testing be specified by the manufacturer. This transceiver is specified to operate with an input voltage of between 3.6VDC and 4.35VDC, with a nominal voltage of 3.8VDC. Operation above or below these voltage limits is prohibited by transceiver software in order to prevent improper operation as well as to protect components from overstress. These voltages was varied from 85% to 115%.

6.6.2.2. For equipment powered by primary supply voltage

According to the JTC standard the GSM frequency stability of the carrier shall be accurate to within 0.1ppm of the received frequency from the base station. And the WCDMA is 2.5ppm. This accuracy is sufficient to meet Sec.24.235, Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. For this EUT section 2.1055(d)(1)

applies. This requires varying primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment.

6.6.3 Test results

QPSK

WCDMA band 2 Frequency Error vs Temperature

Temperature(°C)	Voltage(V)	FL(MHz)	FH(MHz)	Offsot/Uz)	Fraguency arrar/nam)
20	XIII	A 7 3	(Q), (d)	Offset(Hz)	Frequency error(ppm)
50		Sold Street		2.01	0.0021
40		1850.140	1909.860	-1.45	0.0015
30	3.8			2.36	0.0025
10				0.21	0.0002
0	(1) (1)			4.58	0.0049
-10				1.02	0.0011
-20				5.18	0.0055
-30				1.98	0.0021

Frequency Error vs Voltage

Voltage(V)	Temperature(°C)	FL(MHz)	FH(MHz)	Offset(Hz)	Frequency error(ppm)
3.6	35	1000 140	1000 900	0.42	0.0004
4.2	25	1850.140	1909.860	0.35	0.0004

WCDMA band 5 Frequency Error vs Temperature

Temperature(°C)	Voltage(V)	FL(MHz)	FH(MHz)	Officet(II=)	
20			: 10	Offset(Hz)	Frequency error(ppm)
50	X 3, 10	70		-5.25	0.0126
40		824.150	150 848.840	-2.47	0.0059
30	3.8			-3.75	0.0090
10				-8.04	0.0192
0				-5.62	0.0134
-10	Y K			-3.10	0.0074
-20				-8.98	0.0215
-30	11 2			-6.65	0.0159

Frequency Error vs Voltage

Voltage(V)	Temperature(°C)	FL(MHz)	FH(MHz)	Offset(Hz)	Frequency error(ppm)
3.6	(C) (C)	924 150	040.040	-4.40	0.0105
4.2	25	824.150	848.840	-2.20	0.0052

Conclusion: PASS

16QAM

WCDMA band 2 Frequency Error vs Temperature

Temperature(°C)	Voltage(V)	FL(MHz)	FH(MHz)	Offset(Hz)	Eroquonov orror(nnm)
20		100		Oliset(HZ)	Frequency error(ppm)
50	2.07	1050 140	1000 000	-0.30	0.0003
40	3.87	1850.140	1909.860	1.01	0.0011
30		, July	1/3	-1.37	0.0015

10	211 ET	43 8	-1.48	0.0016
0	V SILVE TIES	3 20 / 6	-2.82	0.0030
-10		3 10 1	-3.84	0.0041
-20		1,100	-3.87	0.0041
-30		J. J. H.	2.12	0.0023

Frequency Error vs Voltage

Voltage(V)	Temperature(°C)	FL(MHz)	FH(MHz)	Offset(Hz)	Frequency error(ppm)
3.45	20	1050 140	1000 000	3.28	0.0035
4.45	20	1850.140	1909.860	2.71	0.0029

WCDMA band 5 Frequency Error vs Temperature

Temperature(°C)	Voltage(V)	FL(MHz)	FH(MHz)	Offsot(11=)	
20		A Y	. Fo. (Offset(Hz)	Frequency error(ppm)
50		824.150	160	-2.65	0.0063
40			848.840	0.24	0.0006
30	100			1.86	0.0044
10	3.8			-5.99	0.0143
0	5			-4.11	0.0098
-10				-2.66	0.0064
-20				-0.11	0.0003
-30				0.47	0.0011

Frequency Error vs Voltage

Voltage(V)	Temperature(°C)	FL(MHz)	FH(MHz)	Offset(Hz)	Frequency error(ppm)		
3.6	.6 25 824 150 848 840	024.150	024.450	25 924.150 94	040.040	-6.14	0.0147
4.2	25	824.150	848.840	-3.91	0.0093		

Conclusion: PASS

6.7 Conducted Spurious Emission

6.7.1 WCDMA Measurement Method and test procedures

The following steps outline the procedure used to measure the conducted emissions from the EUT.

- 1. Determine frequency range for measurements: From CFR 2.1057 the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency. For the equipment of WCDMA Band II and WCDMA BANDIV, these equate to a frequency range of 30 MHz to 19.1 GHz, data taken from 30 MHz to 20 GHz. For WCDMA Band V, data taken from 30 MHz to 10GHz.
- 2. The sweep time is set automatically by instrument itself. That should be the optimal sweep time for the span and the RBW. If the sweep time is too short, that is sweep is too fast, the sweep result is not accurate; If the sweep time is too long, that is sweep is too low, some frequency components may be lost. The instrument will give a optimal sweep time according the selected span and RBW.
- The procedure to get the conducted spurious emission is as follows:
 The trace mode is set to MaxHold to get the highest signal at each frequency;
 Wait 25 seconds;

Get the result.

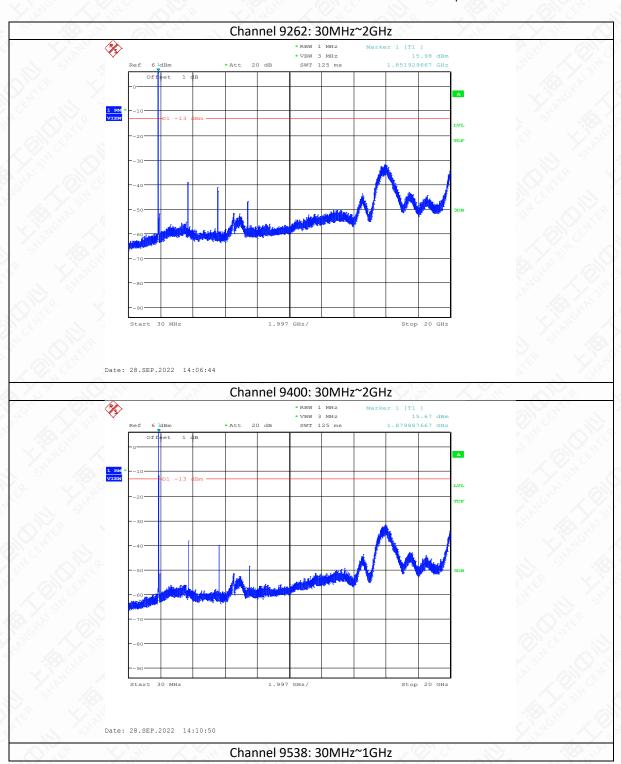
4. Determine EUT transmit frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing.

WCDMA Band II Transmitter

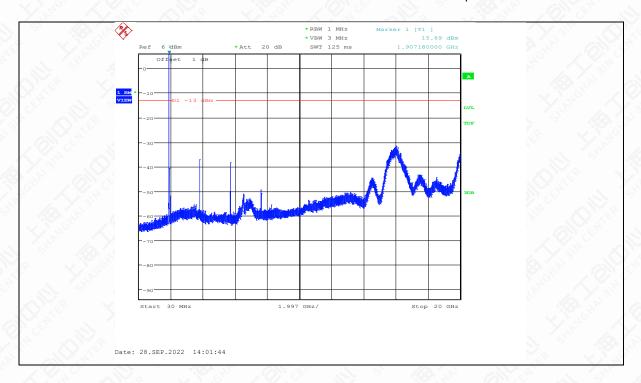
Channel	Frequency (MHz)		
9262	1852.60		
9400	1880.00		
9538	1907.40		

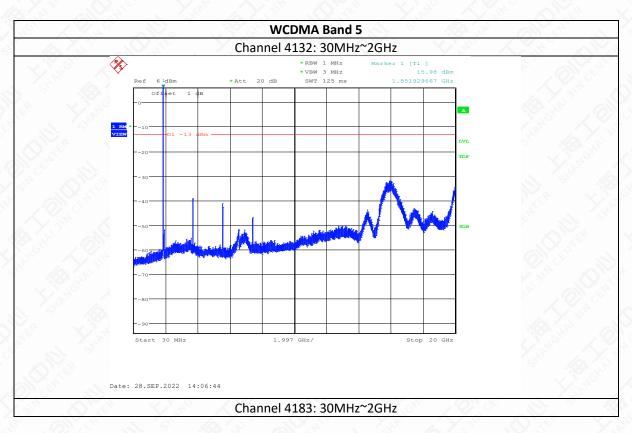
WCDMA Band V Transmitter

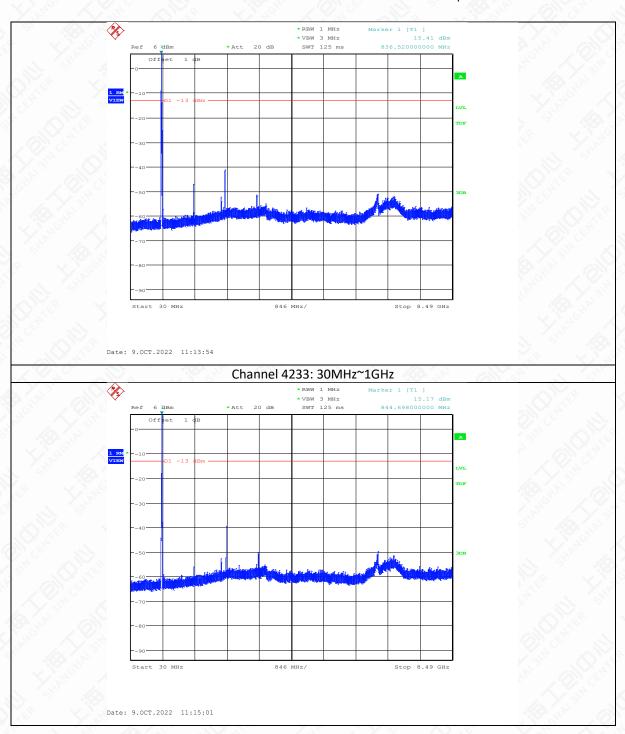
Channel	Frequency (MHz)
4133	826.60
4175	835.00
4232	846.40


6.7.1.1. Measurement result

Spurious emission limit -13dBm.


Note: peak above the limit line is the carrier frequency.


WCDMA Band 2	
WCDIVIA Band 2	

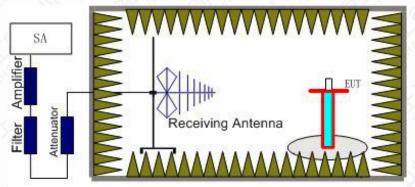


6.8 Radiated

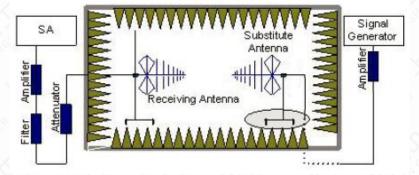
6.8.1 EIRP

6.8.1.1 WCDMA EIRP

6.8.1.1.1. Description


This is the test for the maximum radiated power from the EUT.

Rule Part 24.232(c) specifies, "Mobile/portable stations are limited to 2 watts e.i.r.p. Peak power" and 24.232(c) specifies that "Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage. "Rule Part 22.913(a) specifies" The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts."


6.8.1.1.2. Method of Measurement

The measurements procedures in TIA-603E-2016 are used.

1. EUT was placed on a 1.5 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.5m. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector.

- 2. The EUT is then put into continuously transmitting mode at its maximum power level during the test. And the maximum value of the receiver should be recorded as (Pr).
- 3. The EUT shall be replaced by a substitution antenna. The test setup refers to figure below.

In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (PMea) is applied to the input of the

substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (Pr). The power of signal source (PMea) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.

4. A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna.

The cable loss (Pcl) ,the Substitution Antenna Gain (Ga) and the Amplifier Gain (PAg) should be recorded after test.

The measurement results are obtained as described below:

Power (EIRP)=PMea+ PAg -Pcl+ Ga

- 5. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
- 6. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.15dBi.

6.8.1.1.3. Method of Measurement

Rule RSS-132 5.5 specifies that "In the first 1.0 MHz band immediately outside and adjacent to each of the sub-bands specified in Section 5.1, the power of emissions per any 1% of the occupied bandwidth shall be attenuated (in dB) below the transmitter output power P (dBW) by at least 43 + 10 log10 p (watts).

(ii) After the first 1.0 MHz immediately outside and adjacent to each of the sub-bands, the power of emissions in any 100 kHz bandwidth shall be attenuated (in dB) below the transmitter output power P (dBW) by at least 43 + 10 log10 p (watts). If the measurement is performed using 1% of the occupied bandwidth, power integration over 100 kHz is required."

Limit -13 dBm

6.8.1.1.4. Measurement result

WCDMA Band 2

Frequency (MHz)	Peak EIRP (dBm)	Peak ERP (dBm)	Polarization	
1852.4	21.61	19.46	V	
1880.0	21.68	19.53	H	
1907.6	21.51	19.36	V	

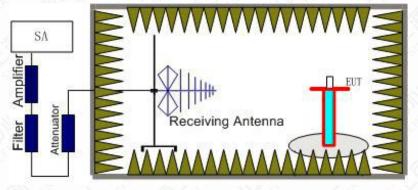
WCDMA Band 5

Frequency(MHz)	Peak EIRP (dBm)	Peak ERP (dBm)	Polarization
826.4	20.43	18.28	Н
836.6	20.44	18.29	H
846.6	20.37	18.22	Н

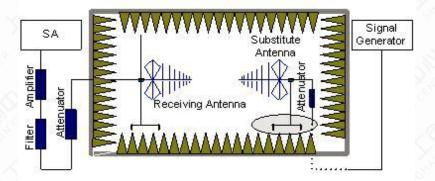
6.8.2 EMISSION LIMIT

6.8.2.1 WCDMA Measurement Method

The measurements procedures in TIA-603E-2016 are used.



The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment. The resolution bandwidth is set as outlined in Part 24.238 and Part 24.917.


The spectrum is scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of WCDMA Band V.

6.8.2.2 The procedure of radiated spurious emissions is as follows

1. EUT was placed on a 1.5 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.5m. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all non-harmonic and harmonics of the transmit frequency through the 10thharmonic were measured with peak detector.

- 2. The EUT is then put into continuously transmitting mode at its maximum power level during the test. And the maximum value of the receiver should be recorded as (Pr).
- 3. The EUT shall be replaced by a substitution antenna. The test setup refers to figure below.

In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (PMea) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (Pr). The power of signal source (PMea) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.

4. The Path loss (Ppl) between the Signal Source with the Substitution Antenna and the Substitution Antenna Gain (Ga) should be recorded after test.

A amplifier should be connected in for the test.

The Path loss (Ppl) is the summation of the cable loss.

The measurement results are obtained as described below:

Power(EIRP)=PMea- Ppl+ Ga

- 5. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
- 6. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.15dBi

6.8.2.3 Measurement Limit

Part 24.238 and Part 22.917 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

6.8.2.4 Measurement Results

Radiated emissions measurements were made only at the upper, middle, and lower carrier frequencies of the WCDMA Band V (826.4MHz, 836.6MHz and 846.6MHz). It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the WCDMA Band V into any of the other blocks. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this.

6.8.2.5 Measurement Results Table

Frequency	Channel Frequency Range		Result
College of	Low	30MHz~20GHz	Pass
WCDMA Band II	Middle	30MHz~20GHz	Pass
	High	30MHz~20GHz	Pass
	Low	30MHz~20GHz	Pass
WCDMA Band V	Middle	30MHz~20GHz	Pass
	High	30MHz~20GHz	Pass

RSE-W2-S06aa-H

	0					
Frequency (MHz)	PMea (dBm)	Pcl (dBm)	Ga (dBd)	Peak ERP (dBm)	Limit (dBm)	Polarization
3814.0	-48.2	6.7	7.9	-47	-13	Н
5725.6	-55.35	8.5	10.2	-53.65	-13	Н
7630.4	-52.55	9.7	11.8	-50.45	-13	V

9868.0	-58.1	11.0	12.5	-56.6	-13	V
12750.0	-56.99	12.7	12.3	-57.39	-13	Н
16762.0	-48.82	15.8	12.3	-52.32	-13	Н

RSE-W2-S06aa-L

Frequency (MHz)	PMea (dBm)	Pcl (dBm)	Ga (dBd)	Peak ERP (dBm)	Limit (dBm)	Polarization
3707.2	-60.17	6.6	7.9	-58.87	-13	Н
5556.4	-58.84	8.2	9.8	-57.24	-13	Н
7409.6	-56.85	9.7	11.6	-54.95	-13	V O
9849.2	-58.7	11.0	12.5	-57.2	-13	Н
12751.0	-56.7	12.5	12.3	-56.9	-13	V
16301.1	-51.02	14.7	12.3	-53.42	-13	Н

RSE-W2-S06aa-M

Frequency (MHz)	PMea (dBm)	Pcl (dBm)	Ga (dBd)	Peak ERP (dBm)	Limit (dBm)	Polarization
3761.6	-51.68	6.6	7.9	-50.38	-13	н
5643.6	-56.34	8.3	10.2	-54.44	-13	н
7520.0	-53.71	9.7	11.6	-51.81	-13	V
9696.0	-59.67	10.9	12.7	-57.87	-13	Н
11934.8	-55.13	12.5	12.3	-55.33	-13	Н
15896.8	-51.11	15.0	12.3	-53.81	-13	н

RSE-W5-S06aa-H

Frequency (MHz)	PMea (dBm)	Pcl (dBm)	Ga (dBd)	Peak ERP (dBm)	Limit (dBm)	Polarization
3640.4	-62.49	6.6	7.9	-61.19	-13	Н
4337.6	-62.32	7.2	8.9	-60.62	-13	Н
5235.6	-59.2	8.0	9.4	-57.8	-13	Н
6257.6	-59.66	8.8	10.3	-58.16	-13	Н
7420.6	-60.76	9.7	11.6	-58.86	-13	V
9248.8	-61.29	10.5	12.6	-59.19	-13	V

RSE-W5-S06aa-L

Frequency (MHz)	PMea (dBm)	Pcl (dBm)	Ga (dBd)	Peak ERP (dBm)	Limit (dBm)	Polarization
3640.4	-62.47	6.6	7.9	-61.17	-13	H
4220.4	-62.52	7.0	8.9	-60.62	-13	Y H
4892.0	-61.71	7.7	9.6	-59.81	-13	Н
5657.2	-61.74	8.3	10.2	-59.84	-13	Н
6443.2	-59.42	8.9	10.6	-57.72	-13	V
7642.0	-61.1	9.7	11.8	-59	-13	V

RSE-W5-S06aa-M

Frequency (MHz)	PMea (dBm)	Pcl (dBm)	Ga (dBd)	Peak ERP (dBm)	Limit (dBm)	Polarization
2410.4	-51.77	5.3	5.6	-51.47	-13	Н
3651.6	-61.81	6.6	7.9	-60.51	-13	Н
4284.0	-60.7	7.1	8.9	-58.9	-13	V
5180.8	-59.09	8.0	9.4	-57.69	-13	Н
6310.0	-59.21	8.8	10.3	-57.71	-13	V
7478.8	-59.59	9.7	11.6	-57.69	-13	\$ V 6

Note: the EUT was displayed in several different direction, the worst cases were shown.

Annex A: Revised History

Version	Revised Content
V00	Initial
V01	Add the test lab's registered MRA test site number

Annex B: Accreditation Certificate

Accredited Laboratory

A2LA has accredited

INDUSTRIAL INTERNET INNOVATION CENTER (SHANGHAI) CO., LTD.

Shanghai, People's Republic of China

for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017

General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Presented this 12th day of April 2021.

Vice President, Accreditation Services For the Accreditation Council Certificate Number 3682.01 Valid to February 28, 2023

For the tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.