

SAR TEST REPORT

Applicant	MobiWire SAS
FCC ID	QPN-F4
Product	4G Feature Phone
Brand	altice; MobiWire
Model	altice F4; MobiWire Hinto lite
Report No.	R2404A0414-S1
Issue Date	April 22, 2024

Eurofins TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in **IEEE 1528- 2013, ANSI C95.1: 1992, IEEE C95.1: 1991.** The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Prepared by: Fangying Wei

Approved by: Guangchang Fan

Eurofins TA Technology (Shanghai) Co., Ltd.

No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China TEL: +86-021-50791141/2/3 FAX: +86-021-50791141/2/3-8000

Table of Contents

1	Test Laboratory4							
1	1.1	Notes of the Test Report4						
1	1.2	Test facility4						
1	1.3	Testing Location4						
1	1.4	Laboratory Environment	. 5					
2	Sta	tement of Compliance	. 6					
3	Des	scription of Equipment under Test	. 8					
4	Tes	st Specification, Methods and Procedures	10					
5	Ope	erational Conditions during Test	11					
5	5.1	Test Positions	11					
		5.1.1 Against Phantom Head1	1					
		5.1.2 Body Worn Configuration1	1					
5	5.2	Measurement Variability	12					
5	5.3	Test Configuration	13					
		5.3.1 GSM Test Configuration	3					
		5.3.2 WCDMA Test Configuration	3					
		5.3.3 LTE Test Configuration	7					
		5.3.4 BT Test Configuration	9					
6	SAF	R Measurements System Configuration	20					
6	5.1	SAR Measurement Set-up	20					
6	5.2	DASY5 E-field Probe System	21					
6	5.3	SAR Measurement Procedure	22					
7	7 Main Test Equipment							
8	8 Tissue Dielectric Parameter Measurements & System Verification							
8	8.1 Tissue Verification							
8	3.2	System Performance Check	27					
8	8.3 SAR System Validation							
9	9 Normal and Maximum Output Power							
ç	9.1	GSM Mode	30					
ç	9.2	WCDMA Mode	31					
ç	9.3	LTE Mode	32					
	9.4	Bluetooth Mode						
10	Mea	asured and Reported (Scaled) SAR Results	40					
1	10.1	Measured SAR Results	41					
1	10.2 Simultaneous Transmission Analysis							
11	11 Measurement Uncertainty							
		A: Test Layout						
	ANNEX B: System Check Results							
	ANNEX C: Highest Graph Results							
AN	ANNEX D: Probe Calibration Certificate (Original)73							
	ANNEX E: Probe Calibration Certificate (Variant)							
Fur	rofins	TA Technology (Shanghai) Co., Ltd. TA-MB-05-003S Page 2 of 168						

This report shall not be reproduced except in full, without the written approval of Eurofins TA Technology (Shanghai) Co., Ltd.

🔅 eurofins

SAR Test ReportReport No.: R2404A0414-S1ANNEX F: D750V3 Dipole Calibration Certificate (Original)104ANNEX G: D835V2 Dipole Calibration Certificate (Original)111ANNEX H: D835V2 Dipole Calibration Certificate (Variant)119ANNEX I: D1750V2 Dipole Calibration Certificate (Original)126ANNEX J: D1900V2 Dipole Calibration Certificate (Original)134ANNEX K: D1900V2 Dipole Calibration Certificate (Variant)142ANNEX L: D2450V2 Dipole Calibration Certificate (Original)148ANNEX M: DAE4 Calibration Certificate (Original)156ANNEX N: DAE4 Calibration Certificate (Variant)161ANNEX O: The EUT Appearance166ANNEX P: Test Setup Photos167ANNEX Q: Product Change Description168

1 Test Laboratory

1.1 Notes of the Test Report

This report shall not be reproduced in full or partial, without the written approval of **Eurofins TA technology (shanghai) co., Ltd.** The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein .Measurement Uncertainties were not taken into account and are published for informational purposes only. This report is written to support regulatory compliance of the applicable standards stated above.

1.2 Test facility

FCC (Designation number: CN1179, Test Firm Registration Number: 446626)

Eurofins TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform measurements.

A2LA (Certificate Number: 3857.01)

Eurofins TA Technology (Shanghai) Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform measurement.

1.3 Testing Location

Company:	Eurofins TA Technology (Shanghai) Co., Ltd.
Address:	Building 3, No.145, Jintang Rd, Pudong Shanghai, P.R.China
City:	Shanghai
Post code:	201201
Country:	P. R. China
Contact:	Fan Guangchang
Telephone:	+86-021-50791141/2/3
Fax:	+86-021-50791141/2/3-8000
Website:	https://www.eurofins.com/electrical-and-electronics
E-mail:	fanguangchang@ta-shanghai.com

SAR Test Report

1.4 Laboratory Environment

Temperature	Min. = 18°C, Max. = 25 °C			
Relative humidity	Min. = 30%, Max. = 70%			
Ground system resistance $< 0.5 \Omega$				
Ambient noise is checked and found very low and in compliance with requirement of standards.				
Reflection of surrounding objects is minimized and in compliance with requirement of standards.				

SAR Test Report

2 Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for the EUT are as follows: Table 1: Highest Reported SAR

Mada	Highest Reported SAR (W/kg)				
Mode	1g SAR Head	1g SAR Body			
GSM 850	1.159	0.922			
GSM 1900	1.013	1.108			
WCDMA Band II	0.875	0.781			
WCDMA Band V	0.720	0.563			
LTE FDD 2	0.739	0.948			
LTE FDD 4	0.434	0.821			
LTE FDD 5	0.777	0.919			
Bluetooth 0.173 0.143					
Date of Testing: (Original) May 23, 2022 ~May 26, 2022					
(Variant) April 16, 2024 ~ April 17, 2024					
Date of Sample Received: (Original) May 6, 2022					
	(Variant) April 3, 2024				
Note: 1. The device is in compliance with SAR for Uncontrolled Environment /General Population					
exposure limits (1.6 W/kg) specified in ANSI C95.1: 1992/IEEE C95.1: 1991, and had been tested in					
accordance with the measurement methods and procedures specified in IEEE 1528-2013.					
2.All indications of Pass/Fail in this report are opinions expressed by Eurofins TA Technology					
(Shanghai) Co., Ltd. based on interpretations and/or observations of test results. Measurement					
Uncertainties were not taken into account and are published for informational purposes only.					

Table 2: Highest Simultaneous Transmission SAR

Exposure Configuration 1g SAR Head		1g SAR Body SAR			
Highest Simultaneous Transmission SAR (W/kg)	1.332	1.108			
Note: The detail for simultaneous transmission consideration is described in chapter 10.3.					

altice F4; MobiWire Hinto lite (Report No.: R2404A0414-S1; FCC ID: QPN-F4) is a variant model of altice F4; Sagetel Hinto lite (Report No.: R2205A0384-S1; FCC ID: 2AT2L-HINTO-LITE). ACCESSORY MODIFICATIONS:

Battery changes: Yes, changed from 800 mAh to 1000mAh.

Test case	Original	Variant
GSM 850	Pass	
GSM 1900	Pass	
WCDMA Band II	Pass	
WCDMA Band V	Pass	Only tested with worst sees of Original
LTE Band 2	Pass	Only tested with worst case of Original
LTE Band 4	Pass	
LTE Band 5	Pass	
Bluetooth	Pass	

Tested case refers to the following table.

The detailed product change description please refers to the Difference Declaration Letter.

3 Description of Equipment under Test

Client Information

Applicant MobiWire SAS	
Applicant address	107 Boulevard de la Mission Marchand 92400 Courbevoie FRANCE
Manufacturer	MobiWire SAS
Manufacturer address	107 Boulevard de la Mission Marchand 92400 Courbevoie FRANCE

General Technologies

EUT Stage	Identical Prototype			
Model	altice F4; MobiWire Hinto lite			
IMEI	Original	1#: 352847500227283 2#: 352847500227788 3#: 352847500227960		
	Variant	4#: 351726810516240		
Hardware Version	V01E			
Software Version	ALTICE_GX2421	IL_SS_L_V01_FCC_220428		
Antenna Type	PIFA Antenna			
Device Class	В			
Power Class	GSM 850: 4 GSM 1900: 1 WCDMA Band II/ V: 3 LTE FDD 2/4/5: 3			
Power Level	GSM 850: level 5 GSM 1900: level 0			
EUT Accessory				
Adapter	Manufacturer: DongGuan AoHai Power Technology Co.Ltd. Model: A31A-050055U-US1			
Battery	Manufacturer: Shenzhen Aerospace Electronic.Co.Ltd Model: 178136112			
Earphone	Manufacturer: Baoshan Dahuahaihan Technology Co.,Ltd. Model: 3.5_balck_stereophony without mic_HTC			
Note: 1. The EUT is sent from the applicant to Eurofins TA and the information of the EUT is declared by the applicant. 2. The customer claims that altice F4 and MobiWire Hinto lite are only different in model, and the other are the same				

Wireless Technology and Frequency Range

Wireless Technology		Modulation	Operating mode	Tx (MHz)	
	850	Voice(GMSK) GPRS(GMSK)	□Multi-slot Class:8-1UP □Multi-slot Class:10-2UP	824 ~ 849	
GSM	1900	EGPRS(GMSK,8PSK)	⊠Multi-slot Class:12-4UP □Multi-slot Class:33-4UP	1850 ~ 1910	
	Does this dev				
WCDMA	Band II	QPSK	HSDPA UE Category:24	1850 ~ 1910	
VUCDIVIA	Band V	QFOR	HSUPA UE Category:6	824 ~ 849	
	FDD 2			1850 ~ 1910	
LTE	FDD 4	QPSK, 16QAM	Category 4	1710 ~ 1755	
LIE	FDD 5			824 ~ 849	
	Does this dev				
BT	2.4G	Version 5.1 BR/EDR 2402 ~2			

4 Test Specification, Methods and Procedures

The tests documented in this report were performed in accordance with FCC 47 CFR § 2.1093, IEEE 1528- 2013, ANSI C95.1: 1992, IEEE C95.1: 1991, the following FCC Published RF exposure KDB procedures:

Reference Standards

KDB 447498 D01 General RF Exposure Guidance v06 KDB 648474 D04 Handset SAR v01r03 KDB 690783 D01 SAR Listings on Grants v01r03 KDB 865664 D01 SAR measurement 100 MHz to 6 GHz v01r04 KDB 865664 D02 RF Exposure Reporting v01r02 KDB 941225 D01 3G SAR Procedures v03r01 KDB 941225 D05 SAR for LTE Devices v02r05

5 Operational Conditions during Test

5.1 Test Positions

5.1.1 Against Phantom Head

Measurements were made in "cheek" and "tilt" positions on both the left hand and right hand sides of the phantom.

The positions used in the measurements were according to IEEE 1528 - 2013 "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques".

5.1.2 Body Worn Configuration

Body-worn operating configurations should be tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in normal use configurations.

Per FCC KDB Publication 648474 D04, Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB Publication 447498 D01 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented. Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

5.2 Measurement Variability

Per FCC KDB Publication 865664 D01, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media were required for SAR measurements in a frequency band, the variability measurement procedures were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. These additional measurements were repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR Measurement Variability was assessed using the following procedures for each frequency band: 1) When the original highest measured SAR is \geq 0.80 W/kg, the measurement was repeated once.

2) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was \geq 1.45 W/kg (~ 10% from the 1-g SAR limit).

3) A third repeated measurement was performed only if the original, first or second repeated measurement was \geq 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg

The same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds.

5.3 Test Configuration

5.3.1 GSM Test Configuration

According to specification 3GPP TS 51.010, the maximum power of the GSM can do the power reduction for the multi-slot. The allowed power reduction in the multi-slot configuration is as following:

Output power of reductions:

	-		
Number of timeslots in uplink	Permissible nominal reduction of maximum		
assignment	output power (dB)		
1	0		
2	0 to 3,0		
3	1,8 to 4,8		
4	3,0 to 6,0		

Table 3: The allowed power reduction in the multi-slot configuration

SAR test reduction for GPRS and EDGE modes is determined by the source-based time-averaged output power specified for production units, including tune-up tolerance. The data mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested. GSM voice and GPRS data use GMSK, which is a constant amplitude modulation with minimal peak to average power difference within the time-slot burst. For EDGE, GMSK is used for MCS 1 – MCS 4 and 8-PSK is used for MCS 5 – MCS 9; where 8-PSK has an inherently higher peak-to-average power ratio. The GMSK and 8-PSK EDGE configurations are considered separately for SAR compliance. The GMSK EDGE configurations are grouped with GPRS and considered with respect to time-averaged maximum output power to determine compliance. The 3G SAR test reduction procedure is applied to 8-PSK EDGE with GMSK GPRS/EDGE as the primary mode.

5.3.2 WCDMA Test Configuration

5.3.2.1 3G SAR Test Reduction Procedure

The default test configuration is to measure SAR with an established radio link between the EUT and a communication test set using a 12.2 kbps RMC (reference measurement channel) configured in Test Loop Mode 1. SAR is selectively confirmed for other physical channel configurations modes according to output power, exposure conditions and device operating capabilities. Maximum output power is verified by applying the applicable versions of 3GPP TS 34.121.

5.3.2.2 Head SAR

SAR for next to the ear head exposure is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to AMR configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for 12.2 kbps AMR in 3.4 kbps SRB (signaling radio bearer) using the highest SAR configuration in 12.2 kbps RMC for head exposure.

🛟 eurofins

SAR Test Report

5.3.2.3 Body-worn accessory SAR

SAR for body-worn accessory configurations is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to other spreading codes and multiple DPDCHn configurations supported by the EUT with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured using an applicable RMC configuration with the corresponding spreading code or DPDCHn, for the highest reported body-worn accessory exposure SAR configuration in 12.2 kbps RMC. When more than 2 DPDCHn are supported by the EUT, it may be necessary to configure additional DPDCHn using FTM (Factory Test Mode) or other chipset based test approaches with parameters similar to those used in 384 kbps and 768 kbps RMC

5.3.2.4 Release 5 HSDPA Test Configuration

The 3G SAR test reduction procedure is applied to HSDPA body-worn accessory configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for HSDPA using the HSDPA body SAR procedures in the "Release 5 HSDPA Data Devices" section of this document, for the highest SAR body-worn accessory exposure configuration in 12.2 kbps RMC. EUT with both HSDPA and HSUPA are tested according to Release 6 HSPA test procedures.

HSDPA should be configured according to the UE category of a test device. The number of HSDSCH/HS-PDSCHs, HARQ processes, minimum inter-TTI interval, transport block sizes and RV coding sequence are defined by the H-set. To maintain a consistent test configuration and stable transmission conditions, QPSK is used in the H-set for SAR testing. HS-DPCCH should be configured with a CQI feedback cycle of 4 ms with a CQI repetition factor of 2 to maintain a constant rate of active CQI slots. DPCCH and DPDCH gain factors (β c, β d), and HS-DPCCH power offset parameters (Δ ACK, Δ NACK, Δ CQI) should be set according to values indicated in the Table below. The CQI value is determined by the UE category, transport block size, number of HS-PDSCHs and modulation used in the H-set.

Sub-set	βc	β_d	β _d (SF)	β _c /β _d	β _{hs} (note 1, note 2)	CM(dB) (note 3)	MPR(dB)
1	2/15	15/15	64	2/15	4/15	0.0	0.0
2	12/15	15/15	64	12/15	24/15	1.0	0.0
	(note 4)	(note 4)		(note 4)			
3	15/15	8/15	64	15/8	30/15	1.5	0.5
4	15/15	4/15	64	15/4	30/15	1.5	0.5
Note 1: A A and A $-9 \leftrightarrow A = 0$ (0 $-20/16 \leftrightarrow 0$ $-20/16 \star 0$							

Table 4: Subtests	for WCDMA	Release 5 HSDPA
-------------------	-----------	-----------------

Note 1: Δ_{ACK} , Δ_{NACK} and Δ_{CQI} = 8 \leftrightarrow A_{hs} = β_{hs}/β_c =30/15 \leftrightarrow β_{hs} =30/15* β_c

Note 2: CM=1 for β_c/β_d =12/15, β_{hs}/β_c =24/15.

Note 3: For subtest 2 the β_c/β_d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TFC1, TF1) to β_c =11/15 and β_d =15/15.

🔅 eurofins

5.3.2.5 Release 6 HSUPA Test Configuration

The 3G SAR test reduction procedure is applied to HSPA (HSUPA/HSDPA with RMC) body-worn accessory configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for HSPA using the HSPA body SAR procedures in the "Release 6 HSPA Data Devices" section of this document, for the highest body-worn accessory exposure SAR configuration in 12.2 kbps RMC. When VOIP is applicable for next to the ear head exposure in HSPA, the 3G SAR test reduction procedure is applied to HSPA with 12.2 kbps RMC as the primary mode; otherwise, the same HSPA configuration used for body-worn accessory measurements is tested for next to the ear head exposure.

Due to inner loop power control requirements in HSPA, a communication test set is required for output power and SAR tests. The 12.2 kbps RMC, FRC H-set 1 and E-DCH configurations for HSPA are configured according to the β values indicated in Table 2 and other applicable procedures described in the 'WCDMA EUT' and 'Release 5 HSDPA Data Devices' sections of this document

Sub-	ß	ß	β_d	β _c /β _d	$\beta_{hs}^{(1)}$	ß	ß	β_{ed}	β_{ed}	CM ⁽²⁾	MPR	AG ⁽⁴⁾	E-TFCI
set	β _c	β_d	(SF)	pc/pd	Phs	β_{ec}	β_{ed}	(SF)	(codes)	(dB)	(dB)	Index	E-IFCI
1	11/15 ⁽³⁾	15/15 ⁽³⁾	64	11/15 ⁽³⁾	22/15	209/225	1039/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	β_{ed1} :47/15	1	2	2.0	1.0	15	92
5	15/15	9/15	04	15/8	50/15	30/13	β_{ed2} :47/15	t	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 ⁽⁴⁾	15/15 ⁽⁴⁾	64	15/15 ⁽⁴⁾	30/15	24/15	134/15	4	1	1.0	0.0	21	81

Table 5: Sub-Test 5 Setup for Release 6 HSUPA

Note 1: Δ_{ACK} , $\Delta NACK$ and $\Delta_{CQI} = 8 \Leftrightarrow A_{hs} = \underline{\beta}_{hs}/\underline{\beta}_{c} = 30/15 \Leftrightarrow \beta_{hs} = 30/15 * \beta_{c}$.

Note 2: CM = 1 for β_c/β_d =12/15, β_{hs}/β_c =24/15. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.

Note 3: For subtest 1 the β_c/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 10/15$ and $\beta_d = 15/15$. Note 4: For subtest 5 the β_c/β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 14/15$ and $\beta_d = 15/15$. Note 5: Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Figure 5.1g.

Note 6: β_{ed} cannot be set directly; it is set by Absolute Grant Value.

Table 6: HSUPA UE category

UE E-DCH Category	Maximum E-DCH Codes Transmitted	Number of HARQ Processes	E-DCHTTI (ms)	Minimum Spreading Factor	Maximum E-DCH Transport Block Bits	Max Rate (Mbps)
1	1	4	10	4	7110	0.7296
	2	8	2	4	2798	4.4500
2	2	4	10	4	14484	1.4592
3	2	4	10	4	14484	1.4592
4	2	8	2	2	5772	2.9185

SAR	lest Report				Report No.: R2404A	0414-S1
	2	4	10	2	20000	2.00
5	2	4	10	2	20000	2.00
6	4	8	2	2 SF2 & 2	11484	5.76
(No DPDCH)	4	4	10	SF4	20000	2.00
7	4	8	2	2 SF2 & 2 SF4	22996	?
(No DPDCH)	4	4	10		20000	?
NOTE: When 4	codes are transr	nitted in parallel	, two codes	shall be trans	mitted with SF2 an	d two with
SF4.	egories 1 to 6 s				upports QPSK and	

Table 7: HS-DSCH UE category

HS-DSCH category	Maximum number of HS-DSCH codes received	Minimum inter-TTI interval	Maximum number of bits of an HS- DSCH transport block received within an HS-DSCH TTI NOTE 1	Total number of soft channel bits	Supported modulations without MIMO operation or dual cell operation	Supported modulatio ns with MIMO operation and without dual cell operation	Supported modulatio ns with dual cell operation		
Category 1	5	3	7298	19200	0 - 4	9 - E			
Category 2	5	3	7298	28800	1				
Category 3	5	2	7298	28800					
Category 4	5	2	7298	38400					
Category 5	5	1	7298	57600	ODCK ACO H				
Category 6	5	1	7298	67200	QPSK, 16QAM	1223			
Category 7	10	1	14411	115200		Not			
Category 8	10	1	14411	134400	1	applicable (MIMO not			
Category 9	15	1	20251	172800		(MINO not supported)			
Category 10	15	1	27952	172800		supported)			
Category 11	5	2	3630	14400					
Category 12	5	1	3630	28800	QPSK		black		
Category 13	15	1	35280	259200	QPSK,		Not applicable		
Category 14	15	1	42192	259200	16QAM, 64QAM			8	(dual cell operation
Category 15	15	1	23370	345600	ODCK A	-	not		
Category 16	15	1	27952	345600	QPSK, 16	QAM	supported)		
Category 17 NOTE 2	15	1	35280	259200	QPSK, 16QAM, 64QAM	24	supported)		
NOTE 2	26		23370	345600	-	QPSK, 16QAM			
Category 18	15	1	42192	259200	QPSK, 16QAM, 64QAM	8-			
NOTE 3	UN-2007		27952	345600	-	QPSK, 16QAM			
Category 19	15	1	35280	518400	ODEK 4004		1		
Category 20	15	1	42192	518400	QPSK, 16QAI	W, 64QAM			
Category 21	15	1	23370	345600		34	QPSK,		
Category 22	15	1	27952	345600	1		16QAM		
Category 23	15	1	35280	518400	-	-	QPSK,		
Category 24	15	1	42192	518400			16QAM, 64QAM		

SAR Test Report

5.3.3 LTE Test Configuration

LTE modes were tested according to FCC KDB 941225 D05 publication. Please see notes after the tabulated SAR data for required test configurations. Establishing connections with base station simulators ensure a consistent means for testing SAR and are recommended for evaluating SAR. The R&S CMW500 was used for LTE output power measurements and SAR testing. Max power control was used so the UE transmits with maximum output power during SAR testing. SAR must be measured with the maximum TTI (transmit time interval) supported by the device in each LTE configuration.

A) Spectrum Plots for RB Configurations

A properly configured base station simulator was used for SAR tests and power measurements. Therefore, spectrum plots for RB configurations were not required to be included in this report.

B) MPR

MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 – 6.2.5 under Table 6.2.3-1.

C) A-MPR

A-MPR (Additional MPR) has been disabled for all SAR tests by setting NS=01 on the base station simulator.

D) Largest channel bandwidth standalone SAR test requirements

1) QPSK with 1 RB allocation

Start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel. When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required for 1 RB allocation; otherwise, SAR is required for the remaining required test channels and only for the RB offset configuration with the highest output power for that channel. When the reported SAR of a required test channel is > 1.45 W/kg, SAR is required for all three RB offset configurations for that required test channel.

2) QPSK with 50% RB allocation

The procedures required for 1 RB allocation in 1) are applied to measure the SAR for QPSK with 50% RB allocation.

3) QPSK with 100% RB allocation

For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100% RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation in 1) and 2) are \leq 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.

4) Higher order modulations

For each modulation besides QPSK; e.g., 16-QAM, 64-QAM, apply the QPSK procedures in above sections to determine the QAM configurations that may need SAR measurement. For each configuration identified as required for testing, SAR is required only when the highest maximum output power for the configuration in the higher order modulation is > $\frac{1}{2}$ dB higher than the same configuration in QPSK or when the reported SAR for the QPSK configuration is > 1.45 W/kg.

E) Other channel bandwidth standalone SAR test requirements

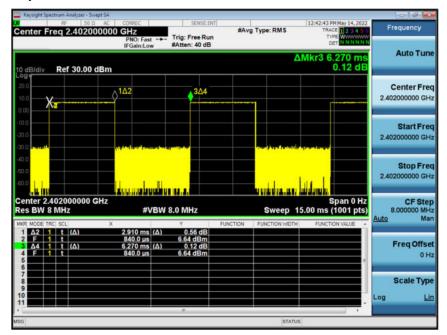
For the other channel bandwidths used by the device in a frequency band, apply all the procedures

🛟 eurofins

SAR Test Report

Report No.: R2404A0414-S1

required for the largest channel bandwidth in section A) to determine the channels and RB configurations that need SAR testing and only measure SAR when the highest maximum output power of a configuration requiring testing in the smaller channel bandwidth is > $\frac{1}{2}$ dB higher than the equivalent channel configurations in the largest channel bandwidth configuration or the reported SAR of a configuration for the largest channel bandwidth is > 1.45 W/kg.

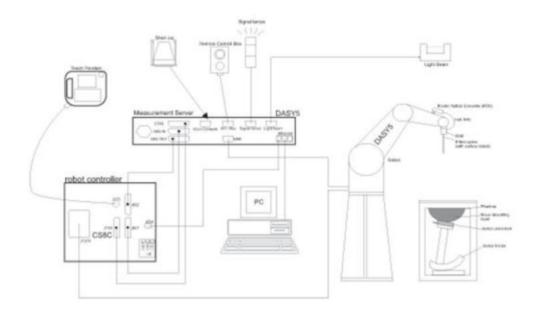

🛟 eurofins

SAR Test Report

5.3.4 BT Test Configuration

For BT SAR testing, BT engineering testing software installed on the EUT can provide continuous transmitting RF signal with maximum output power. And the CBT control the EUT operating with hoping off and data rate set for DH5.

The SAR measurement takes full account of the BT duty cycle and is reflected in the report, and the duty factor of the device is as follow:



Note: Duty factor= Ton (ms)/ T(on+off) (ms)=2.910/6.270*100%=46%

6 SAR Measurements System Configuration

6.1 SAR Measurement Set-up

The DASY system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- > An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- > The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP or Win7 and the DASY software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- > The phantom, the device holder and other accessories according to the targeted measurement.

DASY5 E-field Probe System 6.2

The SAR measurements were conducted with the dosimetric probe EX3DV4 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

EX3DV4 Probe Specification

SAR Test Report

🔅 eurofins

Construction	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)	
Calibration	ISO/IEC 17025 calibration	-
Frequency	service available 10 MHz to > 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)	
Directivity	\pm 0.3 dB in HSL (rotation around probe axis) \pm 0.5 dB in tissue material (rotation normal to probe axis)	
Dynamic	10 μW/g to > 100 mW/g Linearity:	
Range	± 0.2dB (noise: typically < 1 μW/g)	0.5
Dimensions	Overall length: 330 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm	
Application	High precision dosimetric measurements in any exposure Scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6 GHz with precision of better 30%.	

E-field Probe Calibration

Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than ± 10%. The spherical isotropy was evaluated and found to be better than \pm 0.25dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1 GHz, and in a wave guide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

SAR Test Report

SAR=C∆T/∆t

Where: Δt = Exposure time (30 seconds),

C = Heat capacity of tissue (brain or muscle),

 ΔT = Temperature increase due to RF exposure.

Or

$SAR=IEI^2\sigma/\rho$

Where: σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m³).

6.3 SAR Measurement Procedure

Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Area Scan

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly. Area scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz.

	≤3 GHz	> 3 GHz
Maximum distance from closest		
measurement point (geometric center of	5 ± 1 mm	½·δ·ln(2) ± 0.5 mm
probe sensors) to phantom surface		
Maximum probe angle from probe axis to		
phantom surface normal at the	30° ± 1°	20° ± 1°
measurement location		
	≤ 2 GHz: ≤ 15 mm	3 – 4 GHz: ≤ 12 mm
	2 – 3 GHz: ≤ 12 mm	4 – 6 GHz: ≤ 10 mm
	When the x or y dimension	sion of the test device, in
Maximum area scan spatial resolution:	the measurement plar	ne orientation, is smaller
ΔxArea, ΔyArea	than the above, the m	neasurement resolution
	must be ≤ the correspo	nding x or y dimension of
	the test device with at	least one measurement
	point on the	e test device.

Zoom Scan

Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10 gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label.

Zoom scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz.

			≤3GHz	> 3 GHz			
			≤2GHz: ≤8mm	3 – 4GHz: ≤5mm*			
waximum zoom	Maximum zoom scan spatial resolution: $\triangle x_{zoom} \triangle y_{zoom}$		2 – 3GHz: ≤5mm*	4 – 6GHz: ≤4mm*			
Maximatina				3 – 4GHz: ≤4mm			
Maximum	U	niform grid: $ riangle z_{zoom}(n)$	≤5mm	4 – 5GHz: ≤3mm			
zoom scan				5 – 6GHz: ≤2mm			
spatial		$\triangle z_{zoom}(1)$: between 1 st two		3 – 4GHz: ≤3mm			
resolution,		Outralia	Our de d	One de d	points closest to phantom	≤4mm	4 – 5GHz: ≤2.5mm
normal to	Graded	surface		5 – 6GHz: ≤2mm			
phantom surface	grid	$\triangle z_{zoom}(n \ge 1)$: between					
Sunace		subsequent points	≤1.3•△4	z _{zoom} (n-1)			
Minimum				3 – 4GHz: ≥28mm			
zoom scan		X, y, z	≥30mm	4 – 5GHz: ≥25mm			
volume				5 – 6GHz: ≥22mm			
Note: δ is the pe	enetration	depth of a plane-wave at nor	mal incidence to the	tissue medium: see			

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

* When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is \leq 1.4W/kg, \leq 8mm, \leq 7mm and \leq 5mm zoom scan resolution may be applied, respectively, for 2GHz to 3GHz, 3GHz to 4GHz and 4GHz to 6GHz.

Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drifts more than 5%, the SAR will be retested.

7 Main Test Equipment

Name of Equipment	Manufacturer	Type/Model	Serial Number	Last Cal.	Cal. Due Date
Signal Generator	R&S	SBM100A	102594	2022-05-14	2023-05-13
Network analyzer	Agilent	E5071B	MY42404014	2022-05-14	2023-05-13
Dielectric Probe Kit	Agilent	85070E	US44020115	/	/
Power meter	R&S	NRP R&S	102186	2022-05-13	2023-05-14
Power sensor	R&S	NRP18S	101954	2022-05-13	2023-05-14
Dual directional coupler	UCL	UCL-DDC0 56G-S	20010600118	1	1
Amplifier	INDEXSAR	TPA-005060 G01	13030502	2022-05-13	2023-05-14
Wireless communication tester	Anritsu	MT8820C	6201342015	2021-12-12	2022-12-11
Wireless communication tester	Agilent	E5515C	MY48360988	2021-12-12	2022-12-11
Wideband radio communication tester	R&S	CMW 500	113645	2022-05-13	2023-05-14
E-field Probe	SPEAG	EX3DV4	3677	2021-08-12	2022-08-11
DAE	SPEAG	DAE4	1692	2021-10-04	2022-10-03
Validation Kit 835MHz	SPEAG	D835V2	4d020	2020-08-28	2023-08-27
Validation Kit 1750MHz	SPEAG	D1750V2	1033	2020-02-25	2023-02-24
Validation Kit 1900MHz	SPEAG	D1900V2	5d060	2020-08-27	2023-08-26
Validation Kit 2450MHz	SPEAG	D2450V2	786	2020-08-27	2023-08-26
Temperature Probe	Tianjin jinming	JM222	381	2022-05-14	2023-05-13
Hygrothermograph	Anymetr	HTC - 1	TY2020A001	2022-05-14	2023-05-13
Twin SAM Phantom	Speag	SAM1	1666	/	/
Software for Test	Speag	DASY52	/	/	/
Softwarefor Tissue	Agilent	85070	/	/	/

Date of Testing: May 23, 2022 ~May 26, 2022

Date of Testing: April 16, 2024 ~ April 17, 2024

Name of Equipment	Manufacturer	Type/Model	Serial Number	Last Cal.	Cal. Due Date
Network Analyzer	Agilent	E5071B	MY42404014	2023-05-12	2024-05-11
Dielectric Probe Kit	SPEAG	DAK-12	1171	2023-07-17	2024-07-16
Power Meter	Agilent	E4417A	GB41291714	2023-05-12	2024-05-11
Power Sensor	Agilent	N8481H	MY50350004	2023-05-12	2024-05-11
Power Sensor	Agilent	E9327A	US40441622	2023-05-12	2024-05-11
Signal Generator	Agilent	N5181A	MY50140143	2023-05-12	2024-05-11
Dual Directional Coupler	UCL	UCL-DDC0 56G-S	20010600118	1	/
Amplifier	INDEXSAR	TPA-005060 G01	13030502	2023-05-13	2024-05-12
Wireless Communication Tester	Anritsu	MT8820C	6201342015	2023-12-05	2024-12-04
Wireless Communication Tester	Agilent	E5515C	MY48360988	2023-12-05	2024-12-04
Wireless Communication Tester	R&S	CMW 500	146734	2023-05-13	2024-05-12
E-field Probe	SPEAG	EX3DV4	3677	2023-07-20	2024-07-19
DAE	SPEAG	DAE4	1317	2023-09-13	2024-09-12
Validation Kit 835MHz	SPEAG	D835V2	4d020	2023-09-15	2026-09-14
Validation Kit 1900MHz	SPEAG	D1900V2	5d060	2023-09-12	2026-09-11
Software for Tissue	SPEAG	DAK 3.0.4.1	/	/	/
Temperature Probe	Tianjin jinming	JM222	22112737	2023-05-13	2024-05-12
Twin SAM Phantom	SPEAG	SAM1	1667	/	/
Twin SAM Phantom	SPEAG	SAM2	1666	/	/
Hygrothermograph	Anymetr	HTC - 1	TA2023A007	2023-05-13	2024-05-12
TX90 XL	SPEAG	Staubli TX90 XL	1	1	1
Software for Test	SPEAG	DASY52	52.10.4.1527	/	/

8 Tissue Dielectric Parameter Measurements & System Verification

8.1 **Tissue Verification**

The temperature of the tissue-equivalent medium used during measurement must also be within 18° C to 25° C and within $\pm 2^{\circ}$ C of the temperature when the tissue parameters are characterized. The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements. The parameters should be re-measured after each 24 hours of use; or earlier if the dielectric parameters can become out of tolerance.

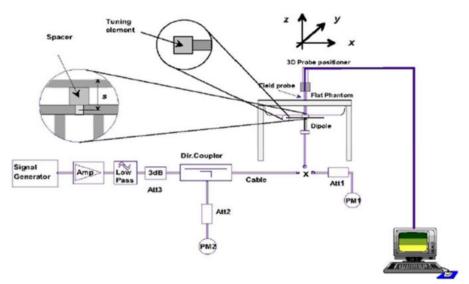
Target values

Frequency (MHz)	٤r	σ(s/m)
835	41.5	0.90
1750	40.1	1.37
1900	40.0	1.40
2450	39.2	1.80

Measurements results

Original

			Measured	Dielectric	Target D	ielectric	Limit	
Frequency	Toot Doto	Temp	Temp Parameters		Paran	neters	(Within ±5%)	
(MHz)	(MHz) Test Date	°C	٤r	σ(s/m)	٤r	σ(s/m)	Dev	Dev
							ε _r (%)	σ(%)
835	2022/5/23	21.5	41.4	0.88	41.5	0.90	-0.24	-2.22
1750	2022/5/24	21.5	40.2	1.34	40.1	1.37	0.25	-2.19
1900	2022/5/25	21.5	40.1	1.41	40.0	1.40	0.25	0.71
2450	2022/5/26	21.5	38.6	1.81	39.2	1.80	-1.53	0.56
Note: The dep	th of tissue-eo	quivalent	liquid in a p	hantom mus	st be ≥ 15.	0 cm.		


Variant

Frequency	Test Date	Temp		Dielectric neters	-	ielectric neters		nit n ±5%)	
(MHz)	Test Date	°C	٤r	σ(s/m)	٤r	σ(s/m)	Dev ε _r (%)	Dev σ(%)	
835	2024/4/17	21.5	41.3	0.87	41.5	0.90	-0.48	-3.33	
1900	2024/4/16	21.5	40.2	1.43	40.0	1.40	0.50	2.14	
Note: The depth of tissue-equivalent liquid in a phantom must be \geq 15.0 cm.									

8.2 System Performance Check

The manufacturer calibrates the probes annually. Dielectric parameters of the tissue simulates were measured using the dielectric probe kit and the network analyzer. A system check measurement for every day was made following the determination of the dielectric parameters of the Tissue simulates, using the dipole validation kit. The dipole antenna was placed under the flat section of the twin SAM phantom.

System check is performed regularly on all frequency bands where tests are performed with the DASY system.

Picture 1System Performance Check setup

Picture 2 Setup Photo

Justification for Extended SAR Dipole Calibrations

Usage of SAR dipoles calibrated less than 3 years ago but more than 1 year ago were confirmed in maintaining return loss (< - 20 dB, within 20% of prior calibration) and impedance (within 5 ohm from prior calibration) requirements per extended calibrations in KDB 865664 D01:

Original

Dipole		Date of Measurement	Return Loss(dB)	Δ%	Impedance (Ω)	ΔΩ
Dipole D835V2	Head	8/28/2020	-26.2	/	54.8	/
SN: 4d020	Liquid	8/27/2021	-26.5	1.1	55.2	0.4
		2/25/2020	-38.3	/	48.8	/
Dipole D1750V2 SN: 1033	Head Liquid	2/24/2021	-40.0	4.4	49.9	1.1
014. 1000	Liquid	2/23/2022	-40.6	1.5	51.1	1.2
Dipole D1900V2	Head	8/27/2020	-23.3	/	52.5	/
SN: 5d060	Liquid	8/26/2021	-23.0	-1.3	51.9	-0.6
Dipole D2450V2	Head	8/27/2020	-26.9	/	54.5	1
SN: 786	Liquid	8/26/2021	-27.1	0.7	53.8	-0.7

System Check results

Original

Frequency (MHz)	Test Date	Temp ℃	250mW Measured SAR _{1g} (W/kg)	1W Normalized SAR _{1g} (W/kg)	1W Target SAR _{1g} (W/kg)	Δ % (Limit ±10%)	Plot No.			
835	2022/5/23	21.5	2.44	9.76	9.65	1.14	1			
1750	2022/5/24	21.5	8.95	35.80	35.90	-0.28	2			
1900	2022/5/25	21.5	9.88	39.52	39.50	0.05	3			
2450	2022/5/26	21.5	13.70	54.80	52.30	4.78	4			
Note: Target Values used derive from the calibration certificate Data Storage and Evaluation.										

Variant

Frequency (MHz)	Test Date	Temp ℃	250mW Measured SAR _{1g} (W/kg)	1W Normalized SAR _{1g} (W/kg)	1W Target SAR _{1g} (W/kg)	Δ % (Limit ±10%)	Plot No.			
835	2024/4/17	21.5	2.46	9.84	9.75	0.92	5			
1900	2024/4/16	21.5	9.85	39.40	40.40	-2.48	6			
Note: Target	Note: Target Values used derive from the calibration certificate Data Storage and Evaluation.									

8.3 SAR System Validation

Per FCC KDB 865664 D02v01, SAR system verification is required to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR measurements. Reference dipoles are used with the required tissue-equivalent media for system validation, according to the procedures outlined in FCC KDB 865664 D01 and IEEE 1528-2013. Since SAR probe calibrations are frequency dependent, each probe calibration point must be validated at a frequency within the valid frequency range of the probe calibration point, using the system that normally operates with the probe for routine SAR measurements and according to the required tissue-equivalent media.

A tabulated summary of the system validation status, measurement frequencies, SAR probes, calibrated signal type(s) and tissue dielectric parameters has been included.

Eroquopoy	quency Probe Probe			PERM	COND	CW Validation				
[MHz]	Date	SN		Probe Cal Point (Er)				Sensitivity	Probe	Probe
[10112]		N	Type			(=)	Sensitivity	Linearity	lsotropy	
835	2023/07/20	3677	EX3DV4	835	Head	41.5	0.90	PASS	PASS	PASS
1750	2023/07/20	3677	EX3DV4	1750	Head	40.1	1.37	PASS	PASS	PASS
1900	2023/07/20	3677	EX3DV4	1900	Head	40.0	1.40	PASS	PASS	PASS
2450	2023/07/20	3677	EX3DV4	2450	Head	39.2	1.80	PASS	PASS	PASS

NOTE: While the probes have been calibrated for both CW and modulated signals, all measurements were performed using communication systems calibrated for CW signals only. Modulations in the table above represent test configurations for which the measurement system has been validated per FCC KDB Publication 865664D01v01 for scenarios when CW probe calibrations are used with other signal types. SAR systems were validated for modulated signals with a periodic duty cycle, such as GMSK, or with a high peak to average ratio (>5dB), such as OFDM according to KDB 865664.

9 Normal and Maximum Output Power

KDB 447498 D01 at the maximum rated output power and within the tune-up tolerance range specified for the product, but not more than 2 dB lower than the maximum tune-up tolerance limit.

9.1 GSM Mode

		Burst-Av	eraged o	utput pov	ver(dBm)		Frame-A	veraged o	output pov	ver(dBm)
GSN	A 850	Tune-up	Channe	l/Freque	ncy(MHz)	Division	Tune-up	Channe	l/Frequen	cy(MHz)
GSI	/1 000	MAX	128	190	251	Factors	MAX	128	190	251
		IVIAA	/824.2	/836.6	/848.8		IVIAA	/824.2	/836.6	/848.8
GSM	CS	33.00	32.05	32.04	32.07	9.03	23.97	23.02	23.01	23.04
0000/	1 Tx Slot	33.00	32.08	32.05	32.05	9.03	23.97	23.05	23.02	23.02
GPRS/ EGPRS	2 Tx Slots	30.00	29.55	29.47	29.47	6.02	23.98	23.53	23.45	23.45
(GMSK)	3 Tx Slots	28.00	27.32	27.30	27.30	4.26	23.74	23.06	23.04	23.04
	4 Tx Slots	26.00	25.13	25.16	25.15	3.01	22.99	22.12	22.15	22.14
	1 Tx Slot 27.00 26.16 26.49 26.00				26.00	9.03	17.97	17.13	17.46	16.97
EGPRS	2 Tx Slots	26.00	25.12	25.51	24.92	6.02	19.98	19.10	19.49	18.90
(8PSK)	3 Tx Slots	23.50	22.73	23.01	22.50	4.26	19.24	18.47	18.75	18.24
4 Tx Slots		21.50	20.84	21.10	20.48	3.01	18.49	17.83	18.09	17.47
		Burst-Av	eraged o	utput pov	ver(dBm)		Frame-A	veraged o	output pov	ver(dBm)
GSM	1900	Tune-up	Channel/Frequency(MHz)			Division	Tune-up	Channe	l/Frequen	cy(MHz)
GOIM	11900	MAX	512	661	810	Factors	MAX	512	661	810
	1		/1850.2	/1880	/1909.8		IVIAA	/1850.2	/1880	/1909.8
GSM	CS	30.00	28.90	28.90	28.85	9.03	20.97	19.87	19.87	19.82
	1 Tx Slot	30.00	28.87	28.92	28.81	9.03	20.97	19.84	19.89	19.78
GPRS/ EGPRS	2 Tx Slots	28.50	27.71	27.51	27.29	6.02	22.48	21.69	21.49	21.27
(GMSK)	3 Tx Slots	26.50	25.60	25.40	25.15	4.26	22.24	21.34	21.14	20.89
(Civiory)	4 Tx Slots	24.50	23.72	23.48	23.16	3.01	21.49	20.71	20.47	20.15
	1 Tx Slot	27.00	25.91	26.18	25.81	9.03	17.97	16.88	17.15	16.78
EGPRS	2 Tx Slots	26.00	24.58	24.91	24.31	6.02	19.98	18.56	18.89	18.29
(8PSK)	3 Tx Slots	23.50	22.40	22.76	22.06	4.26	19.24	18.14	18.50	17.80
	4 Tx Slots	21.50	20.27	20.70	19.90	3.01	18.49	17.26	17.69	16.89
	Notes:The worst-case configuration and mode for SAR testing is determined to be as follows: 1. Standalone: GSM 850 GMSK (GPRS) mode with 2 time slots for Max power, GSM 1900 GMSK (GPRS)									

mode with 2 time slots for Max power,based on the output power measurements above..

9.2 WCDMA Mode

WC	DMA		Band	ll(dBm)			Band	V(dBm)	
Tx Ch	annel	9262	9400	9538	Tune-up	1312	1413	1513	Tune-up
Frequen	cy(MHz)	1852.4	1880	1907.6	Limit	1712.4	1732.6	1752.6	Limit
RMC	12.2kbps	22.15	22.23	22.32	23.50	22.21	22.24	22.27	23.50
AMR	12.2kbps	22.21	22.16	22.18	23.50	22.42	22.30	22.35	23.50
	Sub 1	22.61	22.69	22.65	23.00	22.63	22.49	22.71	23.00
	Sub 2	21.87	22.50	22.44	23.00	21.96	21.86	22.08	23.00
HSDPA	Sub 3	20.92	21.53	21.44	22.00	21.19	21.03	20.97	22.00
	Sub 4	20.20	20.16	20.52	22.00	20.66	20.49	20.44	22.00
	Sub 1	18.99	19.36	19.42	20.50	19.71	19.70	19.80	20.50
	Sub 2	19.75	19.19	19.22	20.00	19.56	19.23	19.37	20.00
HSUPA	Sub 3	19.23	19.66	19.66	20.50	19.75	19.76	19.81	20.50
	Sub 4	19.26	19.70	19.72	20.50	19.14	19.24	19.37	20.50
	Sub 5	21.53	21.72	21.63	23.00	22.70	22.55	22.76	23.00
Note: Per KDB 941225 D01, SAR for each exposure is measured using a 12.2 kbps RMC with TPC bits configured to all "1's".									

The following tests were completed according to the test requirements outlined in the 3GPP TS34.121 specification.

9.3 LTE Mode

UE Power Class: 3 (23 +/- 2dBm). The allowed Maximum Power Reduction (MPR) for the maximum output power due to higher order modulation and transmit bandwidth configuration (resource blocks) is specified in Table 6.2.3-1 of the 3GPP TS36.101.

Modulation	Cha	Channel bandwidth / Transmission bandwidth (N_{RB})								
	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz				
QPSK	> 5	> 4	> 8	> 12	> 16	> 18	≤ 1			
16 QAM	≤ 5	≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	≤ 1			
16 QAM	> 5	> 4	> 8	> 12	> 16	> 18	≤ 2			

Table 6.2.3-1: Maximum Power Reduction (MPR) for Power Class 3

	QAM	/ /	- 4	> > 12	> 10	> 10 5	
			L1	E Band 2			
Fi	ull Power-Ma	1			m Output Pow	· · · ·	
Bandwidth	Modulation	RB	offset		nel/Frequency	· · ·	Tune-up
	modulation	allocation	oneet	18607/1850.7	18900/1880	19193/1909.3	
		1	0	21.15	21.27	21.37	22.00
		1	2	21.25	21.27	21.32	22.00
		1	5	21.13	21.23	21.31	22.00
	QPSK	3	0	20.96	21.03	20.99	22.00
		3	2	20.92	20.92	21.11	22.00
		3	3	21.10	20.89	21.07	22.00
1.4MHz		6	0	20.09	19.98	20.07	21.00
1.40012		1	0	19.78	19.67	19.72	21.00
	16QAM	1	2	19.61	19.57	19.58	21.00
		1	5	19.97	19.82	19.88	21.00
		3	0	20.31	20.16	20.22	21.00
		3	2	20.22	20.07	20.12	21.00
		3	3	20.37	20.21	20.24	21.00
		6	0	19.28	19.19	19.21	20.00
Bandwidth	Modulation	RB	offset	Chan	nel/Frequency	(MHz)	Tuno un
Banuwium	Modulation	allocation	onset	18615/1851.5	18900/1880	19185/1908.5	Tune-up
		1	0	21.17	21.31	21.40	22.00
		1	7	21.23	21.30	21.36	22.00
		1	14	21.16	21.28	21.35	22.00
	QPSK	8	0	20.06	20.15	20.12	21.00
		8	4	20.04	20.02	20.23	21.00
3MHz		8	7	20.20	20.00	20.17	21.00
		15	0	20.09	20.02	20.10	21.00
		1	0	19.78	19.69	19.75	21.00
	16QAM	1	7	19.61	19.57	19.62	21.00
		1	14	19.99	19.86	19.91	21.00
	-	8	0	19.42	19.29	19.34	20.00

Eurofins TA Technology (Shanghai) Co., Ltd.TA-MB-05-003SPage 32 of 168This report shall not be reproduced except in full, without the written approval of Eurofins TA Technology (Shanghai) Co., Ltd.

🛟 eurofins

SAR	Test Report					Report No.: R2404A	0414-S1	
		8	4	19.33	19.20	19.24	20.00	
		8	7	19.47	19.33	19.37	20.00	
		15	0	19.31	19.23	19.24	20.00	
Bandwidth	Modulation	RB	offset	Chan	nel/Frequency	(MHz)	Tune-up	
Bandwidth	Modulation	allocation	Uliset	18625/1852.5	18900/1880	19175/1907.5	Tune-up	
		1	0	21.14	21.29	21.36	22.00	
		1	13	21.21	21.26	21.33	22.00	
		1	24	21.13	21.23	21.31	22.00	
	QPSK	12	0	20.03	20.10	20.08	21.00	
		12	6	20.02	19.98	20.18	21.00	
		12	13	20.18	19.98	20.13	21.00	
5MHz		25	0	20.09	20.01	20.08	21.00	
JIVITIZ		1	0	19.78	19.65	19.72	21.00	
		1	13	19.61	19.55	19.59	21.00	
		1	24	19.96	19.84	19.87	21.00	
	16QAM	12	0	19.40	19.25	19.31	20.00	
		12	6	19.30	19.15	19.20	20.00	
		12	13	19.44	19.28	19.33	20.00	
		25	0	19.29	19.19	19.19	20.00	
Bandwidth	Modulation	RB	offset	Chan	Channel/Frequency(MHz)			
Banuwiuun	Modulation	allocation	Uliset	18650/1855	18900/1880	19150/1905	Tune-up	
		1	0	21.16	21.30	21.39	22.00	
		1	25	21.24	21.31	21.37	22.00	
		1	49	21.15	21.27	21.34	22.00	
	QPSK	25	0	20.06	20.15	20.12	21.00	
		25	13	20.05	20.03	20.22	21.00	
		25	25	20.20	20.02	20.18	21.00	
10MHz		50	0	20.13	20.03	20.12	21.00	
1011112		1	0	19.82	19.68	19.74	21.00	
		1	25	19.65	19.59	19.62	21.00	
		1	49	19.99	19.86	19.90	21.00	
	16QAM	25	0	19.43	19.30	19.35	20.00	
		25	13	19.32	19.19	19.23	20.00	
		25	25	19.47	19.33	19.37	20.00	
		50	0	19.32	19.24	19.23	20.00	
Bandwidth	Modulation	RB	offset	Chan	nel/Frequency	(MHz)	Tune-up	
Banawidth	Modulation	allocation	Unser	18675/1857.5	18900/1880	19125/1902.5	rune-up	
		1	0	21.15	21.26	21.37	22.00	
		1	38	21.22	21.30	21.34	22.00	
15MHz	QPSK	1	74	21.12	21.22	21.30	22.00	
101/11/2		36	0	20.04	20.11	20.09	21.00	
		36	18	20.02	19.98	20.18	21.00	
		36	39	20.17	19.99	20.14	21.00	

🛟 eurofins

SAR 1	est Report					Report No.: R2404A	0414-S1
		75	0	20.11	19.99	20.07	21.00
		1	0	19.80	19.66	19.72	21.00
		1	38	19.63	19.56	19.60	21.00
		1	74	19.97	19.82	19.87	21.00
	16QAM	36	0	19.40	19.28	19.32	20.00
		36	18	19.29	19.14	19.19	20.00
		36	39	19.45	19.29	19.34	20.00
		75	0	19.29	19.19	19.19	20.00
Bandwidth	Modulation	RB	offset	Chan	nel/Frequency	(MHz)	Tune-up
Banuwiuti	Modulation	allocation	Unset	18700/1860	18900/1880	19100/1900	Tune-up
	QPSK	1	0	21.12	21.22	21.34	22.00
		1	50	21.21	21.26	21.32	22.00
		1	99	21.10	21.21	21.27	22.00
		50	0	20.01	20.06	20.05	21.00
		50	25	20.00	19.94	20.15	21.00
		50	50	20.14	19.94	20.10	21.00
20MHz		100	0	20.08	19.94	20.03	21.00
20101112		1	0	19.77	19.62	19.67	21.00
		1	50	19.60	19.54	19.56	21.00
		1	99	19.94	19.79	19.85	21.00
	16QAM	50	0	19.37	19.24	19.29	20.00
		50	25	19.26	19.12	19.16	20.00
		50	50	19.42	19.24	19.30	20.00
	-	100	0	19.27	19.15	19.16	20.00

				LTE Band 4					
F	ull Power-Ma	ain Ant		Maximu	Maximum Output Power (dBm)				
Bandwidth	Modulation	RB	offset	Chan	nel/Frequency(N	1Hz)	Tune-up		
Banuwiutii	Modulation	allocation	Uliset	19957/1710.7	20175/1732.5	20393/1754.3			
		1	0	21.35	21.31	21.17	22.00		
		1	2	21.37	21.22	21.07	22.00		
		1	5	21.25	21.07	21.17	22.00		
	QPSK	3	0	21.07	21.15	21.11	22.00		
		3	2	21.02	20.95	21.08	22.00		
		3	3	20.86	20.94	21.10	22.00		
1.4MHz		6	0	20.14	20.09	20.23	21.00		
1.411172		1	0	20.02	20.10	19.88	21.00		
		1	2	19.84	19.83	20.01	21.00		
		1	5	19.68	19.66	19.65	21.00		
	16QAM	3	0	20.07	20.13	20.01	21.00		
		3	2	20.14	20.20	19.95	21.00		
		3	3	20.01	20.06	19.79	21.00		
		6	0	19.22	19.29	19.18	20.00		

Eurofins TA Technology (Shanghai) Co., Ltd.TA-MB-05-003SPage 34 of 168This report shall not be reproduced except in full, without the written approval of Eurofins TA Technology (Shanghai) Co., Ltd.

Report No.: R2404A0414-S1

07	AR Test Report			Report No.: R2404A04			414-51	
Bandwidth	Modulation	RB allocation	offset	Channel/Frequency(MHz) 19965/1711.5 20175/1732.5 20385/1753.5			Tune-up	
		allocation	0	19965/1711.5 21.37	20175/1732.5	20385/1753.5 21.20	22.00	
3MHz		1	7	21.37	21.35	21.20	22.00	
	QPSK	1	14	21.28	21.23	21.21	22.00	
		8	0	20.17	20.27	20.24	22.00	
		8	4	20.14	20.05	20.24	21.00	
		8	7	19.96	20.05	20.20	21.00	
		15	0	20.14	20.13	20.26	21.00	
		1	0	20.02	20.12	19.91	21.00	
	16QAM	1	7	19.84	19.83	20.05	21.00	
		1	14	19.70	19.70	19.68	21.00	
		8	0	19.18	19.26	19.13	20.00	
		8	4	19.25	19.33	19.07	20.00	
		8	7	19.11	19.18	18.92	20.00	
		15	0	19.25	19.33	19.21	20.00	
		RB						
Bandwidth	Modulation	allocation	offset	19975/1712.5	20175/1732.5	20375/1752.5	Tune-up	
	QPSK	1	0	21.34	21.33	21.16	22.00	
		1	13	21.33	21.21	21.08	22.00	
		1	24	21.25	21.07	21.17	22.00	
		12	0	20.14	20.22	20.20	21.00	
		12	6	20.12	20.01	20.15	21.00	
		12	13	19.94	20.03	20.16	21.00	
5MU-		25	0	20.14	20.12	20.24	21.00	
5MHz	16QAM	1	0	20.02	20.08	19.88	21.00	
		1	13	19.84	19.81	20.02	21.00	
		1	24	19.67	19.68	19.64	21.00	
		12	0	19.16	19.22	19.10	20.00	
		12	6	19.22	19.28	19.03	20.00	
		12	13	19.08	19.13	18.88	20.00	
		25	0	19.23	19.29	19.16	20.00	
Bandwidth	Modulation	RB	offset	Channel/Frequency(MHz)				
Danuwiuun		allocation	onset	20000/1715	20175/1732.5	20350/1750	Tune-up	
10MHz	QPSK	1	0	21.36	21.34	21.19	22.00	
		1	25	21.36	21.26	21.12	22.00	
		1	49	21.27	21.11	21.20	22.00	
		25	0	20.17	20.27	20.24	21.00	
		25	13	20.15	20.06	20.19	21.00	
		25	25	19.96	20.07	20.21	21.00	
		50	0	20.18	20.14	20.28	21.00	
	16QAM	1	0	20.06	20.11	19.90	21.00	
		1	25	19.88	19.85	20.05	21.00	

🛟 eurofins

SAR Test Report			Report No.: R2404A0414-S1				
		1	49	19.70	19.70	19.67	21.00
		25	0	19.19	19.27	19.14	20.00
		25	13	19.24	19.32	19.06	20.00
		25	25	19.11	19.18	18.92	20.00
		50	0	19.26	19.34	19.20	20.00
Bandwidth	Modulation	RB	offset	Channel/Frequency(MHz)			Tune-un
		allocation		20025/1717.5	20175/1732.5	20325/1747.5	Tune-up
	QPSK	1	0	21.35	21.30	21.17	22.00
		1	38	21.34	21.25	21.09	22.00
		1	74	21.24	21.06	21.16	22.00
		36	0	20.15	20.23	20.21	21.00
4510		36	18	20.12	20.01	20.15	21.00
		36	39	19.93	20.04	20.17	21.00
		75	0	20.16	20.10	20.23	21.00
15MHz		1	0	20.04	20.09	19.88	21.00
	16QAM	1	38	19.86	19.82	20.03	21.00
		1	74	19.68	19.66	19.64	21.00
		36	0	19.16	19.25	19.11	20.00
		36	18	19.21	19.27	19.02	20.00
		36	39	19.09	19.14	18.89	20.00
		75	0	19.23	19.29	19.16	20.00
Donalusialth	Modulation	RB		Channel/Frequency(MHz)			Tune un
Bandwidth		allocation	offset	20050/1720	20175/1732.5	20300/1745	Tune-up
20MHz	QPSK	1	0	21.32	21.26	21.14	22.00
		1	50	21.33	21.21	21.07	22.00
		1	99	21.22	21.05	21.13	22.00
		50	0	20.12	20.18	20.17	21.00
		50	25	20.10	19.97	20.12	21.00
		50	50	19.90	19.99	20.13	21.00
		100	0	20.13	20.05	20.19	21.00
	16QAM	1	0	20.01	20.05	19.83	21.00
		1	50	19.83	19.80	19.99	21.00
		1	99	19.65	19.63	19.62	21.00
		50	0	19.13	19.21	19.08	20.00
		50	25	19.18	19.25	18.99	20.00
		50	50	19.06	19.09	18.85	20.00
		100	0	19.21	19.25	19.13	20.00

LTE Band 5 Full Power-Main Ant Maximum Output Power (dBm)												
Fu	ull Power-Ma	in Ant		Maximu	m Output Powe	er (dBm)						
		RB		Chan	nel/Frequency((MHz)	Tune-up					
Bandwidth	Modulation	allocation	offset	20407/824.7	20525/836.5	20643/848.3						
		1	0	22.68	22.71	22.62	23.50					
		1	2	22.75	22.62	22.80	23.50					
		1	5	22.64	22.61	22.76	23.50					
	QPSK	3	0	22.39	22.40	22.38	23.50					
		3	2	22.37	22.52	22.38	23.50					
		3	3	22.42	22.32	22.80	23.50					
4 4 4 4 4		6	0	21.47	21.51	21.52	22.50					
1.4MHz		1	0	21.39	21.37	21.55	22.50					
		1	2	21.45	21.33	21.28	22.50					
		1	5	21.29	21.19	21.33	22.50					
	16QAM	3	0	21.81	21.84	21.78	22.50					
		3	2	21.68	21.79	21.88	22.50					
		3	3	21.75	21.78	21.65	22.50					
		6	0	20.81	21.01	20.74	21.50					
Bandwidth	Madulation	RB	offset	Chan	nel/Frequency((MHz)	Tung un					
Bandwidth	Modulation	allocation	onset	20415/825.5	20525/836.5	20635/847.5	Tune-up					
		1	0	22.70	22.75	22.65	23.50					
		1	7	22.73	22.65	22.84	23.50					
	QPSK	1	14	22.67	22.66	22.80	23.50					
		QPSK	QPSK	QPSK	8	0	21.49	21.52	21.51	22.50		
		8	4	21.49	21.62	21.50	22.50					
		8	7	21.52	21.43	21.90	22.50					
3MHz		15	0	21.47	21.55	21.55	22.50					
011112		1	0	21.39	21.39	21.58	22.50					
		1	7	21.45	21.33	21.32	22.50					
		1	14	21.31	21.23	21.36	22.50					
	16QAM	8	0	20.92	20.97	20.90	21.50					
		8	4	20.79	20.92	21.00	21.50					
		8	7	20.85	20.90	20.78	21.50					
		15	0	20.84	21.05	20.77	21.50					
Bandwidth	Modulation	RB	offset	Chan	nel/Frequency((MHz)	Tune-up					
Banamaan	Modulation	allocation		20425/826.5	20525/836.5	20625/846.5						
		1	0	22.67	22.73	22.61	23.50					
		1	13	22.71	22.61	22.81	23.50					
5MHz	QPSK	1	24	22.64	22.61	22.76	23.50					
311112		12	0	21.46	21.47	21.47	22.50					
		12	6	21.47	21.58	21.45	22.50					
		12	13	21.50	21.41	21.86	22.50					

🛟 eurofins

SAR Te	est Report			F	Report No.: R2404	A0414-S1							
		25	0	21.47	21.54	21.53	22.50						
		1	0	21.39	21.35	21.55	22.50						
		1	13	21.45	21.31	21.29	22.50						
		1	24	21.28	21.21	21.32	22.50						
	16QAM	12	0	20.90	20.93	20.87	21.50						
		12	6	20.76	20.87	20.96	21.50						
		12	13	20.82	20.85	20.74	21.50						
		25	0	20.82	21.01	20.72	21.50						
Bandwidth	Modulation	RB	offset	Chan	nel/Frequency(MHz)	Tupo up						
Banuwiuun	Modulation	allocation	onset	20450/829	20525/836.5	20600/844	Tune-up						
		1	0	22.65	22.66	22.59	23.50						
	-	1	25	22.71	22.61	22.80	23.50						
		1	49	22.61	22.59	22.72	23.50						
	QPSK	QPSK	QPSK	25	0	21.44	21.43	21.44	22.50				
		25	13	21.45	21.54	21.42	22.50						
		25	25	21.46	21.37	21.83	22.50						
10MHz		50	0	21.46	21.47	21.48	22.50						
		1	0	21.38	21.32	21.50	22.50						
		1	25	21.44	21.30	21.26	22.50						
	16QAM	16QAM	16QAM	_	_	-		1	49	21.26	21.16	21.30	22.50
				25	0	20.87	20.92	20.85	21.50				
			25	13	20.72	20.84	20.92	21.50					
		25	25	20.80	20.81	20.71	21.50						
		50	0	20.80	20.97	20.69	21.50						

SAR Test Report

9.4 Bluetooth Mode

	C	Conducted Power(dBm)									
BT	CI	hannel/Frequency(MH	lz)	Tune-up Limit (dBm)							
	Ch 0/2402 MHz	Ch 39/2441 MHz	Ch 78/2480 MHz	(dBIII)							
GFSK	9.22	9.01	9.09	10.50							
π/4DQPSK	10.07	9.86	9.87	10.50							
8DPSK	10.39	10.10	10.10	10.50							

10 Measured and Reported (Scaled) SAR Results

Overall (Length x Width): 120 mm x 50mm												
	Overall Diagonal: 60mm											
Distance of the Antenna to the EUT surface/edge												
Antenna	Antenna Back Side Front side Left Edge Right Edge Top Edge Bottom Edge											
Main-Antenna	<25mm	<25mm	<25mm	<25mm	>25mm	<25mm						
BT Antenna	<25mm	<25mm	>25mm	<25mm	<25mm	>25mm						
	Hotspot m	node, Position	s for SAR tes	sts	•							
Mode	Mode Back Side Front side Left Edge Right Edge Top Edge Bottom Edge											
Main-Antenna	Yes	Yes	Yes	Yes	N/A	Yes						
BT/Wi-Fi Antenna	Yes	Yes	N/A	Yes	Yes	N/A						

The Detailed Antenna Locations Refer to Antenna Locations.

Note: 1. Per KDB 941225 D06, when the overall device length and width are \geq 9cm*5cm, the test distance is 10mm. SAR must be measured for all sides and surfaces with a transmitting antenna located within 25mm from that surface or edge.

2.For smart phones with an overall diagonal dimension is 60mm. Per KDB 648474 D04, for smart phones with a display diagonal dimension > 15.0 cm or an overall diagonal dimension > 16.0 cm, product specific 10-g SAR must be tested as a phablet to determine SAR compliance.

3. Per FCC KDB 447498 D01, for each exposure position, testing of other requised channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:

a) ≤0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100MHz

b) ≤0.6 W/kg or 1.5 W/kg, for1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz.

c) \leq 0.4 W/kg or 1.0 Wkg, for 1-g or 10-g respectively, when the transmission band is \geq 200 MHz.

4.When the original highest measured SAR is \geq 0.80 W/kg, the measurement was repeated once.

5. Per FCC KDB Publication 648474 D04, SAR was evaluated without a headset connected to the device. Since the reported SAR was \leq 1.2 W/kg, no additional SAR evaluations using a headset cable were required.

10.1 Measured SAR Results

Note: 1.The value with blue color is the maximum SAR Value of each test band.

2. For GSM, when multiple slots are used, SAR should be tested to account for the maximum source-based time-averaged output power.

3. For WCDMA, When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq \frac{1}{4}$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode.

4. For LTE, QPSK with 100% RB allocation, SAR is required when and the highest reported SAR for 1 RB and 50% RB allocation in are≥ 50% limit (1g).

Band	Test Position	Dist. (mm)	Mode	Power Reduction	RB	offset	Ch./Freq. (MHz)	Tune-up (dBm)	Measured power (dBm)	Measured SAR1g (W/kg)	Power Drift (dB)	Scaling Factor	Report SAR1g (W/kg)	Plot No.	EUT No.
	Left cheek	0	GSM	Full Power	-	-	190/836.6	33.00	32.04	0.783	-0.030	1.25	0.977	/	1#
	Left cheek	0	GSM	Full Power	-	-	128/824.2	33.00	32.05	0.795	0.010	1.24	0.989	/	1#
	Left cheek	0	GSM	Full Power	-	-	251/848.8	33.00	32.07	0.825	0.060	1.24	1.022	/	1#
GSM 850	Left Tilt	0	GSM	Full Power	-	-	190/836.6	33.00	32.04	0.348	-0.037	1.25	0.434	/	1#
(Original)	Right cheek	0	GSM	Full Power	-	-	190/836.6	33.00	32.04	0.786	0.011	1.25	0.980	/	1#
(Original)	Right Tilt	0	GSM	Full Power	-	-	190/836.6	33.00	32.04	0.275	0.000	1.25	0.343	/	1#
	Right cheek	0	GSM	Full Power	-	-	128/824.2	33.00	32.05	0.931	0.181	1.24	1.159	7	1#
	Right cheek	0	GSM	Full Power	-	-	128/824.2	33.00	32.05	0.924	0.014	1.24	1.150	/	1#
	Right cheek	0	GSM	Full Power	-	-	251/848.8	33.00	32.07	0.847	-0.090	1.24	1.049	/	1#
GSM 850 (Variant)	Right cheek	0	GSM	Full Power	-	-	128/824.2	33.00	32.05	0.664	-0.180	1.24	0.826	/	4#
	Left cheek	0	GSM	Full Power	-	-	661/1880	30.00	29.10	0.646	-0.024	1.23	0.795	/	2#
	Left Tilt	0	GSM	Full Power	-	-	661/1880	30.00	29.10	0.358	0.070	1.23	0.440	/	2#
GSM 1900	Right cheek	0	GSM	Full Power	-	-	661/1880	30.00	29.10	0.711	0.021	1.23	0.875	/	2#
(Original)	Right Tilt	0	GSM	Full Power	-	-	661/1880	30.00	29.10	0.454	0.140	1.23	0.559	/	2#
	Right cheek	0	GSM	Full Power	-	-	512/1850.2	30.00	28.90	0.653	0.190	1.29	0.841	/	1#
	Right cheek	0	GSM	Full Power	-	-	810/1909.8	30.00	28.85	0.777	0.024	1.30	1.013	8	1#
	Left cheek	0	RMC 12.2K	Full Power	-	-	9400/1880	23.50	22.23	0.653	0.150	1.34	0.875	/	2#
	Left Tilt	0	RMC 12.2K	Full Power	-	-	9400/1880	23.50	22.23	0.378	0.023	1.34	0.506	/	2#
WCDMA II	Right cheek	0	RMC 12.2K	Full Power	-	-	9400/1880	23.50	22.23	0.553	-0.110	1.34	0.741	/	2#
(Original)	Right Tilt	0	RMC 12.2K	Full Power	-	-	9400/1880	23.50	22.23	0.305	-0.090	1.34	0.409	/	2#
	Left cheek	0	RMC 12.2K	Full Power	-	-	9262/1852.4	23.50	22.15	0.516	0.180	1.36	0.704	/	1#
	Left cheek	0	RMC 12.2K	Full Power	-	-	9538/1907.6	23.50	22.32	0.656	0.028	1.31	0.861	9	1#
	Left cheek	0	RMC 12.2K	Full Power	-	-	4183/836.6	23.50	22.24	0.455	0.019	1.34	0.608	/	1#
WCDMA V	Left Tilt	0	RMC 12.2K	Full Power	-	-	4183/836.6	23.50	22.24	0.217	0.050	1.34	0.290	/	1#
	Right cheek	0	RMC 12.2K	Full Power	-	-	4183/836.6	23.50	22.24	0.396	0.010	1.34	0.529	/	1#
(Original)	Right Tilt	0	RMC 12.2K	Full Power	-	-	4183/836.6	23.50	22.24	0.124	0.090	1.34	0.166	/	1#
	Left cheek	0	RMC 12.2K	Full Power	-	-	4132/826.4	23.50	22.21	0.535	-0.020	1.35	0.720	10	1#

Head

 Eurofins TA Technology (Shanghai) Co., Ltd.
 TA-MB-05-003S
 Page 41 of 168

 This report shall not be reproduced except in full, without the written approval of Eurofins TA Technology (Shanghai) Co., Ltd.
 Co., Ltd.

	SA	R Tes	st Report				Report No.: R2404A0414-S1								
	Left cheek	0	RMC 12.2K	Full Power	-	-	4233/846.6	23.50	22.27	0.490	0.023	1.33	0.650	/	1#
	Left cheek	0	QPSK	Full Power	1	0	19100/1900	22.00	21.34	0.633	-0.053	1.16	0.737	/	3#
	Leit cheek	0	QPSK	Full Power	50%	25	19100/1900	21.00	20.15	0.429	0.160	1.22	0.522	/	3#
	Left Tilt	0	QPSK	Full Power	1	0	19100/1900	22.00	21.34	0.461	0.090	1.16	0.537	/	3#
LTE 2		0	QPSK	Full Power	50%	25	19100/1900	21.00	20.15	0.304	0.010	1.22	0.370	/	3#
(Original)	Right cheek -	0	QPSK	Full Power	1	0	19100/1900	22.00	21.34	0.635	0.023	1.16	0.739	11	3#
	Right cheek	0	QPSK	Full Power	50%	25	19100/1900	21.00	20.15	0.447	-0.010	1.22	0.544	/	3#
	Diabt Tilt	0	QPSK	Full Power	1	0	19100/1900	22.00	21.34	0.419	0.166	1.16	0.488	/	3#
	Right Tilt	0	QPSK	Full Power	50%	25	19100/1900	21.00	20.15	0.293	0.060	1.22	0.356	/	3#
	L off aboald	0	QPSK	Full Power	1	50	20050/1720	22.00	21.33	0.372	0.160	1.17	0.434	12	3#
	Left cheek	0	QPSK	Full Power	50%	0	20175/1732.5	21.00	20.18	0.255	0.032	1.21	0.308	/	3#
	Left Tilt	0	QPSK	Full Power	1	50	20050/1720	22.00	21.33	0.257	0.090	1.17	0.300	/	3#
LTE 4	Leit Tiit	0	QPSK	Full Power	50%	0	20175/1732.5	21.00	20.18	0.179	0.024	1.21	0.216	/	3#
(Original)	Right cheek	0	QPSK	Full Power	1	50	20050/1720	22.00	21.33	0.369	0.090	1.17	0.431	/	3#
	кідпі спеек	0	QPSK	Full Power	50%	0	20175/1732.5	21.00	20.18	0.196	0.030	1.21	0.237	/	3#
	Diabt Tilt	0	QPSK	Full Power	1	50	20050/1720	22.00	21.33	0.222	0.130	1.17	0.259	/	3#
	Right Tilt	0	QPSK	Full Power	50%	0	20175/1732.5	21.00	20.18	0.138	0.031	1.21	0.167	/	3#
	Left cheek	0	QPSK	Full Power	1	25	20600/844	23.50	22.80	0.661	0.013	1.17	0.777	13	1#
	Leit cheek	0	QPSK	Full Power	50%	25	20600/844	22.50	21.83	0.479	-0.020	1.17	0.559	/	1#
	Left Tilt	0	QPSK	Full Power	1	25	20600/844	23.50	22.80	0.402	0.019	1.17	0.472	/	1#
LTE 5	Leit Tiit	0	QPSK	Full Power	50%	25	20600/844	22.50	21.83	0.294	0.060	1.17	0.343	/	1#
(Original)	Pight shock	0	QPSK	Full Power	1	25	20600/844	23.50	22.80	0.644	-0.020	1.17	0.757	/	1#
	Right cheek -	0	QPSK	Full Power	50%	25	20600/844	22.50	21.83	0.489	0.050	1.17	0.571	/	1#
	Diabt Tilt	0	QPSK	Full Power	1	25	20600/844	23.50	22.80	0.403	0.030	1.17	0.473	/	1#
	Right Tilt	0	QPSK	Full Power	50%	25	20600/844	22.50	21.83	0.307	0.016	1.17	0.358	/	1#

Band	Test Position	Dist. (mm)	Mode	Duty Cycle	Power Reduction	Ch./Freq. (MHz)	Tune-up (dBm)	Measured power (dBm)	Measured SAR1g (W/kg)	Power Drift (dB)	Scaling Factor	Report SAR1g (W/kg)	Plot No.	EUT No.
	Left cheek	0	3DH5	46.0%	Full Power	0/2402	10.50	10.39	0.038	0.097	2.23	0.084	/	3#
Bluetooth	Left Tilt	0	3DH5	46.0%	Full Power	0/2402	10.50	10.39	0.013	0.101	2.23	0.028	/	3#
(Original)	Right cheek	0	3DH5	46.0%	Full Power	0/2402	10.50	10.39	0.078	0.047	2.23	0.173	14	3#
	Right Tilt	0	3DH5	46.0%	Full Power	0/2402	10.50	10.39	0.004	0.073	2.23	0.009	/	3#

SAR Test Report

Body SAR

	soay SAR										_		_		
	Test	Dist.		Power			Ch./Freq.	Tune-up	Measured	Measured		Scaling	Report	Plot	EUT
Band	Position	(mm)	Mode	Reduction	RB	offset	(MHz)	(dBm)	power	SAR1g	Drift	Factor	SAR1g	No.	No.
									(dBm)	(W/kg)	(dB)		(W/kg)		
	Back Side	10	2TX Slots	Full Power	-	-	190/836.6	30.00	29.47	0.548	-0.018	1.13	0.619	/	2#
	Front Side	10	2TX Slots	Full Power	-	-	190/836.6	30.00	29.47	0.497	0.030	1.13	0.562	/	2#
	Left Edge	10	2TX Slots	Full Power	-	-	190/836.6	30.00	29.47	0.255	0.090	1.13	0.288	/	2#
GSM 850	Right Edge	10	2TX Slots	Full Power	-	-	190/836.6	30.00	29.47	0.263	-0.042	1.13	0.297	/	2#
(Original)	Top Edge	10	N/A	Full Power	-	-	N/A	N/A	N/A	N/A	NA	N/A	N/A	/	/
(Original)	Bottom Edge	10	2TX Slots	Full Power	-	-	190/836.6	30.00	29.47	0.101	0.020	1.13	0.114	/	2#
	Back Side	10	CS	Full Power	-	-	190/836.6	33.00	32.04	0.739	-0.017	1.25	0.922	15	1#
	Back Side	10	CS	Full Power	-	-	128/824.2	33.00	32.05	0.658	0.042	1.24	0.819	/	1#
	Back Side	10	CS	Full Power	-	-	251/848.8	33.00	32.07	0.694	-0.010	1.24	0.860	/	1#
	Back Side	10	2TX Slots	Full Power	-	-	661/1880	28.50	27.51	0.882	0.110	1.26	1.108	16	1#
	Back Side	10	2TX Slots	Full Power	-	-	661/1880	28.50	27.51	0.875	0.017	1.26	1.099	/	1#
	Back Side	10	2TX Slots	Full Power	-	-	512/1850.2	28.50	27.71	0.836	-0.050	1.20	1.003	/	1#
	Back Side	10	2TX Slots	Full Power	-	-	810/1909.8	28.50	27.29	0.819	0.038	1.32	1.082	/	1#
	Front Side	10	2TX Slots	Full Power	-	-	661/1880	28.50	27.51	0.569	0.100	1.26	0.715	/	2#
GSM 1900	Left Edge	10	2TX Slots	Full Power	-	-	661/1880	28.50	27.51	0.348	0.023	1.26	0.437	/	2#
(Original)	Right Edge	10	2TX Slots	Full Power	-	-	661/1880	28.50	27.51	0.162	0.060	1.26	0.203	/	2#
	Top Edge	10	N/A	Full Power	-	-	N/A	N/A	N/A	N/A	NA	N/A	N/A	/	/
	Bottom Edge	10	2TX Slots	Full Power	-	-	661/1880	28.50	27.51	0.306	0.080	1.26	0.384	/	2#
	Back Side	10	CS	Full Power	-	-	661/1880	30.00	28.90	0.818	0.034	1.29	1.054	/	2#
	Back Side	10	CS	Full Power	-	-	512/1850.2	28.50	27.71	0.769	-0.032	1.20	0.922	/	2#
	Back Side	10	CS	Full Power	-	-	810/1909.8	28.50	27.29	0.804	0.000	1.32	1.062	/	2#
GSM 1900															
(Variant)	Back Side	10	2TX Slots	Full Power	-	-	661/1880	28.50	27.51	0.654	-0.010	1.26	0.821	/	4#
	Back Side	10	RMC	Full Power	-	-	9400/1880	23.50	22.23	0.583	-0.014	1.34	0.781	17	2#
	Front Side	10	RMC	Full Power	-	-	9400/1880	23.50	22.23	0.434	0.027	1.34	0.581	/	2#
WCDMA II	Left Edge	10	RMC	Full Power	-	-	9400/1880	23.50	22.23	0.267	-0.098	1.34	0.358	/	2#
(Original)	Right Edge	10	RMC	Full Power	-	-	9400/1880	23.50	22.23	0.128	0.034	1.34	0.171	1	2#
	Top Edge	10	N/A	Full Power	-	-	N/A	N/A	N/A	N/A	NA	N/A	N/A	/	/
	Bottom Edge	10	RMC	Full Power	-	-	9400/1880	23.50	22.23	0.275	0.028	1.34	0.368	/	2#
	Back Side	10	RMC	Full Power	-	-	4183/836.6	23.50	22.24	0.421	-0.016	1.34	0.563	18	2#
	Front Side	10	RMC	Full Power	-	-	4183/836.6	23.50	22.24	0.362	0.023	1.34	0.484	/	2#
WCDMA V	Left Edge	10	RMC	Full Power	-	-	4183/836.6	23.50	22.24	0.153	-0.090	1.34	0.204	/	/
(Original)	Right Edge	10	RMC	Full Power	-	-	4183/836.6	23.50	22.24	0.197	0.012	1.34	0.263	/	2#
,	Top Edge	10	N/A	Full Power	-	-	N/A	N/A	N/A	N/A	NA	N/A	N/A	/	1
	Bottom Edge	10	RMC	Full Power	-	-	4183/836.6	23.50	22.24	0.078	0.050	1.34	0.104	1	2#
	30	10	QPSK	Full Power	1	0	19100/1900	22.00	21.34	0.814	-0.020	1.16	0.948	19	3#
LTE 2	Back Side	10	QPSK	Full Power	50%	25	19100/1900	21.00	20.15	0.551	-0.010	1.22	0.670	/	3#
(Original)	240. 0100	10	QPSK	Full Power	100%	0	18700/1860	21.00	20.08	0.623	0.070	1.24	0.770	,	3#
(Criginal)	Back Side	10	QPSK	Full Power	100 %	0	19100/1900	21.00	20.00	0.806	0.070	1.16	0.938	/	3#
	DAUK SILLE	10	ULOV	Full Power	I	U	19100/1900	22.00	21.34	0.000	0.090	1.10	0.930	/	3#

🛟 eurofins

	SAF	R Test	Report						Rep	ort No.:	R2404	A0414-S1			
	Front Sido	10	QPSK	Full Power	1	0	19100/1900	22.00	21.34	0.504	-0.030	1.16	0.587	/	3#
	Front Side	10	QPSK	Full Power	50%	25	19100/1900	21.00	20.15	0.365	-0.090	1.22	0.444	/	3#
	Left Edge	10	QPSK	Full Power	1	0	19100/1900	22.00	21.34	0.255	0.020	1.16	0.297	/	3#
	Len Luge	10	QPSK	Full Power	50%	25	19100/1900	21.00	20.15	0.196	0.012	1.22	0.238	/	3#
	Right Edge	10	QPSK	Full Power	1	0	19100/1900	22.00	21.34	0.056	-0.080	1.16	0.065	/	3#
	Night Euge	10	QPSK	Full Power	50%	25	19100/1900	21.00	20.15	0.000	0.070	1.22	0.000	/	3#
	Top Edge	10	N/A	Full Power	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	/	/
	TOP Edge	10	N/A	Full Power	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	/	/
	Bottom Edge	10	QPSK	Full Power	1	0	19100/1900	22.00	21.34	0.286	0.057	1.16	0.333	/	3#
	Dottom Lage	10	QPSK	Full Power	50%	25	19100/1900	21.00	20.15	0.233	0.039	1.22	0.283	/	3#
	Back Side	10	QPSK	Full Power	1	50	18700/1860	22.00	21.21	0.660	0.029	1.20	0.792	/	3#
	Back Side	10	QPSK	Full Power	1	50	18900/1880	22.00	21.26	0.618	0.020	1.19	0.733	/	3#
		10	QPSK	Full Power	1	50	20050/1720	22.00	21.33	0.688	0.150	1.17	0.803	/	3#
	Back Side	10	QPSK	Full Power	50%	0	20175/1732. 5	21.00	20.18	0.551	0.035	1.21	0.666	/	3#
		10	QPSK	Full Power	100%	0	20300/1745	21.00	20.19	0.584	0.080	1.21	0.704	/	3#
		10	QPSK	Full Power	1	50	20050/1720	22.00	21.33	0.323	-0.120	1.17	0.377	/	3#
	Front Side	10	QPSK	Full Power	50%	0	20175/1732. 5	21.00	20.18	0.214	-0.140	1.21	0.258	/	3#
		10	QPSK	Full Power	1	50	20050/1720	22.00	21.33	0.236	-0.110	1.17	0.275	/	3#
	Left Edge	10	QPSK	Full Power	50%	0	20175/1732. 5	21.00	20.18	0.160	-0.053	1.21	0.193	/	3#
LTE 4		10	QPSK	Full Power	1	50	20050/1720	22.00	21.33	0.053	-0.097	1.17	0.062	/	3#
(Original)	Right Edge	10	QPSK	Full Power	50%	0	20175/1732. 5	21.00	20.18	0.000	0.000	1.21	0.000	/	3#
	Top Edge	10	N/A	Full Power	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	/	/
	Top Edge	10	N/A	Full Power	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	/	/
		10	QPSK	Full Power	1	50	20050/1720	22.00	21.33	0.265	0.043	1.17	0.309	/	3#
	Bottom Edge	10	QPSK	Full Power	50%	0	20175/1732. 5	21.00	20.18	0.152	-0.050	1.21	0.184	/	3#
	Back Side	10	QPSK	Full Power	1	0	20175/1732. 5	22.00	21.26	0.692	0.020	1.19	0.821	20	3#
	Back Side	10	QPSK	Full Power	1	0	20300/1745	22.00	21.14	0.537	0.014	1.22	0.655	/	3#
		10	QPSK	Full Power	1	25	20600/844	23.50	22.80	0.782	0.120	1.17	0.919	21	2#
		10	QPSK	Full Power	1	25	20450/829	23.50	22.71	0.734	-0.010	1.20	0.880	/	2#
	Back Side	10	QPSK	Full Power	1	0	20525/836.5	23.50	22.66	0.725	0.035	1.21	0.880	/	2#
		10	QPSK	Full Power	50%	25	20600/844	22.50	21.83	0.609	0.090	1.17	0.711	/	2#
LTE 5		10	QPSK	Full Power	100%	0	20600/844	22.50	21.48	0.587	-0.010	1.26	0.742	/	2#
(Original)	Front Side	10	QPSK	Full Power	1	25	20600/844	23.50	22.80	0.673	0.023	1.17	0.791	/	2#
		10	QPSK	Full Power	50%	25	20600/844	22.50	21.83	0.517	0.018	1.17	0.603	/	2#
	Left Edge	10	QPSK	Full Power	1	25	20600/844	23.50	22.80	0.360	-0.027	1.17	0.423	/	2#
		10	QPSK	Full Power	50%	25	20600/844	22.50	21.83	0.158	0.040	1.17	0.184	/	2#
	Right Edge	10	QPSK	Full Power	1	25	20600/844	23.50	22.80	0.440	0.028	1.17	0.517	/	2#

🛟 eurofins

 SAF	R Test	Report					Report No.: R2404A0414-S1							
	10	QPSK	Full Power	50%	25	20600/844	22.50	21.83	0.290	0.090	1.17	0.338	/	2#
Top Edge	10	N/A	Full Power	N/A	N/A	N/A	N/A	N/A	N/A	NA	N/A	N/A	/	/
Top Edge	10	N/A	Full Power	N/A	N/A	N/A	N/A	N/A	N/A	NA	N/A	N/A	/	/
Bottom Edge	10	QPSK	Full Power	1	25	20600/844	23.50	22.80	0.120	0.014	1.17	0.141	/	2#
Bollom Edge	10	QPSK	Full Power	50%	25	20600/844	22.50	21.83	0.089	0.016	1.17	0.104	/	2#

Antenna	Test Position	Dist. (mm)	Mode	Duty Cycle	Power Reduction	Ch./Freq. (MHz)	Tune-up (dBm)	Measured power (dBm)	Measured SAR1g (W/kg)	Power Drift (dB)	Scaling Factor	Report SAR1g (W/kg)	Plot No.	EUT No.
	Back Side	10	3DH5	46.0%	Full Power	0/2402	10.50	10.39	0.000	0.000	2.23	0.000	/	3#
	Front Side	10	3DH5	46.0%	Full Power	0/2402	10.50	10.39	0.000	0.070	2.23	0.000	/	3#
Bluetooth	Left Edge	10	3DH5	46.0%	Full Power	0/2402	10.50	10.39	0.000	-0.022	2.23	0.000	/	3#
(Original)	Right Edge	10	3DH5	46.0%	Full Power	0/2402	10.50	10.39	0.064	0.110	2.23	0.143	22	3#
	Top Edge	10	3DH5	46.0%	Full Power	0/2402	10.50	10.39	0.000	0.130	2.23	0.000	/	3#
	Bottom Edge	10	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1	N/A

10.2 Simultaneous Transmission Analysis

Simultaneous Transmission Configurations	Head	Body SAR
Main- Antenna + Bluetooth	Yes	Yes

General Note:

1. The Scaled SAR summation is calculated based on the same configuration and test position.

2. Per KDB 447498 D01, simultaneous transmission SAR is compliant if,

i) Scalar SAR summation < 1.6W/kg, simultaneously transmission SAR measurement is not necessary.

ii) SPLSR = (SAR1 + SAR2)^{A1.5} / (min. separation distance, mm), and the peak separation distance is determined from the square root of [(x1-x2)² + (y1-y2)² + (z1-z2)²], where (x1, y1, z1) and (x2, y2, z2) are the coordinates of the extrapolated peak SAR locations in the zoom scan.

iii) If SPLSR \leq 0.04, simultaneously transmission SAR measurement is not necessary.

Report No.: R2404A0414-S1

The maximum SAR_{1g} Value for Main-Antenna

	SAR1g(W/kg)	GSM	GSM	WCDMA	WCDMA	LTE	LTE	LTE	MAX.
Test Position		850	1900	Band II	Band V	FDD 2	FDD 4	FDD 5	SAR _{1g}
Head	Left Cheek	1.022	0.795	0.875	0.720	0.737	0.434	0.777	1.022
	Left Tilt	0.434	0.440	0.506	0.290	0.537	0.300	0.472	0.537
	Right Cheek	1.159	1.013	0.741	0.529	0.739	0.431	0.757	1.159
	Right Tilt	0.343	0.559	0.409	0.166	0.488	0.259	0.473	0.559
Body SAR	Back Side	0.922	1.108	0.781	0.563	0.948	0.821	0.919	1.108
	Front Side	0.562	0.715	0.581	0.484	0.587	0.377	0.791	0.791
	Left Edge	0.288	0.437	0.358	0.204	0.297	0.275	0.423	0.437
	Right Edge	0.297	0.203	0.171	0.263	0.065	0.062	0.517	0.517
	Top Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	Bottom Edge	0.114	0.384	0.368	0.104	0.333	0.309	0.141	0.384

About BT and Main-Antenna

SAR _{1g} (W/kg) Test Position		Main-antenna	ВТ	MAX. ΣSAR _{1g}	
	Left, Cheek	1.022	0.084	1.106	
Used	Left, Tilt	0.537	0.028	0.565	
Head	Right, Cheek	1.159	0.173	1.332	
	Right, Tilt	0.559	0.009	0.568	
	Back Side	1.108	0.000	1.108	
	Front Side	0.791	0.000	0.791	
Dedu CAD	Left Edge	0.437	0.000	0.437	
Body SAR	Right Edge	0.517	0.143	0.660	
	Top Edge	N/A	0.000	0.000	
	Bottom Edge	0.384	N/A	0.384	
	alue with blue color is the SAR _{1g} =Unlicensed SAR	e maximum ΣSAR _{1g} Value	9.		

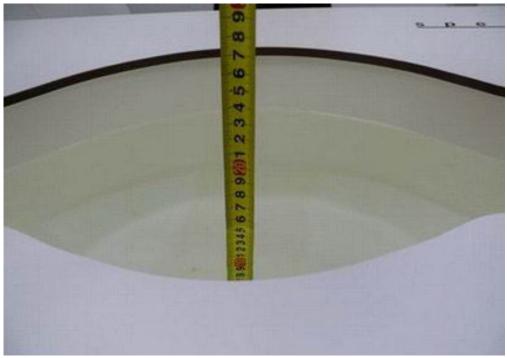
2.MAX. Σ SAR_{1g}=Unlicensed SAR_{MAX} +Licensed SAR_{MAX} MAX. Σ SAR_{1g} =1.332W/kg<1.6W/kg, so the Simultaneous transimition SAR with volum scan are not required for BT and Main-Antenna.

11 Measurement Uncertainty

Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528- 2013 is not required in SAR reports submitted for equipment approval.

ANNEX A: Test Layout

🛟 eurofins


SAR Test Report

Tissue Simulating Liquids

For the measurement of the field distribution inside the flat phantom with DASY, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For Head and Body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm, which is shown in Picture 3 and Picture 4.

Picture 3: liquid depth in the head Phantom

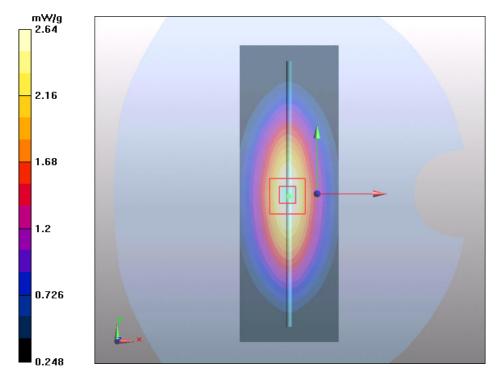
Picture 4: Liquid depth in the flat Phantom

ANNEX B: System Check Results

Original Plot 1 System Performance Check at 835 MHz TSL DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d020 Date: 2022/5/23 Communication System: CW; Frequency: 835 MHz;Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; σ = 0.88 S/m; ϵ_r = 41.4; ρ = 1000 kg/m ³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5°C Phantom section: Flat Section
DASY5 Configuration:
Sensor-Surface: 1.4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(9.30, 9.30, 9.30); Calibrated: 2021/8/12 Electronics: DAE4 SN1692; Calibrated: 2021/10/4 Phantom: SAM 1; Type: QD000P40CD; Serial: TP:1666 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

d=15mm, Pin=250mW/Area Scan (4x12x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 2.64 mW/g


d=15mm, Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 54.4 V/m; Power Drift = -0.076 dB

Peak SAR (extrapolated) = 3.67 W/kg

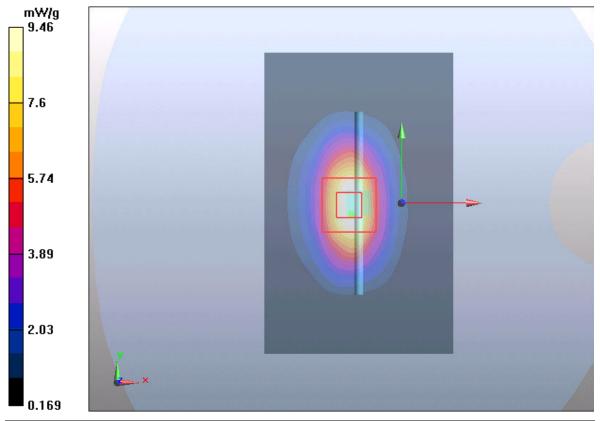
SAR(1 g) = 2.44 mW/g; SAR(10 g) = 1.6 mW/g

Maximum value of SAR (measured) = 2.64 mW/g

Plot 2 System Performance Check at 1750 MHz TSL

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: 1033 Date: 2022/5/24 Communication System: CW; Frequency: 1750 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1750 MHz; σ = 1.34 S/m; ε_r = 40.2; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5°C Phantom section: Flat Section DASY5 Configuration: Sensor-Surface: 1.4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(8.22, 8.22, 8.22); Calibrated: 2021/8/12 Electronics: DAE4 SN1692; Calibrated: 2021/10/4 Phantom: SAM 1; Type: QD000P40CD; Serial: TP:1666 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

d=10mm, Pin=250mW/Area Scan (5x8x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 9.78 mW/g


d=10mm, Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 80 V/m; Power Drift = 0.075 dB

Peak SAR (extrapolated) = 15.5 W/kg

SAR(1 g) = 8.95 mW/g; SAR(10 g) = 4.5 mW/g

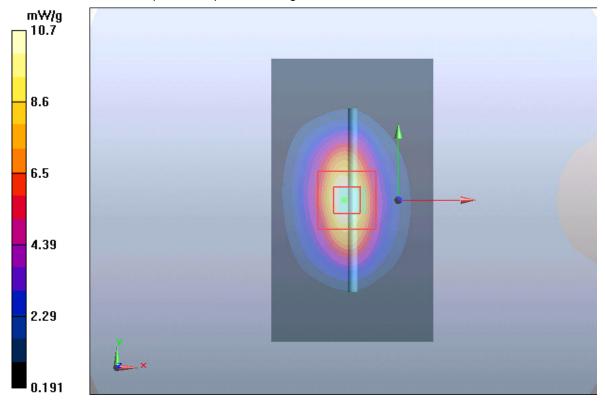
Maximum value of SAR (measured) = 9.46 mW/g

Eurofins TA Technology (Shanghai) Co., Ltd.TA-MB-05-003SPage 52 of 168This report shall not be reproduced except in full, without the written approval of Eurofins TA Technology (Shanghai) Co., Ltd.

Plot 3 System Performance Check at 1900 MHz TSL

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d060 Date: 2022/5/25 Communication System: CW; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; σ = 1.41 S/m; ε_r = 40.1; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5°C Phantom section: Flat Section DASY5 Configuration: Sensor-Surface: 1.4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(7.88, 7.88, 7.88); Calibrated: 2021/8/12 Electronics: DAE4 SN1692; Calibrated: 2021/10/4 Phantom: SAM 1; Type: QD000P40CD; Serial: TP:1666 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

d=10mm, Pin=250mW/Area Scan (4x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 11.3 mW/g


d=10mm, Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 85.5 V/m; Power Drift = 0.028 dB

Peak SAR (extrapolated) = 17.8 W/kg

SAR(1 g) = 9.88 mW/g; SAR(10 g) = 4.9 mW/g

Maximum value of SAR (measured) = 10.7 mW/g

🏟 eurofins

Report No.: R2404A0414-S1

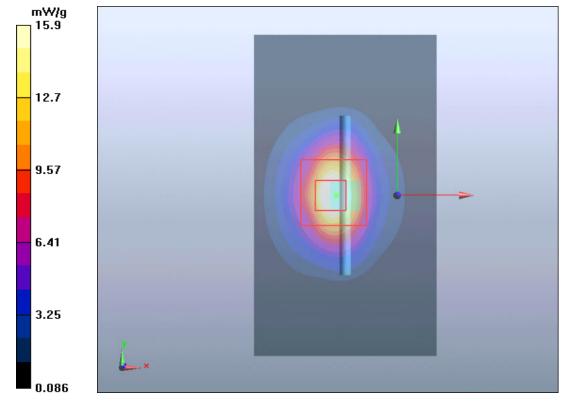
SAR Test Report
Plot 4 System Performance Check at 2450 MHz TSL

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 786

Date: 2022/5/26

Communication System: CW; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; σ = 1.81 S/m; ϵ_r = 38.6; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Sensor-Surface: 1.4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(7.50, 7.50, 7.50); Calibrated: 2021/8/12 Electronics: DAE4 SN1692; Calibrated: 2021/10/4 Phantom: SAM 1; Type: QD000P40CD; Serial: TP:1666 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

d=10mm, Pin=250mW/Area Scan (4x7x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 18.2 mW/g


d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 88.8 V/m; Power Drift = 0.075 dB

Peak SAR (extrapolated) = 30 W/kg

```
SAR(1 g) = 13.7 mW/g; SAR(10 g) = 6.22 mW/g
```

Maximum value of SAR (measured) = 15.9 mW/g

🛟 eurofins

SAR Test Report

Variant

Plot 5 System Performance Check at 835 MHz TSL

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2

Date: 2024/4/17

Communication System: CW; Frequency: 835 MHz;Duty Cycle: 1:1

Medium parameters used: f = 835 MHz; σ =0.87 S/m; ϵ_r = 41.3; ρ = 1000 kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(8.66, 9.52, 8.51); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 1; Type: QD000P40CD; Serial: TP:1666

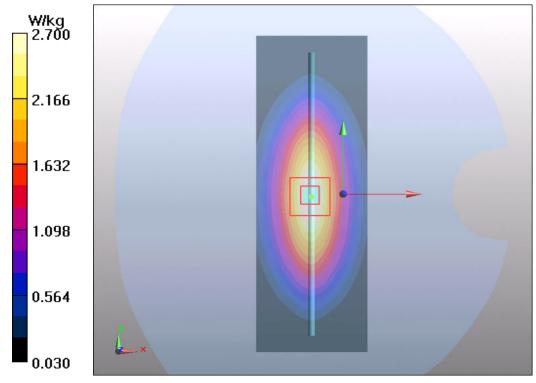
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

d=15mm, Pin=250mW/Area Scan (4x12x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 2.59 W/kg

d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 52.023 V/m; Power Drift = -0.06 dB


Peak SAR (extrapolated) = 3.25 W/kg

SAR(1 g) = 2.46 W/kg; SAR(10 g) = 1.65 W/kg

Smallest distance from peaks to all points 3 dB below = 15.7 mm

Ratio of SAR at M2 to SAR at M1 = 65.4%

Maximum value of SAR (measured) = 2.70 W/kg

SAR Test Report

Report No.: R2404A0414-S1

Plot 6 System Performance Check at 1900 MHz TSL

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2

Date: 2024/4/16

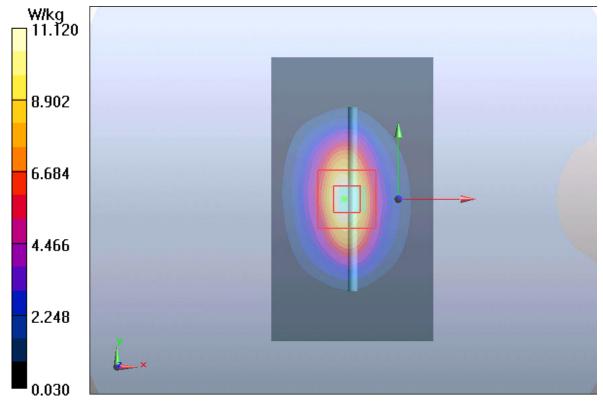
Communication System: CW; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; σ = 1.43 S/m; ϵ_r = 40.2; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Sensor-Surface: 1.4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(7.70, 8.25, 7.79); Calibrated: 2023/7/20 Electronics: DAE4 SN1317; Calibrated: 2023/9/13 Phantom: SAM 1; Type: QD000P40CD; Serial: TP:1666 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

d=10mm, Pin=250mW/Area Scan (4x7x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 10.43 W/kg

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 87.324 V/m; Power Drift = 0.013 dB


Peak SAR (extrapolated) = 19.2 W/kg

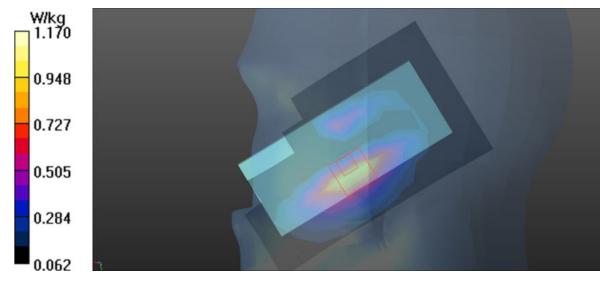
SAR(1 g) = 9.85 W/kg; SAR(10 g) = 4.93 W/kg

Smallest distance from peaks to all points 3 dB below = 9.2mm

Ratio of SAR at M2 to SAR at M1 = 56.3%

```
Maximum value of SAR (measured) = 11.12 W/kg
```


🍪 eurofins

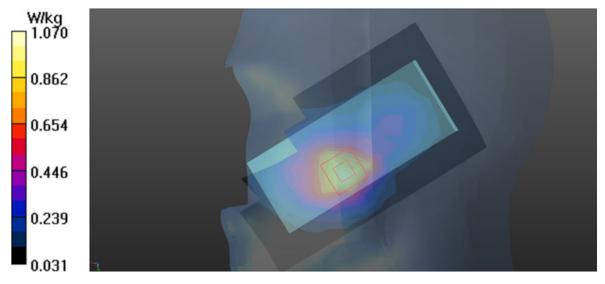

Report No.: R2404A0414-S1

SAR Test Report **ANNEX C: Highest Graph Results** Plot 7 GSM 850 Right Cheek Low Date: 2022/5/23 Communication System: UID 0, GSM (0); Frequency: 824.2 MHz; Duty Cycle: 1:8.30 Medium parameters used (interpolated): f = 824.2 MHz; σ = 0.945 S/m; ϵ_r = 39.833; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5℃ Phantom section: Right Section DASY5 Configuration: Sensor-Surface: 1.4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(9.30, 9.30, 9.30); Calibrated: 2021/8/12 Electronics: DAE4 SN1692; Calibrated: 2021/10/4 Phantom: SAM 1; Type: QD000P40CD; Serial: TP:1666 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Right Cheek Low/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.963 W/kg

Right Cheek Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 8.638 V/m; Power Drift = 0.181 dB Peak SAR (extrapolated) = 1.29 W/kg SAR(1 g) = 0.931 W/kg; SAR(10 g) = 0.606 W/kg

Maximum value of SAR (measured) = 1.17 W/kg

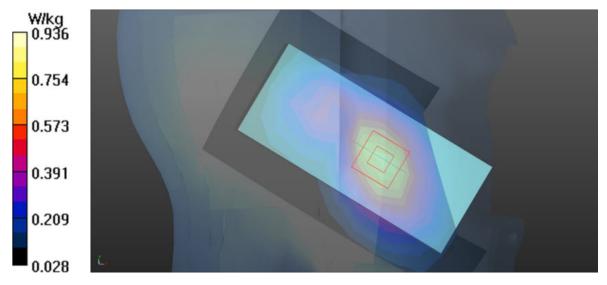

Report No.: R2404A0414-S1

SAR Test Report Plot 8 GSM 1900 Right Cheek High

Date: 2022/5/25 Communication System: UID 0, GSM (0); Frequency: 1909.8 MHz;Duty Cycle: 1:8.30 Medium parameters used: f = 1909.8 MHz; σ = 1.417 S/m; ϵ_r = 38.262; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Right Section DASY5 Configuration: Sensor-Surface: 1.4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(7.88, 7.88, 7.88); Calibrated: 2021/8/12 Electronics: DAE4 SN1692; Calibrated: 2021/10/4 Phantom: SAM 1; Type: QD000P40CD; Serial: TP:1666 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Right Cheek High/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.01 W/kg

Right Cheek High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 8.296 V/m; Power Drift = 0.024 dB Peak SAR (extrapolated) = 1.23 W/kg SAR(1 g) = 0.777 W/kg; SAR(10 g) = 0.463 W/kg Maximum value of SAR (measured) = 1.07 W/kg

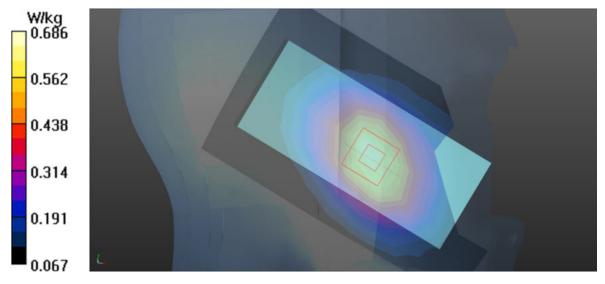

Report No.: R2404A0414-S1

SAR Test Report Plot 9 WCDMA Band II Left Cheek High

Date: 2022/5/25 Communication System: UID 0, WCDMA (0); Frequency: 1907.6 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1907.6 MHz; σ = 1.416 S/m; ε_r = 38.306; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Left Section DASY5 Configuration: Sensor-Surface: 1.4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(7.88, 7.88, 7.88); Calibrated: 2021/8/12 Electronics: DAE4 SN1692; Calibrated: 2021/10/4 Phantom: SAM 1; Type: QD000P40CD; Serial: TP:1666 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Left Cheek High/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.815 W/kg

Left Cheek High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 8.129 V/m; Power Drift = 0.028 dB Peak SAR (extrapolated) = 1.07 W/kg SAR(1 g) = 0.656 W/kg; SAR(10 g) = 0.388 W/kg Maximum value of SAR (measured) = 0.936 W/kg

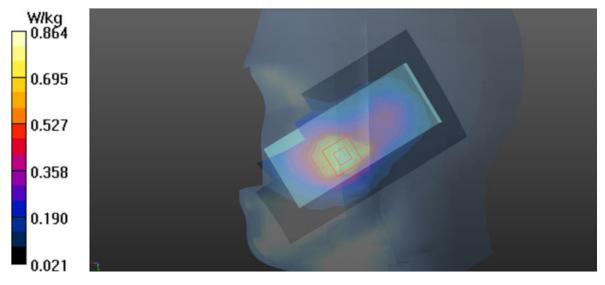


SAR Test Report Plot 10 WCDMA Band V Left Cheek Low

Date: 2022/5/23 Communication System: UID 0, WCDMA (0); Frequency: 826.4 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 826.4 MHz; σ = 0.946 S/m; ϵ_r = 39.813; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Left Section DASY5 Configuration: Sensor-Surface: 1.4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(9.30, 9.30, 9.30); Calibrated: 2021/8/12 Electronics: DAE4 SN1692; Calibrated: 2021/10/4 Phantom: SAM 1; Type: QD000P40CD; Serial: TP:1666 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Left Cheek Low/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.648 W/kg

Left Cheek Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 8.005 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 0.761 W/kg SAR(1 g) = 0.535 W/kg; SAR(10 g) = 0.372 W/kg Maximum value of SAR (measured) = 0.686 W/kg

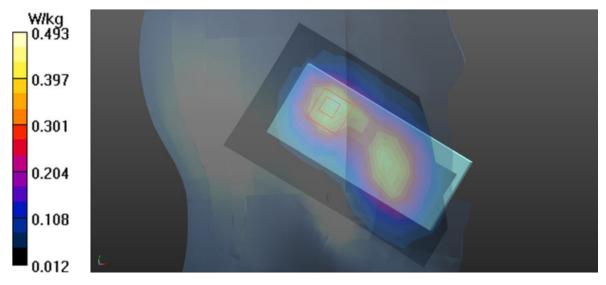

Report No.: R2404A0414-S1

SAR Test Report Plot 11 LTE Band 2 1RB Right Cheek High

Date: 2022/5/25 Communication System: UID 0, LTE (0); Frequency: 1900 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; σ = 1.434 S/m; ϵ_r = 38.861; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Right Section DASY5 Configuration: Sensor-Surface: 1.4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(7.88, 7.88, 7.88); Calibrated: 2021/8/12 Electronics: DAE4 SN1692; Calibrated: 2021/10/4 Phantom: SAM 1; Type: QD000P40CD; Serial: TP:1666 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Right Cheek High/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.792 W/kg

Right Cheek High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 7.247 V/m; Power Drift = 0.023 dB Peak SAR (extrapolated) = 0.985 W/kg SAR(1 g) = 0.635 W/kg; SAR(10 g) = 0.386 W/kg Maximum value of SAR (measured) = 0.864 W/kg

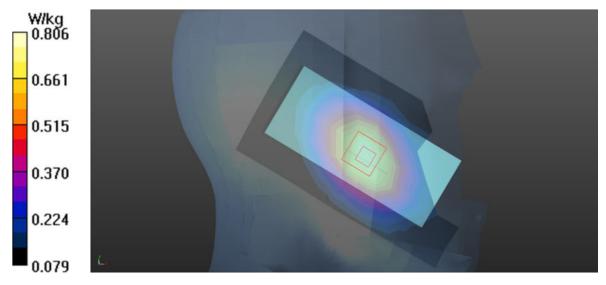

Report No.: R2404A0414-S1

SAR Test Report Plot 12 LTE Band 4 1RB Left Cheek Low

Date: 2022/5/24 Communication System: UID 0, LTE (0); Frequency: 1720 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1720 MHz; σ = 1.303 S/m; ϵ_r = 39.467; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Left Section DASY5 Configuration: Sensor-Surface: 1.4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(8.22, 8.22, 8.22); Calibrated: 2021/8/12 Electronics: DAE4 SN1692; Calibrated: 2021/10/4 Phantom: SAM 1; Type: QD000P40CD; Serial: TP:1666 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Left Cheek Low/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.471 W/kg

Left Cheek Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.051 V/m; Power Drift = 0.16 dB Peak SAR (extrapolated) = 0.554 W/kg SAR(1 g) = 0.372 W/kg; SAR(10 g) = 0.232 W/kg Maximum value of SAR (measured) = 0.493 W/kg

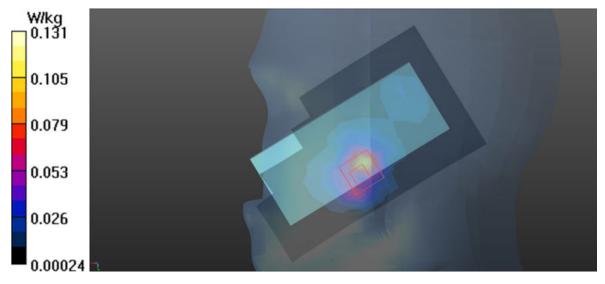

Report No.: R2404A0414-S1

SAR Test Report Plot 13 LTE Band 5 1RB Left Cheek High

Date: 2022/5/23 Communication System: UID 0, LTE (0); Frequency: 844 MHz;Duty Cycle: 1:1 Medium parameters used: f = 844 MHz; σ = 0.958 S/m; ϵ_r = 39.728; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Left Section DASY5 Configuration: Sensor-Surface: 1.4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(9.30, 9.30, 9.30); Calibrated: 2021/8/12 Electronics: DAE4 SN1692; Calibrated: 2021/10/4 Phantom: SAM 1; Type: QD000P40CD; Serial: TP:1666 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Left Cheek High/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.770 W/kg

Left Cheek High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 8.935 V/m; Power Drift = 0.013 dB Peak SAR (extrapolated) = 0.880 W/kg SAR(1 g) = 0.661 W/kg; SAR(10 g) = 0.472 W/kg Maximum value of SAR (measured) = 0.806 W/kg

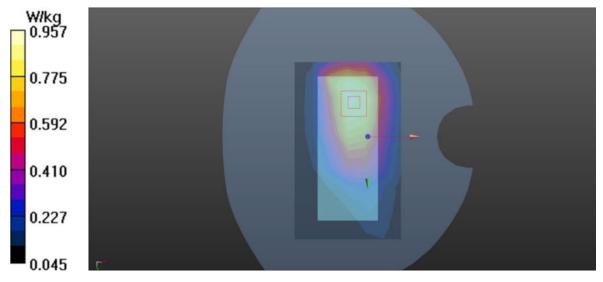

Report No.: R2404A0414-S1

SAR Test Report Plot 14 Bluetooth Right Cheek Low

Date: 2022/5/26 Communication System: UID 0, BT (0); Frequency: 2402 MHz;Duty Cycle: 1:2.17 Medium parameters used: f = 2402 MHz; σ = 1.746 S/m; ϵ_r = 40.697; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Right Section DASY5 Configuration: Sensor-Surface: 1.4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(7.50, 7.50, 7.50); Calibrated: 2021/8/12 Electronics: DAE4 SN1692; Calibrated: 2021/10/4 Phantom: SAM 1; Type: QD000P40CD; Serial: TP:1666 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Right Cheek Low/Area Scan (9x14x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.102 W/kg

Right Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 2.406 V/m; Power Drift = 0.047 dB Peak SAR (extrapolated) = 0.192 W/kg SAR(1 g) = 0.078 W/kg; SAR(10 g) = 0.033 W/kg Maximum value of SAR (measured) = 0.131 W/kg

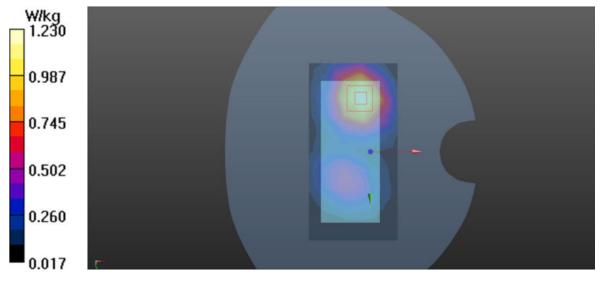


SAR Test Report

Plot 15 GSM 850 GSM Back Side Middle (Distance 10mm) Date: 2022/5/23 Communication System: UID 0, GSM (0); Frequency: 836.6 MHz;Duty Cycle: 1:8.30 Medium parameters used: f = 836.6 MHz; σ = 0.953 S/m; ϵ_r = 39.762; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Sensor-Surface: 1.4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(9.30, 9.30, 9.30); Calibrated: 2021/8/12 Electronics: DAE4 SN1692; Calibrated: 2021/10/4 Phantom: SAM 1; Type: QD000P40CD; Serial: TP:1666 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Bake Side Middle/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.928 W/kg

Bake Side Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 25.23 V/m; Power Drift = -0.017 dB Peak SAR (extrapolated) = 1.13 W/kg SAR(1 g) = 0.739 W/kg; SAR(10 g) = 0.513 W/kg Maximum value of SAR (measured) = 0.957 W/kg

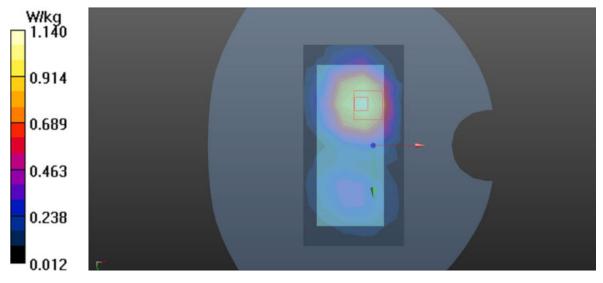

SAR Test Report

Report No.: R2404A0414-S1

Plot 16 GSM 1900 GPRS (2Txslots) Back Side Middle (Distance 10mm) Date: 2022/5/25 Communication System: UID 0, GPRS 2TX (0); Frequency: 1880 MHz;Duty Cycle: 1:4.15 Medium parameters used: f = 1880 MHz; σ = 1.42 S/m; ϵ_r = 38.948; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Sensor-Surface: 1.4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(7.88, 7.88, 7.88); Calibrated: 2021/8/12 Electronics: DAE4 SN1692; Calibrated: 2021/10/4 Phantom: SAM 1; Type: QD000P40CD; Serial: TP:1666 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Back Side Middle 2/Area Scan (6x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.07 W/kg

Back Side Middle 2/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 10.42 V/m; Power Drift = 0.110 dB Peak SAR (extrapolated) = 1.50 W/kg SAR(1 g) = 0.882 W/kg; SAR(10 g) = 0.531 W/kg Maximum value of SAR (measured) = 1.23 W/kg

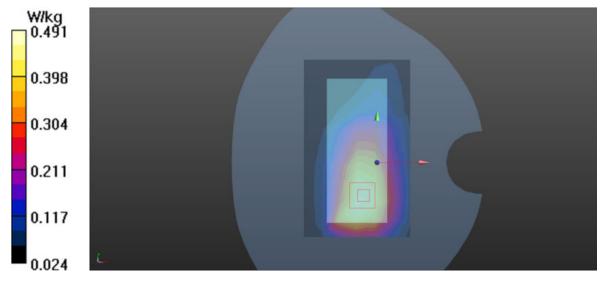

SAR Test Report

Report No.: R2404A0414-S1

Plot 17 WCDMA Band II Back Side Middle (Distance 10mm) Date: 2022/5/25 Communication System: UID 0, WCDMA (0); Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; σ = 1.42 S/m; ε_r = 38.948; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Sensor-Surface: 1.4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(7.88, 7.88, 7.88); Calibrated: 2021/8/12 Electronics: DAE4 SN1692; Calibrated: 2021/10/4 Phantom: SAM 1; Type: QD000P40CD; Serial: TP:1666 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Back Side Middle/Area Scan (6x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.13 W/kg

Back Side Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 11.86 V/m; Power Drift = -0.014 dB Peak SAR (extrapolated) = 1.35 W/kg SAR(1 g) = 0.583 W/kg; SAR(10 g) = 0.346 W/kg Maximum value of SAR (measured) = 1.14 W/kg

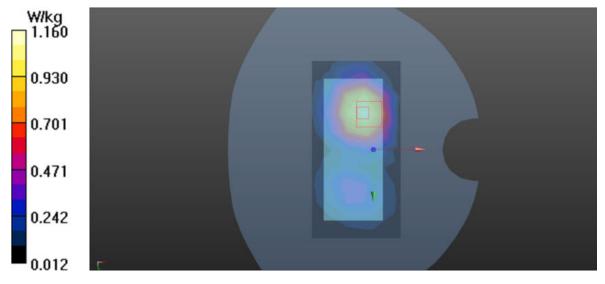

SAR Test Report

Report No.: R2404A0414-S1

Plot 18 WCDMA Band V Back Side Middle (Distance 10mm) Date: 2022/5/23 Communication System: UID 0, WCDMA (0); Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium parameters used: f = 836.6 MHz; σ = 0.953 S/m; ϵ_r = 39.762; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Sensor-Surface: 1.4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(9.30, 9.30, 9.30); Calibrated: 2021/8/12 Electronics: DAE4 SN1692; Calibrated: 2021/10/4 Phantom: SAM 1; Type: QD000P40CD; Serial: TP:1666 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Bake Side Middle/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.474 W/kg

Bake Side Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 18.05 V/m; Power Drift = -0.016 dB Peak SAR (extrapolated) = 0.599 W/kg SAR(1 g) = 0.421 W/kg; SAR(10 g) = 0.287 W/kg Maximum value of SAR (measured) = 0.491 W/kg

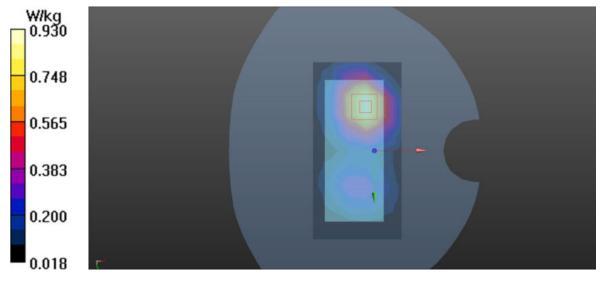


SAR Test Report

Plot 19 LTE Band 2 1RB Back Side High (Distance 10mm) Date: 2022/5/25 Communication System: UID 0, LTE (0); Frequency: 1900 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; σ = 1.434 S/m; ϵ_r = 38.861; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Sensor-Surface: 1.4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(7.88, 7.88, 7.88); Calibrated: 2021/8/12 Electronics: DAE4 SN1692; Calibrated: 2021/10/4 Phantom: SAM 1; Type: QD000P40CD; Serial: TP:1666 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Back Side High/Area Scan (6x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.15 W/kg

Back Side High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 11.90 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 1.37 W/kg SAR(1 g) = 0.814 W/kg; SAR(10 g) = 0.487 W/kg Maximum value of SAR (measured) = 1.16 W/kg

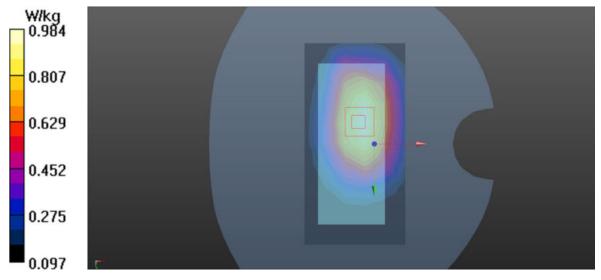

SAR Test Report

Report No.: R2404A0414-S1

Plot 20 LTE Band 4 1RB Back Side Middle (Distance 10mm) Date: 2022/5/24 Communication System: UID 0, LTE (0); Frequency: 1732.5 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 1732.5 MHz; σ = 1.313 S/m; ϵ_r = 39.384; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Sensor-Surface: 1.4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(8.22, 8.22, 8.22); Calibrated: 2021/8/12 Electronics: DAE4 SN1692; Calibrated: 2021/10/4 Phantom: SAM 1; Type: QD000P40CD; Serial: TP:1666 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Back Side Middle/Area Scan (6x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.901 W/kg

Back Side Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.578 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 1.11 W/kg SAR(1 g) = 0.692 W/kg; SAR(10 g) = 0.411 W/kg Maximum value of SAR (measured) = 0.930 W/kg

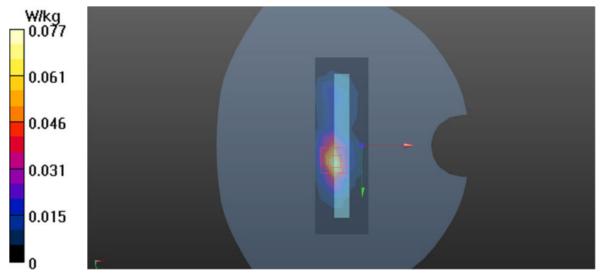

SAR Test Report

Report No.: R2404A0414-S1

Plot 21 LTE Band 5 1RB Back Side High (Distance 10mm) Date: 2022/5/23 Communication System: UID 0, LTE (0); Frequency: 844 MHz;Duty Cycle: 1:1 Medium parameters used: f = 844 MHz; σ = 0.958 S/m; ϵ_r = 39.728; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Sensor-Surface: 1.4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(7.50, 7.50, 7.50); Calibrated: 2021/8/12 Electronics: DAE4 SN1692; Calibrated: 2021/10/4 Phantom: SAM 1; Type: QD000P40CD; Serial: TP:1666 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Back Side High/Area Scan (6x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.986 W/kg

Back Side High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 27.01 V/m; Power Drift = 0.12 dB Peak SAR (extrapolated) = 1.13 W/kg SAR(1 g) = 0.782 W/kg; SAR(10 g) = 0.558 W/kg Maximum value of SAR (measured) = 0.984 W/kg



SAR Test Report

Plot 22 Bluetooth Right Edge Low (Distance 10mm) Date: 2022/5/26 Communication System: UID 0, BT (0); Frequency: 2402 MHz;Duty Cycle: 1:2.17 Medium parameters used: f = 2402 MHz; σ = 1.789 S/m; ϵ_r = 37.77; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Sensor-Surface: 1.4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(7.50, 7.50, 7.50); Calibrated: 2021/8/12 Electronics: DAE4 SN1692; Calibrated: 2021/10/4 Phantom: SAM 1; Type: QD000P40CD; Serial: TP:1666 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Right Edge Low/Area Scan (5x14x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.075 W/kg

Right Edge Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 4.423 V/m; Power Drift = 0.110 dB Peak SAR (extrapolated) = 0.152 W/kg SAR(1 g) = 0.064 W/kg; SAR(10 g) = 0.027 W/kg Maximum value of SAR (measured) = 0.077 W/kg

ANNEX D: Probe Calibration Certificate (Original)

	In Collaboratio		中国认可国际互认
			NAS 校准
Add: No.52 HuaYt Tel: +86-10-62304 E-mail: cttl@china	633-2512 Fax: +86-1	rict, Beijing, 100191, China 10-62304633-2504 w.chinatl.cn	CALIBRATIO CNAS L057
Client TA(S	hanghai)	Certificate No:	Z21-60285
CALIBRATION C	ERTIFICATE		
Object	EX3DV4 -	SN : 3677	
Calibration Procedure(s)			
Calibration Frocedure(s)	FF-Z11-004	4-02	
	Calibration	Procedures for Dosimetric E-field Probes	
Calibration date:	August 12,	2021	
pages and are part of the ce All calibrations have been humidity<70%. Calibration Equipment used	conducted in the	closed laboratory facility: environment te	mperature(22±3)°C and
Primary Standards	ID #		
Power Meter NRP2	10 #	Cal Data/Calibrated by Cartificate Ma	Oshaddad O. F.
	101919	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
	101919 101547	15-Jun-21(CTTL, No.J21X04466)	Jun-22
Power sensor NRP-Z91	101547	15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466)	Jun-22 Jun-22
Power sensor NRP-Z91 Power sensor NRP-Z91	101547 101548	15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466)	Jun-22 Jun-22 Jun-22
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuate	101547 101548 or 18N50W-10dB	15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 10-Feb-20(CTTL, No.J20X00525)	Jun-22 Jun-22 Jun-22 Feb-22
Power sensor NRP-Z91	101547 101548 or 18N50W-10dB or 18N50W-20dB	15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 10-Feb-20(CTTL, No.J20X00525) 10-Feb-20(CTTL, No.J20X00526)	Jun-22 Jun-22 Jun-22 Feb-22 Feb-22
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuate Reference 20dBAttenuate	101547 101548 or 18N50W-10dB or 18N50W-20dB	15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 10-Feb-20(CTTL, No.J20X00525)	Jun-22 Jun-22 Jun-22 Feb-22 Feb-22 Jan-22
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuate Reference 20dBAttenuate Reference Probe EX3DV DAE4	101547 101548 or 18N50W-10dB or 18N50W-20dB 4 SN 3617 SN 1556	15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 10-Feb-20(CTTL, No.J20X00525) 10-Feb-20(CTTL, No.J20X00526) 27-Jan-21(SPEAG, No.EX3-3617_Jan21) 15-Jan-21(SPEAG, No.DAE4-1556_Jan2	Jun-22 Jun-22 Jun-22 Feb-22 Feb-22 Jan-22 1) Jan-22
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuate Reference 20dBAttenuate Reference Probe EX3DV DAE4 Secondary Standards	101547 101548 or 18N50W-10dB or 18N50W-20dB 4 SN 3617 SN 1556 ID #	15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 10-Feb-20(CTTL, No.J20X00525) 10-Feb-20(CTTL, No.J20X00526) 27-Jan-21(SPEAG, No.EX3-3617_Jan21) 15-Jan-21(SPEAG, No.DAE4-1556_Jan2 Cal Date(Calibrated by, Certificate No.)	Jun-22 Jun-22 Jun-22 Feb-22 Feb-22 Jan-22 1) Jan-22 Scheduled Calibration
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuate Reference 20dBAttenuate Reference Probe EX3DV DAE4 Secondary Standards SignalGenerator MG3700	101547 101548 or 18N50W-10dB or 18N50W-20dB 4 SN 3617 SN 1556 ID # A 6201052605	15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 10-Feb-20(CTTL, No.J20X00525) 10-Feb-20(CTTL, No.J20X00526) 27-Jan-21(SPEAG, No.EX3-3617_Jan21) 15-Jan-21(SPEAG, No.DAE4-1556_Jan2 Cal Date(Calibrated by, Certificate No.) 16-Jun-21(CTTL, No.J21X04467)	Jun-22 Jun-22 Jun-22 Feb-22 Feb-22 Jan-22 1) Jan-22 Scheduled Calibration Jun-22
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuate Reference 20dBAttenuate Reference Probe EX3DV DAE4 Secondary Standards SignalGenerator MG3700 Network Analyzer E50710	101547 101548 or 18N50W-10dB 18N50W-20dB 4 SN 3617 SN 1556 ID # A 6201052605 C MY46110673	15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 10-Feb-20(CTTL, No.J20X00525) 10-Feb-20(CTTL, No.J20X00526) 27-Jan-21(SPEAG, No.EX3-3617_Jan21) 15-Jan-21(SPEAG, No.DAE4-1556_Jan2 Cal Date(Calibrated by, Certificate No.) 16-Jun-21(CTTL, No.J21X04467) 21-Jan-21(CTTL, No.J20X00515)	Jun-22 Jun-22 Jun-22 Feb-22 Feb-22 Jan-22 1) Jan-22 Scheduled Calibration Jun-22 Jan-22
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuate Reference 20dBAttenuate Reference Probe EX3DV DAE4 Secondary Standards SignalGenerator MG3700 Network Analyzer E50710	101547 101548 or 18N50W-10dB 18N50W-20dB 4 SN 3617 SN 1556 ID # A 6201052605 C MY46110673 Name	15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 10-Feb-20(CTTL, No.J20X00525) 10-Feb-20(CTTL, No.J20X00526) 27-Jan-21(SPEAG, No.EX3-3617_Jan21) 15-Jan-21(SPEAG, No.DAE4-1556_Jan2 Cal Date(Calibrated by, Certificate No.) 16-Jun-21(CTTL, No.J21X04467) 21-Jan-21(CTTL, No.J20X00515) Function	Jun-22 Jun-22 Jun-22 Feb-22 Feb-22 Jan-22 1) Jan-22 Scheduled Calibration Jun-22
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuate Reference 20dBAttenuate Reference Probe EX3DV DAE4 Secondary Standards SignalGenerator MG3700 Network Analyzer E50710	101547 101548 or 18N50W-10dB 18N50W-20dB 4 SN 3617 SN 1556 ID # A 6201052605 C MY46110673	15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 10-Feb-20(CTTL, No.J20X00525) 10-Feb-20(CTTL, No.J20X00526) 27-Jan-21(SPEAG, No.EX3-3617_Jan21) 15-Jan-21(SPEAG, No.DAE4-1556_Jan2 Cal Date(Calibrated by, Certificate No.) 16-Jun-21(CTTL, No.J21X04467) 21-Jan-21(CTTL, No.J20X00515)	Jun-22 Jun-22 Jun-22 Feb-22 Feb-22 Jan-22 1) Jan-22 Scheduled Calibration Jun-22 Jan-22
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuate Reference 20dBAttenuate Reference Probe EX3DV DAE4 Secondary Standards SignalGenerator MG3700 Network Analyzer E50710	101547 101548 or 18N50W-10dB 18N50W-20dB 4 SN 3617 SN 1556 ID # A 6201052605 C MY46110673 Name	15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 10-Feb-20(CTTL, No.J20X00525) 10-Feb-20(CTTL, No.J20X00526) 27-Jan-21(SPEAG, No.EX3-3617_Jan21) 15-Jan-21(SPEAG, No.DAE4-1556_Jan2 Cal Date(Calibrated by, Certificate No.) 16-Jun-21(CTTL, No.J21X04467) 21-Jan-21(CTTL, No.J20X00515) Function	Jun-22 Jun-22 Jun-22 Feb-22 Feb-22 Jan-22 1) Jan-22 Scheduled Calibration Jun-22 Jan-22
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuate Reference 20dBAttenuate Reference Probe EX3DV DAE4 Secondary Standards SignalGenerator MG3700 Network Analyzer E50710 Calibrated by:	101547 101548 18N50W-10dB 18N50W-20dB 4 SN 3617 SN 1556 ID # A 6201052605 C MY46110673 Name Yu Zongying	15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 10-Feb-20(CTTL, No.J20X00525) 10-Feb-20(CTTL, No.J20X00526) 27-Jan-21(SPEAG, No.EX3-3617_Jan21) 15-Jan-21(SPEAG, No.DAE4-1556_Jan2 Cal Date(Calibrated by, Certificate No.) 16-Jun-21(CTTL, No.J21X04467) 21-Jan-21(CTTL, No.J20X00515) Function SAR Test Engineer	Jun-22 Jun-22 Jun-22 Feb-22 Feb-22 Jan-22 1) Jan-22 Scheduled Calibration Jun-22 Jan-22
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuate Reference 20dBAttenuate Reference Probe EX3DV DAE4 Secondary Standards SignalGenerator MG3700 Network Analyzer E50710 Calibrated by: Reviewed by:	101547 101548 18N50W-10dB 18N50W-20dB 4 SN 3617 SN 1556 ID # A 6201052605 MY46110673 Name Yu Zongying Lin Hao	15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 10-Feb-20(CTTL, No.J21X04466) 10-Feb-20(CTTL, No.J20X00525) 10-Feb-20(CTTL, No.J20X00526) 27-Jan-21(SPEAG, No.EX3-3617_Jan21) 15-Jan-21(SPEAG, No.DAE4-1556_Jan2 Cal Date(Calibrated by, Certificate No.) 16-Jun-21(CTTL, No.J21X04467) 21-Jan-21(CTTL, No.J20X00515) Function SAR Test Engineer SAR Test Engineer	Jun-22 Jun-22 Jun-22 Feb-22 Feb-22 Jan-22 1) Jan-22 Scheduled Calibration Jun-22 Jan-22 Signature

Certificate No: Z21-60285

Page 1 of 9

 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2512
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn

Glossary:	
TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A,B,C,D	modulation dependent linearization parameters
Polarization Φ	Φ rotation around probe axis
Polarization θ	θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i θ =0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010

d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx, y,z are only intermediate values, i.e., the uncertainties of NORMx, y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the
 frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax,y,z; Bx,y,z; Cx,y,z;VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the
 probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No:Z21-60285

Page 2 of 9

 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2512

 E-mail: cttl@chinattl.com

DASY/EASY – Parameters of Probe: EX3DV4 – SN:3677

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(µV/(V/m) ²) ^A	0.41	0.46	0.40	±10.0%
DCP(mV) ^B	99.3	101.9	101.5	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	C	D dB	VR mV	Unc ^E (<i>k</i> =2)
0 CW	CW	X	0.0	0.0	1.0	0.00	158.2	±2.0%
			Y	0.0	0.0	1.0		170.4
	1	z	0.0	0.0	1.0		156.9	1

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

A The uncertainties of Norm X, Y, Z do not affect the E2-field uncertainty inside TSL (see Page 4).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

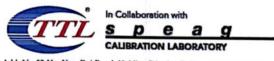
Certificate No:Z21-60285

Page 3 of 9

Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn E-mail: cttl@chinattl.com

DASY/EASY – Parameters of Probe: EX3DV4 – SN:3677

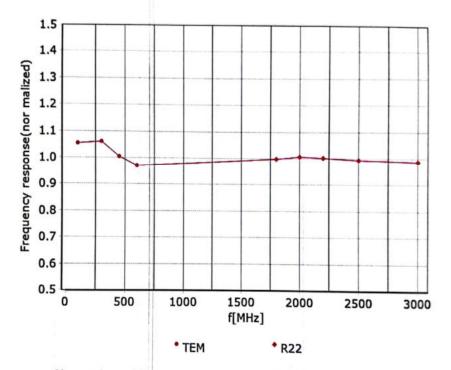
Calibration Parameter Determined in Head Tissue Simulating Media Relative Conductivity DepthG Unct. ConvF X ConvF Y ConvF Z Alpha^G f [MHz]C Permittivity F (S/m) F (mm) (k=2) 750 41.9 0.89 9.64 9.64 0.40 0.80 ±12.1% 9.64 835 41.5 0.90 9.30 9.30 9.30 0.16 1.29 ±12.1% 1750 40.1 1.37 8.22 8.22 0.24 1.00 ±12.1% 8.22 1900 40.0 1.40 7.88 7.88 7.88 0.24 1.10 ±12.1% 7.96 0.21 1.17 ±12.1% 2000 40.0 7.96 7.96 1.40 0.68 2300 39.5 1.67 7.67 7.67 7.67 0.66 $\pm 12.1\%$ 2450 0.70 39.2 7.50 7.50 0.66 ±12.1% 1.80 7.50 2600 39.0 1.96 7.25 7.25 7.25 0.62 0.73 $\pm 12.1\%$ 3300 38.2 2.71 7.00 7.00 7.00 0.45 0.94 ±13.3% 3500 37.9 0.45 0.98 2.91 6.92 6.92 6.92 ±13.3% 3700 37.7 3.12 6.71 6.71 0.45 1.04 ±13.3% 6.71 0.40 3900 37.5 3.32 6.62 6.62 6.62 1.25 ±13.3% 4100 37.2 3.53 6.66 6.66 6.66 0.30 1.38 ±13.3% 4400 36.9 3.84 6.43 6.43 6.43 0.35 1.35 ±13.3% 6.35 4600 36.7 4.04 6.35 6.35 0.50 1.13 ±13.3% 4.25 6.30 6.30 6.30 4800 36.4 0.45 1.25 ±13.3% 4950 36.3 4.40 6.13 6.13 6.13 0.45 1.25 ±13.3% 5250 35.9 4.71 5.45 5.45 5.45 0.50 1.30 ±13.3% 5.07 5.00 5.00 5.00 0.60 5600 35.5 1.15 ±13.3% 5750 35.4 5.22 5.04 5.04 5.04 0.55 1.26 ±13.3%


^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

FAt frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No:Z21-60285

Page 4 of 9



 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2512
 Fax: +86-10-62304633-2504

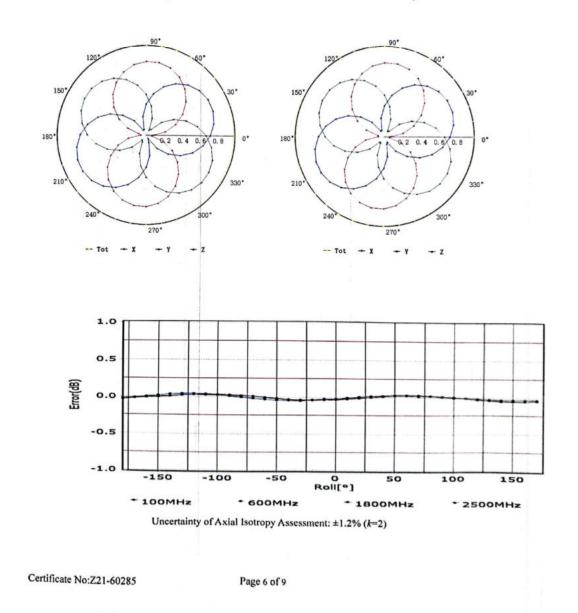
 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn

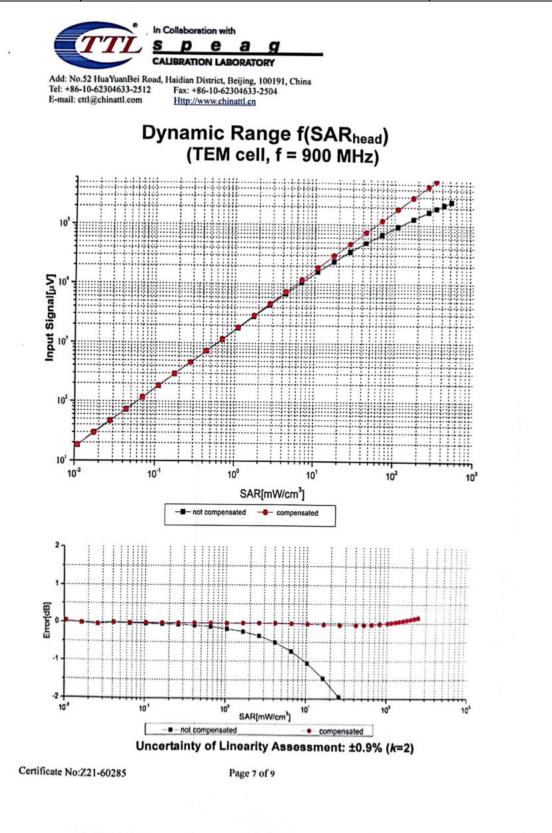
Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

Certificate No:Z21-60285

Page 5 of 9

 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China

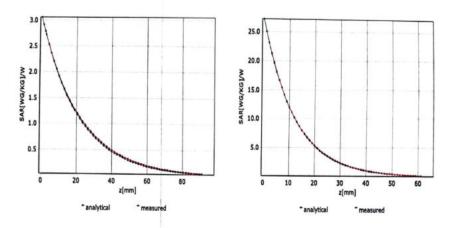

 Tel: +86-10-62304633-2512
 Fax: +86-10-62304633-2504

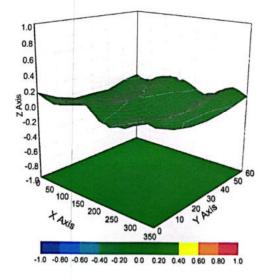

 E-mail: cttl@chinattl.com
 <u>Http://www.chinattl.cn</u>

Receiving Pattern (Φ), θ=0°

f=600 MHz, TEM

f=1800 MHz, R22




Conversion Factor Assessment

f=750 MHz,WGLS R9(H_convF)

f=1750 MHz,WGLS R22(H_convF)

Deviation from Isotropy in Liquid

Uncertainty of Spherical Isotropy Assessment: ±3.2% (k=2)

Certificate No:Z21-60285

Page 8 of 9

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3677

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	117.4
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	9mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	1.4mm

Certificate No:Z21-60285

Page 9 of 9

ANNEX E: Probe Calibration Certificate (Variant)

🛟 eurofins

SAR Test Report

Engineering AG leughausstrasse 43, 8004 Zurich, Switzerland Accreditation Service (SAS) the Swiss Accreditation Service Is one of the signatories to the EA fultilateral Agreement for the recognition of calibration certificates								
ent TA Shanghai City		Certificate No.	X-3677_Jul23					
CALIBRATION	ERTIFICATE							
Object	EX3DV4 - SN:36	577						
Calibration procedure(s)	QA CAL-25.v8	QA CAL-12.v10, QA CAL-14.v7, edure for dosimetric E-field probe						
Calibration date	July 20, 2023							
All calibrations have been o		national standards, which realize the physica e probability are given on the following page atory facility: environment temperature (22 ± 1)						
All calibrations have been of Calibration Equipment user Primary Standards	conducted in the closed labora d (M&TE critical for calibration	e probability are given on the following page atory facility: environment temperature (22 ± 1) Cal Date (Certificate No.)	3) °C and humidity < 70%.					
All calibrations have been of Calibration Equipment user Primary Standards Power meter NRP2	conducted in the closed labora d (M&TE critical for calibration	e probability are given on the following page atory facility: environment temperature (22 \pm))	3)℃ and humidity < 70%.					
All calibrations have been of Calibration Equipment used Primary Standards Power meter NRP2 Power sensor NRP-Z91 OCP DAK-3.5 (weighted)	conducted in the closed labora d (M&TE critical for calibration ID SN: 104778	e probability are given on the following page atory facility: environment temperature (22 ± a) Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 20-Oct-22 (OCP-DAK3.5-1249_Oct22)	3) °C and humidity < 70%. Scheduled Calibration Mar-24 Mar-24) Oct-23					
All calibrations have been of Calibration Equipment user Primary Standards Power sensor NRP-291 DCP DAK-3.5 (weighted) DCP DAK-12	onducted in the closed labora d (M&TE critical for calibration ID SN: 104778 SN: 104778 SN: 103244 SN: 1249 SN: 1016	e probability are given on the following page atory facility: environment temperature (22 ± n) Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 20-Oct-22 (OCP-DAK3.5-1249_Oct22) 20-Oct-22 (OCP-DAK12-1016_Oct22)	3) °C and humidity < 70%. Scheduled Calibration Mar-24 Mar-24) Oct-23 Oct-23					
All calibrations have been of Calibration Equipment user Primary Standards Power meter NRP2 Power sensor NRP-Z91 OCP DAK-3.5 (weighted) OCP DAK-12 Reference 20 dB Attenuato	anducted in the closed labora d (M&TE critical for calibration SN: 104778 SN: 103244 SN: 103244 SN: 1249 SN: 1016 r SN: CC2552 (20x)	e probability are given on the following page atory facility: environment temperature (22 ± 1) Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 20-Oct-22 (OCP-DAK12-1016_Oct22) 20-Oct-22 (OCP-DAK12-1016_Oct22) 30-Mar-23 (No. 217-03809)	3) °C and humidity < 70%. Scheduled Calibration Mar-24 Mar-24 Oct-23 Oct-23 Mar-24					
All calibrations have been of Calibration Equipment user Primary Standards Power meter NRP2 Power sensor NRP-291 OCP DAK-3.5 (weighted) DCP DAK-12 Reference 20 dB Attenuato DAE4	onducted in the closed labora d (M&TE critical for calibration ID SN: 104778 SN: 104778 SN: 103244 SN: 1249 SN: 1016	e probability are given on the following page atory facility: environment temperature (22 ± n) Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 20-Oct-22 (OCP-DAK3.5-1249_Oct22) 20-Oct-22 (OCP-DAK12-1016_Oct22)	3) °C and humidity < 70%. Scheduled Calibration Mar-24 Mar-24) Oct-23 Oct-23					
All calibrations have been of Calibration Equipment user Primary Standards Power meter NRP2 Power sensor NRP-291 DCP DAK-3.5 (weighted) DCP DAK-12 Reference 20 dB Attenuato DAE4 Reference Probe ES3DV2	ID SN: 104778 SN: 104778 SN: 103244 SN: 1249 SN: 1016 r SN: CC2552 (20x) SN: 660 SN: 3013	e probability are given on the following page atory facility: environment temperature (22 ± a) Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 20-Oct-22 (OCP-DAK3.5-1249_Oct22) 20-Oct-22 (OCP-DAK3.5-1249_Oct22) 30-Mar-23 (No. 217-03809) 16-Mar-23 (No. DAE4-660_Mar23) 06-Jan-23 (No. ES3-3013_Jan23)	3) °C and humidity < 70%. Scheduled Calibration Mar-24 Mar-24) Oct-23 Oct-23 Mar-24 Mar-24 Jan-24					
All calibrations have been of Calibration Equipment user Primary Standards Power sensor NRP-291 OCP DAK-12 Reference 20 dB Attenuato DAE4 Reference Probe ES3DV2 Secondary Standards	ID ID SN: 104778 SN: 103244 SN: 1249 SN: 1016 r SN: CC2552 (20x) SN: 3013	e probability are given on the following page atory facility: environment temperature (22 ± n) Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 20-Oct-22 (OCP-DAK12-1016_Oct22) 20-Oct-22 (OCP-DAK12-1016_Oct22) 30-Mar-23 (No. 217-03809) 16-Mar-23 (No. DAE4-660_Mar23) 06-Jan-23 (No. ES3-3013_Jan23) Check Date (in house)	3) °C and humidity < 70%. Scheduled Calibration Mar-24 Mar-24) Oct-23 Oct-23 Mar-24 Mar-24 Jan-24 Scheduled Check					
All calibrations have been of Calibration Equipment user Power meter NRP2 Power sensor NRP-Z91 OCP DAK-3.5 (weighted) OCP DAK-12 Reference 20 dB Attenuato DAE4 Reference Probe ES3DV2 Secondary Standards Power meter E4419B	anducted in the closed labora d (M&TE critical for calibration SN: 104778 SN: 103244 SN: 103244 SN: 1016 r SN: CC2552 (20x) SN: 660 SN: 3013 ID SN: GB41293874	e probability are given on the following page atory facility: environment temperature (22 ± 1) Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 20-Oct-22 (OCP-DAK15-1249_Oct22) 20-Oct-22 (OCP-DAK15-1016_Oct22) 30-Mar-23 (No. 217-03809) 16-Mar-23 (No. DAE4-660_Mar23) 06-Jan-23 (No. ES3-3013_Jan23) Check Date (in house) 06-Apr-16 (in house check Jun-22)	3) °C and humidity < 70%. Scheduled Calibration Mar-24 Mar-24) Oct-23 Oct-23 Mar-24 Mar-24 Jan-24 Scheduled Check In house check: Jun-24					
All calibrations have been of Calibration Equipment user Primary Standards Power meter NRP2 Power sensor NRP-291 OCP DAK-3.5 (weighted) OCP DAK-12 Reference 20 dB Attenuato DAE4 Reference Probe ES3DV2 Secondary Standards Power meter E4419B Power sensor E4412A	ID ID SN: 104778 SN: 103244 SN: 1249 SN: 1016 r SN: CC2552 (20x) SN: 3013	e probability are given on the following page atory facility: environment temperature (22 ± n) Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 20-Oct-22 (OCP-DAK12-1016_Oct22) 20-Oct-22 (OCP-DAK12-1016_Oct22) 30-Mar-23 (No. 217-03809) 16-Mar-23 (No. DAE4-660_Mar23) 06-Jan-23 (No. ES3-3013_Jan23) Check Date (in house)	3) °C and humidity < 70%. Scheduled Calibration Mar-24 Mar-24) Oct-23 Oct-23 Mar-24 Mar-24 Jan-24 Scheduled Check					
All calibrations have been of Calibration Equipment user Primary Standards Power sensor NRP-291 DCP DAK-3.5 (weighted) DCP DAK-12 Reference 20 dB Attenuato DAE4 Reference Probe ES3DV2 Secondary Standards Power sensor E4412A Power sensor E4412A	anducted in the closed labora d (M&TE critical for calibration SN: 104778 SN: 103244 SN: 1016 r SN: CC2552 (20x) SN: 660 SN: 3013 ID SN: GB41293874 SN: MY41498087	e probability are given on the following page atory facility: environment temperature (22 ± atory facility: environme	3) °C and humidity < 70%. Scheduled Calibration Mar-24 Mar-24) Oct-23 Oct-23 Mar-24 Mar-24 Jan-24 Scheduled Check In house check: Jun-24 In house check: Jun-24					
All calibrations have been of Calibration Equipment user Primary Standards Power sensor NRP-291 DCP DAK-3.5 (weighted) DCP DAK-12 Reference 20 dB Attenuato DAE4 Reference Probe ES3DV2 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C	ID SN: 104778 SN: 103244 SN: 103244 SN: 103244 SN: 103244 SN: 103244 SN: 1016 r SN: 660 SN: 3013 ID SN: GB41293874 SN: MY41498087 SN: 000110210	e probability are given on the following page atory facility: environment temperature (22 ±)) Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 20-Oct-22 (OCP-DAK3.5-1249_Oct22) 20-Oct-22 (OCP-DAK12-1016_Oct22) 30-Mar-23 (No. DAE4-660_Mar23) 16-Mar-23 (No. DAE4-660_Mar23) 06-Jan-23 (No. ES3-3013_Jan23) Check Date (in house) 06-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22)	3) °C and humidity < 70%. Scheduled Calibration Mar-24 Mar-24) Oct-23 Oct-23 Mar-24 Jan-24 Scheduled Check In house check: Jun-24 In house check: Jun-24 In house check: Jun-24					
All calibrations have been of Calibration Equipment user Primary Standards Power sensor NRP-291 DCP DAK-3.5 (weighted) DCP DAK-12 Reference 20 dB Attenuato DAE4 Reference Probe ES3DV2 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C	in the closed labora d (M&TE critical for calibration ID SN: 104778 SN: 103244 SN: 1249 SN: 1249 SN: 0016 r SN: 660 SN: 3013 ID SN: GB41293874 SN: WY41498087 SN: 000110210 SN: US3642U01700	e probability are given on the following page atory facility: environment temperature (22 ±)) Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 20-Oct-22 (OCP-DAK3.5-1249_Oct22) 20-Oct-22 (OCP-DAK12-1016_Oct22) 30-Mar-23 (No. 217-03809) 16-Mar-23 (No. DAE4-660_Mar23) 06-Jan-23 (No. DAE4-660_Mar23) 06-Jan-23 (No. DAE4-660_Mar23) 06-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22) 04-Aug-99 (in house check Jun-22)	3) °C and humidity < 70%. Scheduled Calibration Mar-24 Mar-24 Oct-23 Oct-23 Oct-23 Mar-24 Jan-24 Scheduled Check In house check: Jun-24 In house check: Jun-24 In house check: Jun-24 In house check: Jun-24 In house check: Jun-24					
All calibrations have been of Calibration Equipment user Power meter NRP2 Power sensor NRP-Z91 OCP DAK-3.5 (weighted) OCP DAK-12 Reference 20 dB Attenuato DAE4 Reference Probe ES3DV2 Secondary Standards Power meter E4419B Power sensor E4412A RF generator HP 8648C Network Analyzer E8358A	Annu Conducted in the closed laboration of (M&TE critical for calibration SN: 104778 SN: 104778 SN: 104778 SN: 103244 SN: 1016 r SN: CC2552 (20x) SN: 660 SN: 3013 ID SN: GB41293874 SN: MY41498087 SN: 00310210 SN: US3642U01700 SN: US3642U01700 SN: US341080477 Name	e probability are given on the following page atory facility: environment temperature (22 ± atory facility: environme	3) °C and humidity < 70%. Scheduled Calibration Mar-24 Mar-24 Oct-23 Oct-23 Oct-23 Mar-24 Jan-24 Scheduled Check In house check: Jun-24 In house check: Oct-24					
All calibrations have been of Calibration Equipment user Primary Standards Power sensor NRP-291 DCP DAK-3.5 (weighted) DCP DAK-12 Reference 20 dB Attenuato DAE4 Reference Probe ES3DV2 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C	ID SN: 104778 SN: 103244 SN: 103244 SN: 103244 SN: 1016 r SN: 660 SN: 3013 ID SN: 6841293874 SN: 000110210 SN: US3642U01700 SN: US41080477	e probability are given on the following page atory facility: environment temperature (22 ± atory facility: environme	3) °C and humidity < 70%. Scheduled Calibration Mar-24 Mar-24 Oct-23 Oct-23 Oct-23 Mar-24 Jan-24 Scheduled Check In house check: Jun-24 In house check: Oct-24					
All calibrations have been of Calibration Equipment user Primary Standards Power meter NRP2 Power sensor NRP-291 DOCP DAK-3.5 (weighted) DOCP DAK-12 Reference 20 dB Attenuato DAE4 Reference Probe ES3DV2 Secondary Standards Power sensor E4412A Power sensor E4412A Power sensor E4412A RF generator HP 8648C Network Analyzer E8358A Calibrated by	Annu Conducted in the closed laboration of (M&TE critical for calibration SN: 104778 SN: 104778 SN: 104778 SN: 103244 SN: 1016 r SN: CC2552 (20x) SN: 660 SN: 3013 ID SN: GB41293874 SN: MY41498087 SN: 00310210 SN: US3642U01700 SN: US3642U01700 SN: US341080477 Name	e probability are given on the following page atory facility: environment temperature (22 ± atory facility: environme	3) °C and humidity < 70%. Scheduled Calibration Mar-24 Mar-24 Oct-23 Oct-23 Oct-23 Mar-24 Jan-24 Scheduled Check In house check: Jun-24 In house check: Oct-24					
All calibrations have been of Calibration Equipment user Primary Standards Power meter NRP2 Power sensor NRP-Z91 OCP DAK-12 Reference 20 dB Attenuato DAE4 Reference Probe ES3DV2 Secondary Standards Power sensor E44198 Power sensor E44198 Power sensor E4412A RF generator HP 8648C Network Analyzer E8358A Calibrated by Approved by	Anducted in the closed laboration (M&TE critical for calibration SN: 104778 SN: 104778 SN: 103244 SN: 1249 SN: 1249 SN: CC2552 (20x) SN: 660 SN: 3013 ID SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700 SN: US3642U01700 SN: US341080477 Name Joanna Lleshaj Sven Kühn	e probability are given on the following page atory facility: environment temperature (22 ± atory facility: environment temperature (22 ± environment temperatu	3) °C and humidity < 70%. Scheduled Calibration Mar-24 Oct-23 Oct-23 Oct-23 Mar-24 Jan-24 Scheduled Check In house check: Jun-24 In house check: Jun-24					

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage C
- Servizio svizzero di taratura S
 - Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization ϑ	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization ∂ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E2-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- · DCPx, y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal. DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ±50 MHz to ±100 MHz.
- · Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- · Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- · Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX-3677_Jul23

Page 2 of 22

July 20, 2023

EX3DV4 - SN:3677

Parameters of Probe: EX3DV4 - SN:3677

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k = 2)
Norm (µV/(V/m) ²) A	0.40	0.45	0.39	±10.1%
DCP (mV) B	101.0	102.0	102.5	±4.7%

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max dev.	Max Unc ^E k = 2
0	CW	X	0.00	0.00	1.00	0.00	125.6	±1.9%	±4.7%
		Y	0.00	0.00	1.00		121.0		
		Z	0.00	0.00	1.00		122.5		
10352	Pulse Waveform (200Hz, 10%)	X	20.00	89.56	19.55	10.00	60.0	±2.7%	±9.6%
	Construction of the second	Y	20.00	88.90	19.41	100000000	60.0	CARGE STREET	000000000000000000000000000000000000000
		Z	20.00	87.18	18.16	1	60.0		
10353	Pulse Waveform (200Hz, 20%)	X	20.00	91.43	19.38	6.99	80.0	±1.5%	±9.6%
		Y	20.00	89.58	18.35		80.0		
		Z	20.00	88.39	17.59		80.0		
10354	Pulse Waveform (200Hz, 40%)	X	20.00	95.46	19.97	3.98	95.0	±1.3%	±9.6%
		Y	20.00	89.26	16.58		95.0		
		Z	20.00	91.18	17.61		95.0		
10355	Pulse Waveform (200Hz, 60%)	X	20.00	99.05	20.33	2.22	120.0	0	±9.6%
		Y	20.00	83.90	12.80		120.0		
		Z	20.00	93.78	17.60	1	120.0		
10387	QPSK Waveform, 1 MHz	X	1.51	66.00	14.40	1.00	150.0	±3.5%	6 ±9.6%
		Y	1.29	64.03	13.00		150.0		
		Z	1.42	66.25	14.23	1	150.0	1	
10388	QPSK Waveform, 10 MHz	X	2.03	67.08	15.21	0.00	150.0	±1.0%	±9.6%
		Y	1.77	65.25	14.04	1	150.0		
		Z	1.91	66.70	15.02	1	150.0		
10396	64-QAM Waveform, 100 kHz	X	2.64	69.26	18.29	3.01	150.0	±1.1%	±9.6%
		Y	2.33	66.49	16.64		150.0	1	
		Z	2.02	65.39	16.32		150.0	1	-
10399	64-QAM Waveform, 40 MHz	X	3.37	66.69	15.51	0.00	150.0	±2.6%	±9.6%
	International and the second se	Y	3.33	66.54	15.28	1	150.0		
		Z	3.28	66.50	15.39	1	150.0	1	
10414	WLAN CCDF, 64-QAM, 40 MHz	X	4.70	65.49	15.43	0.00	150.0	±4.5%	±9.6%
		Y	4.69	65.54	15.36		150.0	1	A STREET
		Z	4.55	65.38	15.33		150.0	1	

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).
 ^B Linearization parameter uncertainty for maximum specified field strength.
 ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: EX-3677_Jul23

Page 3 of 22

July 20, 2023

Parameters of Probe: EX3DV4 - SN:3677

Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	T1 msV ⁻²	T2 ms V ⁻¹	T3 ms	T4 V ⁻²	T5 V ⁻¹	Т6
x	36.2	270.59	35.62	12.53	0.00	5.08	0.93	0.23	1.01
v	35.7	269.30	35.97	8.51	0.37	5.07	0.00	0.44	1.01
z	30.7	227.00	34.93	10.81	0.00	5.06	0.00	0.25	1.00

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle	-66.7°
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.

Certificate No: EX-3677_Jul23

Page 4 of 22

July 20, 2023

Parameters of Probe: EX3DV4 - SN:3677

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k = 2)
13	55.0	0.75	15.21	15.21	15.21	0.00	1.25	±13.3%
750	41.9	0.89	9.03	9.80	9.03	0.45	1.27	±12.0%
835	41.5	0.90	8.66	9.52	8.51	0.43	1.27	±12.0%
1750	40.1	1.37	7.80	8.35	7.88	0.29	1.27	±12.0%
1900	40.0	1.40	7.70	8.25	7.79	0.31	1.27	±12.0%
2000	40.0	1.40	7.55	8.11	7.69	0.32	1.27	±12.0%
2300	39.5	1.67	7.45	8.00	7.60	0.33	1.27	±12.0%
2450	39.2	1.80	7.18	7.67	7.29	0.32	1.27	±12.0%
2600	39.0	1.96	7.10	7.59	7.21	0.32	1.27	±12.0%
3300	38.2	2.71	6.95	7.41	7.04	0.35	1.27	±14.0%
3500	37.9	2.91	6.87	7.33	6.99	0.34	1.27	±14.0%
3700	37.7	3.12	6.80	7.27	6.93	0.33	1.27	±14.0%
3900	37.5	3.32	6.85	7.30	6.98	0.33	1.27	±14.0%
4100	37.2	3.53	6.65	7.07	6.82	0.34	1.27	±14.0%
4400	36.9	3.84	6.55	6.97	6.67	0.34	1.27	±14.0%
4600	36.7	4.04	6.50	6.92	6.63	0.35	1.27	±14.0%
4800	36.4	4.25	6.40	6.81	6.55	0.39	1.27	±14.0%
4950	36.3	4.40	6.00	6.39	6.14	0.44	1.36	±14.0%
5250	35.9	4.71	5.65	5.99	5.81	0.43	1.53	±14.0%
5600	35.5	5.07	4.92	5.23	5.04	0.41	1.75	±14.0%
5750	35.4	5.22	5.14	5.41	5.20	0.39	1.84	±14.0%

C Frequency validity above 300 MHz of ±100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ±50 MHz. The uncertainty is the RSs of the ConvF uncertainty at collection requency and the uncertainty for the indicated frequency band. Frequency validity beeves 000 MHz is ±100 MHz is ±0.25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4–9 MHz, and ConvF assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to ±110 MHz. The probes are calibrated using tissue simulating liquids (TSL) that deviate for *c* and *c* by less than ±5% from the target values (typically better than ±3%) and are valid for TSL with deviations of up to ±10%. If TSL with deviations from the target of less than ±5% are used, the calibration uncertainties are 11.1% for 0.7 - 3 GHz and 13.1% for 3 - 6 GHz.

G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz and below ±2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: EX-3677_Jul23

Page 5 of 22

July 20, 2023

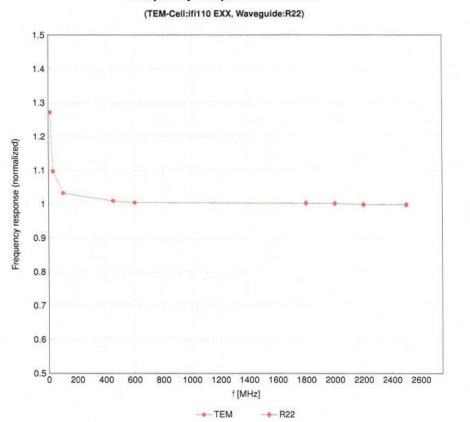
Parameters of Probe: EX3DV4 - SN:3677

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k = 2)
6500	34.5	6.07	5.51	5.85	5.61	0.20	2.00	±18.6%

^C Frequency validity at 6.5 GHz is -600/+700 MHz, and ±700 MHz at or above 7 GHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F The probes are calibrated using tissue simulating liquids (TSL) that deviate for c and σ by less than $\pm10\%$ from the target values (typically better than $\pm6\%$) and are valid for TSL with deviations of up to $\pm10\%$.

G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz; below ±2% for frequencies between 3-6 GHz; and below ±4% for frequencies between 6-10 GHz at any distance larger than half the probe tip diameter from the boundary.

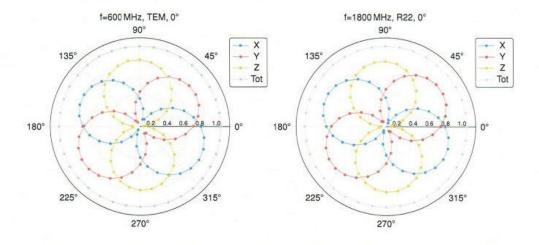

Certificate No: EX-3677_Jul23

Page 6 of 22

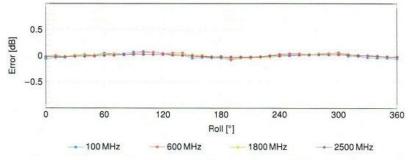
SAR Test Report

EX3DV4 - SN:3677

July 20, 2023

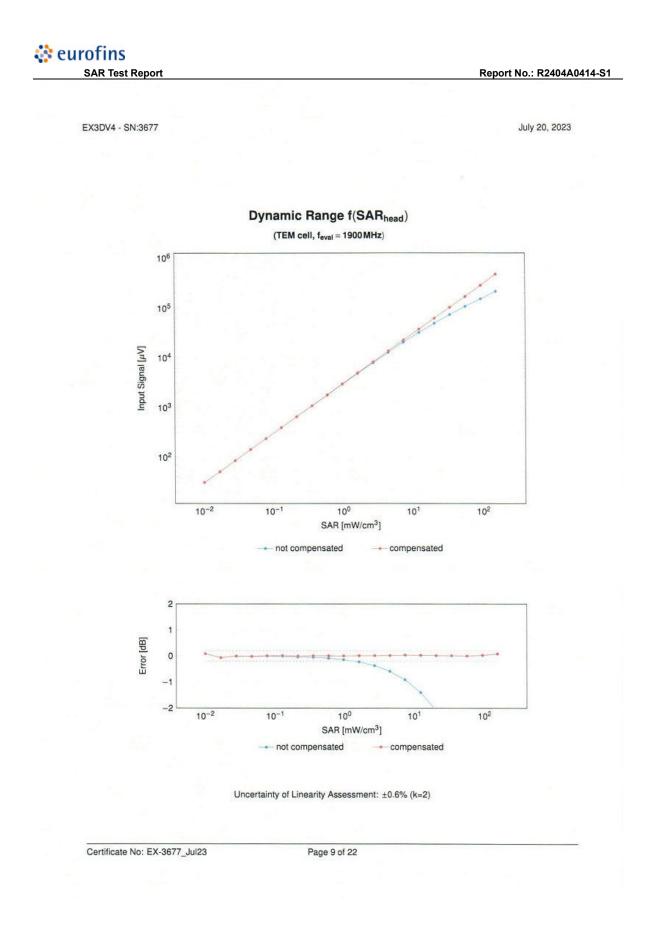


Frequency Response of E-Field

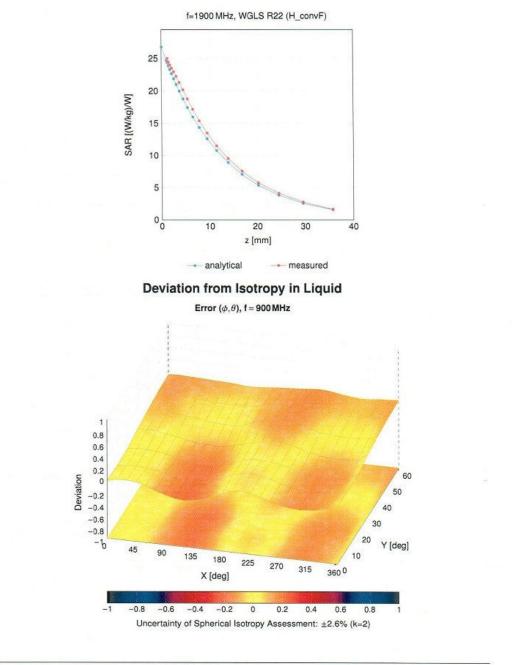

Uncertainty of Frequency Response of E-field: ±6.3% (k=2)

Certificate No: EX-3677_Jul23

Page 7 of 22


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ±0.5% (k=2)


Certificate No: EX-3677_Jul23

Page 8 of 22

July 20, 2023

Conversion Factor Assessment

Certificate No: EX-3677_Jul23

Page 10 of 22

SAR Test Report

EX3DV4 - SN:3677

July 20, 2023

Appendix: Modulation Calibration Parameters

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E k = :
0		CW	CW	0.00	±4.7
0010	CAB	SAR Validation (Square, 100 ms, 10 ms)	Test	10.00	±9.6
0011	CAC	UMTS-FDD (WCDMA)	WCDMA	2.91	±9.6
0012	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	WLAN	1.87	±9.6
0013	CAB	IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 6 Mbps)	WLAN	9.46	±9.6
0021	DAC	GSM-FDD (TDMA, GMSK)	GSM	9.39	±9.6
0023	DAC	GPRS-FDD (TDMA, GMSK, TN 0)	GSM	9.57	±9.6
10024	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1)	GSM	6.56	±9.6
10025	DAC	EDGE-FDD (TDMA, 8PSK, TN 0)	GSM	12.62	±9.6
	1.		GSM	9.55	±9.6
10026	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1)	GSM	4.80	±9.6
10027	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	the second se		
10028	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	GSM	3.55	±9.6
10029	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	GSM	7.78	±9.6
10030	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH1)	Bluetooth	5.30	±9.6
10031	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH3)	Bluetooth	1.87	±9.6
10032	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	Bluetooth	1.16	±9.6
10033	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)	Bluetooth	7.74	±9.6
10034	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)	Bluetooth	4.53	±9.6
10035	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)	Bluetooth	3.83	±9.6
10036	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	Bluetooth	8.01	±9.6
10037	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	Bluetooth	4.77	±9.6
10038	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	Bluetooth	4.10	±9.6
10039	CAB	CDMA2000 (1xRTT, RC1)	CDMA2000	4.57	±9.6
10033	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Halfrate)	AMPS	7.78	±9.6
10042	CAA	IS-91/EIA/TIA-553 FDD (FDMA, FM)	AMPS	0.00	±9.6
	-		DECT	13.80	±9.6
10048	CAA	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)			
10049	CAA	DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)	DECT	10.79	±9.6
10056	CAA	UMTS-TDD (TD-SCDMA, 1.28 Mcps)	TD-SCDMA	11.01	±9.6
10058	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	GSM	6.52	±9.6
10059	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)	WLAN	2.12	±9.6
10060	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)	WLAN	2.83	±9.6
10061	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)	WLAN	3.60	±9.6
10062	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	WLAN	8.68	±9.6
10063	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)	WLAN	8.63	±9.6
10064	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	WLAN	9.09	±9.6
10065	CAD	IEEE 802.11a/h WIFi 5 GHz (OFDM, 18 Mbps)	WLAN	9.00	±9.6
10066	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps)	WLAN	9.38	±9.6
10067	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps)	WLAN	10.12	±9.6
10068	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)	WLAN	10.24	±9.6
10069	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps)	WLAN	10.56	±9.6
10003	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps)	WLAN	9.83	±9.6
		IEEE 802.11g WIFI 2.4 GHz (DSSS/OFDM, 9 Mops)	WLAN	9.62	±9.6
10072					
10073		IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps)	WLAN	9.94	±9.6
10074		IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps)	WLAN	10.30	±9.6
10075		IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps)	WLAN	10.77	±9.6
10076		IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)	WLAN	10.94	±9.6
10077		IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)	WLAN	11.00	±9.6
10081	CAB	CDMA2000 (1xRTT, RC3)	CDMA2000	3.97	±9.6
10082	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Fullrate)	AMPS	4.77	±9.6
10090	DAC	GPRS-FDD (TDMA, GMSK, TN 0-4)	GSM	6.56	±9.6
10097	CAC	UMTS-FDD (HSDPA)	WCDMA	3.98	±9.6
10098	CAC	UMTS-FDD (HSUPA, Subtest 2)	WCDMA	3.98	±9.6
10099	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-4)	GSM	9.55	±9.6
10100	in the second	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	LTE-FDD	5.67	±9.6
10101		LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	LTE-FDD	6.42	±9.6
10102		LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	LTE-FDD	6.60	±9.6
			LTE-TDD	9.29	±9.6
10103					
10104			LTE-TDD	9.97	±9.6
10105			LTE-TDD	10.01	±9.6
10108	and the second second		LTE-FDD	5.80	±9.6
10109			LTE-FDD	6.43	±9.6
10110	the second se		LTE-FDD	5.75	±9.6
10111	CAH	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	LTE-FDD	6.44	±9.6

Certificate No: EX-3677_Jul23

Page 11 of 22

Eurofins TA Technology (Shanghai) Co., Ltd.TA-MB-05-003SPage 92 of 168This report shall not be reproduced except in full, without the written approval of Eurofins TA Technology (Shanghai) Co., Ltd.