

TEST REPORT

No. I14D00071-SAR

For

Client: Mobiwire SAS

Production: Connected mobile with Printer

Model Name: MOBIPRINT³

FCC ID: QPN-3G-MOBIPRINT3

Hardware Version: V02

Software Version: V03

Issued date: 2015-03-31

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of ECIT Shanghai.

Test Laboratory:

ECIT Shanghai, East China Institute of Telecommunications

Add: 7-8F, G Area, No.668, Beijing East Road, Huangpu District, Shanghai, P. R. China

Tel: (+86)-021-63843300, E-Mail: welcome@ecit.org.cn

SAR Test Report

Revision Version

Report No.: I14D00071-SAR

Report Number	Revision	Date	Memo
I14D00071-SAR	00	2015-03-31	Initial creation of test report

East China Institute of Telecommunications Page Number : 2 of 136 TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date : Mar 31, 2015

CONTENTS

1.	TEST LABORATORY	6
1.1.	TESTING LOCATION	
1.2.	TESTING ENVIRONMENT	
1.3.	PROJECT DATA	
1.4.	SIGNATURE	6
2.	STATEMENT OF COMPLIANCE	
3.	CLIENT INFORMATION	9
3.1.	APPLICANT INFORMATION	9
3.2.	MANUFACTURER INFORMATION	9
4.	EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	10
4.1.	ABOUT EUT	10
4.2.	INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST	11
4.3.	INTERNAL IDENTIFICATION OF AE USED DURING THE TEST	11
5.	TEST METHODOLOGY	12
5.1.	APPLICABLE LIMIT REGULATIONS	12
5.2.	APPLICABLE MEASUREMENT STANDARDS	12
6.	SPECIFIC ABSORPTION RATE (SAR)	14
6.1.	INTRODUCTION	14
6.2.	SAR DEFINITION	14
7.	TISSUE SIMULATING LIQUIDS	15
7.1.	TARGETS FOR TISSUE SIMULATING LIQUID	15
7.2.	DIELECTRIC PERFORMANCE	15
8.	SYSTEM VERIFICATION	19
8.1.	SYSTEM SETUP	19
8.2.	SYSTEM VERIFICATION	20

Page Number Report Issued Date : 3 of 136

: Mar 31, 2015

SAR Test Report

9.	MEAS	UREMENT PROCEDURES	21
9.1.	TESTS	S TO BE PERFORMED	21
9.2.	GENE	RAL MEASUREMENT PROCEDURE	22
9.3.	WCDN	MA MEASUREMENT PROCEDURES FOR SAR	23
9.4.	BLUE	TOOTH & WI-FI MEASUREMENT PROCEDURES FOR SAR	24
9.5.	POWE	R DRIFT	25
10.	COND	UCTED OUTPUT POWER	26
10.1.	MANU	FACTURING TOLERANCE	26
10.2.	GSM I	MEASUREMENT RESULT	30
10.3.	WCDN	//A MEASUREMENT RESULT	31
10.4.	WI-FI	AND BT MEASUREMENT RESULT	32
11.	SIMUL	TANEOUS TX SAR CONSIDERATIONS	35
11.1.	INTRO	DDUCTION	35
11.2.	TRAN	SMIT ANTENNA SEPARATION DISTANCES	35
11.3.	STANI	DALONE SAR TEST EXCLUSION CONSIDERATIONS	36
11.4.	SAR N	MEASUREMENT POSITIONS	36
12.	EVAL	JATION OF SIMULTANEOUS	37
13.	SAR T	EST RESULT	38
14.	SAR N	MEASUREMENT VARIABILITY	40
15.	MEAS	UREMENT UNCERTAINTY	41
16.	MAIN	TEST INSTRUMENT	42
ANNE	X A.	GRAPH RESULTS	43
ANNE	XB.	SYSTEM VALIDATION RESULTS	80
ANNE	X C.	SAR MEASUREMENT SETUP	85
ANNE	X D.	POSITION OF THE WIRELESS DEVICE IN RELATION TO THE PHANTOM	91
ANNE	X E.	EQUIVALENT MEDIA RECIPES	95

Page Number Report Issued Date : 4 of 136

: Mar 31, 2015

SAR Test Report

ANNEX F.	SYSTEM VALIDATION	96
ANNEX G.	PROBE AND DAE CALIBRATION CERTIFICATE	97
ANNEX H.	DIPOLECALIBRATION CERTIFICATE1	11

Report No.: I14D00071-SAR

Page Number : 5 of 136 Report Issued Date : Mar 31, 2015

: 5 of 136

1. Test Laboratory

1.1. Testing Location

Company Name:	ECIT Shanghai, East China Institute of Telecommunications
Address:	7-8F, G Area,No. 668, Beijing East Road, Huangpu District,
	Shanghai, P. R. China
Postal Code:	200001
Telephone:	(+86)-021-63843300
Fax:	(+86)-021-63843301

1.2. Testing Environment

NormalTemperature:	15-35℃
Relative Humidity:	20-75%
Ambient noise & Reflection:	< 0.012 W/kg

1.3. Project Data

Project Leader:	Gong Yujuan
Testing Start Date:	2015-02-05
Testing End Date:	2015-03-28

Zheng Zhongbin Director of the laboratory (Approved this test report)

1.4. Signature

Hu Jiajing (Prepared this test report)

(Reviewed this test report)

Report No.: I14D00071-SAR

East China Institute of Telecommunications TEL: +86 21 63843300FAX:+86 21 63843301

Page Number : 6 of 136 Report Issued Date : Mar 31, 2015

2. Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for MOBIPRINT³ are as follows (with expanded uncertainty 22.4%)

Table 2.1: Max. Reported SAR (1g)

Pand	Position/Distance	Reported SAR
Band	Position/Distance	1g(W/Kg)
GSM 850	Body/0mm	0.959
GSM 1900	Body/0mm	0.875
WCDMA Band II	Body/0mm	0.805
WCDMA Band V	Body/0mm	0.509
Wi-Fi	Body/0mm	0.450

The SAR values found for the Mobile Phone are below the maximum recommended levels of 1.6 W/Kg as averaged over any 1g tissue according to the ANSI C95.1-1992.

For body worn operation, this device has been tested and meets FCC RF exposure guidelines when used with any accessory that contains no metal. Use of other accessories may not ensure compliance with FCC RF exposure guidelines.

The measurement together with the test system set-up is described in chapter 7 of this test report. A detailed description of the equipment under test can be found in chapter 3 of this test report. The maximum reported SAR value is obtained at the case of **(Table 2.1)**, and the values are: **0.959 W/kg (1g)**.

NOTE:

1.Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg 2.Body Mode include Body-worn Mode and Hotspot Mode, The measurement of Body-worn Mode include hotspot mode test.

East China Institute of Telecommunications Page Number : 7 of 136
TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date : Mar 31, 2015

The sample has three antennas. One is main antenna for GSM/WCDMA, and the other is for WiFi/BT and GPS. So simultaneous transmission is GSM/WCDMA and WiFi/BT.

Table 2.2: Simultaneous SAR (1g)

Report No.: I14D00071-SAR

Simult	nultaneous Transmission SAR(W/Kg)							
Test Po	osition	GSM 850	GSM 1900	WCDMA Band 2	WCDMA Band 5	WIFI	BT	SUM
	Phantom Side	/	1	/	1	1	/	/
	Ground Side	0.333	0.875	0.805	0.147	0.019	0.082	0.957
Dody	Left Side	0.301	0.416	0.405	0.145	0.019	0.082	0.498
Body	Right Side	0.959	0.098	0.093	0.509	0.450	0.082	1.409
	Top Side	/	1	/	1	1	/	/
	Bottom Side	0.913	0.751	0.602	0.361	/	0.082	0.995

According to the above table, the maximum sum of reported SAR values for GSM/WCDMA and WiFiis **1.409 W/kg (1g)**. The detail for simultaneous transmission consideration is described in chapter 12.

East China Institute of Telecommunications Page Number : 8 of 136
TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date : Mar 31, 2015

SAR Test Report

3. Client Information

3.1. Applicant Information

Company Name: Mobiwire SAS.

Address: 79 AVENUE FRANCOIS ARAGO 92017 NANTERRE CEDEX France.

Report No.: I14D00071-SAR

Telephone: 33613423487

Postcode: 92017

3.2. Manufacturer Information

Company Name: MOBIWIRE MOBILES (NINGBO) CO.,LTD

Address: No.999, Dacheng East Road, Fenghua City, Zhejiang

Contact Person: 0574 88916450

Telephone: 315500

East China Institute of Telecommunications Page Number : 9 of 136 TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date : Mar 31, 2015

4. Equipment Under Test (EUT) and Ancillary Equipment (AE)

Report No.: I14D00071-SAR

4.1. About EUT

Description:	Connected mobile POS with Printer
Model name:	MOBIPRINT ³
Operation Model(s):	GSM850/900/1800/1900 ,WCDMA band II/V,WIFI2450
Tx Frequency:	824.2-848.8, 1850.2-1909.8MHz (GSM)
	1852.4-1907.6 MHz, 826.4-846.6MHz (WCDMA)
	2412-2462 MHz (Wi-Fi)
	2402~2480 MHz (BT)
Test device Production	Production unit
information:	
GPRS Class Mode:	В
GPRS Multislot Class:	12
Device type:	Portable device
Antenna type:	Inner antenna
Accessories/Body-worn	Headset
configurations:	
Dimensions:	18.5cm×7cm
Hotspot Mode:	Support simultaneous transmission of hotspot and voice
	(or data)
FCC ID:	QPN-3G-MOBIPRINT3

East China Institute of Telecommunications Page Number : 10 of 136
TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date : Mar 31, 2015

SAR Test Report

4.2. Internal Identification of EUT used during the test

EUT ID*	SN or IMEI	HW Version	SW Version
N10	354648020000251	V02	V03_14119_MP3_MobiPri ntIII_EMMC4P1_V1

Report No.: I14D00071-SAR

4.3. Internal Identification of AE used during the test

AE ID*	Description	Model	SN	Manufacturer
B06	Battery	N/A	N/A	N/A

^{*}AE ID: is used to identify the test sample in the lab internally.

^{*}EUT ID: is used to identify the test sample in the lab internally.

5. TEST METHODOLOGY

5.1. Applicable Limit Regulations

ANSI C95.1–1992:IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

It specifies the maximum exposure limit of **1.6 W/kg** as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

5.2. Applicable Measurement Standards

IC RSS-102 ISSUE4: Radio Frequency (RF) Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)

IEEE 1528–2003: Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques.

IEEE1528a-2005:Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head From Wireless Communications Devices: Measurement Techniques.

KDB648474 D04 SAR Handsets Multi Xmiter and Ant v01r02: SAR Evaluation Considerations for Wireless Handsets.

KDB248227 SAR meas for 802.11abg v01r02: SAR measurement procedures for 802.112abg transmitters.

KDB447498 D01 General RF Exposure Guidance v05r02:Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies.

KDB865664 D01 v01r03:SAR Measurement Requirements for 100 MHz to 6 GHz

KDB865664 D02 RF Exposure Reporting v01r03:provides general reporting requirements as well as certain specific information required to support MPE and SAR compliance.

KDB941225 D01 SAR test for 3G devides v02:Recommended SAR Test Reduction Procedures for GSM/GPRS/EDGE.

KDB941225 D03 SAR test Redution GSM GPRS EDGE v01:Recommended SAR Test Reduction Procedures for GSM/GPRS/EDGE.

SAR Test Report

KDB941225 D06 hotspot SAR v01r01:SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities.

Report No.: I14D00071-SAR

648474 D04 Handset SAR v01r01:SAR Evaluation Considerations for Wireless Handsets

East China Institute of Telecommunications Page Number : 13 of 136
TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date : Mar 31, 2015

: 14 of 136

: Mar 31, 2015

Page Number

Report Issued Date

6. Specific Absorption Rate (SAR)

6.1. Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

6.2. SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt}(\frac{dW}{dm}) = \frac{d}{dt}(\frac{dW}{\rho dv})$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = c(\frac{\delta T}{\delta t})$$

Where: C is the specific head capacity, δT is the temperature rise and δt is the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of tissue and E is the RMS electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

7. Tissue Simulating Liquids

7.1. Targets for tissue simulating liquid

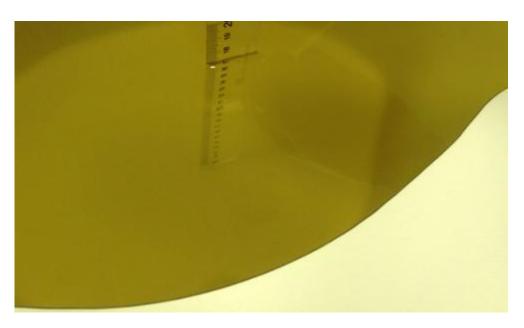
Table 7.1: Targets for tissue simulating liquid

Frequency (MHz)	Liquid Type	Conductivity(σ)	± 5% Range	Permittivity(ε)	± 5% Range
835	Head	0.90	0.86~0.95	41.5	39.4~43.6
835	Body	0.97	0.92~1.02	55.2	52.4~58.0
1900	Head	1.40	1.33~1.47	40.0	38.0~42.0
1900	Body	1.52	1.44~1.60	53.3	50.6~56.0
2450	Head	1.80	1.71~1.89	39.2	37.2~41.2
2450	Body	1.95	1.85~2.05	52.7	50.1~55.3

7.2. Dielectric Performance

Table 7.2: Dielectric Performance of Tissue Simulating Liquid

Measurem	Measurement Value							
Liquid Tem	perature: 21.0	$^{\circ}$ C						
Туре	Frequency	Permittivity ε	Drift (%)	Conductivity σ	Drift (%)	Test Date		
Body	835 MHz	55.18	-0.04%	1.01	4.12%	2015-02-06		
Body	1900 MHz	53.23	-0.13%	1.524	0.26%	2015-02-07		
Body	835 MHz	55.31	0.19%	0.997	2.78%	2015-03-27		
Body	1900 MHz	53.88	1.08%	1.509	-0.72%	2015-03-27		
Body	2450 MHz	53.92	2.31%	1.916	-1.74%	2015-02-05		


East China Institute of Telecommunications Page Number : 15 of 136
TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date : Mar 31, 2015

: 16 of 136

Report Issued Date : Mar 31, 2015

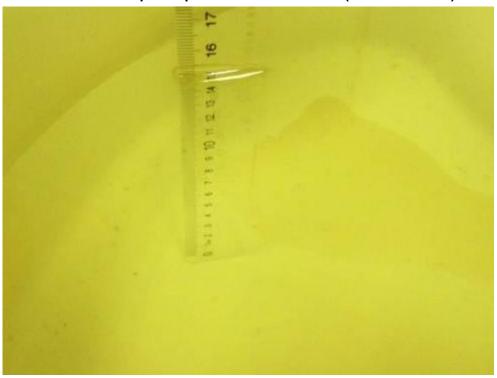
Page Number

Picture 7-1: Liquid depth in the Flat Phantom (835 MHz Head)

Picture 7-2: Liquid depth in the Flat Phantom (1900 MHz Head)

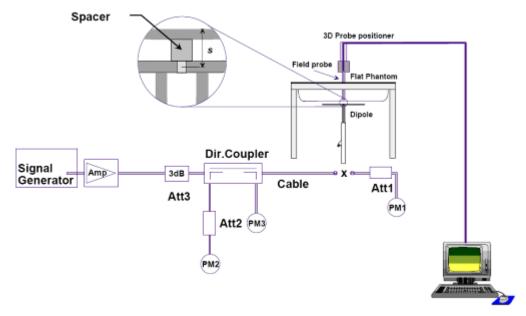
Picture 7-3: Liquid depth in the Flat Phantom (835 MHz Body)

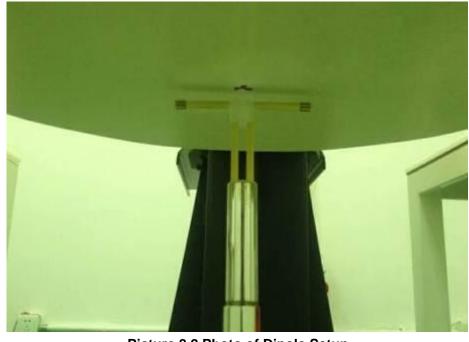
Picture 7-4: Liquid depth in the Flat Phantom (1900 MHz Body)


Page Number : 17 of 136 Report Issued Date : Mar 31, 2015

: 18 of 136

Picture 7-5: Liquid depth in the Flat Phantom (2450 MHz Head)


Picture 7-6: Liquid depth in the Flat Phantom (2450 MHz Body)


8. System verification

8.1. System Setup

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

Picture 8.1 System Setup for System Evaluation

Picture 8.2 Photo of Dipole Setup

Page Number

Report Issued Date

: 19 of 136

: Mar 31, 2015

8.2. System Verification

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device.

Report No.: I14D00071-SAR

Table 8.1: System Verification of Body

Verification	Verification Results							
Input power I	evel: 250mW							
	Target va	lue (W/kg)	Measured v	alue (W/kg)	Devi	ation	Toot	
Frequency	10 g	1 g	10 g	1 g	10 g	1 g	Test date	
	Average	Average	Average Average		Average	Average	date	
835 MHz	6.40	9.60	6.24	9.48	-2.50%	-1.25%	2015-02-06	
1900 MHz	21.2	40.4	21.52	41.2	1.50%	1.98%	2015-02-07	
835 MHz	6.40	9.60	6.32	9.60	1.25%	0.00%	2015-03-27	
1900 MHz	21.2	40.4	5.38	41.2	1.50%	1.98%	2015-03-27	
2450 MHz	24.6	52.4	24.08	50.8	-2.11%	-3.05%	2015-02-05	

East China Institute of Telecommunications Page Number : 20 of 136
TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date : Mar 31, 2015

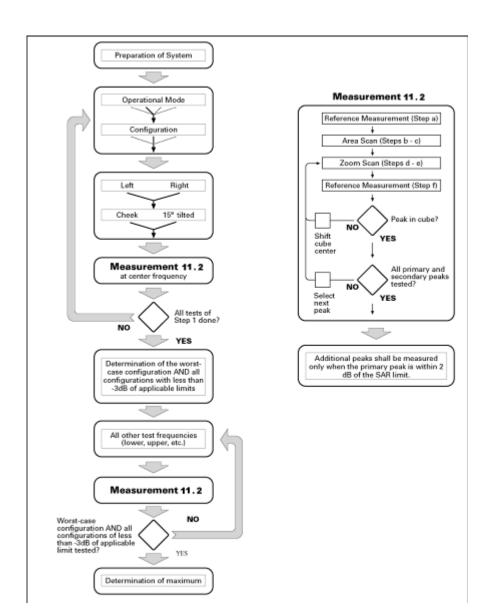
9. Measurement Procedures

9.1. Tests to be performed

In order to determine the highest value of the peak spatial-average SAR of a handset, all device positions, configurations and operational modes shall be tested for each frequency band according to steps 1 to 3 below. A flowchart of the test process is shown in Picture 11.1.

Step 1: The tests described in 11.2 shall be performed at the channel that is closest to the centre of the transmit frequency band (f_c) for:

- a) all device positions (cheek and tilt, for both left and right sides of the SAM phantom, as described in Chapter 8),
- b) all configurations for each device position in a), e.g., antenna extended and retracted, and
- c) all operational modes, e.g., analogue and digital, for each device position in a) and configuration in b) in each frequency band.


If more than three frequencies need to be tested according to 11.1 (i.e., $N_c > 3$), then all

frequencies, configurations and modes shall be tested for all of the above test conditions.

Step 2: For the condition providing highest peak spatial-average SAR determined in Step 1, perform all tests described in 11.2 at all other test frequencies, i.e., lowest and highest frequencies. In addition, for all other conditions (device position, configuration and operational mode) where the peak spatial-average SAR value determined in Step 1 is within 3 dB of the applicable SAR limit, it is recommended that all other test frequencies shall be tested as well.

Step 3: Examine all data to determine the highest value of the peak spatial-average SAR found in Steps 1 to 2.

East China Institute of Telecommunications Page Number : 21 of 136
TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date : Mar 31, 2015

Picture 9.1Block diagram of the tests to be performed

9.2. General Measurement Procedure

The following procedure shall be performed for each of the test conditions (see Picture 11.1) described in 11.1:

- a) Measure the local SAR at a test point within 8 mm or less in the normal direction from the inner surface of the phantom.
- b) Measure the two-dimensional SAR distribution within the phantom (area scan procedure). The boundary of the measurement area shall not be closer than 20 mm from the phantom side walls. The distance between the measurement points should enable the detection of the location of local maximum with an accuracy of better than half the linear dimension of the tissue cube after interpolation. A maximum grip spacing of 20 mm for frequencies below 3 GHz and (60/f [GHz]) mm for frequencies of 3GHz and greater is recommended. The maximum distance between the geometrical centre of the probe detectors and the inner surface of the phantom shall be 5 mm for

Page Number

: 22 of 136

Report Issued Date : Mar 31, 2015

frequencies below 3 GHz and δ In(2)/2 mm for frequencies of 3 GHz and greater, where δ is the plane wave skin depth and In(x) is the natural logarithm. The maximum variation of the sensor-phantom surface shall be ± 1 mm for frequencies below 3 GHz and ± 0.5 mm for frequencies of 3 GHz and greater. At all measurement points the angle of the probe with respect to the line normal to the surface should be less than 5° . If this cannot be achieved for a measurement distance to the phantom inner surface shorter than the probe diameter, additional uncertainty evaluation is needed.

- c) From the scanned SAR distribution, identify the position of the maximum SAR value, in addition identify the positions of any local maxima with SAR values within 2 dB of the maximum value that are not within the zoom-scan volume; additional peaks shall be measured only when the primary peak is within 2 dB of the SAR limit. This is consistent with the 2 dB threshold already stated; d) Measure the three-dimensional SAR distribution at the local maxima locations identified in step c). The horizontal grid step shall be (24/f[GHz]) mm or less but not more than 8 mm. The minimum zoom size of 30 mm by 30 mm and 30 mm for frequencies below 3 GHz. For higher frequencies, the minimum zoom size of 22 mm by 22 mm and 22 mm. The grip step in the vertical direction shall be (8-f[GHz]) mm or less but not more than 5 mm, if uniform spacing is used. If variable spacing is used in the vertical direction, the maximum spacing between the two closest measured points to the phantom shell shall be (12 / f[GHz]) mm or less but not more than 4 mm, and the spacing between father points shall increase by an incremental factor not exceeding 1.5. When variable spacing is used, extrapolation routines shall be tested with the same spacing as used in measurements. The maximum distance between the geometrical centre of the probe detectors and the inner surface of the phantom shall be 5 mm for frequencies below 3 GHz andδ In(2)/2 mm for frequencies of 3 GHz and greater, where δ is the plane wave skin depth and $\ln(x)$ is the natural logarithm. Separate grids shall be centered on each of the local SAR maxima found in step c). Uncertainties due to field distortion between the media boundary and the dielectric enclosure of the probe should also be minimized, which is achieved is the distance between the phantom surface and physical tip of the probe is larger than probe tip diameter. Other methods may utilize correction procedures for these boundary effects that enable high precision measurements closer than half the probe diameter. For all measurement points, the angle of the probe with respect to the flat phantom surface shall be less than 5°. If this cannot be achieved an additional uncertainty evaluation is needed.
- e) Use post processing(e.g. interpolation and extrapolation) procedures to determine the local SAR values at the spatial resolution needed for mass averaging.

9.3. WCDMA Measurement Procedures for SAR

The following procedures are applicable to WCDMA handsets operating under 3GPP Release99, Release 5 and Release 6. The default test configuration is to measure SAR with an established radio link between the DUT and a communication test set using a 12.2kbps RMC (reference measurement channel) configured in Test Loop Mode 1. SAR is selectively confirmed for other physical channel configurations (DPCCH &DPDCH_n), HSDPA and HSPA (HSUPA/HSDPA) modes according to output power, exposure conditions and device operating capabilities. Both uplink and downlink should be configured with the same RMC or AMR, when required. SAR for Release 5

East China Institute of Telecommunications TEL: +86 21 63843300FAX:+86 21 63843301 Page Number : 23 of 136 Report Issued Date : Mar 31, 2015

Report No.: I14D00071-SAR

HSDPA and Release 6 HSPA are measured using the applicable FRC (fixed reference channel) and E-DCH reference channel configurations. Maximum output power is verified according to applicable versions of 3GPP TS 34.121 and SAR must be measured according to these maximum output conditions. When Maximum Power Reduction (MPR) is not implemented according to Cubic Metric (CM) requirements for Release 6 HSPA, the following procedures do not apply.

Report No.: I14D00071-SAR

: 24 of 136

For Release 5 HSDPA Data Devices:

Sub-test	$oldsymbol{eta}_c$	$oldsymbol{eta}_d$	β_d (SF)	$oldsymbol{eta}_c$ / $oldsymbol{eta}_d$	$oldsymbol{eta}_{hs}$	CM/dB
1	2/15	15/15	64	2/15	4/15	0.0
2	12/15	15/15	64	12/15	24/25	1. 0
3	15/15	8/15	64	15/8	30/15	1.5
4	15/15	4/15	64	15/4	30/15	1.5

For Release 6 HSDPA Data Devices

Sub-	$oldsymbol{eta_c}$	$oldsymbol{eta_d}$	eta_d	$oldsymbol{eta_c}$ / $oldsymbol{eta_d}$	$oldsymbol{eta_{hs}}$	$oldsymbol{eta_{ec}}$	$oldsymbol{eta}_{ed}$	eta_{ed}	eta_{ed} (codes)	CM (dB)	MPR (dB)	AG Index	E-TFCI
1	11/15	15/15	64	11/15	22/15	209/225	1039/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	12/15	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	eta_{ed1} :47/15 eta_{ed2} :47/15	4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	4/15	56/75	4	1	3.0	2.0	17	71
5	15/15	15/15	64	15/15	24/15	30/15	134/15	4	1	1.0	0.0	21	81

9.4. Bluetooth & Wi-Fi Measurement Procedures for SAR

Normal network operating configurations are not suitable for measuring the SAR of 802.11 transmitters in general. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure that the results are consistent and reliable.

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in a test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters. The test frequencies should correspond to actual channel frequencies defined for domestic use. SAR for devices with switched diversity should be measured with only one antenna transmitting at a time during each SAR measurement, according to a fixed modulation and data rate. The same data pattern should be used for all measurements.

SAR Test Report

9.5. Power Drift

To control the output power stability during the SAR test, DASY4 system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. These drift values can be found in Table 13.2 to Table 13.6 labeled as: (Power Drift [dB]). This ensures that the power drift during one measurement is within 5%.

Report No.: I14D00071-SAR

East China Institute of Telecommunications Page Number : 25 of 136
TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date : Mar 31, 2015

10. Conducted Output Power

10.1. Manufacturing tolerance

Table 10.1: GPRS (GMSK Modulation)

Report No.: I14D00071-SAR

	GSM 850 GPRS						
	Channel	251	190	128			
1 Txslots	Maximum Target Value (dBm)	33.5	33.5	33.5			
2 Txslots	Maximum Target Value (dBm)	31.5	31.5	31.5			
3 Txslots	Maximum Target Value (dBm)	29.5	29.5	29.5			
4 Txslots	Maximum Target Value (dBm)	29.0	29.0	29.0			
		GSM 1900 GPRS	3				
	Channel	810	661	512			
1 Txslots	Maximum Target Value (dBm)	28.5	28.5	28.5			
2 Txslots	Maximum Target Value (dBm)	27.0	27.0	27.0			
3 Txslots	Maximum Target Value (dBm)	25.5	25.5	25.5			
4 Txslots	Maximum Target Value (dBm)	25.0	25.0	25.0			

Table 10.3: WCDMA

Report No.: I14D00071-SAR

Table 10.5. WODINA							
	WCDMA Band V						
Channel	Channel 4132	Channel 4182	Channel 4233				
Maximum Target Value (dBm)	26.5	26.5	26.5				
	WCDM	A Band II					
Channel	Channel 9262	Channel 9400	Channel 9538				
Maximum Target Value (dBm)	26.0	26.0	26.0				

Table 10.4: HSDPA

Table 10.4. HOD! A								
	WCDMA Band V							
	Channel	4132	4182	4233				
1	Maximum Target Value (dBm)	26.0	26.0	26.0				
2	Maximum Target Value (dBm)	26.5	26.5	26.5				
3	Maximum Target Value (dBm)	26.5	26.5	26.5				
4	Maximum Target Value (dBm)	26.5	26.5	26.5				
		WCDMA Band II						
	Channel	9262	9400	9538				
1	Maximum Target Value (dBm)	26.0	26.0	26.0				
2	Maximum Target Value (dBm)	26.0	26.0	26.0				
3	Maximum Target Value (dBm)	26.0	26.0	26.0				
4	Maximum Target Value (dBm)	26.0	26.0	26.0				

East China Institute of Telecommunications Page Number : 27 of 136
TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date : Mar 31, 2015

Table 10.5: HSUPA

Report No.: I14D00071-SAR

Page Number : 28 of 136 Report Issued Date : Mar 31, 2015

	WCDMA Band V							
	Channel	4132	4182	4233				
1	Maximum Target Value (dBm)	26.0	26.0	26.0				
2	Maximum Target Value (dBm)	26.5	26.5	26.5				
3	Maximum Target Value (dBm)	26.0	26.0	26.0				
4	Maximum Target Value (dBm)	26.0	26.0	26.0				
5	Maximum Target Value (dBm)	26.0	26.0	26.0				
		WCDMA Band II						
	Channel	9262	9400	9538				
1	Maximum Target Value (dBm)	26.0	26.0	26.0				
2	Maximum Target Value (dBm)	26.0	26.0	26.0				
3	Maximum Target Value (dBm)	26.0	26.0	26.0				
4	Maximum Target Value (dBm)	26.0	26.0	26.0				
5	Maximum Target Value (dBm)	26.0	26.0	26.0				

Table 10.2: WiFi

Report No.: I14D00071-SAR

		U.Z. VVII I				
	WiFi 8	302.11b				
Channel	Channel 1 Channel 6 Channel 11					
Maximum Target Value (dBm)	15.0	15.0	15.0			
	WiFi 8	302.11g				
Channel	Channel 1	Channel 6	Channel 11			
Maximum Target Value (dBm)	11.0	11.0	11.0			
	WiFi 802	2.11n 20M				
Channel	Channel 1	Channel 6	Channel 11			
Maximum Target Value (dBm)	11.5	11.5	11.5			
	WiFi 802	2.11n 40M				
Channel	Channel 1	Channel 6	Channel 11			
Maximum Target Value (dBm)	10.5	10.5	10.5			

Table 10.3: Bluetooth

	Bluetooth					
Channel	Channel 0	Channel 39	Channel 78			
Maximum Target Value (dBm)	6.0	6.0	6.0			

East China Institute of Telecommunications Page Number : 29 of 136 TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date : Mar 31, 2015

10.2. GSM Measurement result

During the process of testing, the EUT was controlled via Agilent Digital Radio Communication tester (E5515C) to ensure the maximum power transmission and proper modulation. This result contains conducted output power for the EUT. In all cases, the measured peak output power should be greater and within 5% than EMI measurement.

Report No.: I14D00071-SAR

Table 10.4: The conducted power measurement results for GPRS

GSM 835 MHz							
GPRS (GMSK)	251	190	128	Calculation	251	190	128
1 Txslot	33.4	33.3	33.4	-9.03dB	24.37	24.27	24.37
2 Txslots	31.5	31.4	31.4	-6.02dB	25.48	25.38	25.38
3Txslots	29.5	29.4	29.5	-4.26dB	25.24	25.14	25.24
4 Txslots	28.9	28.8	28.9	-3.01dB	25.89	25.79	25.89
			PCS 19	00 MHz			
GPRS (GMSK)	810	661	512	Calculation	810	661	512
1 Txslot	28.1	28.0	28.1	-9.03dB	19.07	18.97	19.07
2 Txslots	26.8	26.6	26.8	-6.02dB	20.78	20.58	20.78
3Txslots	25.5	25.4	25.5	-4.26dB	21.24	21.14	21.24
4 Txslots	24.8	24.7	24.8	-3.01dB	21.79	21.69	21.79

NOTES:

To average the power, the division factor is as follows:

1TX-slot = 1 transmit time slot out of 8 time slots=> conducted power divided by (8/1) => -9.03dB

2TX-slots = 2 transmit time slots out of 8 time slots=> conducted power divided by (8/2) => -6.02dB

3TX-slots = 3 transmit time slots out of 8 time slots=> conducted power divided by (8/3) => -4.26dB

4TX-slots = 4 transmit time slots out of 8 time slots=> conducted power divided by (8/4) => -3.01dB

According to the conducted power as above, the body measurements are performed with GPRS 4Txslots for GSM850 and GSM1900.

East China Institute of Telecommunications Page Number : 30 of 136 TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date : Mar 31, 2015

¹⁾ Division Factors

10.3. WCDMA Measurement result

Table 10.10: The conducted power for WCDMA Band V

Report No.: I14D00071-SAR

	Table 191191 The defladated perior for the Smit Balla V									
WCDMA Band V Result (dBm)										
Mode	ARFCN	Channel 4233	Channel 4182	Channel 4132						
Mode	ARFON	(846.6MHz)	(836.4MHz)	(826.4MHz)						
WCDMA	RMC	26.06	26.18	25.64						
	1	25.66	25.93	25.55						
LICDDA	2	25.85	26.12	25.61						
HSDPA	3	25.79	26.10	25.47						
	4	26.01	26.16	25.48						
	1	25.90	25.98	25.50						
	2	26.00	26.11	25.58						
HSUPA	3	25.78	25.88	25.45						
	4	25.93	25.98	25.57						
	5	25.81	25.89	25.42						

Table 10.11: The conducted power for WCDMA Band II

Table 10.11. The defladated power for Weblink Build if										
WCDMA Band II Result (dBm)										
Mode	ARFCN	Channel 9538	Channel 9400	Channel 9262						
Mode	ARFON	(1907.6MHz)	(1880MHz)	(1852.4MHz)						
WCDMA	RMC	25.69	25.91	25.71						
	1	25.29	25.69	25.37						
HCDDA	2	25.38	25.78	25.46						
HSDPA	3	25.35	25.75	25.43						
	4	25.38	25.78	25.46						
	1	25.25	25.65	25.33						
	2	25.27	25.70	25.35						
HSUPA	3	25.26	25.66	25.34						
	4	25.29	25.69	25.37						
	5	25.26	25.65	25.33						

Note: HSDPA/HSUPA body SAR are not required, because maximum average output power of each RF channel with HSDPA/HSUPA active is not 1/4 dB higher than that measured without HSDPA/HSUPA and the maximum SAR for WCDMA850 and WCDMA1900 are not above 75% of the SAR limit.

East China Institute of Telecommunications Page Number : 31 of 136
TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date : Mar 31, 2015

10.4. Wi-Fi and BT Measurement result

Table 10.12: The conducted power for Bluetooth

Report No.: I14D00071-SAR

Table 10.12. The conducted power for Bidetooth										
Ch0 (2402 MHz)	Ch39 (2441MHz)	CH78 (2480MHz)								
5.114	5.114	5.114								
Ch0 (2402 MHz)	Ch39 (2441MHz)	CH78 (2480MHz)								
4.343	4.343	4.343								
Ch0 (2402 MHz)	Ch39 (2441MHz)	CH78 (2480MHz)								
4.343	4.343	4.343								
	Ch0 (2402 MHz) 5.114 Ch0 (2402 MHz) 4.343 Ch0 (2402 MHz)	Ch0 (2402 MHz) Ch39 (2441MHz) 5.114 5.114 Ch0 (2402 MHz) Ch39 (2441MHz) 4.343 4.343 Ch0 (2402 MHz) Ch39 (2441MHz)								

NOTE:BT standalone SAR are not required, because maximum average output power is less than 10mW.

When the standalone SAR test exclusion is applied to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to the following to determine simultaneous transmission SAR test exclusion:

(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] • [$\sqrt{f(GHz)/x}$] W/kg for test separation distances \leq 50 mm; where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.

SAR head value of BT is 0.165W/Kg. SAR body value of BT is 0.082W/Kg.

East China Institute of Telecommunications Page Number : 32 of 136 TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date : Mar 31, 2015

Table 10.13: The Peak conducted power for Wifi

Wifi Results (dBm)															
802.11b (dBm)															
Channel\data rate 1Mbps					2Mbps			5.5Mbps			11N	11Mbps			
1		17.14				16.74			16.46			16.90			
6		17.2	22			16.88			16.57			16.9	16.91		
11		16.7	' 5			16.3	8			16.27			16.5	51	
802.11g (dBm)		-											•		
Channel\data rate	6N	1	91	1	121	Λ	18	M	24	4M	3	6M	48M		54M
	bp	S	bp	s	bps	5	bp	S	bp	bps bp		ps	bps		bps
1	18	.65	17	.90	19.	00	17	.93	18	18.99 1		9.35	18.73		19.19
6	18	.39	17	.78	18.	88	17	.87	18	18.66		8.91	18.63	,	18.99
11	18	.07	17	.60	18.	73	17	.46	18	8.34	18.48		18.31		18.51
20M 802.11n (dB	m)									-		•			
Channel\data rate		MCS	0	MCS	S1	MCS	2	MCS	3	MCS4		MCS5	MCS	S6	MCS7
1		13.10)	13.0	7	12.89	9	13.23		18.50		18.33	18.7	7	17.52
6		12.98	3	12.9	7	12.78	3	13.04		18.39		18.05	18.6	64	17.48
11		12.7	7	12.6	8	12.65	2	12.89		17.90		7.90 17.86		5	17.12
40M 802.11n (dB	m)														
Channel\data rate		MCS	0	MCS	S1	MCS	2	MCS3		MCS4		MCS5	MCS	S6	MCS7
3		13.59	9	13.6	5	13.49	9	13.91		18.48		18.77	19.0	6	17.69
6		13.78	3	13.8	1	13.59	9	14.00		18.57		.57 18.96		28	17.77
11			1	14.0	3	13.90)	14.54		18.91		19.11	19.4	0	18.03

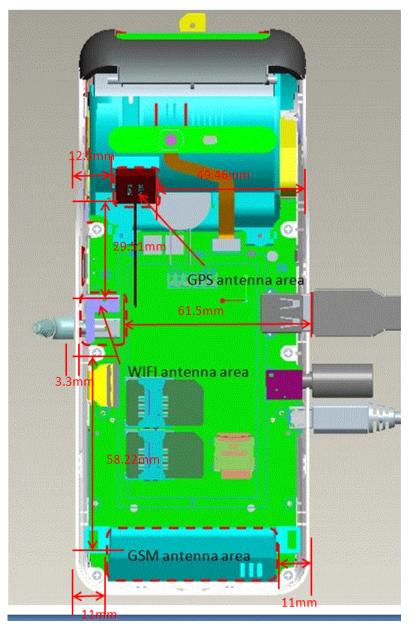
East China Institute of Telecommunications Page Number : 33 of 136 TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date : Mar 31, 2015

Table 10.14: The average conducted power for Wifi

Wifi Results (dBm)															
802.11b (dBm)															
Channel\data rate 1Mbps						2Mbps				5.5Mbps			11Mbps	11Mbps	
1		14.70			14.0	14.07 1			13.76			14.11			
6		14.71			14.26			14.20			14.30				
11		14.4	17			14.0	1			13.97			13.95		
802.11g (dBm)													·		
Channel\data rate	6N	lbp	91	1bp	121	Лbр	18	qdM8	24	4Mbp	B	6Mbp	48Mbp	54Mbp	
	s		s		s		s		s s		i	S	s		
1	9.7	7 6	9.69 10.		01	10	0.14 9.9		.99	10.95		9.52	9.64		
6	9.8	36	9.7	79	9.7	77 9.43 9.		.54 10.75		10.12	9.70				
11	9.7	' 3	9.7	77	9.6	9	9.7	71	9.	.59	10.65		9.54	9.76	
20M 802.11n (dB	m)														
Channel\data rate		MCS	0	MCS	31	MCS	2	MCS3	3	MCS4		MCS5	MCS6	MCS7	
1		10.63	3	10.8	7	10.67	7	10.81		10.55		10.77	11.21	10.85	
6		10.34	4	10.6	8	10.72	2	10.79		10.47	7 10.61		10.91	10.78	
11		10.52	2	10.4	6	10.53	3	10.65	10.65 10.4		10.49 10.52		10.89	10.74	
40M 802.11n (dB	m)														
Channel\data rate	Channel\data rate MCS0		0	MCS	31	MCS	2	2 MCS3		MCS4		MCS5	MCS6	MCS7	
1		9.70		9.71		9.68	9.68 9.69			9.60		9.60 9.63		9.70	
6		10.07	7	10.1	3	10.00)	10.02		9.87		9.93	10.15	10.04	
11		9.94		9.96		9.88		9.91		9.66		9.79	10.03	9.90	

SAR is not required for 802.11g/n channels if the output power is less than 0.25dB higher than that measured on the corresponding 802.11b channels, and for each frequency band, testing at higher data rates and higher order modulations is not required when the maximum average output power for each of these configurations is less than 0.25dB higher than those measured at the lowest data rate. According to the above conducted power, the EUT should be tested for "802.11b, 1Mbps, channel 6".

East China Institute of Telecommunications Page Number : 34 of 136 TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date : Mar 31, 2015


11. Simultaneous TX SAR Considerations

11.1. Introduction

The following procedures adopted from "FCC SAR Considerations for Cell Phones with Multiple Transmitters" are applicable to handsets with built-in unlicensed transmitters such as 802.11 a/b/g and Bluetooth devices which may simultaneously transmit with the licensed transmitter. For this device, the BT and Wi-Fi can transmit simultaneous with other transmitters.

Report No.: I14D00071-SAR

11.2. Transmit Antenna Separation Distances

Picture 12.1 Antenna Locations

Page Number

Report Issued Date

: 35 of 136

: Mar 31, 2015

11.3. Standalone SAR Test Exclusion Considerations

Standalone 1-g head or body SAR evaluation by measurement or numerical simulation is not required when the corresponding SAR Exclusion Threshold condition, listed below, is satisfied. The 1-g SAR test exclusion threshold for 100 MHz to 6 GHz at test separation distances≤ 50 mm are determined by:

Report No.: I14D00071-SAR

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR, where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

According to the KDB447498 appendix A, the SAR test exclusion threshold for 2450MHz at 5mm test separation distances is 10mW.

Based on the above equation, Bluetooth SAR was not required:

Evaluation=1.234<3.0

Based on the above equation, WiFi SAR was required:

Evaluation=9.873>3.0

11.4. SAR Measurement Positions

According to the KDB941225 D06 Hot Spot SAR v01, the edges with less than 2.5 cm distance to the antennas need to be tested for SAR.

SAR Measurement Positions										
Antenna Mode	Phantom	Ground	Left	Right	Тор	Bottom				
Main	No	Yes	Yes	Yes	No	No				
WLAN	No	Yes	Yes	Yes	No	No				

12. Evaluation of Simultaneous

Table 12.1: Summary of Transmitters

Report No.: I14D00071-SAR

Band/Mode	Frequency (GHz)	SAR test exclusion threshold(mW)	RF output power (mW)
Bluetooth	2.41	10	3.981
2.4GHz WLAN 802.11 b/g/n	2.45	10	31.62

Table12.2 Simultaneous transmission SAR

Simult	Simultaneous Transmission SAR(W/Kg)										
Test Position		GSM	GSM	WCDMA	WCDMA	WIFI	ВТ	SUM			
		850	1900	Band 2	Band 5		note				
	Phantom Side	/	1	/	1	1	/	/			
	Ground Side	0.333	0.875	0.805	0.147	0.019	0.082	0.957			
Dody	Left Side	0.301	0.416	0.405	0.145	0.019	0.082	0.498			
Body	Right Side	0.959	0.098	0.093	0.509	0.450	0.082	1.409			
	Top Side	/	1	/	1	1	/	/			
	Bottom Side	0.913	0.751	0.602	0.361	/	0.082	0.995			

According to the conducted power measurement result, we can draw the conclusion that: stand-alone SAR for WiFi should be performed. Then, simultaneous transmission SAR for WiFi/BT is considered with measurement results of GSM/WCDMA and WiFi/BT. According to the above table, the sum of reported SAR values for GSM/WCDMA and WiFi<1.6W/kg. So the simultaneous transmission SAR isnot required for WiFi/BT transmitter.

East China Institute of Telecommunications Page Number : 37 of 136
TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date : Mar 31, 2015

13. SAR Test Result

Table 13.1: Duty Cycle

Duty Cycle						
GPRS for GSM835/1900	1:2					
WCDMA850/1900 and WiFi	1:1					

Table 13.2: SAR Values (GSM 835 MHz Band-Body)

Frequ	ency	Mode	Test	Maximum			Measured	Reported	Power
MHz	Ch.	(number of timeslots)	Position	Power (dBm)	power (dBm)	Scaling factor	SAR(1g) (W/kg)	SAR(1g)(W/kg)	Drift (dB)
836.6	190	GPRS (4)	Ground	29.0	28.8	1.047	0.318	0.333	-0.07
836.6	190	GPRS (4)	Left	29.0	28.8	1.047	0.287	0.301	0.04
836.6	190	GPRS (4)	Right	29.0	28.8	1.047	0.660	0.691	0.19
836.6	190	GPRS (4)	Bottom	29.0	28.8	1.047	0.828	0.867	0.16
824.2	128	GPRS (4)	Bottom	29.0	28.9	1.023	0.829	0.848	0.18
848.8	251	GPRS (4)	Bottom	29.0	28.9	1.023	0.892	0.913	0.10
824.2	128	GPRS (4)	Right	29.0	28.9	1.023	0.730	0.747	0.17
848.8	251	GPRS (4)	Right	29.0	28.9	1.023	0.937	0.959	0.17

Note: The distance between the EUT and the phantom bottom is 0mm.

Table 13.3: SAR Values (GSM 1900 MHz Band-Body)

Freque	requency Mode		Test	Maximum allowed	Measured	Scaling	Measured	Reported	Power
MHz	Ch.	(number of timeslots)	Position	n Power power factor SAR(1g) SAF		power factor		SAR(1g)(W/kg)	Drift (dB)
1880	661	GPRS (4)	Ground	25.0	24.7	1.072	0.817	0.875	0.18
1880	661	GPRS (4)	Left	25.0	24.7	1.072	0.388	0.416	0.13
1880	661	GPRS (4)	Right	25.0	24.7	1.072	0.091	0.098	0.14
1880	661	GPRS (4)	Bottom	25.0	24.7	1.072	0.701	0.751	0.13
1909.8	810	GPRS (4)	Ground	25.0	24.8	1.047	0.762	0.798	0.03
1850.2	512	GPRS (4)	Ground	25.0	24.8	1.047	0.761	0.797	0.17

Note: The distance between the EUT and the phantom bottom is 0mm.

East China Institute of Telecommunications Page Number : 38 of 136 TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date : Mar 31, 2015

Table 13.4: SAR Values (WCDMA Band V-Body)

Report No.: I14D00071-SAR

Frequ	ency	Test	Maximum allowed	Measured average	Scaling	Measured	Reported	Power
MHz	Ch.	Position	Power (dBm)	power (dBm)	factor	SAR(1g) (W/kg)	SAR(1g)(W/kg)	Drift (dB)
836.4	4182	Ground	26.5	26.18	1.076	0.137	0.147	0.06
836.4	4182	Left	26.5	26.18	1.076	0.135	0.145	0.11
836.4	4182	Bottom	26.5	26.18	1.076	0.335	0.361	0.11
836.4	4182	Right	26.5	26.18	1.076	0.473	0.509	-0.12
846.6	4233	Right	26.5	25.64	1.219	0.374	0.456	0.10
826.4	4132	Right	26.5	26.06	1.107	0.237	0.262	0.14

Note: The distance between the EUT and the phantom bottom is 0mm

Table 13.5: SAR Values (WCDMA Band II-Body)

Freque	ency	Test	Maximum allowed	Measured	Scaling	Measured	Reported	Power
MHz	Ch.	Position	Power (dBm)	average power (dBm)	factor	SAR(1g) (W/kg)	SAR(1g)(W/kg)	Drift (dB)
1880	9400	Ground	26.0	25.91	1.021	0.788	0.805	0.13
1880	9400	Left	26.0	25.91	1.021	0.397	0.405	0.19
1880	9400	Right	26.0	25.91	1.021	0.091	0.093	0.10
1880	9400	Bottom	26.0	25.91	1.021	0.590	0.602	0.11
1907.6	9538	Ground	26.0	25.69	1.074	0.728	0.782	0.14
1852.4	9262	Ground	26.0	25.71	1.069	0.645	0.690	0.13

Note: The distance between the EUT and the phantom bottom is 0mm.

Table 13.6: SAR Values (Wi-Fi 802.11b - Body)

	Table 1010. Gravitation (W. 11.0021112 Deay)											
Frequ	ency	Test	Maximum allowed	Measured	Scaling	Measured	Reported	Power				
	01	Position	Power	average	factor	SAR(1g)	SAR(1g)(Drift				
MHz	Ch.	1 00111011	(dBm)	(dBm)	140101	(W/kg)	W/kg)	(dB)				
2437	6	Ground	15.0	14.71	1.069	0.018	0.019	-0.15				
2437	6	Left	15.0	14.71	1.069	0.018	0.019	0.14				
2437	6	Right	15.0	14.71	1.069	0.412	0.440	0.04				
2412	1	Right	15.0	14.70	1.072	0.420	0.450	0.16				
2462	11	Right	15.0	14.47	1.130	0.391	0.442	0.09				

Note: The distance between the EUT and the phantom bottom is 0mm.

East China Institute of Telecommunications Page Number : 39 of 136 TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date : Mar 31, 2015

SAR measurement variability must be assessed for each frequency band, which is determined by the SARprobe calibration point and tissue-equivalent medium used for the device measurements. When both headand body tissue-equivalent media are required for SAR measurements in a frequency band, the variabilitymeasurement procedures should be applied to the tissue medium with the highest measured SAR, usingthe highest measured SAR configuration for that

Report No.: I14D00071-SAR

14. SAR Measurement Variability

tissue-equivalent medium.

The following procedures are applied to determine if repeatedmeasurements are required.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeatedmeasurements is > 1.20.

Table 14.1: SAR Measurement Variability for Head Value (1g)

Frequ	ency	Side	Test	Original	First Repeated	Reported	The Ratio
MHz	Ch.	Side	Position	SAR (W/kg)	SAR (W/kg)	SAR(1g)(W/kg)	THE RAILO
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Note: According to the KDB 865664 D01repeated measurement is not required when the original highest measured SAR is < 0.8 W/kg.

Table 14.2: SAR Measurement Variability for Body Value (1a)

Freque	ency				Original	First	Reported	
MHz	Ch.	Mode(number of timeslots)	Test Position	Spacing (mm)	SAR (W/kg)	Repeated SAR (W/kg)	SAR(1g)(W/kg)	The Ratio
848.8	251	GPRS (4)	Right	0	0.937	0.935	0.957	1.00
1880	661	GPRS (4)	Ground	0	0.817	0.786	0.842	1.04
1880	9400	WCDMA	Ground	0	0.788	0.761	0.777	1.04
836.6	190	GPRS (4)	Bottom	0	0.828	0.820	0.859	1.01
824.2	128	GPRS (4)	Bottom	0	0.829	0.828	0.847	1.00
848.8	251	GPRS (4)	Bottom	0	0.892	0.863	0.883	1.03

Note: According to the KDB 865664 D01, repeated measurement is not required when the original highest measured SAR is < 0.8 W/kg.

East China Institute of Telecommunications Page Number : 40 of 136
TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date : Mar 31, 2015

15. Measurement Uncertainty

Error Description	Unc.	Prob.	Div.	C _i	C _i	Std.Unc	Std.Unc	Vi
	value,	Dist.		1g	10g			V _{eff}
	±%					±%,1g	±%,10g	
Measurement System	l	1				•		
Probe Calibration	6.0	N	1	1	1	6.0	6.0	∞
Axial Isotropy	0.5	R	$\sqrt{3}$	0.7	0.7	0.2	0.2	∞
Hemispherical Isotropy	2.6	R	$\sqrt{3}$	0.7	0.7	1.1	1.1	∞
Boundary Effects	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
Linearity	0.6	R	$\sqrt{3}$	1	1	0.3	0.3	∞
System Detection Limits	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
Readout Electronics	0.7	N	1	1	1	0.7	0.7	∞
Response Time	0	R	$\sqrt{3}$	1	1	0	0	∞
Integration Time	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞
RF Ambient Noise	3.0	R	$\sqrt{3}$	1	1	1.7	1.7	∞
RF Ambient Reflections	3.0	R	$\sqrt{3}$	1	1	1.7	1.7	∞
Probe Positioner	1.5	R	$\sqrt{3}$	1	1	0.9	0.9	∞
Probe Positioning	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	∞
Max. SAR Eval.	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
Test Sample Related								
Device Positioning	2.9	N	1	1	1	2.9	2.9	145
Device Holder	3.6	N	1	1	1	3.6	3.6	5
Diople								
Power Drift	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞
Dipole Positioning	2.0	N	1	1	1	2.0	2.0	∞
Dipole Input Power	5.0	N	1	1	1	5.0	5.0	∞
Phantom and Setup								
Phantom Uncertainty	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
Liquid Conductivity (target)	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	∞
Liquid Conductivity (meas.)	2.5	N	1	0.64	0.43	1.6	1.1	∞
Liquid Permittivity (target)	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	∞
Liquid Permittivity (meas.)	2.5	N	1	0.6	0.49	1.5	1.2	∞
, , ,				'				
Combined Std						±11.2%	±10.9%	387
Uncertainty								
Expanded Std						±22.4	±21.8	
Uncertainty						%	%	

Page Number Report Issued Date

: 41 of 136

16. Main Test Instrument

Table 16.1: List of Main Instruments

Report No.: I14D00071-SAR

No.	Name	Туре	Serial Number	Calibration Date	Valid Period
01	Network analyzer	N5242A	MY51221755	Jan 19, 2015	One year
02	Power meter	NRVD	102257	Jul 07, 2014	One year
03	Power sensor	NRV-Z5	100644,100241	Jul 07, 2014	One year
04	Signal Generator	E4438C	MY49072044	Jan 19, 2015	One Year
05	Amplifier	NTWPA-0086010F	12023024	No Calibration Requeste	ed
06	Coupler	778D	MY48220551	Jul 25, 2014	One year
07	BTS	E5515C	MY50266468	Jan 19, 2015	One year
08	E-field Probe	ES3DV3	3252	Nov 04, 2014	One year
09	DAE	SPEAG DAE4	1244	Oct 14, 2014	One year
10	Dipole Validation Kit	SPEAG D835V2	4d112	Nov 04, 2014	One year
11	Dipole Validation Kit	SPEAG D1900V2	5d134	Nov 05, 2014	One year
12	Dipole Validation Kit	SPEAG D2450V2	858	Nov 03, 2014	One year

East China Institute of Telecommunications Page Number : 42 of 136 TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date : Mar 31, 2015

: 43 of 136

: Mar 31, 2015

Page Number

Report Issued Date

ANNEX A. GRAPH RESULTS

GPRS 850MHz 4TS Ground Mode Middle

Date/Time: 15/2/6

Electronics: DAE4 Sn1244 Medium: Body 850MHz

Medium parameters used: f = 837 MHz; $\sigma = 1.014$ S/m; $\epsilon r = 55.182$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5 °C Liquid Temperature:22.5 °C

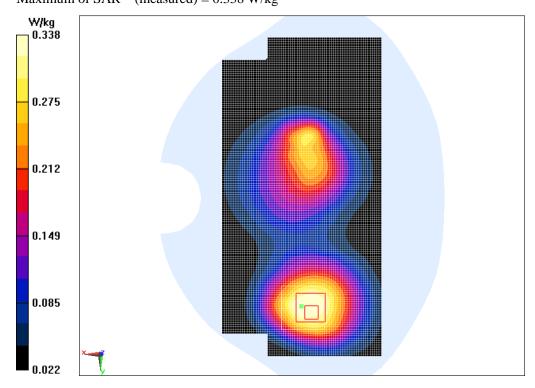
Communication System: GSM 850MHz GPRS 4TS; Frequency: 836.6 MHz; Duty Cycle: 1:2

Probe: ES3DV3 - SN3252ConvF(6.27, 6.27, 6.27);

GPRS 850MHz 4TS Ground Mode Middle/Area Scan (71x141x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.343 W/kg


GPRS 850MHz 4TS Ground Mode Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.35 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 0.479 W/kg

SAR(1 g) = 0.318 W/kg; SAR(10 g) = 0.214 W/kgMaximum of SAR (measured) = 0.338 W/kg

GPRS 850MHz 4TS Left Mode Middle

Date/Time: 15/2/6

Electronics: DAE4 Sn1244 Medium: Body 850MHz

Medium parameters used: f = 837 MHz; $\sigma = 1.014$ S/m; $\epsilon r = 55.182$; $\rho = 1000$ kg/m³

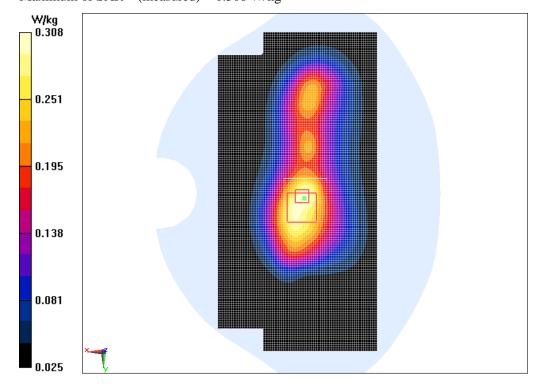
Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

Communication System: GSM 850MHz GPRS 4TS; Frequency: 836.6 MHz; Duty Cycle: 1:2

Probe: ES3DV3 - SN3252ConvF(6.27, 6.27, 6.27);

GPRS 850MHz 4TS Left Mode Middle/Area Scan (71x141x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.309 W/kg

GPRS 850MHz 4TS Left Mode Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 17.67 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.450 W/kg

SAR(1 g) = 0.287 W/kg; SAR(10 g) = 0.192 W/kgMaximum of SAR (measured) = 0.308 W/kg

Page Number

Report Issued Date

: 44 of 136

GPRS 850MHz 4TS Right Mode Middle

Date/Time: 15/2/6

Electronics: DAE4 Sn1244 Medium: Body 850MHz

Medium parameters used: f = 837 MHz; $\sigma = 1.014$ S/m; $\epsilon r = 55.182$; $\rho = 1000$ kg/m³

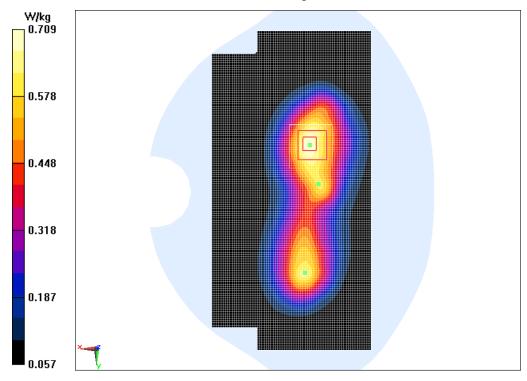
Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

Communication System: GSM 850MHz GPRS 4TS; Frequency: 836.6 MHz; Duty Cycle: 1:2

Probe: ES3DV3 - SN3252ConvF(6.27, 6.27, 6.27);

GPRS 850MHz 4TS Right Mode Middle/Area Scan (71x141x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.712 W/kg

GPRS 850MHz 4TS Right Mode Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 16.91 V/m; Power Drift = 0.19 dB

Peak SAR (extrapolated) = 0.976 W/kg

SAR(1 g) = 0.660 W/kg; SAR(10 g) = 0.438 W/kgMaximum value of SAR (measured) = 0.709 W/kg

Page Number

Report Issued Date

: 45 of 136

GPRS 850MHz 4TS Right Mode Low

Date/Time: 15/2/6

Electronics: DAE4 Sn1244 Medium: Body 850MHz

Medium parameters used (interpolated): f = 824.2 MHz; $\sigma = 1.002 \text{ S/m}$; $\epsilon r = 55.473$; $\rho = 1000 \text{ kg/m}3$

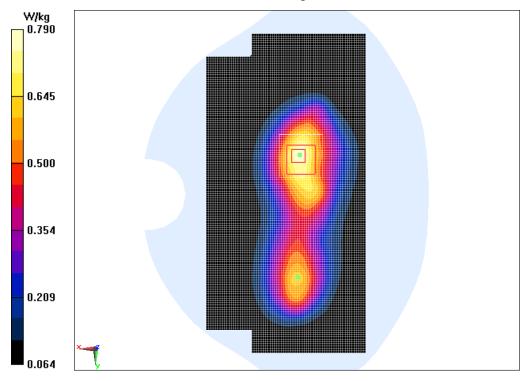
Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

Communication System: GSM 850MHz GPRS 4TS; Frequency: 824.2 MHz; Duty Cycle: 1:2

Probe: ES3DV3 - SN3252ConvF(6.27, 6.27, 6.27);

GPRS 850MHz 4TS Right Mode Low/Area Scan (71x141x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.781 W/kg

GPRS 850MHz 4TS Right Mode Low/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 21.15 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 1.10 W/kg

SAR(1 g) = 0.730 W/kg; SAR(10 g) = 0.484 W/kgMaximum value of SAR (measured) = 0.790 W/kg

Page Number

Report Issued Date

: 46 of 136

GPRS 850MHz 4TS Right Mode High

Date/Time: 15/2/6

Electronics: DAE4 Sn1244 Medium: Body 850MHz

Medium parameters used: f = 849 MHz; $\sigma = 1.027$ S/m; $\epsilon r = 54.988$; $\rho = 1000$ kg/m³

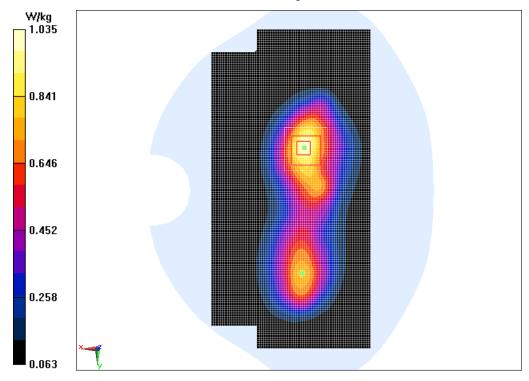
Ambient Temperature:22.5 °C Liquid Temperature:22.5 °C

Communication System: GSM 850MHz GPRS 4TS; Frequency: 848.8 MHz; Duty Cycle: 1:2

Probe: ES3DV3 - SN3252ConvF(6.27, 6.27, 6.27);

GPRS 850MHz 4TS Right Mode High/Area Scan (71x141x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 1.02 W/kg

GPRS 850MHz 4TS Right Mode High/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 21.40 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 1.53 W/kg

SAR(1 g) = 0.937 W/kg; SAR(10 g) = 0.584 W/kgMaximum value of SAR (measured) = 1.04 W/kg

Page Number

Report Issued Date

: 47 of 136

GPRS 850MHz 4TS Right Mode High 2

Date/Time: 15/2/6

Electronics: DAE4 Sn1244 Medium: Body 850MHz

Medium parameters used: f = 849 MHz; $\sigma = 1.027$ S/m; $\epsilon r = 54.988$; $\rho = 1000$ kg/m³

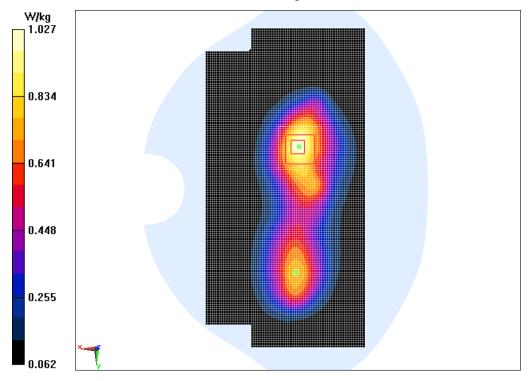
Ambient Temperature:22.5 °C Liquid Temperature:22.5 °C

Communication System: GSM 850MHz GPRS 4TS; Frequency: 848.8 MHz; Duty Cycle: 1:2

Probe: ES3DV3 - SN3252ConvF(6.27, 6.27, 6.27);

GPRS 850MHz 4TS Right Mode High 2/Area Scan (71x141x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 1.03 W/kg

GPRS 850MHz 4TS Right Mode High 2/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 21.35 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 1.54 W/kg

SAR(1 g) = 0.935 W/kg; SAR(10 g) = 0.584 W/kgMaximum value of SAR (measured) = 1.03 W/kg

Page Number

Report Issued Date

: 48 of 136

GPRS 850MHz 4TS Bottom Mode Middle

Date/Time: 15/3/27

Electronics: DAE4 Sn1244 Medium: Body 850MHz

Medium parameters used: f = 837 MHz; $\sigma = 0.998$ S/m; $\varepsilon_r = 55.308$; $\rho = 1000$ kg/m³

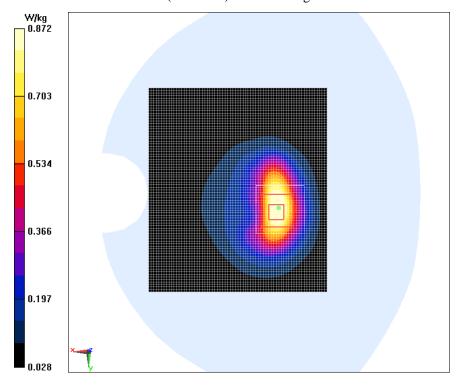
Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

Communication System: GSM 850MHz GPRS 4TS; Frequency: 836.6 MHz; Duty Cycle: 1:2

Probe: ES3DV3 - SN3252ConvF(6.27, 6.27, 6.27);

GPRS 850MHz 4TS Bottom Mode Middle/Area Scan (71x81x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.954 W/kg

GPRS 850MHz 4TS Bottom Mode Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 25.88 V/m; Power Drift = 0.16 dB

Peak SAR (extrapolated) = 1.57 W/kg

SAR(1 g) = 0.828 W/kg; SAR(10 g) = 0.462 W/kgMaximum value of SAR (measured) = 0.872 W/kg

Page Number

Report Issued Date

: 49 of 136

GPRS 850MHz 4TS Bottom Mode Middle 2

Date/Time: 15/3/27

Electronics: DAE4 Sn1244 Medium: Body 850MHz

Medium parameters used: f = 837 MHz; $\sigma = 0.998$ S/m; $\varepsilon_r = 55.308$; $\rho = 1000$ kg/m³

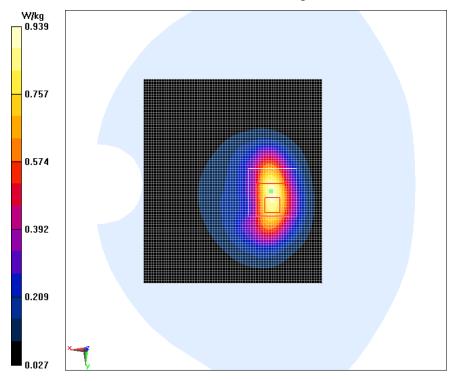
Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

Communication System: GSM 850MHz GPRS 4TS; Frequency: 836.6 MHz; Duty Cycle: 1:2

Probe: ES3DV3 - SN3252ConvF(6.27, 6.27, 6.27);

GPRS 850MHz 4TS Bottom Mode Middle 2/Area Scan (71x81x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.916 W/kg

GPRS 850MHz 4TS Bottom Mode Middle 2/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 25.42 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 1.64 W/kg

SAR(1 g) = 0.820 W/kg; SAR(10 g) = 0.463 W/kgMaximum value of SAR (measured) = 0.939 W/kg

Page Number

Report Issued Date

: 50 of 136

GPRS 850MHz 4TS Bottom Mode Low

Date/Time: 15/3/27

Electronics: DAE4 Sn1244 Medium: Body 850MHz

Medium parameters used (interpolated): f = 824.2 MHz; $\sigma = 0.978 \text{ S/m}$; $\varepsilon_r = 55.275$; $\rho = 1000 \text{ kg/m}^3$

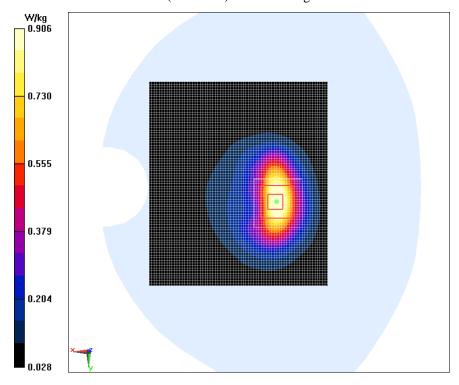
Ambient Temperature:22.5 °C Liquid Temperature:22.5 °C

Communication System: GSM 850MHz GPRS 4TS (0); Frequency: 824.2 MHz; Duty Cycle: 1:2

Probe: ES3DV3 - SN3252ConvF(6.27, 6.27, 6.27);

GPRS 850MHz 4TS Bottom Mode Low/Area Scan (71x81x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.985 W/kg

GPRS 850MHz 4TS Bottom Mode Low/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 26.09 V/m; Power Drift = 0.18 dB

Peak SAR (extrapolated) = 1.63 W/kg

SAR(1 g) = 0.829 W/kg; SAR(10 g) = 0.464 W/kgMaximum value of SAR (measured) = 0.906 W/kg

Page Number

Report Issued Date

: 51 of 136

GPRS 850MHz 4TS Bottom Mode Low 2

Date/Time: 15/3/27

Electronics: DAE4 Sn1244 Medium: Body 850MHz

Medium parameters used (interpolated): f = 824.2 MHz; $\sigma = 0.978 \text{ S/m}$; $\varepsilon_r = 55.275$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

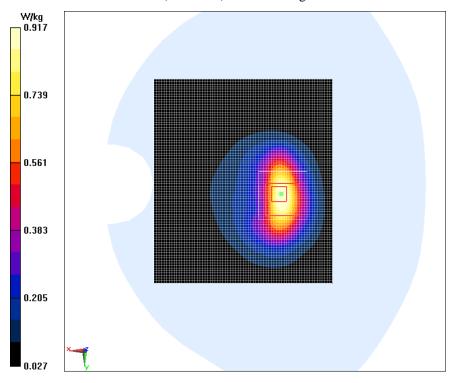
Communication System: GSM 850MHz GPRS 4TS (0); Frequency: 824.2 MHz; Duty Cycle: 1:2

Probe: ES3DV3 - SN3252ConvF(6.27, 6.27, 6.27);

GPRS 850MHz 4TS Bottom Mode Low 2/Area Scan (71x81x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.942 W/kg


GPRS 850MHz 4TS Bottom Mode Low 2/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 26.08 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 1.65 W/kg

SAR(1 g) = 0.828 W/kg; SAR(10 g) = 0.464 W/kgMaximum value of SAR (measured) = 0.917 W/kg

Page Number

Report Issued Date

: 52 of 136

GPRS 850MHz 4TS Bottom Mode High

Date/Time: 15/3/27

Electronics: DAE4 Sn1244 Medium: Body 850MHz

Medium parameters used: f = 849 MHz; $\sigma = 1.013$ S/m; $\varepsilon_r = 55.329$; $\rho = 1000$ kg/m³

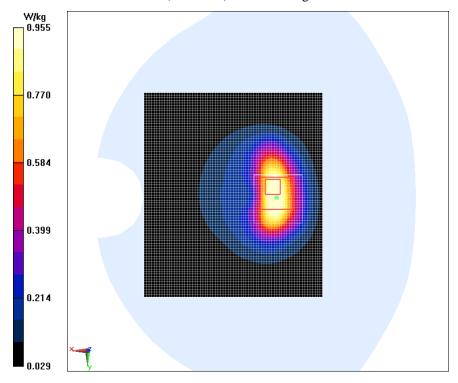
Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

Communication System: GSM 850MHz GPRS 4TS (0); Frequency: 848.8 MHz; Duty Cycle: 1:2

Probe: ES3DV3 - SN3252ConvF(6.27, 6.27, 6.27);

GPRS 850MHz 4TS Bottom Mode High/Area Scan (71x81x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 1.03 W/kg

GPRS 850MHz 4TS Bottom Mode High/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 20.02 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 1.99 W/kg

SAR(1 g) = 0.892 W/kg; SAR(10 g) = 0.492 W/kgMaximum value of SAR (measured) = 0.955 W/kg

Page Number

Report Issued Date

: 53 of 136

GPRS 850MHz 4TS Bottom Mode High 2

Date/Time: 15/3/27

Electronics: DAE4 Sn1244 Medium: Body 850MHz

Medium parameters used: f = 849 MHz; $\sigma = 1.013$ S/m; $\varepsilon_r = 55.329$; $\rho = 1000$ kg/m³

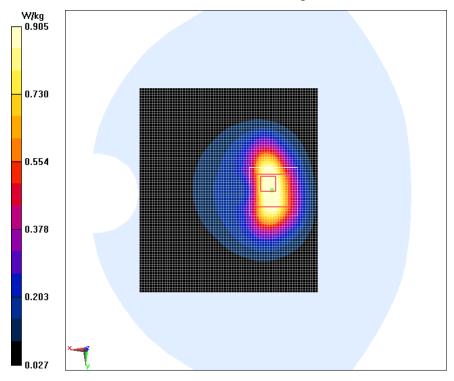
Ambient Temperature:22.5 °C Liquid Temperature:22.5 °C

Communication System: GSM 850MHz GPRS 4TS (0); Frequency: 848.8 MHz; Duty Cycle: 1:2

Probe: ES3DV3 - SN3252ConvF(6.27, 6.27, 6.27);

GPRS 850MHz 4TS Bottom Mode High 2/Area Scan (71x81x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.996 W/kg

GPRS 850MHz 4TS Bottom Mode High 2/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 19.35 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 1.86 W/kg

SAR(1 g) = 0.863 W/kg; SAR(10 g) = 0.483 W/kgMaximum value of SAR (measured) = 0.905 W/kg

Page Number

Report Issued Date

: 54 of 136

GPRS 1900MHz 4TS Ground Mode Middle

Date/Time: 15/2/7

Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.504 \text{ S/m}$; $\varepsilon_r = 53.319$; $\rho = 1000 \text{ kg/m}^3$

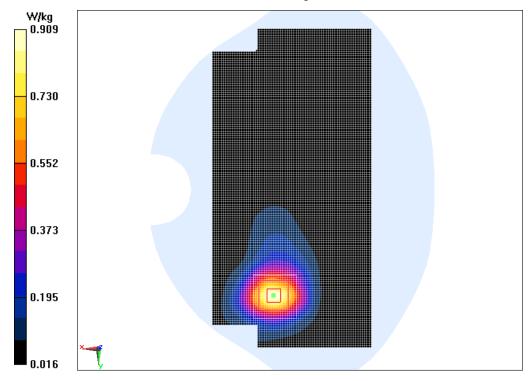
Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

Communication System: GSM 1900MHz GPRS 4TS; Frequency: 1880 MHz; Duty Cycle: 1:2

Probe: ES3DV3 - SN3252ConvF(4.71, 4.71, 4.71);

GPRS 1900MHz 4TS Ground Mode Middle/Area Scan (71x141x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.917 W/kg

GPRS 1900MHz 4TS Ground Mode Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 4.726 V/m; Power Drift = 0.18 dB

Peak SAR (extrapolated) = 1.35 W/kg

SAR(1 g) = 0.817 W/kg; SAR(10 g) = 0.466 W/kgMaximum value of SAR (measured) = 0.909 W/kg

Page Number

Report Issued Date

: 55 of 136

GPRS 1900MHz 4TS Ground Mode Middle 2

Date/Time: 15/2/7

Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.504$ S/m; $\varepsilon_r = 53.319$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5 °C Liquid Temperature: 22.5 °C

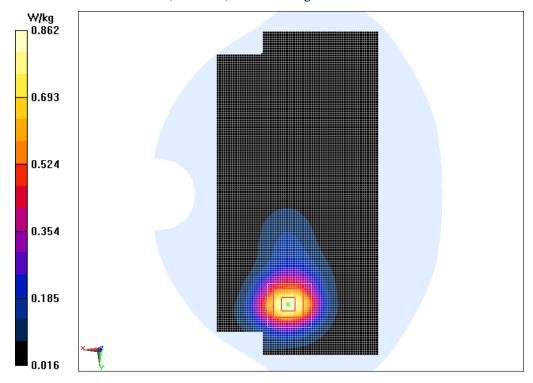
Communication System: GSM 1900MHz GPRS 4TS; Frequency: 1880 MHz; Duty Cycle: 1:2

Probe: ES3DV3 - SN3252ConvF(4.71, 4.71, 4.71);

GPRS 1900MHz 4TS Ground Mode Middle 2/Area Scan (71x141x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.885 W/kg


GPRS 1900MHz 4TS Ground Mode Middle 2/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.601 V/m; Power Drift = -0.17 dB

Peak SAR (extrapolated) = 1.34 W/kg

SAR(1 g) = 0.786 W/kg; SAR(10 g) = 0.448 W/kgMaximum value of SAR (measured) = 0.862 W/kg

Page Number

Report Issued Date

: 56 of 136

GPRS 1900MHz 4TS Left Mode Middle

Date/Time: 15/2/7

Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.504$ S/m; $\varepsilon_r = 53.319$; $\rho = 1000$ kg/m³

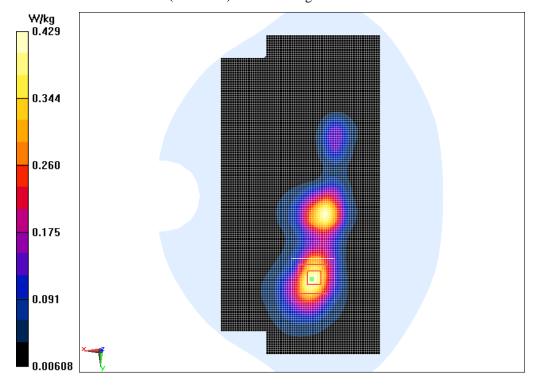
Ambient Temperature:22.5 °C Liquid Temperature:22.5 °C

Communication System: GSM 1900MHz GPRS 4TS; Frequency: 1880 MHz; Duty Cycle: 1:2

Probe: ES3DV3 - SN3252ConvF(4.71, 4.71, 4.71);

GPRS 1900MHz 4TS Left Mode Middle/Area Scan (71x141x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.423 W/kg

GPRS 1900MHz 4TS Left Mode Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 7.384 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 0.704 W/kg

SAR(1 g) = 0.388 W/kg; SAR(10 g) = 0.206 W/kgMaximum value of SAR (measured) = 0.429 W/kg

Page Number

Report Issued Date

: 57 of 136

GPRS 1900MHz 4TS Right Mode Middle

Date/Time: 15/2/7

Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.504 \text{ S/m}$; $\varepsilon_r = 53.319$; $\rho = 1000 \text{ kg/m}^3$

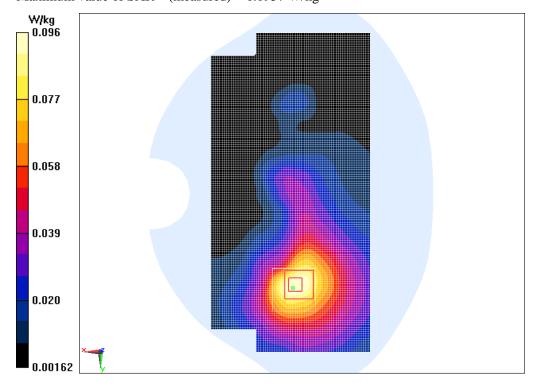
Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

Communication System: GSM 1900MHz GPRS 4TS; Frequency: 1880 MHz; Duty Cycle: 1:2

Probe: ES3DV3 - SN3252ConvF(4.71, 4.71, 4.71);

GPRS 1900MHz 4TS Right Mode Middle/Area Scan (71x141x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.0949 W/kg

GPRS 1900MHz 4TS Right Mode Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 5.058 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 0.146 W/kg

SAR(1 g) = 0.091 W/kg; SAR(10 g) = 0.056 W/kgMaximum value of SAR (measured) = 0.0957 W/kg

Page Number

Report Issued Date

: 58 of 136

GPRS 1900MHz 4TS Ground Mode Low

Date/Time: 15/2/7

Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.475 \text{ S/m}$; $\varepsilon_r = 53.44$; $\rho = 1000 \text{ kg/m}^3$

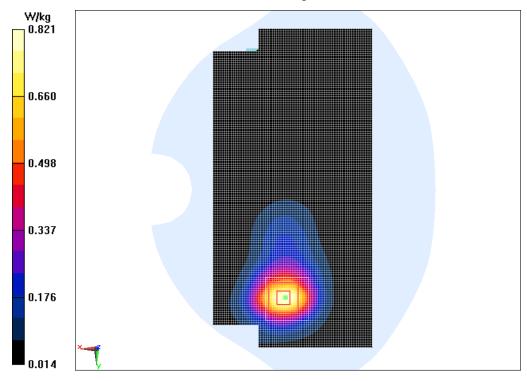
Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

Communication System: GSM 1900MHz GPRS 4TS; Frequency: 1850.2 MHz; Duty Cycle: 1:2

Probe: ES3DV3 - SN3252ConvF(4.71, 4.71, 4.71);

GPRS 1900MHz 4TS Ground Mode Low/Area Scan (71x141x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.837 W/kg

GPRS 1900MHz 4TS Ground Mode Low/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 5.454 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 1.28 W/kg

SAR(1 g) = 0.761 W/kg; SAR(10 g) = 0.438 W/kgMaximum value of SAR (measured) = 0.821 W/kg

Page Number

Report Issued Date

: 59 of 136

<u>-</u>

Report No.: I14D00071-SAR

GPRS 1900MHz 4TS Ground Mode High

Date/Time: 15/2/7

Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used: f = 1910 MHz; $\sigma = 1.534$ S/m; $\varepsilon_r = 53.187$; $\rho = 1000$ kg/m³

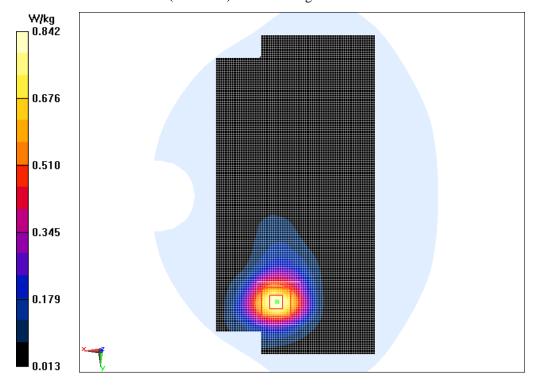
Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

Communication System: GSM 1900MHz GPRS 4TS; Frequency: 1909.8 MHz; Duty Cycle: 1:2

Probe: ES3DV3 - SN3252ConvF(4.71, 4.71, 4.71);

GPRS 1900MHz 4TS Ground Mode High/Area Scan (71x141x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.860 W/kg

GPRS 1900MHz 4TS Ground Mode High/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 4.306 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 1.30 W/kg

SAR(1 g) = 0.762 W/kg; SAR(10 g) = 0.431 W/kgMaximum value of SAR (measured) = 0.842 W/kg

Page Number

Report Issued Date

: 60 of 136

GPRS 1900MHz 4TS Bottom Mode Middle

Date/Time: 15/3/27

Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.495$ S/m; $\varepsilon_r = 53.961$; $\rho = 1000$ kg/m³

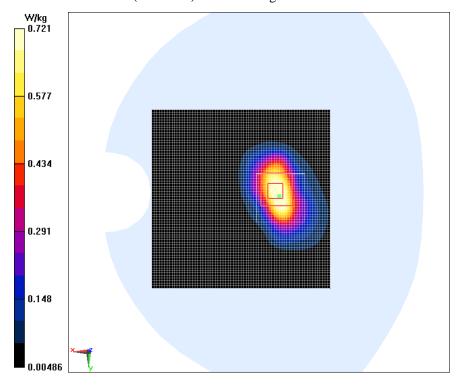
Ambient Temperature:22.5 °C Liquid Temperature:22.5 °C

Communication System: GSM 1900MHz GPRS 4TS; Frequency: 1880 MHz; Duty Cycle: 1:2

Probe: ES3DV3 - SN3252ConvF(4.71, 4.71, 4.71);

GPRS 1900MHz 4TS Bottom Mode Middle/Area Scan (71x71x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.765 W/kg

GPRS 1900MHz 4TS Bottom Mode Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 19.51 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 1.30 W/kg

SAR(1 g) = 0.701 W/kg; SAR(10 g) = 0.362 W/kgMaximum of SAR (measured) = 0.721 W/kg

Page Number

Report Issued Date

: 61 of 136

WCDMA Band5 Ground Mode Middle

Date/Time: 15/2/6

Electronics: DAE4 Sn1244 Medium: Body 850MHz

Medium parameters used: f = 837 MHz; $\sigma = 1.014$ S/m; $\epsilon r = 55.182$; $\rho = 1000$ kg/m³

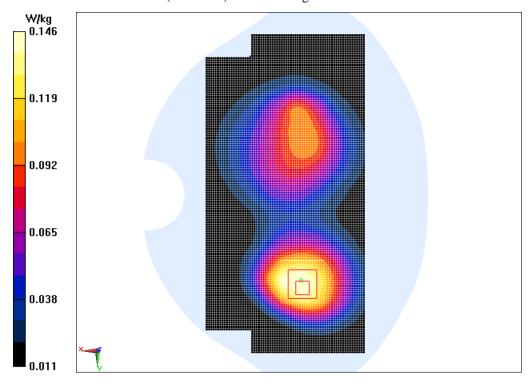
Ambient Temperature:22.5 °C Liquid Temperature:22.5 °C

Communication System: WCDMA Band V; Frequency: 836.6 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(6.27, 6.27, 6.27);

WCDMA Band5 Ground Mode Middle/Area Scan (71x141x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.148 W/kg

WCDMA Band5 Ground Mode Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 7.513 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 0.204 W/kg

SAR(1 g) = 0.137 W/kg; SAR(10 g) = 0.091 W/kgMaximum value of SAR (measured) = 0.146 W/kg

Page Number

Report Issued Date

: 62 of 136

WCDMA Band5 Left Mode Middle

Date/Time: 15/2/6

Electronics: DAE4 Sn1244 Medium: Body 850MHz

Medium parameters used: f = 837 MHz; $\sigma = 1.014$ S/m; $\epsilon r = 55.182$; $\rho = 1000$ kg/m³

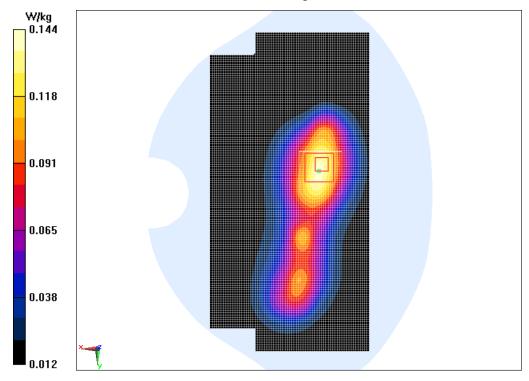
Ambient Temperature:22.5 °C Liquid Temperature:22.5 °C

Communication System: WCDMA Band V; Frequency: 836.6 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(6.27, 6.27, 6.27);

WCDMA Band5 Left Mode Middle/Area Scan (71x141x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.139 W/kg

WCDMA Band5 Left Mode Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 8.243 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 0.214 W/kg

SAR(1 g) = 0.135 W/kg; SAR(10 g) = 0.091 W/kgMaximum value of SAR (measured) = 0.144 W/kg

Page Number

Report Issued Date

: 63 of 136

WCDMA Band5 Right Mode Middle

Date/Time: 15/2/6

Electronics: DAE4 Sn1244 Medium: Body 850MHz

Medium parameters used: f = 837 MHz; $\sigma = 1.014$ S/m; $\epsilon r = 55.182$; $\rho = 1000$ kg/m³

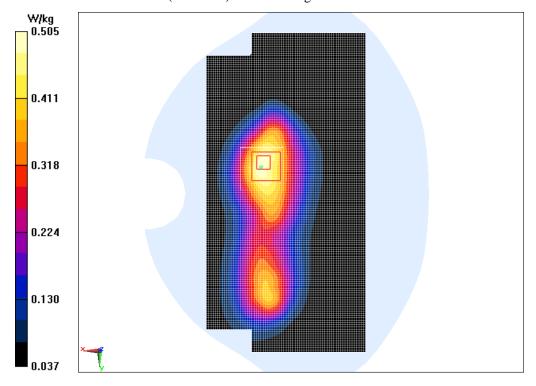
Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

Communication System: WCDMA Band V; Frequency: 836.6 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(6.27, 6.27, 6.27);

WCDMA Band5 Right Mode Middle/Area Scan (71x141x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.497 W/kg

WCDMA Band5 Right Mode Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 18.67 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 0.710 W/kg

SAR(1 g) = 0.473 W/kg; SAR(10 g) = 0.312 W/kgMaximum value of SAR (measured) = 0.505 W/kg

Page Number

Report Issued Date

: 64 of 136

WCDMA Band5 Right Mode Low

Date/Time: 15/2/6

Electronics: DAE4 Sn1244 Medium: Body 850MHz

Medium parameters used (interpolated): f = 826.4 MHz; $\sigma = 1.002 \text{ S/m}$; $\epsilon r = 55.473$; $\rho = 1000 \text{ kg/m}^3$

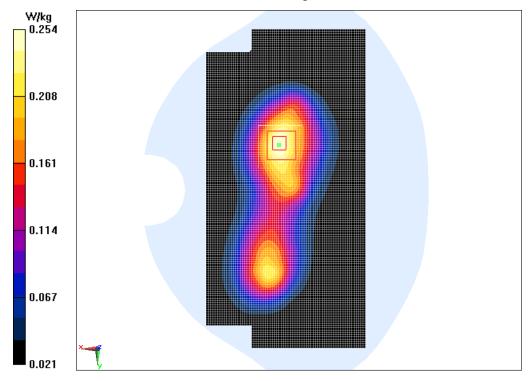
Ambient Temperature:22.5 °C Liquid Temperature:22.5 °C

Communication System: WCDMA Professional Band V; Frequency: 826.4 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(6.27, 6.27, 6.27);

WCDMA Band5 Right Mode Low/Area Scan (71x141x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.262 W/kg

WCDMA Band5 Right Mode Low/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 14.13 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 0.353 W/kg

SAR(1 g) = 0.237 W/kg; SAR(10 g) = 0.158 W/kgMaximum value of SAR (measured) = 0.254 W/kg

Page Number

Report Issued Date

: 65 of 136

WCDMA Band5 Right Mode High

Date/Time: 15/2/6

Electronics: DAE4 Sn1244 Medium: Body 850MHz

Medium parameters used: f = 847 MHz; $\sigma = 1.027$ S/m; $\epsilon r = 54.988$; $\rho = 1000$ kg/m³

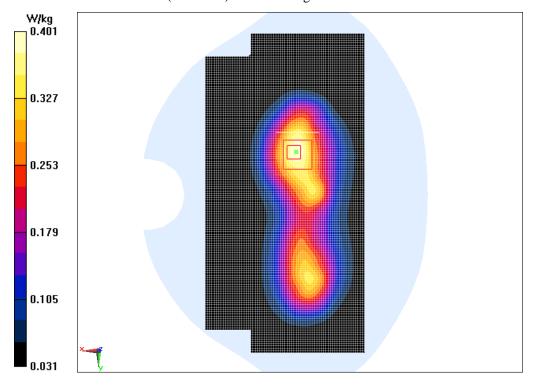
Ambient Temperature:22.5 °C Liquid Temperature:22.5 °C

Communication System: WCDMA Professional Band V; Frequency: 846.6 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(6.27, 6.27, 6.27);

WCDMA Band5 Right Mode High/Area Scan (71x141x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.402 W/kg

WCDMA Band5 Right Mode High/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 13.58 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 0.564 W/kg

SAR(1 g) = 0.374 W/kg; SAR(10 g) = 0.246 W/kgMaximum value of SAR (measured) = 0.401 W/kg

Page Number

Report Issued Date

: 66 of 136

WCDMA Band5 Bottom Mode Middle

Date/Time: 15/3/27

Electronics: DAE4 Sn1244 Medium: Body 850MHz

Medium parameters used: f = 837 MHz; $\sigma = 0.998$ S/m; $\varepsilon_r = 55.308$; $\rho = 1000$ kg/m³

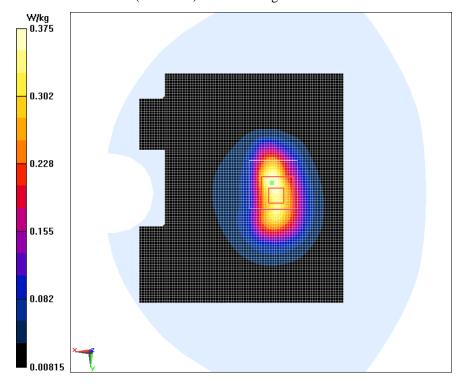
Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

Communication System: WCDMA Band V; Frequency: 836.6 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(6.27, 6.27, 6.27);

WCDMA Band5 Bottom Mode Middle/Area Scan (81x91x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.385 W/kg

WCDMA Band5 Bottom Mode Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 19.27 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 0.683 W/kg

SAR(1 g) = 0.335 W/kg; SAR(10 g) = 0.180 W/kgMaximum of SAR (measured) = 0.375 W/kg

Page Number

Report Issued Date

: 67 of 136

WCDMA Band2 Ground Mode Middle

Date/Time: 15/2/7

Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.504$ S/m; $\varepsilon_r = 53.319$; $\rho = 1000$ kg/m³

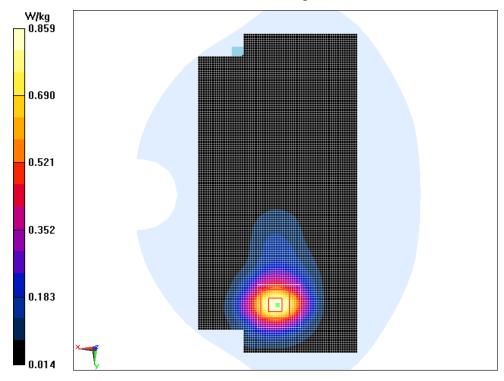
Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

Communication System: WCDMA Band II; Frequency: 1880 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(4.71, 4.71, 4.71);

WCDMA Band2 Ground Mode Middle/Area Scan (71x141x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.904 W/kg

WCDMA Band2 Ground Mode Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 5.132 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 1.32 W/kg

SAR(1 g) = 0.788 W/kg; SAR(10 g) = 0.449 W/kgMaximum value of SAR (measured) = 0.859 W/kg

Page Number

Report Issued Date

: 68 of 136

WCDMA Band2 Ground Mode Middle 2

Date/Time: 15/2/7

Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.504$ S/m; $\varepsilon_r = 53.319$; $\rho = 1000$ kg/m³

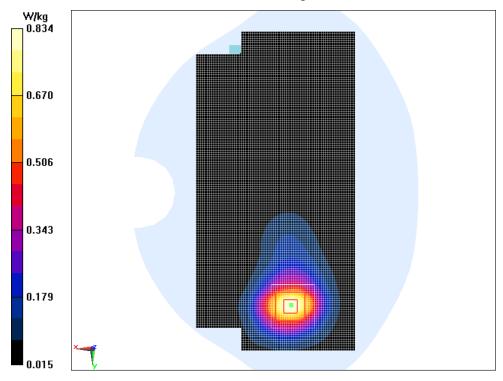
Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

Communication System: WCDMA Band II; Frequency: 1880 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(4.71, 4.71, 4.71);

WCDMA Band2 Ground Mode Middle 2/Area Scan (71x141x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.843 W/kg

WCDMA Band2 Ground Mode Middle 2/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 4.122 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 1.27 W/kg

SAR(1 g) = 0.761 W/kg; SAR(10 g) = 0.433 W/kgMaximum value of SAR (measured) = 0.834 W/kg

Page Number

Report Issued Date

: 69 of 136

WCDMA Band2 Left Mode Middle

Date/Time: 15/2/7

Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.504$ S/m; $\varepsilon_r = 53.319$; $\rho = 1000$ kg/m³

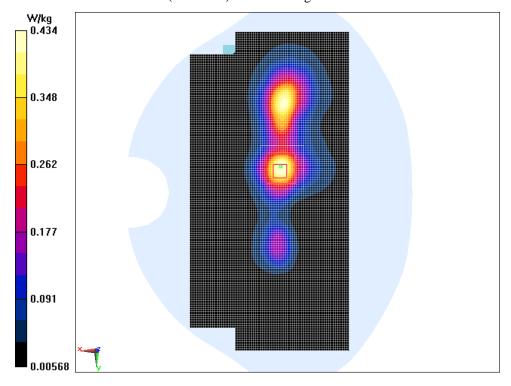
Ambient Temperature:22.5 $^{\circ}$ Liquid Temperature:22.5 $^{\circ}$

Communication System: WCDMA Band II; Frequency: 1880 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(4.71, 4.71, 4.71);

WCDMA Band2 Left Mode Middle/Area Scan (71x141x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.446 W/kg

WCDMA Band2 Left Mode Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 9.685 V/m; Power Drift = 0.19 dB

Peak SAR (extrapolated) = 0.699 W/kg

SAR(1 g) = 0.397 W/kg; SAR(10 g) = 0.211 W/kgMaximum value of SAR (measured) = 0.434 W/kg

Page Number

Report Issued Date

: 70 of 136

WCDMA Band2 Right Mode Middle

Date/Time: 15/2/7

Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.504 \text{ S/m}$; $\varepsilon_r = 53.319$; $\rho = 1000 \text{ kg/m}^3$

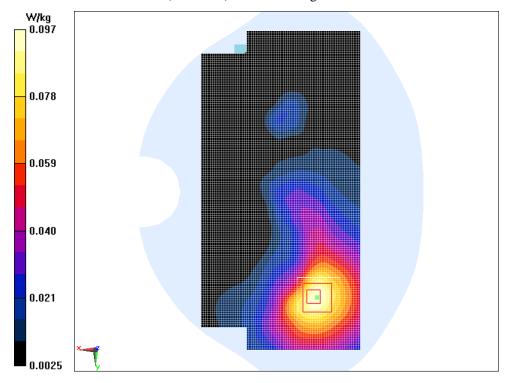
Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

Communication System: WCDMA Band II; Frequency: 1880 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(4.71, 4.71, 4.71);

WCDMA Band2 Right Mode Middle/Area Scan (71x141x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.0956 W/kg

WCDMA Band2 Right Mode Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 3.482 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 0.146 W/kg

SAR(1 g) = 0.091 W/kg; SAR(10 g) = 0.057 W/kgMaximum value of SAR (measured) = 0.0970 W/kg

Page Number

Report Issued Date

: 71 of 136

WCDMA Band2 Ground Mode Low

Date/Time: 15/2/7

Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used (interpolated): f = 1852.4 MHz; $\sigma = 1.477 \text{ S/m}$; $\varepsilon_r = 53.431$; $\rho = 1000 \text{ kg/m}^3$

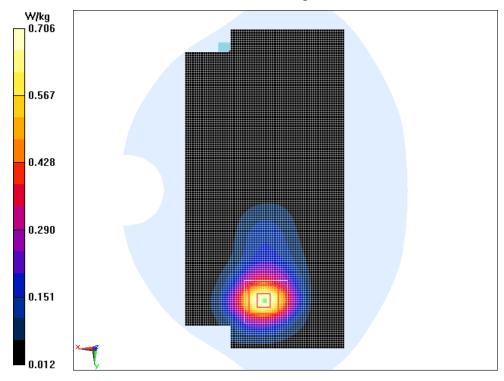
Ambient Temperature:22.5 °C Liquid Temperature:22.5 °C

Communication System: WCDMA Professional Band II; Frequency: 1852.4 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(4.71, 4.71, 4.71);

WCDMA Band2 Ground Mode Low/Area Scan (71x141x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.738 W/kg

WCDMA Band2 Ground Mode Low/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 4.747 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 1.07 W/kg

SAR(1 g) = 0.645 W/kg; SAR(10 g) = 0.370 W/kgMaximum value of SAR (measured) = 0.706 W/kg

Page Number

Report Issued Date

: 72 of 136

WCDMA Band2 Ground Mode High

Date/Time: 15/2/7

Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used: f = 1908 MHz; $\sigma = 1.532$ S/m; $\varepsilon_r = 53.199$; $\rho = 1000$ kg/m³

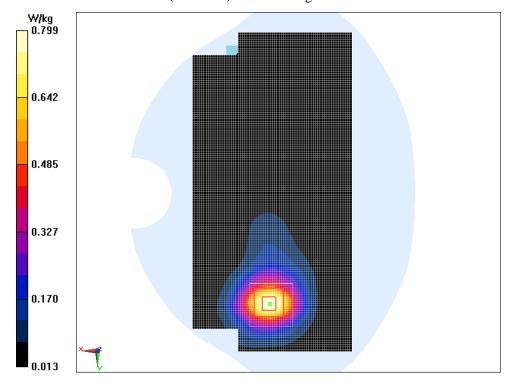
Ambient Temperature:22.5 °C Liquid Temperature:22.5 °C

Communication System: WCDMA Professional Band II; Frequency: 1907.6 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(4.71, 4.71, 4.71);

WCDMA Band2 Ground Mode High/Area Scan (71x141x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.835 W/kg

WCDMA Band2 Ground Mode High/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 4.529 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 1.22 W/kg

SAR(1 g) = 0.728 W/kg; SAR(10 g) = 0.412 W/kgMaximum value of SAR (measured) = 0.799 W/kg

Page Number

Report Issued Date

: 73 of 136

WCDMA Band2 Bottom Mode Middle

Date/Time: 15/3/27

Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.495$ S/m; $\varepsilon_r = 53.961$; $\rho = 1000$ kg/m³

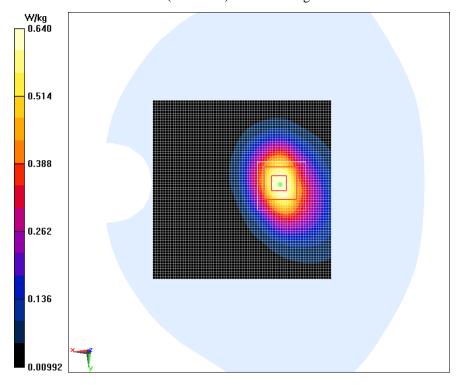
Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

Communication System: WCDMA Band II; Frequency: 1880 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(4.71, 4.71, 4.71);

WCDMA Band2 Bottom Mode Middle/Area Scan (71x71x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.661 W/kg

WCDMA Band2 Bottom Mode Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 18.61 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 0.991 W/kg

SAR(1 g) = 0.590 W/kg; SAR(10 g) = 0.337 W/kgMaximum value of SAR (measured) = 0.640 W/kg

Page Number

Report Issued Date

: 74 of 136

WiFi 802.11b Ground Mode Middle

Date/Time: 15/2/5

Electronics: DAE4 Sn1244 Medium: Body 2450MHz

Medium parameters used: f = 2437 MHz; $\sigma = 1.902$ S/m; $\varepsilon_r = 53.946$; $\rho = 1000$ kg/m³

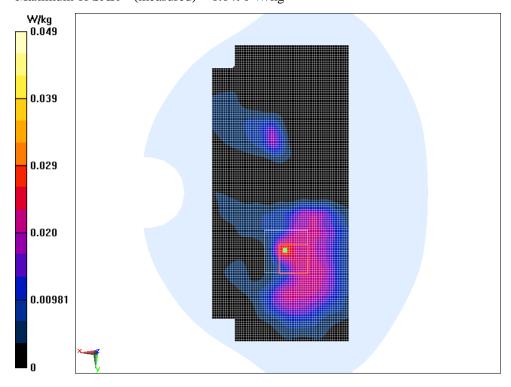
Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

Communication System: Wifi 2450MHz; Frequency: 2437 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(4.38, 4.38, 4.38);

WiFi 802.11b Ground Mode Middle/Area Scan (61x131x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.0288 W/kg

WiFi 802.11b Ground Mode Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 1.440 V/m; Power Drift = -0.15 dB

Peak SAR (extrapolated) = 0.0710 W/kg

SAR(1 g) = 0.018 W/kg; SAR(10 g) = 0.0076 W/kgMaximum of SAR (measured) = 0.0490 W/kg

Page Number

Report Issued Date

: 75 of 136

WiFi 802.11b Left Mode Middle

Date/Time: 15/2/5

Electronics: DAE4 Sn1244 Medium: Body 2450MHz

Medium parameters used: f = 2437 MHz; $\sigma = 1.902$ S/m; $\varepsilon_r = 53.946$; $\rho = 1000$ kg/m³

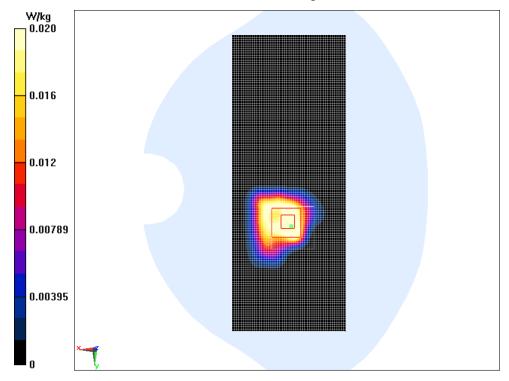
Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

Communication System: Wifi 2450MHz; Frequency: 2437 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(4.38, 4.38, 4.38);

WiFi 802.11b Left Mode Middle/Area Scan (51x131x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.0328 W/kg

WiFi 802.11b Left Mode Middle/Zoom Scan 2 (5x5x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 1.724 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 0.0320 W/kg

SAR(1 g) = 0.018 W/kg; SAR(10 g) = 0.00917 W/kgMaximum value of SAR (measured) = 0.0197 W/kg

Page Number

Report Issued Date

: 76 of 136

WiFi 802.11b Right Mode Middle

Date/Time: 15/2/5

Electronics: DAE4 Sn1244 Medium: Body 2450MHz

Medium parameters used: f = 2437 MHz; $\sigma = 1.905$ S/m; $\varepsilon_r = 53.941$; $\rho = 1000$ kg/m³

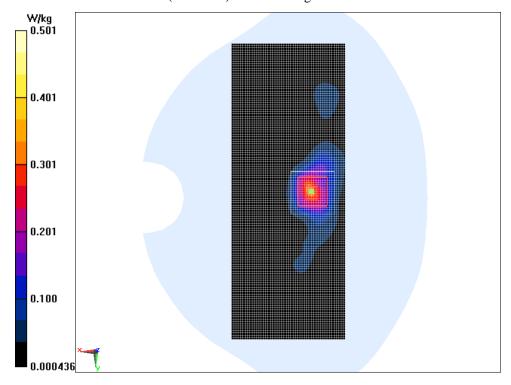
Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

Communication System: Wifi 2450MHz; Frequency: 2437 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(4.38, 4.38, 4.38);

WiFi 802.11b Right Mode Middle/Area Scan (51x131x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.330 W/kg

WiFi 802.11b Right Mode Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 4.026 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 1.08 W/kg

SAR(1 g) = 0.412 W/kg; SAR(10 g) = 0.157 W/kgMaximum value of SAR (measured) = 0.501 W/kg

Page Number

Report Issued Date

: 77 of 136

WiFi 802.11b Right Mode Low

Date/Time: 15/2/5

Electronics: DAE4 Sn1244 Medium: Body 2450MHz

Medium parameters used: f = 2412 MHz; $\sigma = 1.872$ S/m; $\varepsilon_r = 53.920$; $\rho = 1000$ kg/m³

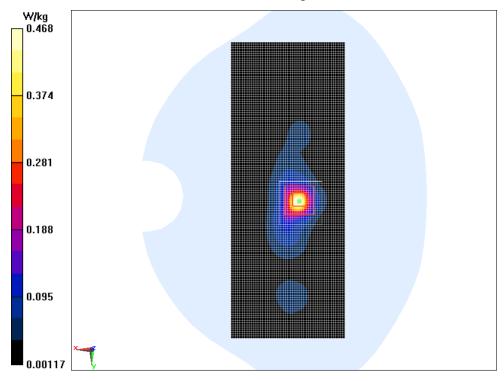
Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

Communication System: Wifi 2450MHz; Frequency: 2412 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(4.38, 4.38, 4.38);

WiFi 802.11b Right Mode Low/Area Scan (51x131x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.498 W/kg

WiFi 802.11b Right Mode Low/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 10.49 V/m; Power Drift = 0.16 dB

Peak SAR (extrapolated) = 1.12 W/kg

SAR(1 g) = 0.420 W/kg; SAR(10 g) = 0.158 W/kgMaximum value of SAR (measured) = 0.468 W/kg

Page Number

Report Issued Date

: 78 of 136

WiFi 802.11b Right Mode High

Date/Time: 15/2/5

Electronics: DAE4 Sn1244 Medium: Body 2450MHz

Medium parameters used: f = 2462 MHz; $\sigma = 1.934$ S/m; $\varepsilon_r = 53.912$; $\rho = 1000$ kg/m³

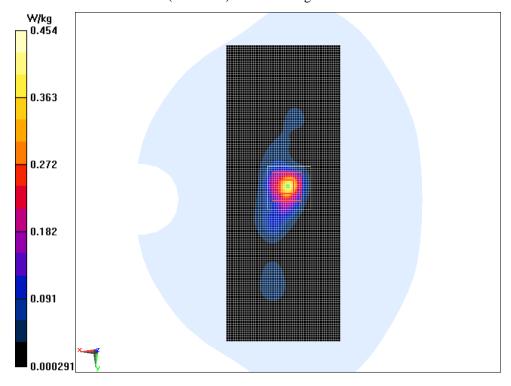
Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

Communication System: Wifi 2450MHz; Frequency: 2462 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(4.38, 4.38, 4.38);

WiFi 802.11b Right Mode High/Area Scan (51x131x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.408 W/kg

WiFi 802.11b Right Mode High/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 8.995 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 1.05 W/kg

SAR(1 g) = 0.391 W/kg; SAR(10 g) = 0.144 W/kgMaximum value of SAR (measured) = 0.454 W/kg

Page Number

Report Issued Date

: 79 of 136

: 80 of 136

Report Issued Date : Mar 31, 2015

Page Number

ANNEX B. SYSTEM VALIDATION RESULTS

835MHz-Body

Date/Time: 15/2/6

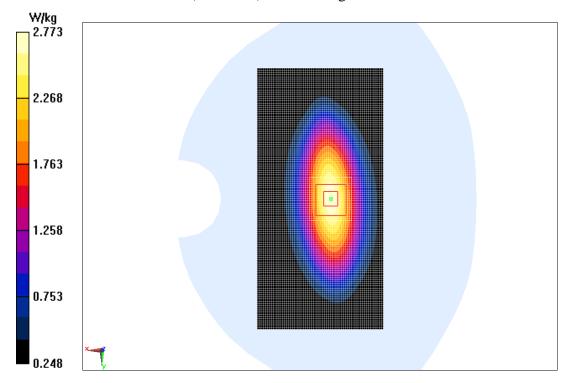
Electronics: DAE4 Sn1244 Medium: Body 850MHz

Medium parameters used: f = 835 MHz; $\sigma = 1.010$ S/m; $\varepsilon_r = 55.187$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5° C Liquid Temperature:22.5° C Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(6.27, 6.27, 6.27);

System Validation/Area Scan(101x101x1): Measurement grid: dx=10mm, dy=10mm


Maximum value of SAR (measured) = 2.73 mW/g

System Validation/Zoom Scan(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 53.95 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 3.52 W/kg

SAR(1 g) = 2.37 W/kg; SAR(10 g) = 1.56 W/kgMaximum value of SAR (measured) = 2.77 W/kg

: 81 of 136

: Mar 31, 2015

Page Number

Report Issued Date

1900MHz-Body

Date/Time: 15/2/7

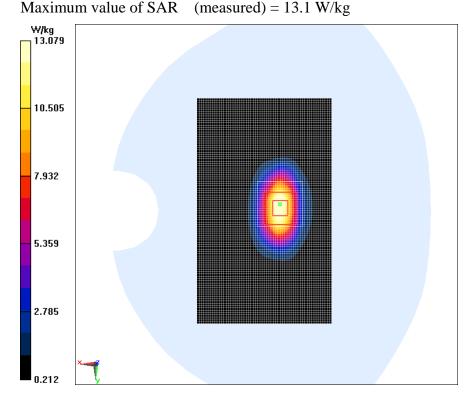
Electronics: DAE4 Sn1244 Medium: Body 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.524$ S/m; $\varepsilon_r = 53.237$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5° C Liquid Temperature:22.5° C Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(4.71, 4.71, 4.71);

System Validation/Area Scan(61x101x1): Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 13.5 W/kg

System Validation/Zoom Scan(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 87.65 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 18.7 W/kg

SAR(1 g) = 10.3 W/kg; SAR(10 g) = 5.38 W/kg

2450MHz-Body

Date/Time: 15/2/5

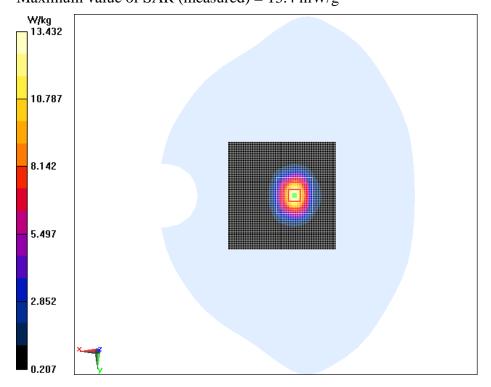
Electronics: DAE4 Sn1244 Medium: Body 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.916$ S/m; $\varepsilon_r = 53.927$; $\rho = 1000$ kg/m³

Ambien Temperature:22.5° C Liquid Temperature:22.5° C Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(4.38, 4.38, 4.38);

System Validation/ Area Scan (101x101x1): Measurement grid: dx=10mm, dy=10mm


Maximum value of SAR (measured) = 11.67 mW/g

System Validation/Zoom Scan (7x7x7)/Cube 0:Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 82.821 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 16.427 mW/g

SAR(1 g) = 12.7 mW/g; SAR(10 g) = 6.02 mW/gMaximum value of SAR (measured) = 13.4 mW/g

: 83 of 136

: Mar 31, 2015

Page Number

Report Issued Date

835MHz-Body

Date/Time: 15/3/27

Electronics: DAE4 Sn1244 Medium: Body 850MHz

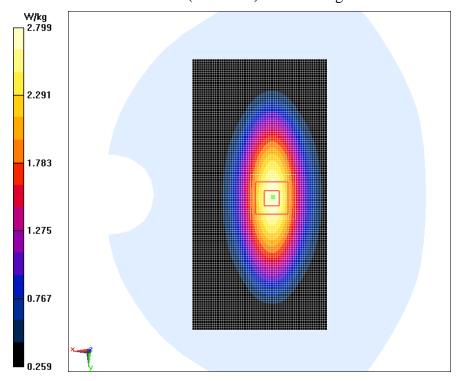
Medium parameters used: f = 835 MHz; $\sigma = 0.997$ S/m; $\varepsilon_r = 55.311$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5° C Liquid Temperature:22.5° C Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(6.27, 6.27, 6.27);

System Validation/Area Scan(101x101x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 2.73 mW/g


System Validation/Zoom Scan(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 53.93 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 3.54 W/kg

SAR(1 g) = 2.4 W/kg; SAR(10 g) = 1.58 W/kg

Maximum value of SAR (measured) = 2.80 W/kg

: 84 of 136

: Mar 31, 2015

Page Number

Report Issued Date

1900MHz-Body

Date/Time: 15/3/27

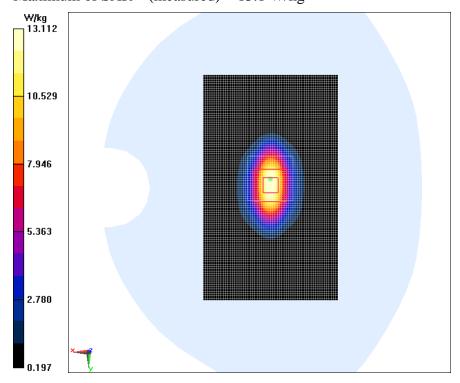
Electronics: DAE4 Sn1244 Medium: Body 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.509 \text{ S/m}$; $\varepsilon_r = 53.882$; $\rho = 1000 \text{ kg/m}3$

Ambient Temperature:22.5° C Liquid Temperature:22.5° C Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(4.71, 4.71, 4.71);

System Validation/Area Scan(61x101x1): Measurement grid: dx=10 mm, dy=10 mm

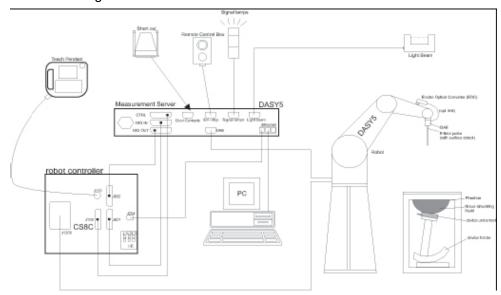

Maximum value of SAR (Measurement) = 13.5 W/kg

System Validation/Zoom Scan(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 87.49 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 18.7 W/kg

SAR(1 g) = 10.3 W/kg; SAR(10 g) = 5.38 W/kgMaximum of SAR (measured) = 13.1 W/kg



ANNEX C. SAR Measurement Setup

C.1. Measurement Set-up

The DASY5 system for performing compliance tests is illustrated above graphically. This system consists of the following items:

Picture C.1 SAR Lab Test Measurement Set-up

- A standard high precision 6-axis robot (Stäubli TX=RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal
 multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision
 detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal
 is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals
 for the digital communication to the DAE. To use optical surface detection, a special version of
 the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as
- warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

C.2. DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multifiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY5 software reads the reflection durning a software approach and looks for the maximum using 2ndord curve fitting. The approach is stopped at reaching the maximum.

Probe Specifications:

Model: ES3DV3, EX3DV4

Frequency

Range: 700MHz — 2.6GHz(ES3DV3)

Calibration: In head and body simulating tissue at

Frequencies from 835 up to 2450MHz

Linearity:

± 0.2 dB(700MHz — 2.0GHz) for ES3DV3

Dynamic Range: 10 mW/kg — 100W/kg

Probe Length: 330 mm

Probe Tip

Length: 20 mm Body Diameter: 12 mm

Tip Diameter: 2.5 mm (3.9 mm for ES3DV3)
Tip-Center: 1 mm (2.0mm for ES3DV3)

Application: SAR Dosimetry Testing Compliance tests of mobile phones Dosimetry in strong gradient fields

Report No.: I14D00071-SAR

Picture C.2 Near-field Probe

Picture C.3 E-field Probe

C.3. E-field Probe Calibration

Each E-Probe/Probe Amplifier combination has unique calibration parameters. A TEM cell calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm²) using an RF Signal generator, TEM cell, and RF Power Meter.

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and inn a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is

East China Institute of Telecommunications Page Number : 86 of 136
TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date : Mar 31, 2015

placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/ cm².

Report No.: I14D00071-SAR

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$

Where:

 $\Delta t = \text{Exposure time (30 seconds)},$

C = Heat capacity of tissue (brain or muscle),

 ΔT = Temperature increase due to RF exposure.

$$SAR = \frac{\left|E\right|^2 \cdot \sigma}{\rho}$$

Where:

 σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m³).

C.4. Other Test Equipment

C.4.1. Data Acquisition Electronics(DAE)

The data acquisition electronics consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

PictureC.4: DAE

Page Number

: 87 of 136

Report Issued Date : Mar 31, 2015

C.4.2. Robot

The SPEAG DASY system uses the high precision robots (DASY5: RX90L) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version from Stäubli is used. The Stäubli robot series have many features that are important for our application:

- ➤ High precision (repeatability 0.02mm)
- High reliability (industrial design)
- Low maintenance costs (virtually maintenance free due to direct drive gears; no belt drives)
- Jerk-free straight movements (brushless synchron motors; no stepper motors)
- Low ELF interference (motor control fields shielded via the closed metallic construction shields)

Picture C.5 DASY 5

C.4.3. Measurement Server

The Measurement server is based on a PC/104 CPU broad with CPU (DASY5: 400 MHz, Intel Celeron), chipdisk (DASY5: 128MB), RAM (DASY5: 128MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O broad, which is directly connected to the PC/104 bus of the CPU broad.

The measurement server performs all real-time data evaluation of field measurements and surface detection, controls robot movements and handles safety operation. The PC operating system cannot interfere with these time critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server

East China Institute of Telecommunications TEL: +86 21 63843300FAX:+86 21 63843301 Page Number : 88 of 136 Report Issued Date : Mar 31, 2015

is equipped with an expansion port which is reserved for future applications. Please note that this expansion port does not have a standardized pinout, and therefore only devices provided by SPEAG can be connected. Devices from any other supplier could seriously damage the measurement server.

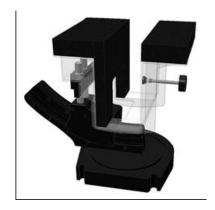
Picture C.6 Server for DASY 5

C.4.4. Device Holder for Phantom

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5mm distance, a positioning uncertainty of ±0.5mm would produce a SAR uncertainty of ±20%. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles. The DASY device holder is constructed of low-loss

POM material having the following dielectric


parameters: relative permittivity ε =3 and loss tangent δ =0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

<Laptop Extension Kit>

The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with the Twin-SAM and ELI phantoms.

Picture C.7: Device Holder

Picture C.8: Laptop Extension Kit

: 89 of 136

C.4.5. PhantomThe SAM Twin Phantom V4.0 is constructed of a fiberglass shell integrated in a table. The shape of the shell is based on data from an anatomical study designed to

Report No.: I14D00071-SAR

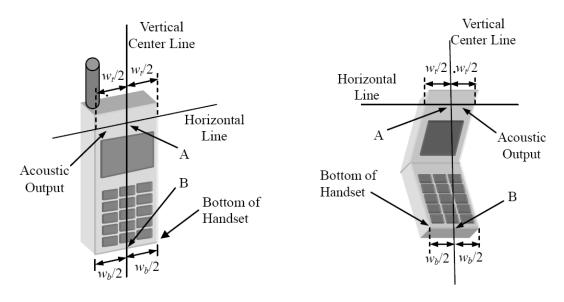
Represent the 90th percentile of the population. The phantom enables the dissymmetric evaluation of SAR for both left and right handed handset usage, as well as body-worn usage using the flat phantom region. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. The shell phantom has a 2mm shell thickness (except the ear region where shell thickness increases to 6 mm).

Shell Thickness: 2 ± 0. 2 mm Filling Volume: Approx. 25 liters

Dimensions: 810 x 1000 x 500 mm (H x L x W)

Available: Special

Picture C.9: SAM Twin Phantom

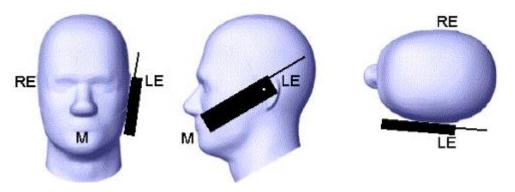

ANNEX D. Position of the wireless device in relation to the

Report No.: I14D00071-SAR

phantom

D.1. General considerations

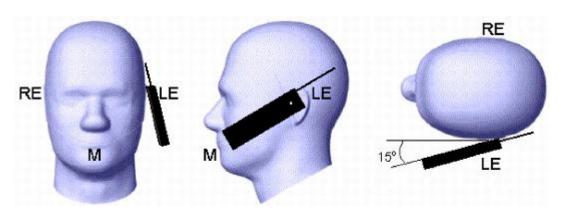
This standard specifies two handset test positions against the head phantom – the "cheek" position and the "tilt" position.


 W_t Width of the handset at the level of the acoustic

 W_b Width of the bottom of the handset

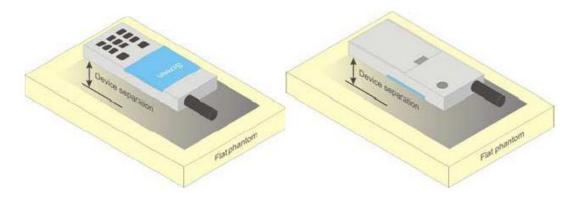
A Midpoint of the width w_i , of the handset at the level of the acoustic output

B Midpoint of the width w_b of the bottom of the handset


Picture D.1-a Typical "fixed" case handset Picture D.1-b Typical "clam-shell" case handset

Picture D.2 Cheek position of the wireless device on the left side of SAM

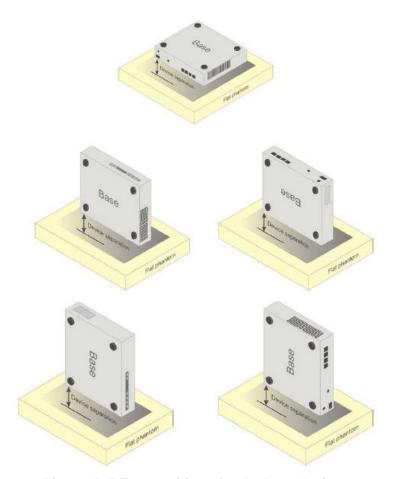
East China Institute of Telecommunications Page Number : 91 of 136
TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date : Mar 31, 2015



Picture D.3 Tilt position of the wireless device on the left side of SAM

D.2. Body-worn device

A typical example of a body-worn device is a mobile phone, wireless enabled PDA or other battery operated wireless device with the ability to transmit while mounted on a person's body using a carry accessory approved by the wireless device manufacturer.


Picture D.4Test positions for body-worn devices

D.3. Desktop device

A typical example of a desktop device is a wireless enabled desktop computer placed on a table or desk when used.

The DUT shall be positioned at the distance and in the orientation to the phantom that corresponds to the intended use as specified by the manufacturer in the user instructions. For devices that employ an external antenna with variable positions, tests shall be performed for all antenna positions specified. Picture 8.5 show positions for desktop device SAR tests. If the intended use is not specified, the device shall be tested directly against the flat phantom.

Picture D.5 Test positions for desktop devices

Page Number Report Issued Date : 93 of 136 : Mar 31, 2015

: 94 of 136

: Mar 31, 2015

Page Number

Report Issued Date

D.4. DUT Setup Photos

Picture D.6 DSY5 system Set-up

Note:

The photos of test sample and test positions show in additional document.

ANNEX E. Equivalent Media Recipes

The liquid used for the frequency range of 800-3000 MHz consisted of water, sugar, salt, preventol, glycol monobutyl and Cellulose. The liquid has been previously proven to be suited for worst-case. The Table E.1 shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the IEEE 1528 and IEC 62209.

Report No.: I14D00071-SAR

Table E.1: Composition of the Tissue Equivalent Matter

Fragues et (MIII)	835	835	1900	1900	2450	2450			
Frequency (MHz)	Head	Body	Head	Body	Head	Body			
Ingredients (% by weight)									
Water	41.45	52.5	55.242	69.91	58.79	72.60			
Sugar	56.0	45.0	\	\	\	\			
Salt	1.45	1.4	0.306	0.13	0.06	0.18			
Preventol	0.1	0.1	\	\	\	\			
Cellulose	1.0	1.0	\	\	\	\			
Glycol Monobutyl	\	\	44.452	29.96	41.15	27.22			
Dielectric	ε=41.5	ε=55.2	ε=40.0	ε=53.3	ε=39.2	ε=52.7			
Parameters	ε=41.5 σ=0.90	ε=33.2 σ=0.97	ε=40.0 σ=1.40	ε=55.5 σ=1.52	ε=39.2 σ=1.80	ε=32.7 σ=1.95			
Target Value	0-0.90	0-0.97	0-1.40	0-1.52	0-1.00	0-1.95			

East China Institute of Telecommunications Page Number : 95 of 136
TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date : Mar 31, 2015

ANNEX F. System Validation

The SAR system must be validated against its performance specifications before it is deployed. WhenSAR probes, system components or software are changed, upgraded or recalibrated, these must be validated with the SAR system(s) that operates with such components.

Report No.: I14D00071-SAR

Table F.1: System Validation Part 1

System	Probe SN.	Liquid name	Validation	Frequency	Permittivity	Conductivity
No.	Flobe Siv.	Liquid Hame	date	point	ε	σ (S/m)
1	3252	Head 835MHz	Nov 15,2014	835MHz	41.03	0.932
2	3252	Head 1900MHz	Nov 15,2014	1900MHz	39.72	1.408
3	3754	Head 2450MHz	Nov 15,2014	2450MHz	39.02	1.789
4	3252	Body 835MHz	Nov 15,2014	835MHz	55.11	0.981
5	3252	Body 1900MHz	Nov 15,2014	1900MHz	53.35	1.531
6	3754	Body 2450MHz	Nov 15,2014	2450MHz	53.97	1.950

Table F.2: System Validation Part 2

CW Validation	Sensitivity	PASS	PASS				
	Probe linearity	PASS	PASS				
	Probe Isotropy	PASS	PASS				
Mod Validation	MOD.type	GMSK	GMSK				
	MOD.type	OFDM	OFDM				
	Duty factor	PASS	PASS				
	PAR	PASS	PASS				

East China Institute of Telecommunications Page Number : 96 of 136
TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date : Mar 31, 2015

ANNEX G. Probe and DAE Calibration Certificate

 Add: No.51 Xuoyaan Road, Haidlan District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fox: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 Http://www.chinattl.com

Report No.: I14D00071-SAR

Client : EC	and the same of th	aww.comani.co	Certificate N	lo: Z14-97119	
CALIBRATION	CERTIFICA	re or			
Object	DAE4	- SN: 1244			
Calibration Procedure(s	TMC-C		or the Data Acquisit	on Electronics	
Calibration date:	Octobe	er 14, 2014			
	measurements and			n realize the physical units bility are given on the follow	
All calibrations have be humidity<70%.	een conducted in	the closed labora	atory facility: environn	nent temperature(22±3)© a	md
Calibration Equipment u	sed (M&TE critical f	or calibration)			
Primary Standards	ID# Ca	Date(Calibrated I	by, Certificate No.)	Scheduled Calibration	
Process Calibrator 753	1971018	01-July-14 (CTTL	., No:J14X02147)	July-15	
	Name	Function		Signature	
Calibrated by:	Yu Zongying	SAR Test En	ngineer	49	
Reviewed by:	Qì Dianyuan	SAR Project	Leader	-503	
Approved by:	Lu Bingsong	Deputy Direc	ctor of the laboratory	Jac war, Fr	
			lss	ued: October 15, 2014	

Certificate No: Z14-97119

Page Lof :

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

East China Institute of Telecommunications TEL: +86 21 63843300FAX:+86 21 63843301 Page Number : 97 of 136 Report Issued Date : Mar 31, 2015

Add: No.51 Xueysan Road, Haidian District, Beljing, 100191, China Tel: +86-10-62304633-2079 Fac: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.com

Glossary:

DAE

data acquisition electronics

Connector angle

information used in DASY system to align probe sensor X

Report No.: I14D00071-SAR

to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

- DC Voltage Measurement. Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Certificate No: Z14-97119

Page 2 of 3

East China Institute of Telecommunications TEL: +86 21 63843300FAX:+86 21 63843301 Page Number

: 98 of 136

Report Issued Date : Mar 31, 2015

 Add: No. 51 Xucyuan Road, Haidian District, Beljing, 100191, Chlm

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: ottl@chlmatil.com
 Http://www.chimatil.com

DC Voltage Measurement

A/D - Converter Resolution nominal
High Range: 1LSB = 6.1μV, full range = -100....+300 mV
Low Range: 1LSB = 61nV, full range = -1......+3mV

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	х	Y	z		
High Range	403.878 ± 0.15% (k=2)	403.68 ± 0.15% (k=2)	404.589± 0.15% (k=2)		
Low Range	3.95941 ± 0.7% (k=2)	3.97194 ± 0.7% (k=2)	4.01532 ± 0.7% (k=2)		

Connector Angle

- 1		
	Connector Angle to be used in DASY system	46° ± 1 °

Certificate No: Z14-97119


Page 3 of 3

Page Number

: 99 of 136

Report Issued Date : Mar 31, 2015

Add: No.51 Xueyum Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 B-mail: ctrl@phinsetl.com Hito://www.chinatel.cn

Http://www.chinstlen Certificate No: Z14-97118

CALIBRATION CERTIFICATE

ECIT

Object

ES3DV3 - SN:3252

Calibration Procedure(s)

TMC-OS-E-02-196

Calibration Procedures for Dosimetric E-field Probes

Calibration date:

November 04, 2014

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (Si). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility; environment temperature(22±3)© and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration	
Power Meter NRP2	101919	01-Jul-14 (CTTL, No.J14X02146)	Jun-15	
Power sensor NRP-Z91	101547	01-Jul-14 (CTTL, No.J14X02146)	Jun-15	
Power sensor NRP-Z91	101548	01-Jul-14 (CTTL, No.J14X02146)	Jun-15	
Reference10dBAttenuator	BT0520	12-Dec-12(TMC,No.JZ12-867)	Dec-14	
Reference20dBAttenuator	BT0267	12-Dec-12(TMC,No.JZ12-866)	Dec-14	
Reference Probe EX3DV4	SN 3617	28-Aug-14(SPEAG,No.EX3-3617_Aug14)	Aug-15	
DAE4	SN 1331	23-Jan-14 (SPEAG, DAE4-1331_Jan14)	Jan -15	
Secondary Standards	ID#	Cal Data(Calibrated by, Certificate No.)	Scheduled Calibration	
SignalGeneratorMG3700A 6201052605		01-Jul-14 (CTTL, No.J14X02145)	Jun-15	
Network Analyzer E5071C	MY46110673	15-Feb-14 (TMC, No.JZ14-781)	Feb-15	
	Name	Function	Signature	

Name
Yu Zongying 5

Lu Bingsong

SAR Test Engineer

Calibrated by: Reviewed by:

Qi Dianyuan SAR Project Leader

Approved by:

Deputy Director of the laboratory

Issued: November 05, 2014

Page Number

Report Issued Date

: 100 of 136

: Mar 31, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: Z14-97118

Page 1 of 11

Add: No.51 Xuoyuun Roud, Haidian District, Betjing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com Http://www.chinettl.cn

Glossary:

tissue simulating liquid sensitivity in free space NORMx,y,z sensitivity in TSL / NORMx,y,z diode compression point

ConvF DCP crest factor (1/duty_cycle) of the RF signal ABCD modulation dependent linearization parameters

Polarization Φ Φ rotation around probe axis

Polarization 8 6 rotation around an axis that is in the plane normal to probe axis (at measurement center), i

Report No.: I14D00071-SAR

0=0 is normal to probe axis.

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:
a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used

in close proximity to the ear (frequency range of 300MHz to 3GHz)*, February 2005

Methods Applied and Interpretation of Parameters:

NORMx,y,z: Assessed for E-field polarization 8=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide).

- NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E2-field uncertainty inside TSL (see below ConvF).
- $NORM(f)x,y,z = NORMx,y,z^*$ frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the
- frequency response is included in the stated uncertainty of ConvF.

 DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep
 (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax,y,z; Bx,y,z; Cx,y,z;VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on Transfer Standard for fs800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz. Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMs (no uncertainty required).

Certificate No: Z14-97118

Page 2 of 11

East China Institute of Telecommunications TEL: +86 21 63843300FAX:+86 21 63843301

Page Number : 101 of 136 Report Issued Date : Mar 31, 2015

Probe ES3DV3

Report No.: I14D00071-SAR

SN: 3252

Calibrated: November 04, 2014

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: Z14-97118

Page 3 of 11

Page Number

: 102 of 136

Report Issued Date : Mar 31, 2015

DASY – Parameters of Probe: ES3DV3 - SN: 3252

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(µV/(V/m) ²) ^A	1.29	1.36	1.33	±10.8%
DCP(mV) ⁸	102.1	101.8	102.3	

Modulation Calibration Parameters

UID	Communication		Α	В	С	D	VR	Unc
	System Name		dB	dB√μV		dB	mV	(k=2)
0	CW	×	0.0	0.0	1.0	0.00	291.9	±2.2%
		Y	0.0	0.0	1.0		294.9	
		z	0.0	0.0	1.0		296.5	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z14-97118

Page 4 of 11

East China Institute of Telecommunications TEL: +86 21 63843300FAX:+86 21 63843301 Page Number Report Issued Date : Mar 31, 2015

: 103 of 136

A The uncertainties of Norm X, Y, Z do not affect the E2-field uncertainty inside TSL (see Page 5 and Page 6).

Numerical linearization perameter: uncertainty not required.
 Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

| Add: No.51 Nueyeen Rend, Haldlen District, Beijing, 100191, Chine Tel: +86-10-62304633-2079 | Fax: +86-10-62304633-2504 | E-mail: cttl@chinattl.core | Http://www.chinattl.cor

DASY – Parameters of Probe: ES3DV3 - SN: 3252

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	6.58	6.58	6.58	0.66	1.14	±12%
835	41.5	0.90	6.46	6.46	6.48	0.44	1.38	±12%
900	41.5	0.97	6.20	6.20	6.20	0.25	1.82	±12%
1750	40.1	1.37	5.24	5.24	5.24	0.60	1.31	±12%
1900	40.0	1.40	4.89	4.89	4.89	0.47	1.56	±12%
2100	39.8	1.49	5.05	5.05	5.05	0.48	1.52	±12%
2300	39.5	1.67	4.78	4.78	4.78	0.88	1.13	±12%
2450	39.2	1.80	4.46	4.46	4.48	0.90	1.10	±12%
2600	39.0	1.96	4.28	4.28	4.28	0.98	1.09	±12%

^o Frequency validity of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. FAt frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (s and d) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Certificate No; Z14-97118

Page 5 of 11

East China Institute of Telecommunications TEL: +86 21 63843300FAX:+86 21 63843301 Page Number Report Issued Date : Mar 31, 2015

: 104 of 136

⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after componsation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

| Add: No. 51 | Xuzyuan Road, Haldian District, Beijing, 190191, China | Tel: +16-10-62304633-2079 | Fax: +86-10-62304633-2504 | Http://www.chinatil.cn | Http://www.chinatil.cn

DASY - Parameters of Probe: ES3DV3 - SN: 3252

Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ⁸	Depth ^S (mm)	Unct. (k=2)
750	55.5	0.96	6.25	6.25	6.25	0.34	1.70	±12%
835	55.2	0.97	6.27	6.27	6.27	0.44	1.52	±12%
900	55.0	1.05	6.13	6.13	6.13	0.51	1.42	±12%
1750	53.4	1.49	4.91	4.91	4.91	0.59	1.35	±12%
1900	53.3	1.52	4.71	4.71	4.71	0.64	1.35	±12%
2100	53.2	1.62	4.82	4.82	4.82	0.50	1.64	±12%
2300	52.9	1.81	4.58	4.58	4.58	0.83	1.20	± 12%
2450	52.7	1.95	4.38	4.38	4.38	0.81	1.23	±12%
2600	52.5	2.16	4.25	4.25	4.25	0.84	1.21	±12%

^C Frequency validity of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. F At frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ±5%. The uncertainty is the RSS of the CorvF uncertainty for indicated target tissue parameters.

Certificate No: Z14-97118

Page 6 of 11

Page Number

: 105 of 136

Report Issued Date : Mar 31, 2015

O Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.



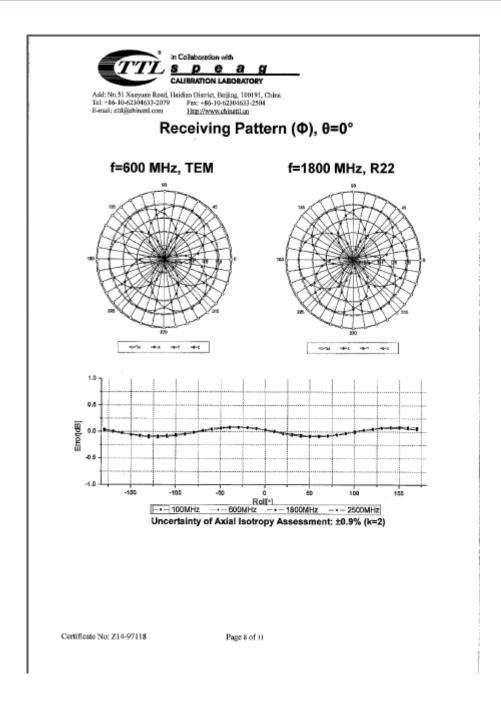
Add: No.51 Xueyuun Road, Haidlan District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fac: +86-10-62304633-2504 B-meil: ctil@chinatl.com HBp/Www.chinatl.cn

Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

Report No.: I14D00071-SAR

Uncertainty of Frequency Response of E-field: ±7.5% (k=2)

Certificate No; Z14-97118


Page 7 of 11

Page Number

Report Issued Date

: 106 of 136

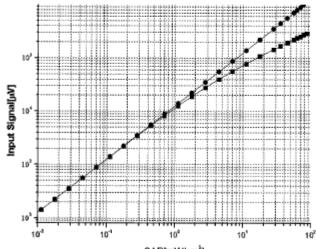
Page Number

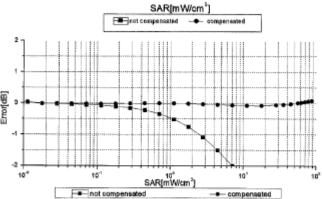
Report Issued Date

: 107 of 136

: 108 of 136

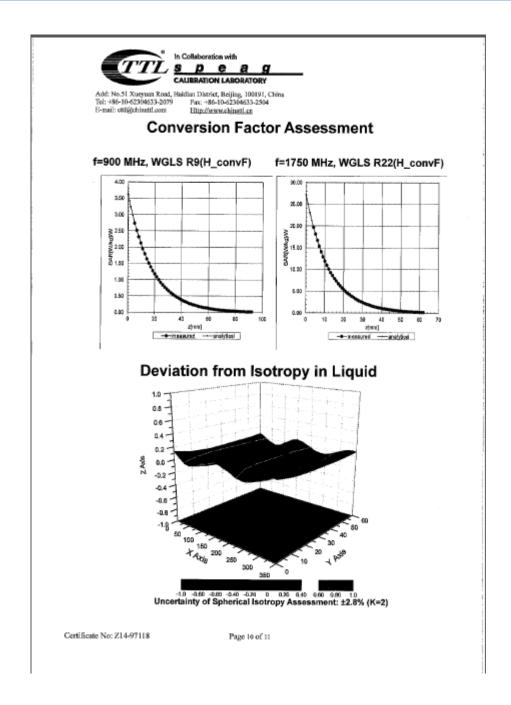
: Mar 31, 2015


Page Number


Report Issued Date

Add: No.51 Xuoyuan Roud, Haidian District, Beijing, 190191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2304 B-mail: cul@chinattl.com Http://www.chinattl.com

Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz)


Uncertainty of Linearity Assessment: ±0.9% (k=2)

Certificate No: Z14-97118

Page 9 of 11

Report No.: I14D00071-SAR

Page Number

: 109 of 136

DASY - Parameters of Probe: ES3DV3 - SN: 3252

Other Probe Parameters

Sensor Arrangement	Triangular	
Connector Angle (*)	130.2	
Mechanical Surface Detection Mode	enabled	
Optical Surface Detection Mode	disable	
Probe Overall Length	337mm	
Probe Body Diameter	10mm	
Tip Length	10mm	
Tip Diameter	4mm	
Probe Tip to Sensor X Calibration Point	2mm	
Probe Tip to Sensor Y Calibration Point	2mm	
Probe Tip to Sensor Z Calibration Point	2mm	
Recommended Measurement Distance from Surface	3mm	

Certificate No: Z14-97118

Page 11 of 11

Page Number

: 110 of 136

ANNEX H. DipoleCalibration Certificate

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2509 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com Hitp://www.chinattl.com

IAC MRA

Report No.: I14D00071-SAR

Client

ECIT

Certificate No:

Z14-97120

CALIBRATION CERTIFICATE

Object

D835V2 - SN: 4d112

Calibration Procedure(s)

TMC-OS-E-02-194

Calibration Procedures for dipole validation kits

Calibration date:

November 4, 2014

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	101919	01-Jul-14 (CTTL, No.J14X02146)	Jun-15
Power sensor NRP-Z91	101547	01-Jul-14 (CTTL, No.J14X02146)	Jun-15
Reference Probe EX3DV4	SN 3617	28-Aug-14(SPEAG,No.EX3-3617_Aug14)	Aug-15
DAE4	SN 1331	23-Jan-14 (SPEAG, DAE4-1331_Jan14)	Jan-15
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
SignalGeneratorMG3700A	6201052605	01-Jul-14 (CTTL, No.J14X02145)	Jun-15
Network Analyzer E5071C	MY4614d1123	15-Feb-14 (TMC, No.JZ14-781)	Feb-15 '

Calibrated by:

Function

Signature

Reviewed by:

Zhao Jing

SAR Test Engineer

Qi Dianyuan

SAR Project Leader

Approved by:

Lu Bingsong

Deputy Director of the laboratory

hi destra

Page Number

Report Issued Date

: 111 of 136

: Mar 31, 2015

fssued: November 6, 2014
This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: Z14-97120

Page 1 of 8

Add: No.51 Xueyean Road, Heidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-meil: ottl@chinatil.com Hittp://www.chinatil.com

Glossary:

TSL ConvF N/A tissue simulating liquid sensitivity in TSL / NORMx,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005

Report No.: I14D00071-SAR

c) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z14-97120

Page 2 of 8

Page Number

Report Issued Date

: 112 of 136

: Mar 31, 2015

Add: No.51 Xueyuan Road, Haidian District, Beljing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ctili@chinettl.com Http://www.chinattl.co

Measurement Conditions

DASY Version	DASY52	52.8.8.1222
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.8 ± 6 %	0.92 mha/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR for nominal Head TSL parameters	normalized to 1W	6.20 mW /g ± 20.4 % (k=2)
SAR measured	250 mW input power	1.57 m/W / g
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	normalized to 1W	9.48 mW/g ± 20.8 % (k=2)
SAR measured	250 mW input power	2.41 mW/g
SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	

Body TSL parameters

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.3 ± 6 %	0.99 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.40 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	9.45 mW/g ± 20.8 % (k=2)
SAR averaged over 10 cm3 (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	1.60 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	6.32 mW /g ± 20.4 % (k=2)

Page Number

: 113 of 136

Report Issued Date : Mar 31, 2015

Certificate No: Z14-97120

Page 3 of 8

Add: No.51 Xueyuun Road, Haidiun District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinatif.com Hitp://www.chinatif.cn

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.6Ω- 4.45μΩ
Return Loss	- 27.0dB

Report No.: I14D00071-SAR

: 114 of 136

: Mar 31, 2015

Page Number

Report Issued Date

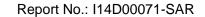
Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.3Ω- 5.50jΩ
Return Loss	- 23.3dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.267 ns
The street of the street of	1.207 110

After long term use with 100V radiated power, only a slight warming of the dipole near the feedpoint can be measured.


The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: Z14-97120

Page 4 of 8

: 115 of 136

: Mar 31, 2015

Page Number

Report Issued Date

Date: 04.11.2014

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn E-mail: cttl@chinattl.com

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d112

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium parameters used: f = 835 MHz; $\sigma = 0.916$ S/m; $\epsilon_r = 40.82$; $\rho = 1000$ kg/m³

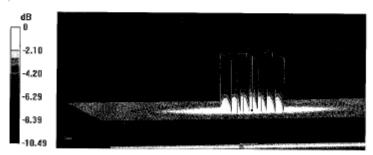
Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(9.67, 9.67, 9.67); Calibrated: 2014-08-28;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1331; Calibrated: 2014-01-23
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

System Performance Check at Frequencies above 1 GHz/d=15mm, Pin=250 mW, dist=2.0mm (EX-Probe)/Zoom Sean (7x7x7) (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy-5mm, dz=5mm

Reference Value = 58.96 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 3.69 W/kg

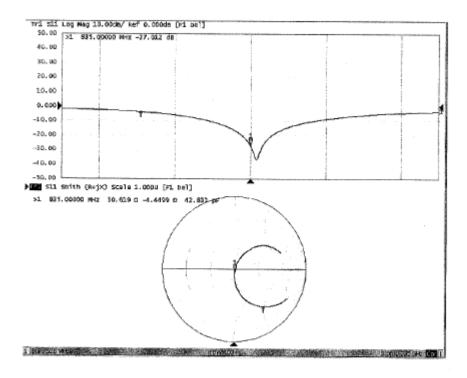
SAR(1 g) = 2.41 W/kg; SAR(10 g) = 1.57 W/kg

Maximum value of SAR (measured) = 3.09 W/kg

0 dB = 3.09 W/kg = 4.90 dBW/kg

Certificate No: Z14-97120

Page 5 of 8



Report No.: I14D00071-SAR

Add: No.51 Xueyuan Roud, Haidian District, Beljing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinatol.com Http://www.chinatol.com

Impedance Measurement Plot for Head TSL

Certificate No: Z14-97120

Page 6 of 8

Page Number

: 116 of 136

Add: No. 51 Xueyuan Road, Haidlinn District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Hittp://www.chinattl.com

DASY5 Validation Report for Body TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 835 MHz; Type: D835V2; Scrial: D835V2 - SN: 4d112

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f=835 MHz; $\sigma=0.991$ S/m; $\epsilon_r=55.34$; $\rho=1000$ kg/m³

Phantom section: Center Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: EX3DV4 - SN3617; ConvF(9.48, 9.48, 9.48); Calibrated: 2014-08-28;

Report No.: I14D00071-SAR

: 117 of 136

: Mar 31, 2015

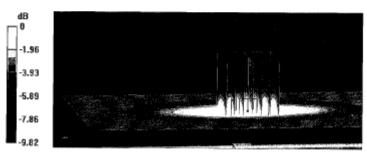
Page Number

Report Issued Date

Date: 04.11.2014

- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1331; Calibrated: 2014-01-23
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

System Performance Check at Frequencies above 1 GHz/d=15mm, Pin=250 mW, dist=2.0mm (EX-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.13 V/m; Power Drift = -0.01 dB

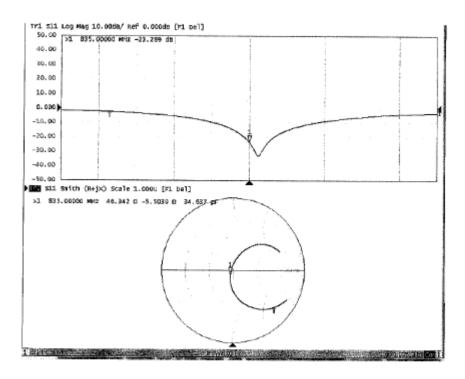
Peak SAR (extrapolated) = 3.57 W/kg

SAR(1 g) = 2.4 W/kg; SAR(10 g) = 1.6 W/kg

Maximum value of SAR (measured) = 3.02 W/kg

0 dB = 3.02 W/kg = 4.80 dBW/kg

Certificate No: Z14-97120


Page 7 of 8

Add: No.51 Xueyuan Road, Haidinn District, Buijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 F-mail: cttl@chinattl.com Http://www.chinattl.com

Impedance Measurement Plot for Body TSL

Certificate No: Z14-97120

Page 8 of 8

East China Institute of Telecommunications TEL: +86 21 63843300FAX:+86 21 63843301 Page Number Report Issued Date : Mar 31, 2015

: 118 of 136

Report No.: I14D00071-SAR

Report No.: I14D00071-SAR

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Hatp://www.chinattl.com

ECIT

Certificate No:

Z14-97122

CALIBRATION CERTIFICATE

Object

D1900V2 - SN: 5d134

Calibration Procedure(s)

TMC-OS-E-02-194

Calibration Procedures for dipole validation kits

Calibration date:

November 5, 2014

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3) to and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	101919	01-Jul-14 (CTTL, No.J14X02146)	Jun-15
Power sensor NRP-Z91	101547	01-Jul-14 (CTTL, No.J14X02146)	Jun-15
Reference Probe EX3DV4	SN 3617	28-Aug-14(SPEAG,No.EX3-3617_Aug14)	Aug-15
DAE4	SN 1331	23-Jan-14 (SPEAG, DAE4-1331_Jan14)	Jan-15
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
SignalGeneratorMG3700A	6201052605	01-Jul-14 (CTTL, No.J14X02145)	Jun-15
Network Analyzer E5071C	MY46110673	15-Feb-14 (TMC, No.JZ14-781)	Feb-15

Calibrated by:

Name

Function

Signature

Zhao Jing

SAR Test Engineer

Reviewed by: Approved by:

Qi Dianyuan Lu Bingsong SAR Project Leader

Deputy Director of the laboratory

Page Number

Report Issued Date

: 119 of 136

: Mar 31, 2015

Issued: November 8, 2014 This callibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: Z14-97122

Page 1 of 8

Report No.: I14D00071-SAR

Add: No.51 Xueyuan Road, Huidian District, Beljing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORMx,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z14-97122

Page 2 of 8

Page Number

Report Issued Date

: 120 of 136

: Mar 31, 2015

In Collaboration with

TI S P E A G

 Add: No.51 Xucyusm Road, Haidian District, Beljing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: ctil@chinattl.com
 Http://www.chinattl.co

Measurement Conditions

DASY Version	DASY52	52.8.8.1222
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters
The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.9 ± 6 %	1.37 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm ² (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.85 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	40.0 mW/g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.15 mW/g
SAR for nominal Head TSL parameters	normalized to 1W	20.8 mW/g ± 20.4 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity-	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.1 ± 6 %	1.51 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.1 mW/g
SAR for nominal Body TSL parameters	normalized to 1W	40.7 mW/g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	5.30 mW/g
SAR for nominal Body TSL parameters	normalized to 1W	21.3 mW/g ± 20.4 % (k=2)

Certificate No: Z14-97122

Page 3 of 8

Page Number

: 121 of 136 Report Issued Date : Mar 31, 2015

Report No.: I14D00071-SAR

Add: No.51 Xueyuan Road, Haidian District, Beljing, 100191, China Tel: +86-10-62304633-2079 Fox: +86-10-62304633-2504 E-mail: ctCl@chinattl.com Http://www.chinattl.com

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.1Ω+ 6.01]Ω
Return Loss	- 23.1dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.6Ω+ 6.44jΩ	
Return Loss	- 23.5dB	

General Antenna Parameters and Design

ı	Electrical Delay (one direction)	1.304 ns	
	Lieurical Delay (une direction)	1.304 ris	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

- 1		
	Manufactured by	SPEAG

Certificate No; Z14-97122

Page 4 of 8

Page Number

: 122 of 136

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China. Tel: †86-10-62304633-2079 Fax: †86-10-62304633-2504 E-mail: cttl@chinattl.com Hitp://www.chinattl.cn

DASY5 Validation Report for Head TSL

Date: 05.11.2014

Report No.: I14D00071-SAR

: 123 of 136

: Mar 31, 2015

Page Number

Report Issued Date

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 1900 MHz; Type: D1900V2; Scrial: D1900V2 - SN: 5d134

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1900 MHz; $\sigma = 1.365$ S/m; $\epsilon_r = 39.92$; $\rho = 1000$ kg/m³

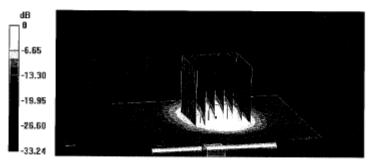
Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(7.9, 7.9, 7.9); Calibrated: 2014-08-28;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1331; Calibrated: 2014-01-23
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

System Performance Check at Frequencies above 1 GHz/d=10mm, Pin=250 mW, dist=2.0mm (EX-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

Reference Value = 104.1 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 18.1 W/kg

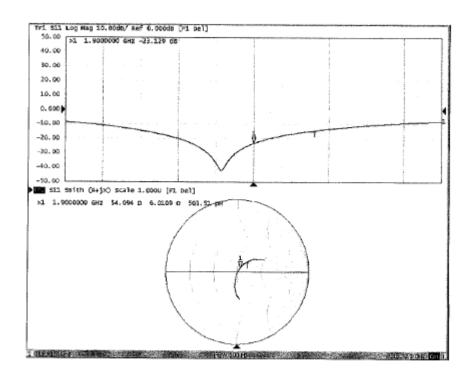
SAR(1 g) = 9.85 W/kg; SAR(10 g) = 5.15 W/kg

Maximum value of SAR (measured) = 14.0 W/kg

0 dB = 15.3 W/kg = 11.85 dBW/kg

Certificate No: Z14-97122

Page 5 of 8



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: etti@chinatl.com Hitp://www.chinatl.cn

Impedance Measurement Plot for Head TSL

Certificate No: Z14-97122

Page 6 of 8

Page Number

: 124 of 136

Add: No.51 Xucyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ottl@chinattl.com Http://www.chinattl.cn

DASY5 Validation Report for Body TSL

Date: 05.11.2014

Report No.: I14D00071-SAR

: 125 of 136

: Mar 31, 2015

Page Number

Report Issued Date

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d134

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1900 MHz; $\sigma = 1.511$ S/m; $\epsilon_r = 54.12$; $\rho = 1000$ kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration;

- Probe: EX3DV4 SN3617; ConvF(7.58, 7.58, 7.58); Calibrated: 2014-08-28;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1331; Calibrated: 2014-01-23
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6,10 (7331)

System Performance Check at Frequencies above 1 GHz/d=10mm, Pin=250 mW, dist=2.0mm (EX-Probe)/Zoom Scan (7x7x7) (8x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

Reference Value = 98.58 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 18.2 W/kg

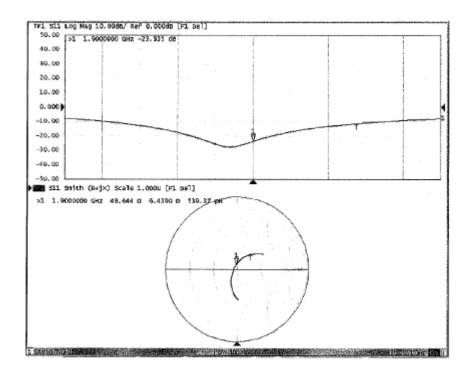
SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.3 W/kg

Maximum value of SAR (measured) = 14.5 W/kg

0 dB = 15.6 W/kg = 11.94 dBW/kg

Certificate No: Z14-97122

Page 7 of 8



Report No.: I14D00071-SAR

Add: No.51 Xueyuan Rood, Haidlan District, Beijing, 100191, China Tel: +86-10-62204633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinatt.com Http://www.chinatt.com

s p e

Impedance Measurement Plot for Body TSL

Certificate No: Z14-97122

Page 8 of 8

Page Number

: 126 of 136

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.com Http://www.chinattl.com ECIT

Certificate No:

Z14-97125

CALIBRATION CERTIFICATE

Object

D2450V2 - SN: 858

Calibration Procedure(s)

TMC-OS-E-02-194

Calibration Procedures for dipole validation kits

Calibration date:

November 3, 2014

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

) Scheduled Calibration	Cal Date(Calibrated by, Certificate No.)	ID#	Primary Standards
Jun-15	01-Jul-14 (CTTL, No.J14X02146)	101919	Power Meter NRP2
Jun-15	01-Jul-14 (CTTL, No.J14X02146)	101547	Power sensor NRP-Z91
14) Aug-15	28-Aug-14(SPEAG,No.EX3-3617_Aug14)	SN 3617	Reference Probe EX3DV4
) Jan-15	23-Jan-14 (SPEAG, DAE4-1331_Jan14)	SN 1331	DAE4
Scheduled Calibration	Cal Date(Calibrated by, Certificate No.)	ID#	Secondary Standards
Jun-15	01-Jul-14 (CTTL, No.J14X02145)	6201052605	SignalGeneratorMG3700A
Feb-15	15-Feb-14 (TMC, No.JZ14-781)	MY46110673	Network Analyzer E5071C
	15-Feb-14 (TMC, No.JZ14-781)	MY46110673	Network Analyzer E5071C

Calibrated by:

Function

Name Zhao Jing

SAR Test Engineer

Reviewed by:

Qi Dianyuan

SAR Project Leader

Approved by:

Lu Bingsong

Deputy Director of the laboratory

Issued: November 5, 2014

Page Number

Report Issued Date

: 127 of 136

: Mar 31, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z14-97125

Page 1 of 8

Report No.: I14D00071-SAR

Add: No.51 Xueyuan Rood, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 B-mail: cttl@chinattl.com Http://www.chinattl.cn

Glossary:

TSL ConvF N/A tissue simulating liquid sensitivity in TSL / NORMx,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required,
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z14-97125

Page 2 of 8

Page Number

Report Issued Date

: 128 of 136

: Mar 31, 2015

Add: No.51 Xueyuun Road, Haldian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinatil.com Http://www.chinatil.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1

DASY Version	DASY52	52.8.8.1222
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Report No.: I14D00071-SAR

Head TSL parameters

he following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.1 ± 6 %	1.84 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.6 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	54.1 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	6.33 mW/g
SAR for nominal Head TSL parameters	normalized to 1W	25.3 mW /g ± 20.4 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.4 ± 6 %	1.99 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.1 mW/g
SAR for nominal Body TSL parameters	normalized to 1W	51.6 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm² (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	6.15 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	24.4 mW /g ± 20.4 % (k=2)

Certificate No: Z14-97125

Page 3 of 8

Page Number

: 129 of 136

Report No.: I14D00071-SAR

: 130 of 136

: Mar 31, 2015

Page Number

Report Issued Date

Add: No.51 Xueyuan Road, Haidian District, Beljing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ottl@chinattl.com Http://www.chinattl.com

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.5Ω+ 6.22 <u>j</u> Ω
Return Loss	- 23.2dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	51.2Ω+ 7.85jΩ
Return Loss	- 22.1dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.032 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	

Certificate No: Z14-97125

Page 4 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ctil@chinattl.com Http://www.chinattl.cn

DASY5 Validation Report for Head TSL

Date: 03.11.2014

Report No.: I14D00071-SAR

: 131 of 136

: Mar 31, 2015

Page Number

Report Issued Date

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 858

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.842$ S/m; $\epsilon_r = 40.1$; $\rho = 1000$ kg/m³

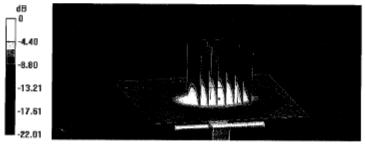
Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(7.19, 7.19, 7.19); Calibrated: 2014-08-28;
- · Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1331; Calibrated: 2014-01-23
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

System Performance Check at Frequencies above 1 GHz/d=10mm, Pin=250 mW, dist=2.0mm (EX-Probe)/Zoom Scan (7x7x7) (8x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

Reference Value = 106.9 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 27.5 W/kg

SAR(1 g) = 13.6 W/kg; SAR(10 g) = 6.33 W/kg

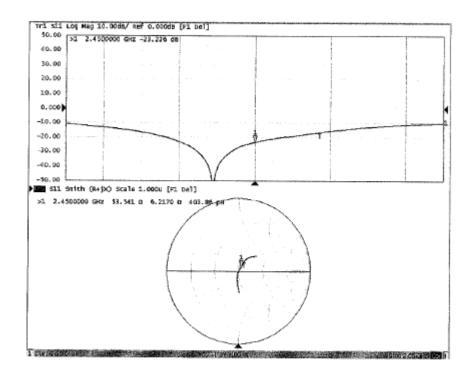
Maximum value of SAR (measured) = 20.4 W/kg

0 dB = 20.4 W/kg = 13.10 dBW/kg

Certificate No: Z14-97125

Page 5 of 8

Report No.: I14D00071-SAR



Add: No.51 Xueyuun Road, Haldian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mad: ottl@chinatti.com Hüpo//www.chinatti.cm

S D E A C

Impedance Measurement Plot for Head TSL

Certificate No: Z14-97125

Page 6 of 8

Page Number

: 132 of 136

CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinettl.com Hitp://www.chinattl.cn

DASY5 Validation Report for Body TSL

Date: 02.11.2014

Report No.: I14D00071-SAR

: 133 of 136

: Mar 31, 2015

Page Number

Report Issued Date

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 858

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.991$ S/m; $\epsilon_r = 51.37$; $\rho = 1000$ kg/m³

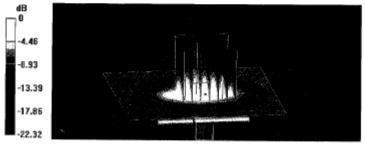
Phantom section: Center Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(7.31, 7.31, 7.31); Calibrated: 2014-08-28;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1331; Calibrated: 2014-01-23
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

System Performance Check at Frequencies above 1 GHz/d=10mm, Pin=250 mW, dist=2.0mm (EX-Probe)/Zoom Scan (7x7x7) (8x7x7)/Cube 0: Measurement grid:


dx-5mm, dy-5mm, dz-5mm

Reference Value = 100.2 V/m; Power Drift - -0.01 dB

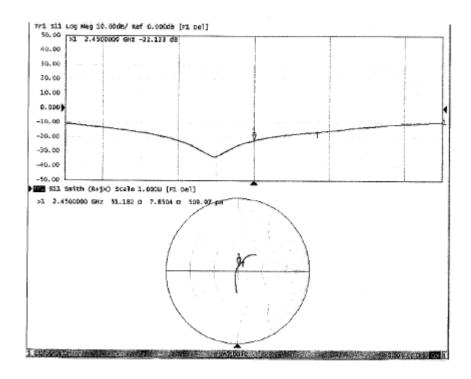
Peak SAR (extrapolated) = 26.6 W/kg

SAR(1 g) = 13.1 W/kg; SAR(10 g) = 6.15 W/kg

Maximum value of SAR (measured) - 19.8 W/kg

0 dB = 19.8 W/kg = 12.97 dBW/kg

Certificate No: Z14-97125


Page 7 of 8

Add: No.51 Xueyuan Read, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ottl@chinattl.com Http://www.chinattl.cn

Impedance Measurement Plot for Body TSL

Report No.: I14D00071-SAR

Certificate No: Z14-97125

Page 8 of 8

Page Number

: 134 of 136

Report No.: I14D00071-SAR

Acceptable Conditions for SAR Measurements Using Probes and Dipoles Calibrated under the SPEAG-TMC Dual-Logo Calibration Program to Support FCC Equipment Certification

The acceptable conditions for SAR measurements using probes, dipoles and DAEs calibrated by TMC (Telecommunication Metrology Center of MITT in Beijing, China), under the Dual-Logo Calibration Certificate program and quality assurance (QA) protocols established between SPEAG (Schmid & Partner Engineering AG, Switzerland) and TMC, to support FCC (U.S. Federal Communications Commission) equipment certification are defined and described in the following.

- The agreement established between SPEAG and TMC is only applicable to calibration services performed by TMC where its clients (companies and divisions of such companies) are headquartered in the Greater China Region, including Taiwan and Hong Kong. This agreement is subject to renewal at the end of each calendar year between SPEAG and TMC. TMC shall inform the FCC of any changes or early termination to the agreement.
- Only a subset of the calibration services specified in the SPEAG-TMC agreement, while it remains valid, are applicable to SAR measurements performed using such equipment for supporting FCC equipment certification. These are identified in the

 - a) Calibration of dosimetric (SAR) probes EX3DVx, ET3DVx and ES3DVx.
 i) Free-space E-field and H-field probes, including those used for HAC (hearing aid compatibility) evaluation, temperature probes, other probes or equipment not identified in this document, when calibrated by TMC, are excluded and cannot be used for measurements to support FCC equipment certification.
 - ii) Signal specific and bundled probe calibrations based on PMR (probe modulation response) characteristics are handled according to the requirements of KDB 865664; that is, "Until standardized procedures are available to make such determination, the applicability of a signal specific probe calibration for testing specific wireless modes and technologies is determined on a case-by-case basis through KDB inquiries, including SAR system verification requirements."

 b) Calibration of SAR system validation dipoles, excluding HAC dipoles.
 c) Calibration of data acquisition electronics DAE3Vx, DAE4Vx and DAEasyVx.

 - d) For FCC equipment certification purposes, the frequency range of SAR probe and dipole calibrations is limited to 700 MHz 6 GHz and provided it is supported by the equipment identified in the TMC QA protocol (a separate attachment to this
 - e) The identical system and equipment setup, measurement configurations, hardware, evaluation algorithms, calibration and QA protocols, including the format of calibration certificates and reports used by SPEAG shall be applied by

Page Number

Report Issued Date

: 135 of 136

: Mar 31, 2015

f) The calibrated items are only applicable to SPEAG DASY 4 and DASY 5 or

Report No.: I14D00071-SAR

- 3) The SPEAG-TMC agreement includes specific protocols identified in the following to ensure the quality of calibration services provided by TMC under this SPEAG-TMC Dual-Logo calibration agreement are equivalent to the calibration services provided by SPEAG. TMC shall, upon request, provide copies of documentation to the FCC to substantiate program implementation.
 - the FCC to substantiate program implementation.

 a) The Inter-laboratory Calibration Evaluation (ILCE) stated in the TMC QA protocol shall be performed between SPEAG and TMC at least once every 12 months. The ILCE acceptance criteria defined in the TMC QA protocol shall be satisfied for the TMC. SPEAG and FCC agreements to remain valid.
 - b) Check of Calibration Certificate (CCC) shall be performed by SPEAG is required for TMC. SPFAG and FCC agreements to remain valid.
 b) Check of Calibration Certificate (CCC) shall be performed by SPEAG for all calibrations performed by TMC. Written confirmation from SPEAG is required for TMC to issue calibration certificates under the SPEAG-TMC Dual-Logo calibration program. Quarterly reports for all calibrations performed by TMC under the program are also issued by SPEAG.
 - c) The calibration equipment and measurement system used by TMC shall be verified before each calibration service according to the specific reference SAR probes, dipoles, and DAE calibrated by SPEAG. The results shall be reproducible and within the defined acceptance criteria specified in the TMC QA protocol before each actual calibration can commence. TMC shall maintain records of the measurement and calibration system verification results for all calibrations.
 - d) Quality Check of Calibration (QCC) certificates shall be performed by SPEAG at least once every 12 months. SPEAG shall visit TMC facilities to verify the laboratory, equipment, applied procedures and plausibility of randomly selected certificates.
- 4) A copy of this document, to be updated annually, shall be provided to TMC clients that accept calibration services according to the SPEAG-TMC Dual-Logo calibration program, which should be presented to a TCB (Telecommunication Certification Body), to facilitate FCC equipment approval.
- TMC shall address any questions raised by its clients or TCBs relating to the SPEAG-TMC Dual-Logo calibration program and inform the FCC and SPEAG of any critical issues.

Change Note: Revised on June 26 to clarify the applicability of PMR and Bundled probe calibrations according to the requirements of KDB 865664.

*********End The Report*******

Page Number

Report Issued Date

: 136 of 136

: Mar 31, 2015