Application for Certification For a GPS Positioning System

Leica Geosystems, Inc. 23868 Hawthorne Blvd. Torrance, CA 90505

GPS Positioning System:

Model #s: GS20

FCC ID: QOHGS20

REPORT # RV38025D

This report was prepared in accordance with the requirements of the FCC Rules and Regulations Part 2, Subpart J, 2.1033, and Part 15.247 and other applicable sections of the rules as indicated herein.

Prepared By:

Dana Grove

DNB Engineering, Inc. 5969 Robinson Avenue Riverside, CA 92503

15 Nov 2002

TABLE OF CONTENTS

Section Sheet #	Title	
1.0	ADMINISTRATIVE DATA	3
1.1	Certifications and Qualifications	3
1.2	Measurements and Repeatability Information	3

Note:

Paragraph numbers in this report follow the application section numbers found in the FEDERAL COMMUNICATIONS COMMISSION Rules and Regulations, Part 2, Subpart J for Certification of electronic equipment.

2.1033 (b) (1)	Application for Certification	4
2.1033 (b) (2)	FCC Identifier	5
2.1033 (b) (3)	Installation and Operating Instructions	6
2.1033 (b) (4)	Brief Description of Circuit Function	7
2.1033 (b) (5)	Block Diagram	8
2.1033 (b) (6)	Report of Measurements	9
15.247a	20 dB Emission Bandwidth	9-10
15.247c	Band Edge emissions	9-10
15.247b	Peak RF Output Power	11-12
15.247c	Field strength of harmonics and spurious emissions	13-14
15.247c	RF Antenna conducted of harmonics and spurious emissions	15
15.207	Power line conducted emissions	16
15.109	Radiated Emissions – Class B	17-18
2.1033 (b) (7)	Equipment Photographs	19
2.1033 (b) (7)	Internal Photographs	20-24
2.1033 (b) (7)	External Photographs	25
2.1033 (b) (10)	Spread Spectrum Transmitters (FHSS)	26
	Test Equipment Log	27-29

1.0 ADMINISTRATIVE DATA

1.1 Certifications and Qualifications

I certify that DNB Engineering, Inc conducted the tests performed in order to obtain the technical data presented in this application. Also, based on the results of the enclosed data, I have concluded that the equipment tested meets or exceeds the requirements of the Rules and Regulations governing this application.

1.2 Measurement Repeatability Information

The test data presented in this report has been acquired using the guidelines set forth in FCC Part 2.1031 through 2.1057, Part 15. The test results presented in this document are valid only for the equipment identified herein under the test conditions described. Repeatability of these test results will only be achieved with identical measurement conditions. These conditions include: The same test distance, EUT Height, Measurement Site Characteristics, and the same EUT System Components. The system must have the same Interconnecting Cables arranged in identical placement to that in the test set-up, with the system and/or EUT functioning in the identical mode of operation (i.e. software and so on) as on the date of the test. Any deviation from the test conditions and the environment on the date of the test may result in measurement repeatability difficulties.

All changes made to the EUT during the course of testing as identified in this test report must be incorporated into the EUT or identical models to ensure compliance with the FCC regulations.

C. L. Payne III (Para. 1.1)

Coffame III

Manager, Riverside Facility.

DNB Engineering, Inc.

Tel. (909) 637-2630 FAX (909) 637-2704

2.1033 (b) (1) Application for Certification

Name of Applicant: Leica Geosystems Inc.

23868 Hawthorne Blvd. Torrance, CA 90505

Applicant is: X Manufacturer

Vendor Licensee

Prospective Licensee

Other

Name of Manufacturer Leica Geosystems Inc.

Description: GPS Positioning System

Part Number: GS20

Anticipated Production Quantity: Multiple Units

Frequency Band: 2400 – 2483.5 GHz

Rated Power: 0.63 mW (-2dBm)

Type of Signal: FHSS

Hopping Channels: 75 minimum

Max Data Rate: 115.2 kbps

2.1033 (b) (2) FCC Identifier

FCC ID:

QOHGS20

(for model number GS20)

Figure 1 - Label Position - GS20

2.1033 (b) (3) Installation and Operating Instructions

Please reference attached .pdf file: GS20_fieldguide.pdf

2.1033 (b) (4) Brief Description of Circuit Function

2.1033 (b) (5) Block Diagram

2.1033 (b) (6) Report of Measurements

15.247 (a) 20 dB Emission Bandwidth

The EUT was placed in a temperature controlled environment and the worst case signal was transmitted and recorded on a spectrum analyzer. The EUT was tested at temperatures of -22, +25, and +55 degrees C. The EUT power was also varied from minus 15% to plus 30%. The spectrum was allowed enough time to satisfy the requirements of stability. The leading edge of the signal was recorded as was the trailing edge during the testing.

NOTE 1: This device was only tested to 0 degree C per

manufacturer's technical documentation

NOTE 2: This device was only tested to 3.13 Vdc or minus 5.4% per

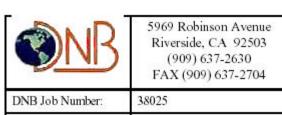
manufacturer's technical documentation.

15.247 (c) Band Edge

The EUT was set-up and tested in accordance with the 20dB Emission Bandwidth as referenced above. Emission edges were recorded on the same data sheet.

			X (909) 637	-2704	-110000	IB Emission	DOCTORNAL TORRES				
	Number:	38025			Date:	2 Oct 2002		rmance ndard			
Custome	550	The state of the s	systems Inc		-	umber: Proto	20000 199				
Model N	merecont.	GS20 and			Part 15						
Descript	ion:	GPS Posit	ioning Device				Cl	ause			
		49.4h					15.2	247 (a)			
			Enviro	nmental Con	ditions						
Aı	mbient Temp	erature	Re	lative Humid	ty	Barom	etric Press	sure			
	26 °C			35 %		9	9.8 kPa				
, Tr	EST CONDI	TIONS	5	Measure	ed Frequency	y Bandwidth (FF	ISS)				
1	EST CONDI	HONS	Char	mel 1	Chan	mel 2	Channel 3				
Temper ature	Vo	oltage	FI	Fh	Fl	Fh	Fl	Fh			
-0°€	3.1	5 Vdc	2.4004	2.4799	N/a	N/a	N/a	N/a			
-00	4.2	9 Vdc	2.4002	2.4800	N/a	N/a	N/a	N/a			
+ 25 °C	3.3	0 Vdc	2.4002	2.4800	N/a	N/a	N/a	N/a			
+ 55 °C	3.1	5 Vdc	2.4003	2.4798	N/a	N/a	N/a	N/a			
133 0	4.2	9 Vdc	2.4004	2.4800	N/a	N/a	N/a	N/a			
Maximu	m Frequency	Error (Hz)	0.00		100,0	00 Hz					
Measure	ment Uncerta	inty			+/- 10,	000 Hz					
Frequenc	cy Range Lin	rit	Fl equal	or greater tha	n 2.4 Ghz /	Fh less than or e	qual to 2.4	485 GH:			
Notes	100kHz bandwidth used.										
	FI = Lower frequency edge (-30dB down)										
	Fh = Uppe	Fh = Upper frequency edge (-30dB down)									
	3.15Vdc is	the minimum	Vdc required	per customer	documenta	tion					
	- 0 °C is th	ne minimum pe	r customer de	ocumentation							

15.247 (b) Peak RF Output Power


The EUT was measured on an open area test site (OATS) using the reference antenna substitution method.

A measuring distance of at least 3 m shall be used for measurements at frequencies up to 1 GHz. For frequencies above 1 GHz, any suitable measuring distance may be used. The equipment size (excluding the antenna) shall be less than 20 % of the measuring distance. The height of the equipment or of the substitution antenna shall be 1,5 m; the height of the test antenna (transmit or receive) shall vary between 1 m and 4 m.

Sufficient precautions shall be taken to ensure that reflections from extraneous objects adjacent to the site do not degrade the measurement results, in particular:

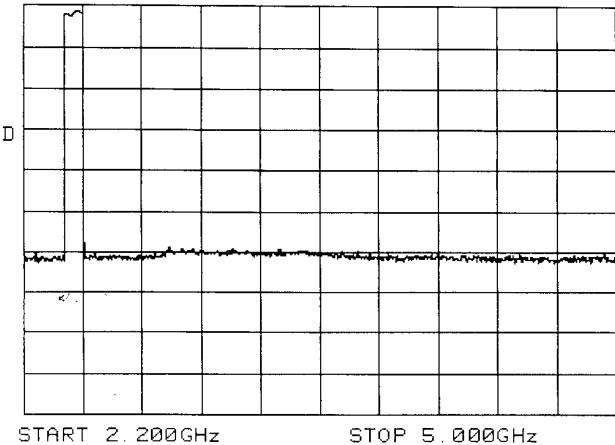
- no extraneous conducting objects having any dimension in excess of a quarter wavelength of the highest frequency tested shall be in the immediate vicinity of the site;
- all cables shall be as short as possible; as much of the cables as possible shall be on the ground plane or preferably below; and the low impedance cables shall be screened.

The EUT shall be placed upon a non-conductive table 1.5 meters above the ground plane and shall be placed in the "worst case" transmitting mode. The EUT shall be rotated 360 degrees to find the azimuth maxima. The receive antenna shall then be raised and lowered between 1 to 4 meters to find the maximum signal emanating from the EUT. Once the maximum has been identified and recorded the EUT is replaced with a tuned dipole at the appropriate frequency and a signal generator is input into the dipole. The level is raised until the same signal strength is achieved. This signal strength is then recorded on the data sheets.

) 637-2630 09) 637-270	4	Pe	ak Po	wer Outpu	t
DNB Job Number:	38025		Date	9 Aug	2002	Conforma	nce Standard
Customer:	Leica Geos	ystems Inc	- 05			FCC	Part 15
Model Number:	GS20 and V	WORCS	Seria	l Number: I	Proto		
Description:	GPS Position	oning Device				C	lause
	20					15.2	247 (b)
		Enviro	nmental Con	ditions			
Ambient Tempe	erature	Rel	ative Humid	ity		Barometric	Pressure
29 °C			35 %			100.81	kPa
Rated Radiated Power	r in W	0.63 mV	V Rate	d Radiated P	ower in	dBm	-2 dBm
Polarization of the me	asurement for t	the largest pov	wer level (He	orizontal or V	Vertical))	Vertical
TESTS		S	Measured P	ower (W/dBı	m) and '	Variation (W/	(dB)
12515	Chan	nel 1	Chan	nel 2		Channel 3	
		W	dBm	W	dBr	n W	dBm
Measured Radiated Po	ower	0.00029	- 5.4	N/a	N/a	n N/a	N/a
Variation		N/o *	N/o *	N/a	N/a	a N/a	N/a
Measurement Uncerta	inty			+/- 0	.5dB		
Limit per 15.247 (b)		21		11	W		
Notes No *= No	Variation obse	rved during te	st				
Test perform	ned under norn	nal operating	conditions				
•			er seemen seem				
1							
1							

15.247 (c) Field Strength of Harmonics and Spurious Out of Band Emissions

The EUT was placed upon the Open Area Test Site (OATS) and the radiated spurious emissions were recorded from the EUT. Harmonics of the transmitter frequency were evaluated for their maximum emissions. The substitution method was used as in the peak power output test except for frequencies above 1GHz a Double Ridge Guide (Horn) antenna was used.


C L Payne III

umber: iber: ient Tem 32 °C	La G	S20 and V	oning Dev	sta		Date: Serial Nu	2 Oct 20	02	Conforma Standa	
ient Tem	G: G: nperatur	S20 and V	WORCS oning Dev	sta		Serial Nu		╗	Standa	rd
ient Tem	G.	PS Positio	oning Dev	rice		Serial Nu	- 111 20			
ient Tem	nperatur		- 3	rice			ımber: Pro	oto	FCC Par	15
WILLIAM STATE			Env						Clause 15.247	
WILLIAM STATE		68.	Lilly	ironment	tal Condit	ions				
32 °C	4	e		Relative	Humidity		H	Barometr	ic Pressure	1
	60			36	5%			100.	8 kPa	
			Spurio	us Emissi	ons Leve	l (dBm)				
Channe	11	40	S	Chai	nnel 2			Cha	nnel 3	
	Level (dBuV)	Limit (dBuV)	f (GHz)	BW (kHz)	Level (dBuV)	Limit (dBuV)	f (GHz)	BW (kHz)	Level (dBuV)	Limit (dBuV
00	< 37	54	N/a	N/a	N/a	N/a	N/a	N/a	N/a	N/a
00	< 37	54	N/a	N/a	N/a	N/a	N/a	N/a	N/a	N/a
100	< 37	54	N/a	N/a	N/a	N/a	N/a	N/a	N/a	N/a
00	< 37	54	N/a	N/a	N/a	N/a	N/a	N/a	N/a	N/a
00	< 38	54	N/a	N/a	N/a	N/a	N/a	N/a	N/a	N/a
00	< 38	54	N/a	N/a	N/a	N/a	N/a	N/a	N/a	N/a
00	< 42	54	N/a	N/a	N/a	N/a	N/a	N/a	N/a	N/a
100	< 42	54	N/a	N/a	N/a	N/a	N/a	N/a	N/a	N/a
nt Uncer	tainty						+/- 0.5	dBm		
ntenna po	olarizat	ion for m	aximum r	eading w	as vertica	l)				
10 10	0 0 0 Uncer	0 < 38 0 < 42 0 < 42 Uncertainty	0 < 38 54 0 < 42 54 0 < 42 54 Uncertainty	0 < 38 54 N/a 0 < 42 54 N/a 0 < 42 54 N/a Uncertainty	0 < 38 54 N/a N/a 0 < 42 54 N/a N/a 0 < 42 54 N/a N/a Uncertainty	0 < 38 54 N/a N/a N/a 0 < 42 54 N/a N/a N/a 0 < 42 54 N/a N/a N/a N/a Uncertainty	0 < 38 54 N/a N/a N/a N/a N/a 0 < 42 54 N/a N/a N/a N/a N/a 0 < 42 54 N/a N/a N/a N/a N/a	0 < 38 54 N/a N/a N/a N/a N/a N/a 0 < 42 54 N/a N/a N/a N/a N/a N/a N/a 0 < 42 54 N/a N/a N/a N/a N/a N/a N/a N/a N/a +/- 0.5	0 < 38 54 N/a N/a N/a N/a N/a N/a N/a N/a 0 < 42 54 N/a N/a N/a N/a N/a N/a N/a 0 < 42 54 N/a N/a N/a N/a N/a N/a N/a Uncertainty +/- 0.5 dBm	0 < 38 54 N/a N/a N/a N/a N/a N/a N/a N/a N/a 0 < 42 54 N/a

EUT performed within the requirements of the applicable standard [X] Yes [] No

15.247 (c) RF Antenna Conducted of Harmonics and Spurious Emissions

This EUT incorporates an integral antenna. The antenna was disconnected and a fifty ohm load was installed. The signal was then directly coupled into a spectrum analyzer. The output signal from 2.400 to 2.480 Ghz was transmitted so that the fundamental frequency could be observed. No signal above the ambient were observed during this test.

RBW 1.0MHz VBW 1.0MHz

SWP 56.0ms

15.207 Power Line Conducted Emissions

Not Applicable – EUT is battery operated only. No connect to the mains supply.

15.209 Radiated Emissions – Class B

Radiated emissions generated by the EUT were measured in the applicable frequency range on a 10 meter open area test site. All radiated data was recorded.

To measure radiated emissions, the EUT was set up on the 10 meter open air test site. The EUT is placed on a wooden Table which rests on a wooden turntable. The top of the table is one meter above the ground, and the turntable can be rotated 360 degrees. For each frequency measured, the antenna is raised and lowered for both horizontal and vertical polarities to obtain the maximum reading on the analyzer. The turntable is also rotated throughout the 360 degrees in azimuth to determine the position of the maximum emissions. The applicable frequency range is searched using the antennas listed below. The respective antenna and preamplifier were connected to an HP 8568B Spectrum Analyzer or equivalent. Preamplifiers were used for all ranges to achieve the needed dynamic range.

5969 Robinson Avenue Riverside, CA 92503 (909) 637-2630 FAX (909) 637-2704

EMI Datasheet

		A								
DNB J	ob	38025	Date:	1	Oct 20	002	S	Specification		
Custon	ner:	Leica Geosystems Inc	2				DOLENIA	5 5000 CI D		
Model		GS20 and WORCS	S/N:		Pro	oto	[X] EN55022 Class B [X] CISPR Class B			
Descrip	ption:	GPS positioning system					[X] FCC Part 15 Class B			
EUT pe	erformed	within the requirements of the applicable Standard(s)	Х	YES		NO	Signed	Dale Sexton		
Bcn = A.H. Systems SAS-200/540 Biconical Antenna S/N 138 (30-200 MHz) Log = EMCO 3146 Log-Periodic Antenna				= Cable Loss = Preamplifier Gain = Antenna polarity V = Vertical H = Horizontal						
S/N 1284 (200-1000 MHz) Dcf = Distance Correction Factor =				= Antenna height in meters x.xx=1.00 to 4.00 meters						
20*LOG ₁₀ (Test Distance/Specification Distance) Typ = Type of reading PK = Peak reading				Tbl = Table Position in degrees						
		QP = Quasi-peak reading		1014	TIZ GO	to n	carey arms	iciti signar		

NOTES: Limits for EN55022 Class B were used for compliance testing. No significant readings above 1 Ghz were observed.

240.010 38.7 0 13.8 2.1 -24.1 0 30.5 37 -6.5 PK 292 H 3 279.979 37.3 0 15.4 2.3 -24.2 0 30.8 37 -6.2 PK 111 H 3 280.019 38.3 0 15.4 2.3 -24.2 0 31.8 37 -5.2 PK 285 H 2 360.034 31.5 0 17.4 2.7 -24.4 0 27.2 37 -9.8 PK 125 H 2 439.994 24.5 0 20.1 3.0 -24.6 0 23 37 -14 PK 104 H 1 600.033 32.2 0 22.7 3.4 -24.9 0 33.4 37 -3.6 QP 103 H 1 840.052 29.6 0 24.2 4.3 -24.9 0 <	FREQ.	Meter	Ben	Log	СЫ	Amp	Def	Corr	Lim	Delta	Тур	Tbl	Pl	Hgt
279.979 37.3 0 15.4 2.3 -24.2 0 30.8 37 -6.2 PK 111 H 3.280.019 38.3 0 15.4 2.3 -24.2 0 31.8 37 -5.2 PK 285 H 2 360.034 31.5 0 17.4 2.7 -24.4 0 27.2 37 -9.8 PK 125 H 2 439.994 24.5 0 20.1 3.0 -24.6 0 23 37 -14 PK 104 H 1 600.033 32.2 0 22.7 3.4 -24.9 0 33.4 37 -3.6 QP 103 H 1 840.052 29.6 0 24.2 4.3 -24.9 0 33.2 37 -3.8 PK 294 H 1 120.021 31.4 14.6 0 1.5 -24.0 0 23.5 30	120.272	28.2	14.6	0	1.5	-24.0	0	20.3	30	-9.7	PK	147	Н	1.16
280.019 38.3 0 15.4 2.3 -24.2 0 31.8 37 -5.2 PK 285 H 2 360.034 31.5 0 17.4 2.7 -24.4 0 27.2 37 -9.8 PK 125 H 2 439.994 24.5 0 20.1 3.0 -24.6 0 23 37 -14 PK 104 H 1 600.033 32.2 0 22.7 3.4 -24.9 0 33.4 37 -3.6 QP 103 H 1 840.052 29.6 0 24.2 4.3 -24.9 0 33.2 37 -3.8 PK 294 H 1 120.021 31.4 14.6 0 1.5 -24.0 0 23.5 30 -6.5 PK 353 V 1 240.004 30.8 0 13.8 2.1 -24.1 0 <	240.010	38.7	0	13.8	2.1	-24.1	0	30.5	37	-6.5	PK	292	Н	3.73
360.034 31.5 0 17.4 2.7 -24.4 0 27.2 37 -9.8 PK 125 H 2 439.994 24.5 0 20.1 3.0 -24.6 0 23 37 -14 PK 104 H 1 600.033 32.2 0 22.7 3.4 -24.9 0 33.4 37 -3.6 QP 103 H 1 840.052 29.6 0 24.2 4.3 -24.9 0 33.2 37 -3.8 PK 294 H 1 120.021 31.4 14.6 0 1.5 -24.0 0 23.5 30 -6.5 PK 353 V 1 240.004 30.8 0 13.8 2.1 -24.1 0 22.6 37 -14.4 PK 199 V 2 280.003 28.5 0 15.4 2.3 -24.2 0	279.979	37.3	0	15.4	2.3	-24.2	0	30.8	37	-6.2	PK	111	Н	3.97
439.994 24.5 0 20.1 3.0 -24.6 0 23 37 -14 PK 104 H 1 600.033 32.2 0 22.7 3.4 -24.9 0 33.4 37 -3.6 QP 103 H 1 840.052 29.6 0 24.2 4.3 -24.9 0 33.2 37 -3.8 PK 294 H 1 120.021 31.4 14.6 0 1.5 -24.0 0 23.5 30 -6.5 PK 353 V 1 240.004 30.8 0 13.8 2.1 -24.1 0 22.6 37 -14.4 PK 199 V 2 280.003 28.5 0 15.4 2.3 -24.2 0 22 37 -15 PK 161 V 2 360.003 28.3 0 17.4 2.7 -24.4 0 <td< td=""><td>280.019</td><td>38.3</td><td>0</td><td>15.4</td><td>2.3</td><td>-24.2</td><td>0</td><td>31.8</td><td>37</td><td>-5.2</td><td>PK</td><td>285</td><td>H</td><td>2.68</td></td<>	280.019	38.3	0	15.4	2.3	-24.2	0	31.8	37	-5.2	PK	285	H	2.68
600.033 32.2 0 22.7 3.4 -24.9 0 33.4 37 -3.6 QP 103 H 1 840.052 29.6 0 24.2 4.3 -24.9 0 33.2 37 -3.8 PK 294 H 1 120.021 31.4 14.6 0 1.5 -24.0 0 23.5 30 -6.5 PK 353 V 1 240.004 30.8 0 13.8 2.1 -24.1 0 22.6 37 -14.4 PK 199 V 2 280.003 28.5 0 15.4 2.3 -24.2 0 22 37 -15 PK 161 V 2 360.003 28.3 0 17.4 2.7 -24.4 0 24 37 -13 PK 63 V 2 480.003 26.4 0 21.7 3.1 -24.7 0	360.034	31.5	0	17.4	2.7	-24.4	0	27.2	37	-9.8	PK	125	Н	2.99
840.052 29.6 0 24.2 4.3 -24.9 0 33.2 37 -3.8 PK 294 H 1 120.021 31.4 14.6 0 1.5 -24.0 0 23.5 30 -6.5 PK 353 V 1 240.004 30.8 0 13.8 2.1 -24.1 0 22.6 37 -14.4 PK 199 V 2 280.003 28.5 0 15.4 2.3 -24.2 0 22 37 -15 PK 161 V 2 360.003 28.3 0 17.4 2.7 -24.4 0 24 37 -13 PK 63 V 2 480.003 26.4 0 21.7 3.1 -24.7 0 26.5 37 -10.5 PK 360 V 2 600.014 31.0 0 22.7 3.4 -24.9 0 <td< td=""><td>439.994</td><td>24.5</td><td>. 0</td><td>20.1</td><td>3.0</td><td>-24.6</td><td>0</td><td>23</td><td>37</td><td>-14</td><td>PK</td><td>104</td><td>Н</td><td>1.73</td></td<>	439.994	24.5	. 0	20.1	3.0	-24.6	0	23	37	-14	PK	104	Н	1.73
120.021 31.4 14.6 0 1.5 -24.0 0 23.5 30 -6.5 PK 353 V 1 240.004 30.8 0 13.8 2.1 -24.1 0 22.6 37 -14.4 PK 199 V 2 280.003 28.5 0 15.4 2.3 -24.2 0 22 37 -15 PK 161 V 2 360.003 28.3 0 17.4 2.7 -24.4 0 24 37 -13 PK 63 V 2 480.003 26.4 0 21.7 3.1 -24.7 0 26.5 37 -10.5 PK 360 V 2 600.014 31.0 0 22.7 3.4 -24.9 0 32.2 37 -4.8 PK 144 V 2	600.033	32.2	0	22.7	3.4	-24.9	0	33.4	37	-3.6	QP	103	Н	1.26
240.004 30.8 0 13.8 2.1 -24.1 0 22.6 37 -14.4 PK 199 V 2 280.003 28.5 0 15.4 2.3 -24.2 0 22 37 -15 PK 161 V 2 360.003 28.3 0 17.4 2.7 -24.4 0 24 37 -13 PK 63 V 2 480.003 26.4 0 21.7 3.1 -24.7 0 26.5 37 -10.5 PK 360 V 2 600.014 31.0 0 22.7 3.4 -24.9 0 32.2 37 -4.8 PK 144 V 2	840.052	29.6	0	24.2	4.3	-24.9	0	33.2	37	-3.8	PK	294	Н	1.26
280.003 28.5 0 15.4 2.3 -24.2 0 22 37 -15 PK 161 V 2 360.003 28.3 0 17.4 2.7 -24.4 0 24 37 -13 PK 63 V 2 480.003 26.4 0 21.7 3.1 -24.7 0 26.5 37 -10.5 PK 360 V 2 600.014 31.0 0 22.7 3.4 -24.9 0 32.2 37 -4.8 PK 144 V 2	120.021	31.4	14.6	0	1.5	-24.0	0	23.5	30	-6.5	PK	3.53	٧	1.16
360.003 28.3 0 17.4 2.7 -24.4 0 24 37 -13 PK 63 V 2 480.003 26.4 0 21.7 3.1 -24.7 0 26.5 37 -10.5 PK 360 V 2 600.014 31.0 0 22.7 3.4 -24.9 0 32.2 37 -4.8 PK 144 V 2	240,004	30.8	.0	13.8	2.1	-24.1	0	22.6	37	-14.4	PK	199	ν	2.08
480.003 26.4 0 21.7 3.1 -24.7 0 26.5 37 -10.5 PK 360 V 2 600.014 31.0 0 22.7 3.4 -24.9 0 32.2 37 -4.8 PK 144 V 2	280,003	28.5	0	15.4	2.3	-24.2	0	22	37	-15	PK	161	ν	2.08
600.014 31.0 0 22.7 3.4 -24.9 0 32.2 37 -4.8 PK 144 V 2	360.003	28.3	.0	17.4	2.7	-24.4	0	24	37	-13	PK	63	V	2.08
	480.003	26.4	0	21.7	3.1	-24.7	0	26.5	37	-10.5	PK	360	V	2.08
	600.014	31.0	0	22.7	3.4	-24.9	0	32.2	37	-4.8	PK	144	٧	2.48
840.014 26.0 0 24.2 4.3 -24.9 0 29.6 37 -7.4 PK 46 V 2	840.014	26.0	. 0	24.2	4.3	-24.9	0	29.6	37	-7.4	PK	46	V	2.48
														\vdash

2.1033 (b) (7) Equipment Photographs

Photo 1	Top Cover off bluetooth module front aspect
Photo 2	Detail View – Unit opened – bluetooth module shown
Photo 3	Detail View - Close up bluetooth module
Photo 4	Detail View - Bluetooth module - Top
Photo 5	Detail View – Bluetooth module – Bottom
Photo 6	Detail View – GS20 – External View

Photo 1 Top Cover off bluetooth module front aspect

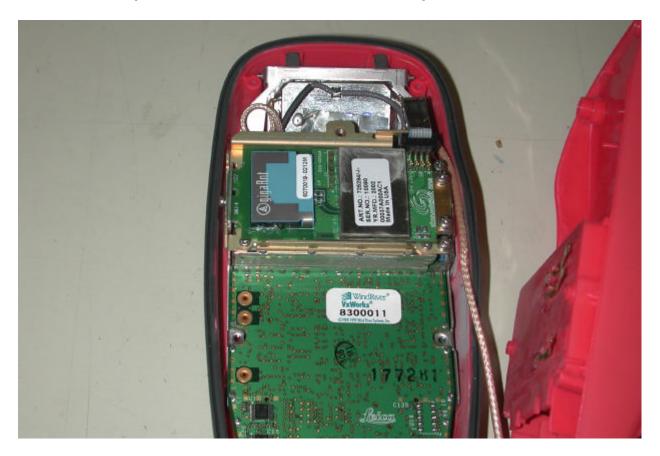


Photo 2 Detail View – Unit opened – bluetooth module shown

Photo 3 Detail View – Close up bluetooth module

Photo 4 Detail View - Bluetooth module - Top

Photo 5 Detail View – Bluetooth module – Bottom

Photo 6 Detail View – GS20 – External View

2.1033 (b) (10) Spread Spectrum Transmitters - FHSS

The receiver for this device was tested at the same time as the transmitter. The transmitter / receiver are located in the GS20 and the WORCS and both were tested concurrently. The data within this report shows compliance of the FHSS receiver with the FCC Technical requirements.

		Test Equ	uipment Log			
Item No:	Description	Manufacturer	M/N	S/N	DNB Asset	Cal Due
68	Antenna, Log Periodic	Emco	3146	1284	31	1/2/200
69	Temperature Chamber	Sigma Systems	170	487	77	NCR
29	QP Adapter	Hewlett Packard	85650A	2043A00184	101	6/14/200
71	Integtrated Stereo Amplifier	Realistic	sa-10;31-1982a	356	167	NCR
39	Oscilloscope	LeCroy	9400	85584	209	2/26/200
73	Pre-Amplifier 4-8G	Miteq	AFD304008040	121391	364	5/10/200
65	Pre-Amplifier	Hewlett Packard	10855A	1250-0212	387	2/15/200
43	Artificial Mains Network	Schwarzbeck	NNLA 8120	8120288	498	6/12/20
22	Safety Analyzer	Dynatech Nevada	431A	431A-1230	506	4/12/20
74	Attenuator VHF	Tenuline	8341-200	902	604	5/10/200
75	Pre-Amplifier 6Khz-500MHz	DNB	TF10010	7003	703	Out of Serv
54	Spectrum Analyzer 22 GHZ	Hewlett Packard	8565A	2232A02476	705	1/28/200
76	Multimeter	Hewlett Packard	34740A	1213A05726	751	NCR
77	Power Supply 0-60VDC	Hewlett Packard	6024A	219A00964	769	NCR
26	QP Adapter	Hewlett Packard	85650A	2811A01240	844	8/27/200
27	SA - RF Section	Hewlett Packard	85680B	2049A01403	845	6/14/200
12	Oscilloscope	Tektronix	464	B133241	855	9/16/200
30	ESD Power Supply/Gun	Haefely	PSD 25 B	083 427-05	858	3/29/200
78	Field Monitor	Amplifier Research	FM 1000	60520	859	NCR
79	Field Probe	Amplifier Research	FP1000	60620	861	8/14/200
	A.C. Leakage Current Tester	Simpson	229-2	948	948	10/28/20
	AC/DC Current Probe	Amprobe	CT600	30301828	949	4/9/200
	Digital MultiMeter	Amprobe	AM-1250	330224	952	10/24/20
	LCR Meter	B & K Precision	878	23702237	956	10/24/20
	Digital MultiMeter	Amprobe	AM-1250	330139	957	8/6/20
7	Dial Caliper	General MG	ULTRATEST	CD56903	958	12/18/200
8	Micrometer	General MG	0-1"	NoSN#	959	12/17/20
35	Precision Torque Gauge	SeeKonik	SL-12	967	967	7/9/200
	Push/Pull Scale	Imada	MF	70403	969	6/3/200
9	Impact Hammer	E.D. & D.	F22-50	9606235-3	972	11/6/200
51	LISN	ComPower Corporation	L1-300	1373	997	5/13/200
50	LISN	ComPower Corporation	L1-300	1331	998	5/13/20
	Power Analyzer	Voltech	PM3000A	1273	1027	5/7/20
	Signal Source 9Khz-2Ghz	Marconi	2024	112231/034	1034	2/2/20
	WeatherLink	Davis Instruments	7400	PC70804A04	1056	2/19/200
	Weather Link	Davis Instruments	7400	PC70804A01	1057	1/29/20
	Leakage Current tester	Simpson	228	709721	1058	Out of Serv
	_oanage carrent toole.	Antenna				0 01 01 001 1
	Antenna Clipsbl Bicon	Research	CB1071	1063	1063	9/30/20
	Step Attenuator 120dB	Hewlett Packard	355D	2522A43896	1079	11/9/20
	Step Attenuator 12dB	Hewlett Packard	355C	2524A42578	1080	11/9/20
3	Digital MultiMeter	Chief Engineer	104	31220125	1092	8/26/20
2	Power Analyzer	Combinova	300	102	1093	Out of Serv
82	Spectrum Analyzer	Hewlett Packard	3585A	2718A05908	1102	8/26/20
53	Function Generator	Hewlett Packard	3312A	1432A05880	1108	12/20/20
24	SA - Display Section	Hewlett Packard	85662A	2318A05282	1109	8/27/20

		Test Eq	uipment Log		r	
Item No:	Description	Manufacturer	M/N	S/N	DNB Asset	Cal Due
23	SA - RF Section	Hewlett Packard	85680B	2330A02791	1110	8/27/200
63	Control Center	Key tek	ECAT SERIES 100	9603276	1117	NC
10	Process Meter	Newport	INFCP-210	4381880	1119	4/5/200
11	Process Meter	Newport	INFCP-210	6150730	1120	4/5/200
83	Oscilloscope	Tektronix	7603	B341735	1124	Out of Serv
84	LISN	Solar	8028-50-TS-24-BNC	852331	1148	4/24/200
85	LISN	Solar	8028-50-TS-24-BNC	852332	1149	4/24/200
61	Attenuator	JFW	PE7010-20	1196	1196	5/16/200
62	Attenuator	JFW	PE7010-20	1197	1197	5/16/200
60	Current Probe	Solar	6741-1	922626	1209	5/16/200
56	Digital Multi Meter	DI-LOG	DL-297T	637652	1210	2/4/200
17	Data Aquisition Unit	Hewlett Packard Associated	34970A	US37016877	1214	5/21/200
13	Line Leakage Tester	Research	510L	A130511	1215	4/19/200
14	Safety Compliance Analyzer	Associated Research	7564SA	A100601	1216	4/19/200
16	Data Aquisition Unit	Hewlett Packard	34970A	US37017024	1217	4/29/200
	Surge Withstand Tester	Beckwith Electronics	M-0180B	85	1239	6/21/200
18	Input Multiplexer	Hewlett Packard	34901A	US37017773	1399	5/21/200
19	Input Multiplexer	Hewlett Packard	34901A	US37017729	1400	5/21/200
34	Scale 25lb Capacity	Hanson	40	1402	1402	4/26/200
	Scale 300lb Capacity	Hanson	8930	1403	1403	6/3/200
25	RF Preselector	Hewlett Packard	85685A	2724A00659	1430	8/26/200
49	Probe	Omega	HX94V		1442	04/05/0
40	Pressure Gauge	Ashcroft	0-30 PSI	1500	1500	9/13/200
41	Pressure Gauge	Ashcroft	0-30 PSI	1501	1501	9/13/200
42	Pressure Gauge	Ashcroft	0-30 PSI	1502	1502	9/13/200
87	Input Multiplexer	Hewlett Packard	34901A	US41010235	1504	4/29/200
46	Insulation Tester	Amprobe	AMB-1A	340055	1510	10/28/200
47	Ground Continuity Tester	Rod-L	M25	12485	1511	10/29/200
31	ESD Contact Finger	Haefely	093 579-1	083 071-11	1671	Out of Serv
	Precision Torque Wrench	Husky	39104	4980656019	1672	7/18/200
	SA - Display Section	Hewlett Packard	85662A	2112A02234	1695	6/14/200
88	Pre-Amplifier	Miteq	AFS4-08001800-35- LN	378064	1698	5/10/200
90	Power Amplifier	Kalmus	757LCB/1-60-485- 003	7902-1	1722	NCR
	Control Box	Kalmus	757LCB/1-60-485- 003	7902-1	1723	NCR
	Near Field Probe Kit	Credence Technologies	CTK015	None	1724	NCR
			AFS4-08001800-30-			
	Amplifier	Miteq	ULN	834258	1725	Out of Serv
	EFT Generator	Haefely	P90.1	083-315-19	1726	6/14/200
91	Plotter	Hewlett Packard Fischer Custom	7470A	2644V00406	1727	NCR
93	Emission Loop	Comm.	F-55103-2-0.13m	9951	1729	4/30/200
94	Chassis Bay	Key tek	ECAT SERIES 100	9603277	1730	NCR
95	Surge Network	Key tek	E501A	9603278	1731	4/30/200
96	Mains Coupler/Dec	Key tek	E551	9603279	1732	4/30/200
97	TWTA	Hughes	8020H10F000	113	1733	NCR
64	Xwing Bilog Antenna	Chase	CBL6140	1048	1734	6/10/200

1		Test Eq	uipment Log	T		
Item No:	Description	Manufacturer	M/N	S/N	DNB Asset	Cal Due
58	Bicon Antenna	A.H. Systems Inc.	SAS-200/540	524	1758	1/2/200
98	Pre-Amplifier 10-2000MHz	Mini-Circuits	ZFL-2000	8350	1760	5/10/200
99	Pre-Amplifier	Miteq	JS2-0200400	664011	1761	5/10/200
100	Ref Dipole Antenna	Comp Design	Antenna Kit	NSN	1762	NCR
101	Ref Dipole Antenna	Comp Design	Antenna Kit	NSN	1763	NCR
102	Biconical Antenna	AH Systems	SAS-200/540	138	1764	2/14/200
103	Amplifier	Hughes	8020H10F000	113	1765	NCR
104	Power Supply	Hewlett Packard	8268B	1436A01139	1766	NCR
105	Random Noise Generator	General Radio	1390-B	3285	1767	NCR
107	Injection Probe	Fischer Custom Comm.	F-120-9B	33	1769	NCR
108	Attenuator	Emco	A8230M30db	NSN	1770	5/10/200
109	Attenuator Kit	Alan	Attenuator Kit	117018	1771	5/10/200
110	Attenuator Kit	Alan	Attenuator Kit	117019	1772	5/10/200
111	Signal Generator	Hewlett Packard	200CD	229-45278	1773	NCR
112	Telecom Pairs Kit	Fischer Custom Comm.	FCC-TLISN-T4	20068	1774	NCR
113	Power Source	California Instruments	4500iL	51859	1775	NCR
114	Variac	Staco	3PN2210	NSN	1776	NCR
115	Variac	Staco	3PN1010V	NSN	1777	NCR
116	High Voltage Pulse	DNB	NMN	NSN	1778	NCR
117	Power Supply	California Instruments	351TC	L32208	1779	NCR
	Attenuator	Mini-Circuits	CAT-10	931812	1786	5/10/200
	Power Line CDN	Fischer Custom Comm.	FCC-801-M3-16A	110	1791	6/13/200
119	ESD Simulator	Haefely	PESD3000	H002033	1841	6/13/200
120	RS-Bhead-Antenna Cable	DNB	RG214	11858	1858	7/26/200
121	RSTemcell Load-9'	DNB	RG214	11859	1859	7/26/200
	RS-SigGen-Amp4'	DNB	RG214	11860	1860	7/26/200
	RS-AmpBulkhead 5'	DNB	RG214	11861	1861	7/26/200
	RS-Bhead Injection Probe	DNB	RG214	11862	1862	7/26/200
125	RS-Cprobe-Bhead	DNB	RG223	11863	1863	7/26/200
	RS-Amplifier-Bhead 5'	DNB	RG214	11864	1864	7/26/200
127	RS-BheadSpAntenna	DNB	RG58	11865	1865	7/26/200
129	Riv Cable - A-3'	DNB	NMN	11871	1871	7/26/200
130	Riv Cable - B-4'	DNB	NMN	11872	1872	7/26/200
131	Riv Cable - C-6'	DNB	NMN	11873	1873	7/26/200
	Riv Cable - D-range	DNB	NMN	11874	1874	7/26/200
	Ric Cable - E-27'	DNB	NMN	11875	1875	7/26/200
	Voltage Probe	Emco	3701	9703-1156	1879	12/12/200
	Range Cable	DNB	NMN	11880	1880	8/14/200
	80' RG214 Cable	DNB	NMN	11883	1883	8/14/200
	60' RG214 Cable	DNB	NMN	11884	1884	8/14/200
	10' RG214 Cable	DNB	NMN	11885	1885	8/14/200
	Antenna, DRG	Emco	3115	2281		1/2/200