

MRT Technology (Suzhou) Co., Ltd Phone: +86-512-66308358 Web: www.mrt-cert.com Report No.: 1802RSU007-U1 Report Version: V01 Issue Date: 03-14-2018

MEASUREMENT REPORT

FCC PART 15.249 Test Report

FCC ID: QOBRGBLL612

APPLICANT: JASCO PRODUCTS COMPANY

Application Type: Certification

Product: Smart led lamp

Model No.: RGBLL/72/6/18/2, RGBLL/132/12/18/2

Brand Name: Enbrighten

FCC Classification: Low Power Communication Device Transmitter (DXX)

FCC Rule Part(s): Part 15.249

Test Procedure(s): ANSI C63.10 – 2013

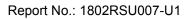
Test Date: February 22 ~ March 14, 2018

Reviewed By : Com Como

(Kevin Guo)

Approved By: Marlinchen

(Marlin Chen)



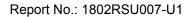
The test results relate only to the samples tested.

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.10-2013. Test results reported herein relate only to the item(s) tested.

The test report shall not be reproduced except in full without the written approval of MRT Technology (Suzhou) Co., Ltd.

FCC ID: QOBRGBLL612 Page Number: 1 of 30

Revision History


Report No.	Version	Description	Issue Date	Note
1802RSU007-U1	Rev. 01	Initial report	03-14-2018	Valid

FCC ID: QOBRGBLL612 Page Number: 2 of 30

CONTENTS

De	scriptio	on	Page
1.	INTR	ODUCTION	6
	1.1.	Scope	6
	1.2.	MRT Test Location	6
2.	PROI	DUCT INFORMATION	7
	2.1.	Equipment Description	7
	2.2.	Test Configuration	
	2.3.	EMI Suppression Device(s)/Modifications	
	2.4.	Labeling Requirements	7
3.	DESC	CRIPTION OF TEST	8
	3.1.	Evaluation Procedure	8
	3.2.	AC Line Conducted Emissions	8
	3.3.	Radiated Emissions	9
4.	ANTE	ENNA REQUIREMENTS	10
5.	TEST	EQUIPMENT CALIBRATION DATE	11
6.	MEAS	SUREMENT UNCERTAINTY	12
7.	TEST	RESULT	13
	7.1.	Summary	13
	7.2.	Conducted Emission	14
	7.2.1.	Test Limit	14
	7.2.2.	Test Setup	14
	7.2.3.	Test Result	14
	7.3.	Radiated Emission	15
	7.3.1.	Test Limit	15
	7.3.2.	Test Setup	16
	7.3.3.	Test Result	18
	7.4.	Radiated Restricted Band Edge Measurement	22
	7.4.1.	Test Result	22
	7.5.	20dB Spectrum Bandwidth Measurement	26
	7.5.1.	Test Limit	26
	7.5.2.	Test Procedure used	26
	7.5.3.	Test Setting	26
	7.5.4.	Test Setup	26
	7.5.5.	Test Result	27

8. CONCLUSION		LUSION	. 30
	7.6.5.	Test Result	. 29
	7.6.4.	Test Setup	. 28
	7.6.3.	Test Setting	. 28
	7.6.2.	Test Procedure used	. 28
	7.6.1.	Test Limit	. 28
	7.6.	99% Bandwidth Measurement	. 28

Report No.: 1802RSU007-U1

§2.1033 General Information

Applicant:	JASCO PRODUCTS COMPANY		
Applicant Address:	10 E Memorial Road, Oklahoma City, OK 73114, USA		
Manufacturer:	Shangyu Shunhe Electric Appliance for Illumination Co., LTD		
Manufacturer Address:	Xiaoyue Town, Shangyu City,Zhejiang Province of China		
Test Site:	MRT Technology (Suzhou) Co., Ltd		
Test Site Address:	D8 Building, Youxin Industrial Park, No.2 Tian'edang Rd., Wuzhong		
	Economic Development Zone, Suzhou, China		
FCC Registration No.:	893164		
Test Device Serial No.:	N/A ☐ Production ☐ Pre-Production ☐ Engineering		

Test Facility / Accreditations

Measurements were performed at MRT Laboratory located in Tian'edang Rd., Suzhou, China.

- MRT facility is a FCC registered (MRT Reg. No. 893164) test facility with the site description report on file and has met all the requirements specified in Section 2.948 of the FCC Rules.
- MRT facility is an IC registered (MRT Reg. No. 11384A-1) test laboratory with the site description on file at Industry Canada.
- MRT facility is a VCCI registered (R-4179, G-814, C-4664, T-2206) test laboratory with the site description on file at VCCI Council.
- MRT Lab is accredited to ISO 17025 by the American Association for Laboratory Accreditation (A2LA) under the American Association for Laboratory Accreditation Program (A2LA Cert. No. 3628.01) in EMC, Telecommunications and Radio testing for FCC, Industry Canada, EU and TELEC Rules.

FCC ID: QOBRGBLL612 Page Number: 5 of 30

1. INTRODUCTION

1.1. Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Industry Canada Certification and Engineering Bureau.

1.2. MRT Test Location

The map below shows the location of the MRT LABORATORY, its proximity to the Taihu Lake. These measurement tests were conducted at the MRT Technology (Suzhou) Co., Ltd. Facility located at D8 Building, Youxin Industrial Park, No.2 Tian'edang Rd., Wuzhong Economic Development Zone, Suzhou, China. The detailed description of the measurement facility was found to be in compliance with the requirements of § 2.948 according to ANSI C63.4-2009 on September 30, 2013.

2. PRODUCT INFORMATION

2.1. Equipment Description

Product Name	Smart led lamp	
Model No.	RGBLL/72/6/18/2, RGBLL/132/12/18/2	
Brand Name	Enbrighten	
Operating Frequency	2407MHz	
Type of Modulation	GFSK	
Antenna Type	PCB metal antenna	
Antenna Gain	2.0dBi	

2.2. Test Configuration

The EUT was tested as described in this report is in compliance with the requirements limits of FCC Rules Part 15.207, 15.209, 15.215 and 15.249. ANSI C63.10-2013 was used to reference the appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing.

2.3. EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and/or no modifications were made during testing.

2.4. Labeling Requirements

Per 2.1074 & 15.19; Docket 95-19

The label shall be permanently affixed at a conspicuous location on the device; instruction manual or pamphlet supplied to the user and be readily visible to the purchaser at the time of purchase. However, when the device is so small wherein placement of the label with specified statement is not practical, only the FCC ID must be displayed on the device per Section 15.19(a)(5). Please see attachment for FCC ID label and label location.

FCC ID: QOBRGBLL612 Page Number: 7 of 30

3. DESCRIPTION OF TEST

3.1. Evaluation Procedure

The measurement procedures described in the American National Standard for Testing Unlicensed Wireless Devices (ANSI C63.10-2013), and the requirements provided in FCC 15.207, 15.209, 15.215 and 15.249 were performed in the report of the EUT.

Deviation from measurement procedure......None

3.2. AC Line Conducted Emissions

The line-conducted facility is located inside an 8'x4'x4' shielded enclosure. A 1m x 2m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, $50\Omega/50$ uH Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference ground-plane. Power cables for support equipment were routed down to the second LISN while ensuring that that cables were not draped over the second LISN.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the receiver and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The receiver was scanned from 150kHz to 30MHz. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 9kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Each emission was also maximized by varying: power lines, the mode of operation or data exchange speed, or support equipment whichever determined the worst-case emission. Once the worst case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions are used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements.

An extension cord was used to connect to a single LISN which powered by EUT. The extension cord was calibrated with LISN, the impedance and insertion loss are compliance with the requirements as stated in ANSI C63.10-2013.

FCC ID: QOBRGBLL612 Page Number: 8 of 30

3.3. Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. For measurements above 1GHz absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1GHz, the absorbers are removed. A MF Model 210SS turntable is used for radiated measurement. It is a continuously rotatable, NWI-IQ-FOBled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. An 80cm high PVC support structure is placed on top of the turntable. For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33(b)(1) depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up for frequencies below 1GHz was placed on top of the 0.8 meter high, 1 x 1.5 meter table; and test set-up for frequencies 1-25GHz was placed on top of the 1.5 meter high, 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, clock speed, mode of operation or video resolution, if applicable, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions. According to 3dB Beam-Width of horn antenna, the horn antenna should be always directed to the EUT when rising height.

FCC ID: QOBRGBLL612 Page Number: 9 of 30

4. ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- The antenna of the EUT is permanently attached.
- There are no provisions for connection to an external antenna.

Conclusion:

This unit complies with the requirement of §15.203.

FCC ID: QOBRGBLL612 Page Number: 10 of 30

5. TEST EQUIPMENT CALIBRATION DATE

Conducted Emissions - SR2

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
EMI Test Receiver	R&S	ESR7	MRTSUE06001	1 year	2018/06/20
Two-Line V-Network	R&S	ENV216	MRTSUE06002	1 year	2018/06/20
Two-Line V-Network	R&S	ENV216	MRTSUE06003	1 year	2018/06/20
Hygrothermograph	Testo	608-H1	MRTSUE06404	1 year	2018/08/14
Shielding Anechoic Chamber	Mikebang	Chamber-SR2	MRTSUE06214	1 year	2018/05/10

Radiated Emission - AC2

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cal. Due Date
MXE EMI Receiver	Agilent	N9038A	MRTSUE06125	1 year	2018/08/18
Broadband Coaxial Preamplifier	Schwarzbeck	BBV 9718	MRTSUE06176	1 year	2018/11/17
Loop Antenna	Schwarzbeck	FMZB 1519	MRTSUE06025	1 year	2018/11/20
Bilog Period Antenna	Schwarzbeck	VULB 9162	MRTSUE06022	1 year	2018/10/21
Broad Band Horn Antenna	Schwarzbeck	BBHA 9120D	MRTSUE06171	1 year	2018/11/18
Broad Band Horn Antenna	Schwarzbeck	BBHA 9170	MRTSUE06024	1 year	2018/12/14
Digitial Thermometer & Hygrometer	Minggao	ETH529	MRTSUE06170	1 year	2018/12/12
Anechoic Chamber	RIKEN	Chamber-AC2	MRTSUE06213	1 year	2018/05/10

Software	Version	Function
e3	V8.3.5	EMI Test Software

FCC ID: QOBRGBLL612 Page Number: 11 of 30

6. MEASUREMENT UNCERTAINTY

Where relevant, the following test uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k = 2.

AC Conducted Emission Measurement - SR2

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):

150kHz~30MHz: 3.46dB

Radiated Emission Measurement - AC1

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):

9kHz ~ 1GHz: 4.18dB 1GHz ~ 25GHz: 4.76dB

Radiated Emission Measurement - AC2

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):

9kHz ~ 1GHz: 3.85dB 1GHz ~ 25GHz: 4.32dB

20dB Spectrum Bandwidth - TR3

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):

0.28%

FCC ID: QOBRGBLL612 Page Number: 12 of 30

7. TEST RESULT

7.1. Summary

Company Name: <u>JASCO PRODUCTS COMPANY</u>

Product: Smart led lamp

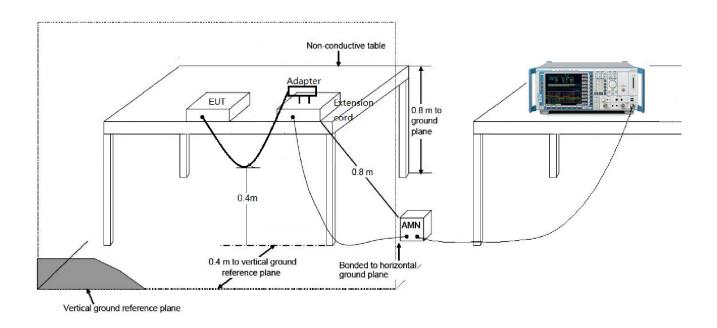
FCC Part Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
15.207	AC Conducted Emissions 150kHz - 30MHz	< FCC 15.207 limits	Line Conducted	N/A	Section 7.2
15.209 15.249	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	Emissions in restricted bands must meet the radiated limits detailed in 15.209	Radiated	Pass	Section 7.3 & 7.4
15.215(c)	20dB Spectrum Bandwidth	20 dB bandwidth of the emission in the specific band		Pass	Section 7.5

Notes:

- All modes of operation and data rates were investigated. For radiated emission test, every axis (X, Y, Z)
 was also verified. The test results shown in the following sections represent the worst case emissions.
- 2) The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer.
 The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.

FCC ID: QOBRGBLL612 Page Number: 13 of 30

7.2. Conducted Emission


7.2.1. Test Limit

FCC Part 15 Subpart C Paragraph 15.207 Limits					
Frequency (MHz)	QP (dBuV)	AV (dBuV)			
0.15 - 0.50	66 - 56	56 - 46			
0.50 - 5.0	56	46			
5.0 - 30	60	50			

Note 1: The lower limit shall apply at the transition frequencies.

Note 2: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

7.2.2. Test Setup

7.2.3. Test Result

The EUT is powered by 2*AA battery, so this requirement does not apply.

FCC ID: QOBRGBLL612 Page Number: 14 of 30

7.3. Radiated Emission

7.3.1. Test Limit

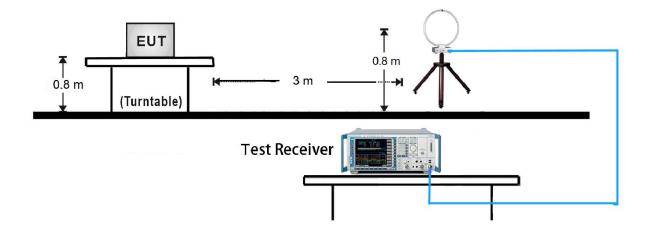
FCC Part 15 Subpart C Paragraph 15.209					
Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (uV/m)			
0.009-0.490	2400/F(kHz)	300			
0.490-1.705	24000/F(kHz)	30			
1.705-30.0	30	30			
30-80	100**	3			
80-216	150**	3			
216-960	200**	3			
Above 960	500	3			

Note 1: The lower limit shall apply at the transition frequency.

Note 2: Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.

Note 3: E field strength $(dBuV/m) = 20 \log E$ field strength (uV/m).

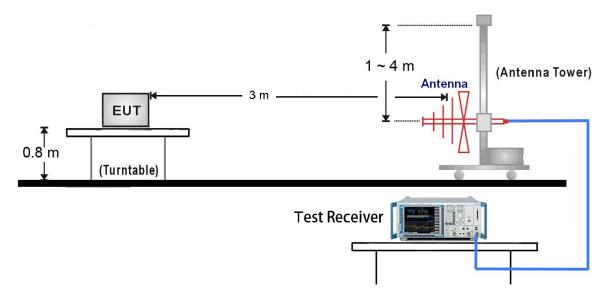
FCC ID: QOBRGBLL612 Page Number: 15 of 30

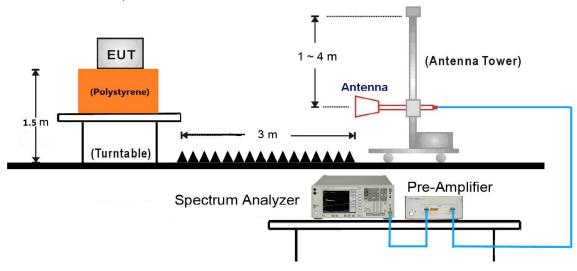


FCC Part 15 Subpart C Paragraph 15.249					
Fundamental Frequency	Field Strength of Fundamental (millivolts/meter)	Field Strength of Harmonics (microvolts/meter)			
902-928(MHz)	50	500			
2400-2483.5(MHz)	50	500			
5725-5875(MHz)	50	500			
24.0-24.25(GHz)	250	2500			

FCC Part 15.249 (d), Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

7.3.2. Test Setup


9kHz ~ 30MHz Test Setup:


FCC ID: QOBRGBLL612 Page Number: 16 of 30

30MHz ~ 1GHz Test Setup:

1GHz ~ 25GHz Test Setup:

7.3.3. Test Result

Test Mode:	Transmission	Test Site:	AC2
Remark:	Fundamental Radiated Emission	Test Engineer:	Jone Zhang

Frequency (MHz)	Reading Level (dBµV)	Factor (dB)	Measure Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Polarization
2407	54.8	32.3	87.1	114	-26.9	PK	Horizontal
2407	41.1	32.3	73.4	114	-40.6	PK	Vertical

Note 1: Peak Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m)

Note 2: All readings below 1GHz are peak, above 1GHz are performed with peak and/or average measurements as necessary.

Note 3: Average measurement was not performed when the peak level lower than average limit.

FCC ID: QOBRGBLL612 Page Number: 18 of 30

Test Mode:	Transmission	Test Site:	AC2						
Test Channel:	2407MHz	Test Engineer:	Jone Zhang						
Remark:	Average measurement was not performed if peak level lower than average								
	limit.								
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show								
	in the report.								

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	4816.5	47.4	5.9	53.3	74	-20.7	Peak	Horizontal
	4816.5	38.8	5.9	44.7	54	-9.3	Average	Horizontal
	7221.1	40.4	12.7	53.1	54	-0.9	Average	Horizontal
	7222.0	49.6	12.7	62.3	74	-11.7	Peak	Horizontal
	8089.0	35.4	13.6	49.0	74	-25.0	Peak	Horizontal
	8837.0	36.3	13.2	49.5	74	-24.5	Peak	Horizontal
	4816.5	44.0	5.9	49.9	74	-24.1	Peak	Vertical
	7220.6	35.6	12.7	48.3	54	-5.7	Average	Vertical
	7222.0	42.3	12.7	55.0	74	-19.0	Peak	Vertical
	8182.5	35.8	13.2	49.0	74	-25.0	Peak	Vertical

Note 1: Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

Note 2: Measure Level (dBµV/m) = Reading Level (dBµV) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) - Pre_Amplifier Gain (dB)

FCC ID: QOBRGBLL612 Page Number: 19 of 30

1000

The worst case of Radiated Emission below 1GHz:

Site: AC2	Time: 2018/03/01 - 19:19
Limit: FCC_Part15.209_RE(3m)	Engineer: Flag Yang
Probe: VULB9162_0.03-8GHz	Polarity: Horizontal
EUT: Smart led lamp	Power: By Battery
Note: Transmit at Channel 2407MHz	

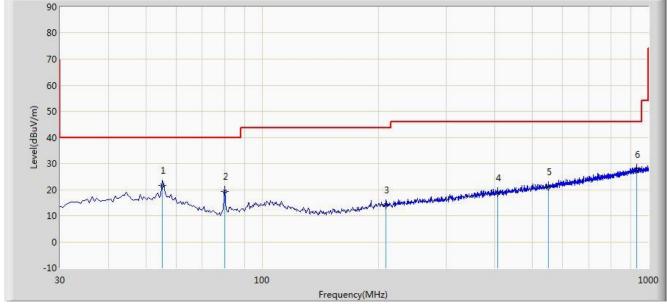
90 80 70 60 (w/50 40 20 10 0

No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	
				(dBuV/m)	(dBuV)				
1			44.065	15.582	0.831	-24.418	40.000	14.751	QP
2			107.600	13.426	0.225	-30.074	43.500	13.200	QP
3			229.335	14.323	1.024	-31.677	46.000	13.300	QP
4			400.055	18.439	1.396	-27.561	46.000	17.043	QP
5			602.300	21.719	1.234	-24.281	46.000	20.485	QP
6		*	759.450	24.450	1.690	-21.550	46.000	22.760	QP

Frequency(MHz)

Note 1: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

100


Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m)

Note 2: The test trace is same as the ambient noise and the amplitude of the emissions are attenuated more than 20dB below the permissible (the test frequency range: $9kHz \sim 30MHz$, $18GHz \sim 25GHz$), therefore no data appear in the report.

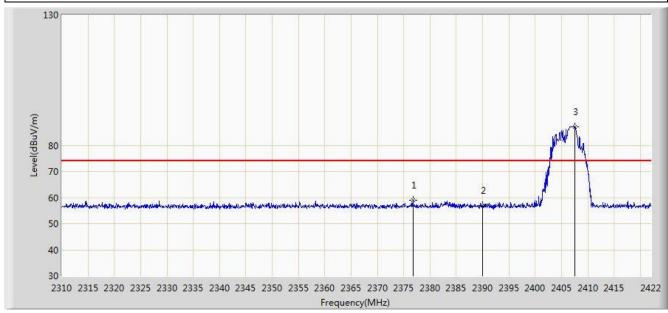
FCC ID: QOBRGBLL612 Page Number: 20 of 30

Site: AC2	Time: 2018/03/01 - 19:26
Limit: FCC_Part15.209_RE(3m)	Engineer: Flag Yang
Probe: VULB9162_0.03-8GHz	Polarity: Vertical
EUT: Smart led lamp	Power: By Battery
Note: Transmit at Channel 2407MHz	·

No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	
				(dBuV/m)	(dBuV)				
1			55.220	21.454	6.680	-18.546	40.000	14.774	QP
2			79.995	19.307	9.768	-20.693	40.000	9.538	QP
3			209.450	13.976	1.301	-29.524	43.500	12.675	QP
4			407.330	18.714	1.546	-27.286	46.000	17.168	QP
5			551.860	20.909	1.365	-25.091	46.000	19.544	QP
6		*	930.645	27.642	2.874	-18.358	46.000	24.768	QP

Note 1: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m)


Note 2: The test trace is same as the ambient noise and the amplitude of the emissions are attenuated more than 20dB below the permissible (the test frequency range: $9kHz \sim 30MHz$, $18GHz \sim 25GHz$), therefore no data appear in the report.

7.4. Radiated Restricted Band Edge Measurement

7.4.1.Test Result

Site: AC1	Time: 2018/03/06 - 10:04
Limit: FCC_Part15.209_RE(3m)	Engineer: Snake Ni
Probe: BBHA9120D_1-18GHz	Polarity: Horizontal
EUT: Smart led lamp	Power: By Battery
Note: Transmit at Channel 2407MHz	

No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	
				(dBuV/m)	(dBuV)				
1			2376.752	58.967	26.622	-15.033	74.000	32.345	PK
2			2390.000	56.913	24.586	-17.087	74.000	32.327	PK
3		*	2407.496	87.131	54.838	13.131	74.000	32.293	PK

Note: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)

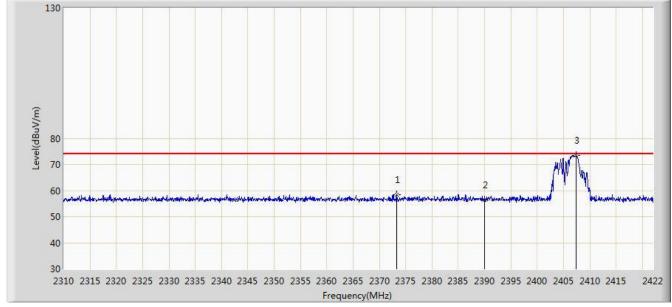
Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m)

FCC ID: QOBRGBLL612 Page Number: 22 of 30

Site: AC1	Time: 2018/03/06 - 10:07
Limit: FCC_Part15.209_RE(3m)	Engineer: Snake Ni
Probe: BBHA9120D_1-18GHz	Polarity: Horizontal
EUT: Smart led lamp	Power: By Battery
Note: Transmit at Channel 2407MHz	·

130 80 50 40 2310 2315 2320 2325 2330 2335 2340 2345 2350 2355 2360 2365 2370 2375 2380 2385 2390 2395 2400 2405 2410 2415 2422 Frequency(MHz)

No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	
				(dBuV/m)	(dBuV)				
1			2383.080	48.728	16.392	-5.272	54.000	32.337	AV
2			2390.000	39.570	7.243	-14.430	54.000	32.327	AV
3		*	2407.160	86.186	53.893	32.186	54.000	32.294	AV


Note: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m)

FCC ID: QOBRGBLL612 Page Number: 23 of 30

Site: AC1	Time: 2018/03/06 - 10:08
Limit: FCC_Part15.209_RE(3m)	Engineer: Snake Ni
Probe: BBHA9120D_1-18GHz	Polarity: Vertical
EUT: Smart led lamp	Power: By Battery
Note: Transmit at Channel 2407MHz	

No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	
				(dBuV/m)	(dBuV)				
1			2373.336	58.284	25.932	-15.716	74.000	32.351	PK
2			2390.000	56.410	24.083	-17.590	74.000	32.327	PK
3		*	2407.384	73.416	41.123	-0.584	74.000	32.293	PK

Note: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m)

FCC ID: QOBRGBLL612 Page Number: 24 of 30

Site: AC1	Time: 2018/03/06 - 10:10		
Limit: FCC_Part15.209_RE(3m)	Engineer: Snake Ni		
Probe: BBHA9120D_1-18GHz	Polarity: Vertical		
EUT: Smart led lamp	Power: By Battery		
Note: Transmit at Channel 2407MHz	·		

130 2 70 60 50 40 2310 2315 2320 2325 2330 2335 2340 2345 2350 2355 2360 2365 2370 2375 2380 2385 2390 2395 2400 2405 2410 2415 2422 Frequency(MHz)

No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	
				(dBuV/m)	(dBuV)				
1			2390.000	40.104	7.777	-13.896	54.000	32.327	AV
2		*	2406.936	71.802	39.508	17.802	54.000	32.294	AV

Note: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)

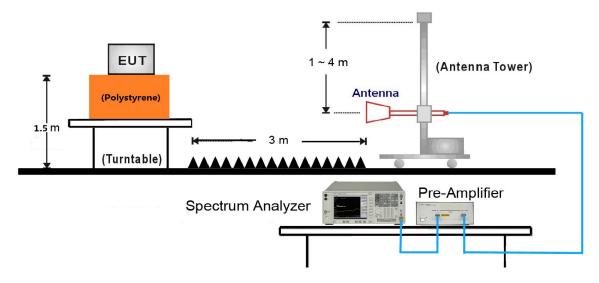
Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m)

FCC ID: QOBRGBLL612 Page Number: 25 of 30

7.5. 20dB Spectrum Bandwidth Measurement

7.5.1.Test Limit

Intentional radiators must be designed to ensure that the 20 dB bandwidth of the emission in the specific band $(2400 \sim 2483.5)$.

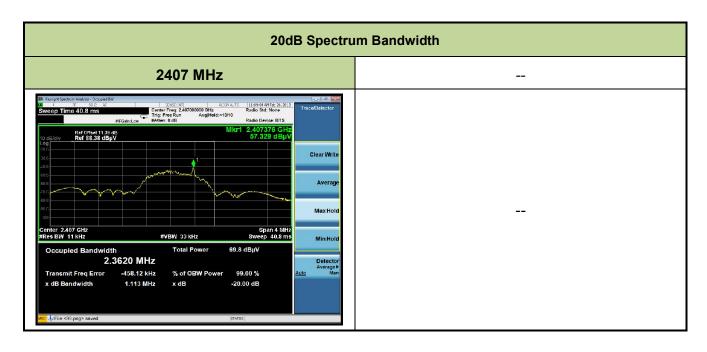

7.5.2.Test Procedure used

ANSI C63.10 Clause 6.9.2

7.5.3.Test Setting

- 1. Set the spectrum span range to overlap the nominal center frequency
- 2. Set RBW = 100 kHz
- 3. VBW ≥ 3 × RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. Allow the trace was allowed to stabilize and marker the highest level.
- 8. Determine the display level (the highest level 20dB) and place two markers, one at the lowest frequency and the other at the highest frequency.

7.5.4.Test Setup



FCC ID: QOBRGBLL612 Page Number: 26 of 30

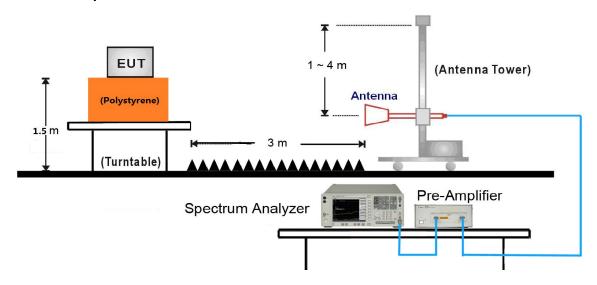
7.5.5.Test Result

Frequency	Frequency Range_Low	Frequency Range_High	Result
(MHz)	(MHz)	(MHz)	
0.407	2406.444		Pass
2407		2407.557	Pass

7.6. 99% Bandwidth Measurement

7.6.1. Test Limit

N/A

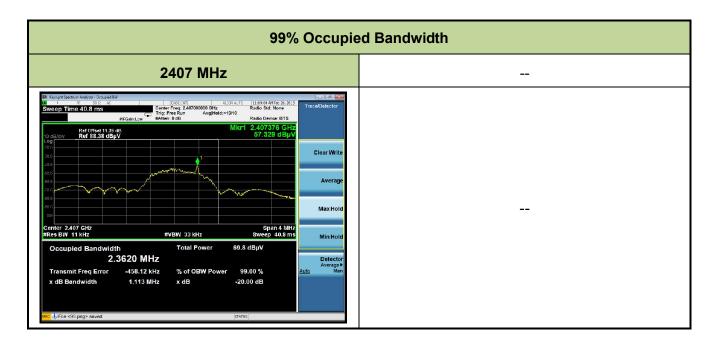

7.6.2. Test Procedure used

ANSI C63.10 Section 6.9

7.6.3. Test Setting

- The analyzers' automatic bandwidth measurement capability was used to perform the 99% bandwidth measurement. The bandwidth measurement was not influenced by any intermediated power nulls in the fundamental emission.
- 2. RBW = approximately 1% to 5% of the OBW.
- 3. $VBW \ge 3 \times RBW$.
- 4. Detector = Peak.
- 5. Trace mode = max hold.

7.6.4. Test Setup



FCC ID: QOBRGBLL612 Page Number: 28 of 30

7.6.5. Test Result

Frequency (MHz)	99% Bandwidth (MHz)		
2407	2.362		

FCC ID: QOBRGBLL612 Page Number: 29 of 30

8. CONCLUSION

The data collected relate only the item(s) tested and show that the device is in compliance with Part 15C of the FCC Rules.

The End