

RF Exposure Evaluation Report

FOR:

Harman International

Model Number: VP3 330 NA Product Description: Automotive Infotainment Unit

FCC ID: QNG-BE2803 IC ID: 6434C-BE2803

References:

- 1. FCC OET Bulletin 65 Supplement
- 2. FCC CFR Part 1 (1.1307 &1.1310), Part 2 (2.1091)
- 3. RSS-102- Radio Frequency Exposure Compliance of Radiocommunication Apparatus Issue 4 March 2010, Ch, 2.5 and Ch. 4

1 Administrative Data

1.1 Identification of the Testing Laboratory Issuing the Test Report

Company Name:	CETECOM Inc.			
Department:	Compliance			
Address:	411 Dixon Landing Road Milpitas, CA 95035 U.S.A.			
Telephone:	+1 (408) 586 6200			
Fax:	+1 (408) 586 6299			
Test Lab Manager:	Sajay Jose			
Responsible Project Leader:	Calvin Lee			

1.2 Identification of the Client

Client:	Harman International			
Street Address:	26500 Haggerty Road			
City/Zip Code	Farmington Hills, MI 48331			
Country	USA			
Contact Person:	Shain E. Chmura			
Phone No.	+1 (248) 592-3157			
e-mail:	schmura@harman.com			

1.3 Identification of the Manufacturer

Manufacturer's Name:	
Manufacturers Address:	Same as above
City/Zip Code	Sume as above.
Country	

2 Equipment under Test (EUT)

2.1 <u>Specification of the Equipment under Test</u>

Туре:	СМС			
Model Number:	VP3 330 NA			
FCC-ID :	QNG-BE2803			
IC ID:	6434C-BE2803			
HW Version:	PV			
Product Description:	Automotive Infotainment Unit			
Frequency Band of Operation:	ISM: 2400 – 2483.5 MHz			
Frequency Range of Test:	2402-2480 MHz			
No. of Channels:	79 (Frequency Hopping)			
Type(s) of Modulation:	Bluetooth: GFSK, $\pi/4$ DQPSK, 8DPSK			
Antenna info:	Inverted-F PCB Antenna Manufacturer stated Max. Antenna Gain: -4 dBi			
Co-located Transmitters/ Antennas?	□ Yes ■ No			
Power supply:	12 VDC			
Operating temperature range:	-40°C to 85°C			
Test Sample Status:	Pre-Production			
Device Category:	 Fixed Installation/ Mobile Portable 			
Exposure Category:	 Occupational/ Controlled General Population/ Uncontrolled 			

3 Assessment

This report serves as the Technical Information regarding RF Exposure evaluation of the below identified device according to the rules as stipulated in the documents listed under References above.

The device meets the RF exposure limits, or - for some of its radio functions / bands - the conditions for exemption from routine evaluation as defined in the referenced FCC and IC rule parts.

Company Description		Model #	
Harman International	Automotive Infotainment Unit	VP3 330 NA	

		Calvin Lee	
2013-01-30	Compliance	(EMC Engineer)	
Date	Section	Name	Signature

4 <u>**RF Exposure Evaluation Requirements</u>**</u>

4.1 <u>FCC:</u>

Calculations can be made to predict RF field strength and power density levels around typical RF sources using the general equations (3) and (4) on page 19 of the following FCC document: "OET Bulletin 65, Edition 97-01 - Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields".

The table below is excerpted from Table 1B of 47 CFR 1.1310 titled Limits for Maximum Permissible Exposure (MPE), Limits for General Population/Uncontrolled Exposure:

Frequency Range (MHz)	Power density (mW/cm ²)	Averaging time (minutes)
300 - 1500	f (MHz) /1500	30
1500 - 100.000	1.0	30

Using the equation from page 19 of OET Bulletin 65, Edition 97-01:

$$S = \frac{PG}{4\pi R^2}$$

where: S = power density (in appropriate units, e.g. mW/cm²)

P = power input to the antenna (in appropriate units, e.g., mW)

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

Note: This device is to be used only for fixed and mobile applications.

Additionally, according to § 2.1091:

The limit for <1.5 GHz mobile operations where no routine evaluation is required is: 1.5W ERP The limit for >1.5 GHz mobile operations where no routine evaluation is required is: 3W ERP

4.2 <u>IC:</u>

RSS-102 Section 2.5.2

RF exposure evaluation is required if the separation distance between the user and the device's radiating element is greater than 20 cm, except when the device operates as follows:

- below 1.5 GHz and the maximum EIRP of the device is equal to or less than 2.5 W;
- at or above 1.5 GHz and the maximum EIRP of the device is equal to or less than 5 W.

RSS-102 4.2: RF Field strength limits for devices used by the General Public (Uncontrolled Environment):

Power density

300MHz- 1500 MHz= f/150 W/m² 1500 MHz- 1500000 MHz= 10 W/m²

5 <u>Measurement procedure:</u>

5.1 Radiated power Calculation- ERP/EIRP-

- 1. Connect the equipment as shown in the above diagram.
- 2. Adjust the settings of the EUT to set to transmit at a specific mode.
- 3. Measure conducted power using the Bluetooth Tester
- 4. ERP/EIRP is calculated by adding the antenna gain to the measured conducted power.
 EIRP= Measured conducted power+ Antenna Gain (dBi) (Antenna gain based on measurement or data from the antenna manufacturer.)

5.2 Measurement Equipment information:

Instrument/Ancillary	Model	Manufacturer	Serial No.	Cal Date	Cal Interval
Radio Communication Tester	CMU 200	Rohde & Schwarz	101821	May 2011	2 Years
EMI Receiver/Analyzer	ESU 40	Rohde & Schwarz	100251	Aug 2012	2 Years
Spectrum Analyzer	FSU	Rohde & Schwarz	200302	May 2011	2 Years
Loop Antenna	6512	EMCO	00049838	Aug 2011	3 years
Biconilog Antenna	3141	EMCO	0005-1186	Apr 2012	3 years
Horn Antenna (1-18GHz)	3115	ETS	00035114	Mar 2012	3 years
Horn Antenna (1-18GHz)	3115	ETS	00035111	Apr 2012	3 years
Horn Antenna (18-40GHz)	3116	ETS	00070497	Aug 2011 3 years	
Communication Antenna	IBP5-900/1940	Kathrein	n/a	n/a n/a	
High Pass Filter	5HC2700	Trilithic Inc.	9926013	Part of system calibration	
High Pass Filter	4HC1600	Trilithic Inc.	9922307	Part of system calibration	
Pre-Amplifier	JS4-00102600	Miteq	00616	Part of system calibration	
Power Smart Sensor	R&S	NRP-Z81	100161	May 2011	2 Years

5.3 <u>Measurement Summary:</u>

Measured ERP/EIRP values as taken from test report # "EMC_HARMA_028_12001_DSS" issued by CETECOM Inc on Jan 29, 2013.

Band/Mode of operation	Peak Radiated Power- EIRP		Limits (IC) (where no routine evaluation is required)	Peak Radiated Power ERP		Limits (FCC) (where no routine evaluation is required)
	dBm	mW	W	dBm	mW	W
Bluetooth	-1.0	0.8	5	-3.14	0.49	3

Since the Peak ERP <3W (FCC) and Peak EIRP <5W (IC), this device is exempt from Routine evaluation.