

RF Exposure Evaluation Report

FOR:

Harman International

Model Number: VP3 NA, VP4 NA, VP3 CA, VP4 CA Product Description: Automotive Infotainment Unit

FCC ID: QNG-BE2800 IC ID: 6434C-BE2800

References:

- 1. FCC OET Bulletin 65 Supplement
- 2. FCC CFR Part 1 (1.1307 &1.1310), Part 2 (2.1091)
- 3. RSS-102- Radio Frequency Exposure Compliance of Radiocommunication Apparatus Issue 4 March 2010, Ch, 2.5 and Ch. 4

Date of Report: 2012-09-06 IC ID: 6434C-BE2800

1 Administrative Data

1.1 <u>Identification of the Testing Laboratory Issuing the Test Report</u>

Company Name:	CETECOM Inc.
Department:	Compliance
Address:	411 Dixon Landing Road
	Milpitas, CA 95035
	U.S.A.
Telephone:	+1 (408) 586 6200
Fax:	+1 (408) 586 6299
Test Lab Director:	Heiko Strehlow
Responsible Project Leader:	Josie Sabado

1.2 <u>Identification of the Client</u>

Applicant's Name:	Harman International
Street Address:	26500 Haggerty Road
City/Zip Code	Farmington Hills, MI 48331
Country	USA
Contact Person:	Shain E. Chmura
Phone No.	+1 (248) 592-3157
e-mail:	schmura@harman.com

1.3 <u>Identification of the Manufacturer</u>

Same as above client.

May 15 2012. Rev 2.0 Page **2** of **9**

Test Report #: EMC_ HARMA_018_11001_BE2800_MPE FCC ID: QNG-BE2800

Date of Report: 2012-09-06 IC ID: 6434C-BE2800

2 Equipment under Test (EUT)

2.1 Specification of the Equipment under Test

Marketing Name:	Uconnect		
Model No:	VP3 NA, VP4 NA, VP3 CA, VP4 CA		
HW Revision:	PV		
SW Revision:	11.48.1		
FCC-ID:	QNG-BE2800		
IC-ID:	6434C-BE2800		
Product Description:	Automotive Infotainment Unit		
Frequency Range / number of channels:	Bluetooth: 2402 – 2480 MHz / 79 Channels 802.11 b/g: 2412 – 2462 MHz / 11 Channels GPS: 1.575 GHz / 1 Channel		
Type(s) of Modulation:	Bluetooth: GFSK, π/4 DQPSK, 8DPSK 802.11 b/g: BPSK, QPSK		
Modes of Operation:	Bluetooth 2.1 + EDR 802.11 b/g		
Antenna Gain:	Bluetooth Gain (As stated by manufacturer): Low Channel: -3.37 dBi Mid Channel: -3.67 dBi High Channel: -2.03 dBi 802.11 b/g Gain (Stated by manufacturer): Low Channel: -1.98 dBi Mid Channel: -1.69 dBi High Channel: -1.38 dBi		
Co-located Transmitters/ Antennas?	■ Yes □ No		
Power supply:	12 VDC		
Operating temperature range:	-40°C to 85°C		
Prototype / Production unit:	Pre-Production		
Device Category:	☐ Fixed Installation ■ Mobile ☐ Portable		
Exposure Category:	☐ Occupational/ Controlled ■ General Population/ Uncontrolled		

May 15 2012. Rev 2.0 Page **3** of **9**

Test Report #: EMC_HARMA_018_11001_BE2800_MPE FCC ID: QNG-BE2800

Date of Report: 2012-09-06 IC ID: 6434C-BE2800

3 Assessment

This report serves as the Technical Information regarding RF Exposure evaluation of the below identified device according to the rules as stipulated in the documents listed under References above.

The device meets the RF exposure limits, or - for some of its radio functions / bands - the conditions for exemption from routine evaluation as defined in the referenced FCC and IC rule parts.

Company	Description	Model #
Harman International	Automotive Infotainment Unit	VP3 NA, VP4 NA, VP3 CA, VP4 CA

Josie Sabado

2012-09-06	Compliance	(EMC Test Engineer)	
Date	Section	Name	Signature

May 15 2012. Rev 2.0 Page **4** of **9**

Test Report #: EMC_ HARMA_018_11001_BE2800_MPE FCC ID: QNG-BE2800

Date of Report: 2012-09-06 IC ID: 6434C-BE2800

4 RF Exposure Evaluation Requirements

4.1 **FCC**:

Calculations can be made to predict RF field strength and power density levels around typical RF sources using the general equations (3) and (4) on page 19 of the following FCC document: "OET Bulletin 65, Edition 97-01 - Evaluating Compliance with FCC Guidelines for Human Exposure

to Radio frequency Electromagnetic Fields".

The table below is excerpted from Table 1B of 47 CFR 1.1310 titled Limits for Maximum Permissible Exposure (MPE), Limits for General Population/Uncontrolled Exposure:

Frequency Range (MHz)	equency Range (MHz) Power density (mW/cm²)	
300 – 1500	f (MHz) /1500	30
1500 - 100.000	1.0	30

Using the equation from page 19 of OET Bulletin 65, Edition 97-01:

$$S = \frac{PG}{4\pi R^2}$$

where: $S = power density (in appropriate units, e.g. mW/cm^2)$

P = power input to the antenna (in appropriate units, e.g., mW)

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

Note: This device is to be used only for fixed and mobile applications.

Additionally, according to § 2.1091:

The limit for <1.5 GHz mobile operations where no routine evaluation is required is: 1.5W ERP The limit for >1.5 GHz mobile operations where no routine evaluation is required is: 3W ERP

4.2 <u>IC:</u>

RSS-102 Section 2.5.2

RF exposure evaluation is required if the separation distance between the user and the device's radiating element is greater than 20 cm, except when the device operates as follows:

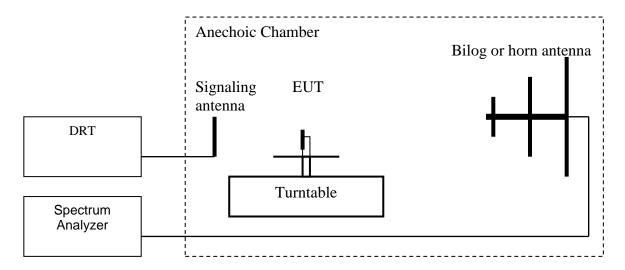
- below 1.5 GHz and the maximum EIRP of the device is equal to or less than 2.5 W;
- at or above 1.5 GHz and the maximum EIRP of the device is equal to or less than 5 W.

RSS-102 4.2: RF Field strength limits for devices used by the General Public (Uncontrolled Environment):

Power density

300MHz- 1500 MHz= $f/150 W/m^2$ 1500 MHz- 1500000 MHz= $10 W/m^2$

May 15 2012. Rev 2.0 Page **5** of **9**


Test Report #: EMC_ HARMA_018_11001_BE2800_MPE FCC ID: QNG-BE2800

Date of Report: 2012-09-06 IC ID: 6434C-BE2800

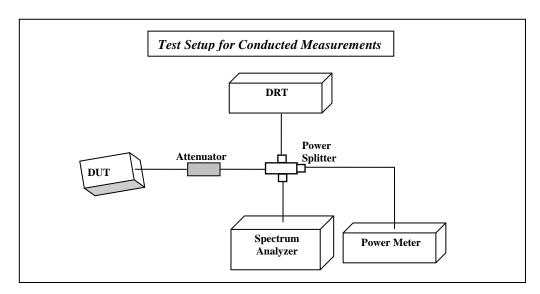
5 Measurement procedure:

5.1 Radiated power measurement- ERP/EIRP-

- 1. Connect the equipment as shown in the above diagram with the EUT's antenna in center of the turn table.
- 2. Adjust the settings of the Digital Radio Communication Tester (DRT) to set the EUT to its maximum power at the required channel.
- 3. Set the spectrum analyzer to the channel frequency. Set the analyzer to measure peak hold with the required settings.
- 4. Rotate the EUT 360°. Record the peak level in dBm (LVL).
- 5. Replace the EUT with a vertically polarized half wave dipole or known gain antenna. The center of the antenna should be at the same location as the center of the EUT's antenna.
- 6. Connect the antenna to a signal generator with known output power and record the path loss in dB (**LOSS**). **LOSS** = Generator Output Power (dBm) Analyzer reading (dBm).
- 7. Determine the ERP using the following equation:
 - ERP (dBm) = LVL (dBm) + LOSS (dB)
- 8. Determine the EIRP using the following equation: EIRP (dBm) = ERP (dBm) + 2.14 (dB)
- 9. Measurements are to be performed with the EUT set to the low, middle and high channel of each frequency band.

Measurement uncertainty: +/-3.0 dB

(**Note:** Steps 5 and 6 above are performed prior to testing and **LOSS** is recorded by test software. Steps 3, 4, 7 and 8 above are performed with test software.)


May 15 2012. Rev 2.0 Page **6** of **9**

Test Report #: EMC_HARMA_018_11001_BE2800_MPE FCC ID: QNG-BE2800

Date of Report: 2012-09-06 IC ID: 6434C-BE2800

5.2 Radiated power Calculation- ERP/EIRP-

- 1. Connect the equipment as shown in the above diagram.
- 2. Adjust the settings of the Digital Radio Communication Tester (DRT) to connect the EUT at the required channel (OR) alternatively use the EUT to set to transmit at a specific mode.
- 3. Measure conducted power using the power meter or the Spectrum Analyzer.
- ERP/EIRP is calculated by adding the antenna gain to the measured conducted power.
 EIRP= Measured conducted power+ Antenna Gain (dBi)
 (Antenna gain based on measurement or data from the antenna manufacturer.)
 ERP= EIRP- 2.14

5.3 Measurement Equipment information:

Instrument/Ancillary	Model	Manufacturer	Serial No.	Cal Date	Cal Interval
Radio Communication Tester	CMU 200	Rohde & Schwarz	101821	May 2011	2 Years
EMI Receiver/Analyzer	ESIB 40	Rohde & Schwarz	100107	May 2011	2 Years
Spectrum Analyzer	FSU	Rohde & Schwarz	200302	May 2011	2 Years
Loop Antenna	6512	EMCO	00049838	Aug 2011	3 years
Biconilog Antenna	3141	EMCO	0005-1186	Apr 2012	3 years
Horn Antenna (1-18GHz)	3115	ETS	00035114	Mar 2012	3 years
Horn Antenna (1-18GHz)	3115	ETS	00035111	Apr 2012	3 years
Horn Antenna (18-40GHz)	3116	ETS	00070497	Aug 2011	3 years
Communication Antenna	IBP5-900/1940	Kathrein	n/a	n/a	n/a
High Pass Filter	5HC2700	Trilithic Inc.	9926013	Part of system calibration	
High Pass Filter	4HC1600	Trilithic Inc.	9922307	Part of system calibration	
Pre-Amplifier	JS4-00102600	Miteq	00616	Part of system calibration	
Power Smart Sensor	R&S	NRP-Z81	100161	May 2011	2 Years

May 15 2012. Rev 2.0 Page **7** of **9**

Test Report #: **EMC_ HARMA_018_11001_BE2800_MPE** FCC ID: QNG-BE2800

Date of Report: 2012-09-06 IC ID: 6434C-BE2800

5.4 **Measurement Summary:**

Measured ERP/EIRP values as taken from test report #

"EMC_HARMA_018_11001_BE2800_DTS_FCC_IC_Rev1" and "EMC_HARMA_018_11001_BE2800_FHSS_FCC_IC_Rev1" issued by CETECOM Inc on Sep 6, 2012.

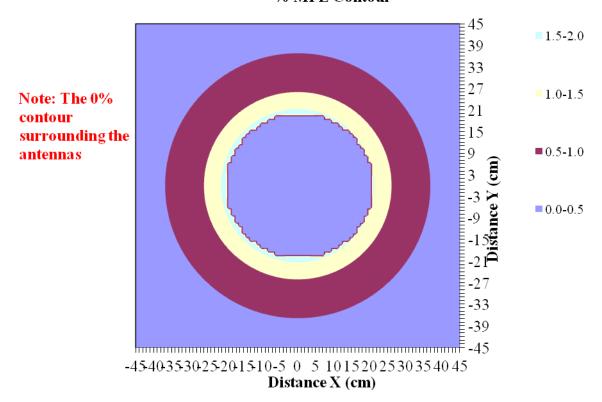
Band/Mode of operation	Peak Radia EII		Limits (IC) (where no routine evaluation is required)	Peak Radiated Power ERP		Limits (FCC) (where no routine evaluation is required)
	dBm	mW	W	dBm	mW	W
802.11 g	19.26	84.33	5	17.12	51.52	3
Bluetooth	1.2	1.32	5	-0.94	0.81	3

Since the Peak ERP <3W (FCC) and Peak EIRP <5W (IC), this device is exempt from **Routine evaluation.**

Power Density calculations @ 20cm:

Band/Mode of operation	Peak R Power		Duty Cycle	Distance (R)	Power Density (EIRP*DutyCycle)/ $(4\pi R^2)$		Verdict
	dBm	mW		cm	mW/cm ²	mW/cm ²	
802.11g	19.26	84.33	100	20	0.017	1	Pass
Bluetooth	1.2	1.32	100	20	0.0003	1	Pass

Page **8** of **9** May 15 2012. Rev 2.0



Prediction for Simultaneous Transmission

The MPE limit was made using a separation distance of 1 cm to represent the worse case.

Antenna No.		Total	1	2
Tx Status			On	On
Frequency	MHz		2440	2440
MPE Limit	mW/cm ²		1.00	1.00
Max % MPE	%	1.7	1.7	0.0
Power	(W)	0.085	0.084	0.001
Antenna Gain	dBi		0.00	0.00
EIRP	(W)	0.09	0.084	0.001
X	(cm)		0.0	1.0
Υ	(cm)		0.0	0.0
Sector			FALSE	FALSE
Arc			FALSE	FALSE
θ_1		innut	-120	-120
θ_2	doge	input	60	60
θ_1	degs	actual	-120	-120
θ_2		aciuai	60	60

% MPE Contour

Verdict: Since the max MPE is <100%, the device is compliant in simultaneous transmission mode for BT and 802.11b/g.

May 15 2012. Rev 2.0 Page **9** of **9**