TCC

Test & Certification Center (TCC) - Dallas

Company Confidential

WR-824.002

25 August 2005

1 (50)

Ver 2.0

Accredited Laboratory Certificate Number: 1819-01

FCC HAC Test Report – Amendment A

Test Report Number: WR-824.002

Terminal device: Type Nokia RM-41, HW: 4100, SW: Q100 04w47 11 (Detailed information is listed in section 5).

Originator: Anu Balijepalli Function: TCC – Dallas Version/Status: 2.0 Approved Location: TCC Directories Date: 25 August 2005

Change History:

Version Date		Status	Handled By	Comments
0.1	06 July 2005	Draft	Anu Balijepalli	Initial Draft
0.2	06 July 2005	Review	Anu Balijepalli	Submit for Approval
1.0	06 July 2005	Approved	Mark Severson	Approved
1.1	25 August 2005	Changes	Anu Balijepalli	Submit for Approval
2.0	25 August 2005	Approved	Nerina Walton	Approved

Testing laboratory: Test & Certification Center (TCC)

Dallas Nokia Inc

6021 Connection Drive Irving, Texas 75039

U.S.A.

Tel. 972-894-5000 Fax. 972-894-4988 Client:

Nokia SanDeigo 12278 Scripps Summit Drive

San Deigo, California, 92131

U.S.A.

Tel. 858-831-5000 Fax. 858-831-6500

Date and signatures:

For the Contents:

25 August 2005

Anu Balijepalli, Technical Review

Ameadha

Nerina Walton, Manager Review

FCC HAC Test Report

© 2005 Nokia Mobile Phones

ACCREDITED

2 (50)

Ver 2.0

Test & Certification Center (TCC) - Dallas

WR-824.002

25 August 2005

Accredited Laboratory Certificate Number: 1819-01

TABLE OF CONTENTS

1.	GE	NERAL	3
	1.1	Objective	
	1.2	TEST SUMMARY	
2.	LIS	ST OF ABBREVIATIONS, ACRONYMS AND TERMS	4
	2.1	ABBREVIATIONS	
	2.2 2.3	ACRONYMSTERMS	
3.	_	ANDARDS BASIS	
J.			
4.	TE	ST EQUIPMENT LIST	
5.	EQ	UIPMENT-UNDER-TEST (EUT)	6
Ę	5.1	DESCRIPTION OF TESTED DEVICE(S):	
Ę	5.2	PHOTOGRAPH OF TESTED DEVICE(S):	6
6.	TE	ST METHOD(S) AND SETUP(S)	7
	5.1	PROBE DESCRIPTION	
-	5.2 5.3	SPEAG ROBOTIC SYSTEMTEST SETUP	
7.	-	SS/FAIL CRITERIA	
1.			
8.	TE	ST PROCEDURE	15
9.	SY	STEM VALIDATION	16
10.		DETAILED TEST RESULTS	25
	10.1	NEAR FIELD E AND H RF EMISSIONS MEASUREMENTS	25
	. • .	1.1 Test Results	
11.	N	MEASUREMENT UNCERTAINTY	28
ΑP	PENI	DIX A: VALIDATIONS SCANS	29
ΑP	PENI	DIX B: MEASUREMENT SCANS	37
۸D	DENI	DIY C: DEORE CALIREATION DEDORTS AND DIDOLE CALIREATION DEDORTS	50

© No part of this report shall be reproduced out of the context of the report without the written approval of Nokia Mobile Phones, Inc., Dallas Product Creation, TCC – Dallas.

Company Confidential

WR-824.002

25 August 2005

3 (50)

Ver 2.0

Accredited Laboratory Certificate Number: 1819-01

1. GENERAL

1.1 Objective

This test is performed to ensure that the EUT meets the requirements required by the FCC Method of Measurement for near field E and H emissions. Please note that this report is only for near field emissions, not for the T-coil HAC testing.

1.2 Test Summary

Test Results: The test result relates only to those tested devices mentioned in Section 5 of this test report.

Sample #	Test Performed	Reference	Category
1	Near Field Emissions- E field Near Field Emissions- H field	ANSI C63.19	М3

Company Confidential

WR-824.002

25 August 2005

4 (50)

Ver 2.0

Accredited Laboratory Certificate Number: 1819-01

2. LIST OF ABBREVIATIONS, ACRONYMS AND TERMS

2.1 Abbreviations

dB - decibel

dBm - decibels per milliwatt (absolute measurement)

MHz - megahertz or 1000000 Hertz

V/m – Volts per meter

A/m – Amps per meter

2.2 Acronyms

AMPS - Advanced Mobile Phone System

BSS - Base Station Simulator

CDMA - Code Division Multiple Access

ESN - Electronic Serial Number

EUT - Equipment under Test

GSM - Global System for Mobile communications

IMEI - International Mobile Equipment Identity

PCS - Personal Communication System

RF- Radio Frequency

TDMA - Time Division Multiple Access

2.3 Terms

Base Station Simulator (BSS) - simulates all the necessary signals that a phone would experience while on a live network. There are many types of base station simulators catering for all current protocols, i.e., GSM, AMPS, TDMA, and CDMA.

Cellular - refers to a frequency in the 800MHz band.

PCS - refers to a frequency in the 1900MHz band.

Crest Factor - is the relation between the peak power and the average power in a signal.

Company Confidential

ACCREDITED

5 (50)

WR-824.002

25 August 2005

Ver 2.0

Accredited Laboratory Certificate Number: 1819-01

3. STANDARDS BASIS

Testing has been carried out in accordance with:

REF.	Code of the standard	Name of the standard
1	-	ANSI C63.19

Note: Unless otherwise stated, (by reference to a version number and a publication date), the latest version of the above documents applies.

Deviations:

Not Applicable.

4. TEST EQUIPMENT LIST

The listing below indicates the test equipment utilized for the test (s). Calibration interval on all items listed can be obtained from the Engineering Services Group within NMP, Product Creation - Dallas. Where relevant, measuring equipment is subjected to in-service checks between testing. TCC - Dallas shall notify clients promptly, in writing, of identification of defective measuring equipment that casts doubt on the validity of results given in this report.

Test Equipment	NMP#	Calibration Interval	Calibratrion Expiry
SPEAG DASY4 Robot System	2056	NA	NA
SPEAG Data Acquisition Electronics (DAE)	2292	12 months	Jan - 2006
SPEAG E-field Probe ER3DV6	4036	12 months	Jan - 2006
SPEAG H-field Probe H3DV6	4037	12 months	Feb-2006
SPEAG 835MHz Dipole CD835V3	4050	12 months	Apr-2006
SPEAG 1880MHz Dipole CD1880V3	4049	12 months	Jun-2006
Signal Generator HP8648C	0409	12 months	Aug-2005
Boonton Powermeter 4232A	0147	12 months	Aug-2005
AR Power Amplifier 5S1G4	0188	NA	NA
R&S CMU 200	2625	12 months	Aug-2005
R&S FSP	3459	12 months	Jan-2006

Company Confidential

WR-824.002

25 August 2005

6 (50)

Ver 2.0

Accredited Laboratory Certificate Number: 1819-01

5. EQUIPMENT-UNDER-TEST (EUT)

The results in this report relate only to the items listed below:

5.1 Description of Tested Device(s):

Sample #	Mode of Operation	Date of Receipt	Condition of Sample	Item	Identifying Information
					Type: RM-41
					Model: 3155i
1	CDMA	27 June	Good	Phone	ESN: 044/09428879
	800/1900	2005			HW: 4100
	RC2, SO9				SW: Q100_04w47_11
					Code: 0523090DM14RE
					FCC ID: QMNRM-41

5.2 Photograph of Tested Device(s):

Company Confidential

WR-824.002

25 August 2005

7 (50)

Accredited Laboratory Certificate
Number: 1819-01

Ver 2.0

6. TEST METHOD(S) AND SETUP(S)

Test & Certification Center (TCC) - Dallas

Testing was performed in accordance with ANSI C63.19.

6.1 Probe Description

E field Probe Description

Construction

One dipole parallel, two dipoles normal to probe axis

Built-in shielding against static charges

Calibration

In air from 100 MHz to 3.0 GHz (absolute accuracy ±6.0%, k=2)

Frequency

100 MHz to > 6 GHz; Linearity: ± 0.2 dB (100 MHz to 3 GHz)

Directivity

± 0.2 dB in air (rotation around probe axis) ± 0.4 dB in air (rotation normal to probe axis)

Dynamic Range

2 V/m to > 1000 V/m; Linearity: ± 0.2 dB

Dimensions

Overall length: 330 mm (Tip: 16 mm) Tip diameter: 8 mm (Body: 12 mm)

Distance from probe tip to dipole centers: 2.5 mm

Application

General near-field measurements up to 6 GHz

Field component measurements
Fast automatic scanning in phantoms

H field Probe Description

Construction

Three concentric loop sensors with 3.8 mm loop diameters Resistively loaded detector diodes for linear response Built-in shielding against static charges

Frequency

200 MHz to 3 GHz (absolute accuracy \pm 6.0%, k=2); Output linearized

Directivity

± 0.25 dB (spherical isotropy error)

Dynamic Range

10 mA/m to 2 A/m at 1 GHz

E-Field Interference

< 10% at 3 GHz (for plane wave)

Dimensions

Overall length: 330 mm (Tip: 40 mm) Tip diameter: 6 mm (Body: 12 mm)

Distance from probe tip to dipole centers: 3 mm

Application

General magnetic near-field measurements up to 3 GHz

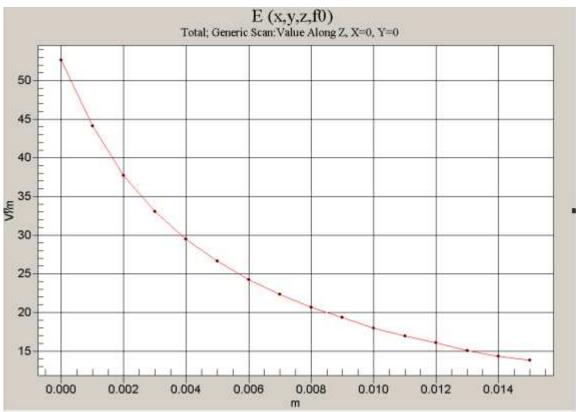
Company Confidential

WR-824.002

25 August 2005

8 (50)

Ver 2.0


Accredited Laboratory Certificate Number: 1819-01

Field component measurements
Surface current measurements
Measurements in air or liquids
Low interaction with the measured field

Probe Tip Description

HAC field measurements take place in the close near field with high gradients. Increasing the measuring distance from the source will generally decrease the measured field values. Magnetic field sensors are measuring the integral of the H-field across their sensor area surrounded by the loop. They are calibrated in precise, homogenous field. When measuring a gradient field, the result will be very close to the field in the center of the loop, which is equivalent to the center value. But it will be different from the field at the border of the loop.

Consequently, two sensors with different loop diameters – both calibrated ideally – would give different results when measuring from the edge of the probe sensor elements. The behaviour for electrically small E-field sensors is equivalent. See below for distance plots from a WD, which show the conservative nature of field readings at the probe element center vs. measurements at the sensor end.

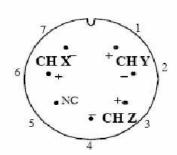
The magnetic field loops of the H3D probes are concentric, with the center 3mm from the tip for H3DV6. Their radius is 1.9mm.

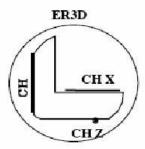
The electric field probes have a more irregular intenal geometry because it is physically not possible to have the 3 orthogonal sensors situated with the same center. The effect of the different sensor centers is accounted for in the HAC uncertainty budget. Their geometric center is at 2.5mm from the tip, and the element ends are 1.1mm closer to the tip.

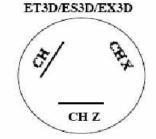
Company Confidential

WR-824.002

25 August 2005




9 (50)


Ver 2.0

Accredited Laboratory Certificate Number: 1819-01

Connector Plan

The antistatic shielding inside the probe is connected to the probe connector case. It is recommended to connect the probes with the amplifier using a short and well-shielded cable and to connect the cable shielding with the connector case.

Instrumentation Chain:

Conversion of Connector Voltage to E field

$$E_{i} = \sqrt{\frac{u_{i} + (u_{i}^{2}.CF)/(DCP)}{Norm_{i}.ConvF}}$$

whereby

 E_i = Electric field in V/m

 u_i = Voltage of channel i at the connector in μ V

*Norm*_i = Sensitivity of channel in $\mu V/(V/m)^2$

ConvF = enhancement factor in liquid (ConvF = 1 for Air)

DCP = Diode compression point in μV

CF = Signal Crest Factor (peak power/average power)

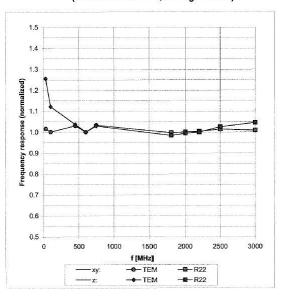
Probe Response to Frequency

The E-field sensors have inherently a very flat frequency response. They are calibrated with a number of frequencies resulting in a common calibration factor, with the frequency behaviour documented in the calibration certificate.

Company Confidential

WR-824.002

25 August 2005

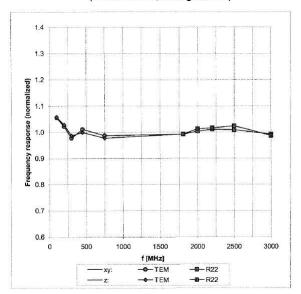


10 (50)

Accredited Laboratory Certificate Number: 1819-01

Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide R22)



Uncertainty of Frequency Response of E-field: \pm 6.3% (k=2)

H-fileld sensors have frequency dependant sensitivity, which is evaluated for a series of frequencies also visible in the probe calibration certificate. The calibration factors result from a fiiting algorithm. The proper conversion is calculated by the DASY4 software depending on the frequency setting in the procedure.

Frequency Response of H-Field

(TEM-Cell:ifi110, Waveguide R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

FCC HAC Test Report © 2005 Nokia Mobile Phones

Ver 2.0

Company Confidential

WR-824.002

25 August 2005

11 (50)

Ver 2.0

Accredited Laboratory Certificate Number: 1819-01

Conversion to Peak

Peak is defined as Peak Envelope Power. All raw measurements from the HAC measurement system are RMS values. The DASY4 system incorporates the crest factor of the signal in the computation of the RMS values. Although the software also has capability to estimate the peak field by applying a square root of crest factor value to the readings, the probe modulation factor was applied manually instead per PC63.19 in the measurement tables in this report. The equation to convert the raw measurements in the data tables are:

Peak Field = 20 log (Raw x PMF)

Where:

Peak Field = Peak field (in dBV/m or dBA/m)

Raw = Raw field measurement from the measurement system (in V/m or A/m).

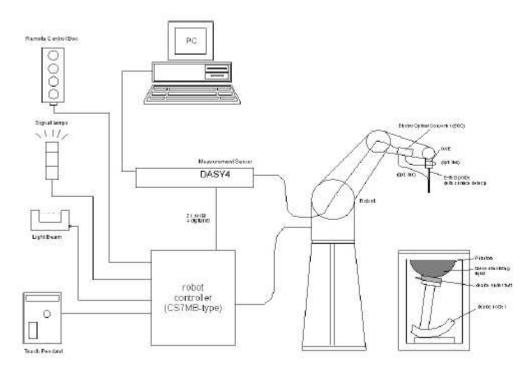
PMF = Probe Modualtion Factor (in linear units).

Company Confidential

WR-824.002

25 August 2005

12 (50)


Ver 2.0

Accredited Laboratory Certificate
Number: 1819-01

6.2 Speag Robotic System

E-field and H-field measurements are performed using the DASY4 automated dosimetric assessment system. The DASY4 is made by Schmid & Partner Engineering AG (SPEAG) and consists of high precision robotics system (Staubli), robot controller, Pentium 4 computer, near- field probe, probe alignment sensor, and the HAC phantom. The robot is a six- axis industrial robot performing precise movements to the position the probe to the location of maximum EMF.

System Hardware

A cell controller system contains the power supply, robot controller; teach pendant, and a remote control used to drive the robot motors. The PC consists of RF meaurement system DASY4 V4.5 with HAC extension, A/D interface card, monitor, mouse and keyboard. The Staubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit that performs the signal amplification, signal multiplexing, AD conversion, offset measurements, mechanical surface detection, collision detection, etc is connected to the Electro – optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card.

The DAE consists of a highly sensitive electrometer – grade preamplifier with auto-zeroing, a channel and gain switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe-mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built- in VME-bus computer.

Company Confidential

WR-824.002

25 August 2005

13 (50)

Ver 2.0

Accredited Laboratory Certificate
Number: 1819-01

Data Evaluation

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_2 * (cf/dcpi)$$

with V_i = compensated signal of channel i (i = x, y, z)

 U_i = input signal of channel i (i = x, y, z)

cf = crest factor of exciting field (DASY parameter)

dcpi = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

$$\textit{E-field probes: } E_i = \sqrt{\frac{V_i}{Norm_i x ConvF}}$$

H-field probes:
$$H_i = \sqrt{V_i} x \frac{a_{io} + a_{i1} f + a_{i2} f^2}{f}$$

with V_i = compensated signal of channel i (i = x, y, z) Norm_i = sensor sensitivity of channel i (i = x, y, z) $\mu V/(V/m)_2$ for E-field Probes ConvF = sensitivity enhancement in solution a_{ij} = sensor sensitivity factors for H-field probes f = carrier frequency [GHz] E_i = electric field strength of channel i in V/m H_i = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The signal response time is evaluated as the time required by the system to reach 90% of the expected final value after an on/off switch of the power source with an integration time of 500 ms and a probe response time of <5ms. In the current implementation, DASY4 waits longer than 100 ms after having reached the grid point before starting a measurement, i.e., the response time uncertainty is negligible.

If the device under test does not emit a CW signal, the integration time applied to measure the electric field at a specific point may introduce additional uncertainties due to the discretization. The tolerances for the different systems had the worst-case of 2.6%.

ACCREDITED

14 (50)

Test & Certification Center (TCC) - Dallas

WR-824.002

25 August 2005

Accredited Laboratory Certificate Number: 1819-01 Ver 2.0

6.3 Test Setup

The test setup is shown in the picture below.

7. PASS/FAIL CRITERIA

The EUT must meet the following M3 category standards –

Category	V	Wireless Device Parameters			
Near field	AWF	E-field Emissions	H-field Emissions		
		Peak – V/m	Peak – A/m		
Category M3	AWF =0 (TDMA, CDMA)	63.1 to 112.2	0.19 to 0.34		
	AWF = -5 (GSM)	47.3 to 84.1	0.15 to 0.25		
Category M4	AWF =0 (TDMA, CDMA)	< 63.1	< 0.19		
Jory	AWF = -5 (GSM)	< 47.3	< 0.15		

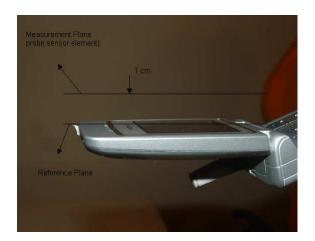
Company Confidential

WR-824.002

25 August 2005

15 (50)

Ver 2.0


Accredited Laboratory Certificate Number: 1819-01

8. TEST PROCEDURE

The following illustrates a typical RF emissions test scan over a wireless communication device:

- Proper operation of the field probe, probe measurement system, other instrumentation, and the positioning system was confirmed.
- WD is positioned in its intended test position, acoustic output point of the device perpendicular to the field probe.
- The WD operation for maximum rated RF output power was configured and confirmed with the base station simulator, at the test channel and other normal operating parameters as intended for the test. The battery was ensured to be fully charged before each test.
- The center sub-grid was centered over the center of the acoustic output (also audio band magnetic output, if applicable). The WD audio outout was positioned tangent (as physically possible) to the measurement plane.
- The measurement system measured the field strength at the reference location.
- Measurements at 2mm increments in the 5x5 cm region were performed and recorded. A 360 deg
 rotation about the azimuth axis at the maximum interpolated position was measured. For the worst
 case condition, the peak reading from this rotation was used in re-evaluating the HAC category.
- The system performed a drift evaluation by measuring the field at the reference location.
- Same steps were done for both the E and H field measurements.

Company Confidential

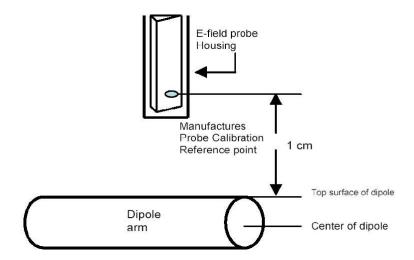
WR-824.002

25 August 2005

16 (50)

Ver 2.0

Accredited Laboratory Certificate
Number: 1819-01


9. SYSTEM VALIDATION

The input signal was an unmodulated continous wave. The following points were taken into consideration in performing the system validation:

Average Input Power = 100mW (20dBm RMS) after adjustment for return loss.

The test fixture must meet the 2-wavelength separation criterion.

The proper measurement of the 1cm probe to dipole separation, which is measured from the top surface of the dipole to the calibration reference point of the sensor, defined by the probe manufacturer is shown in the following picture:

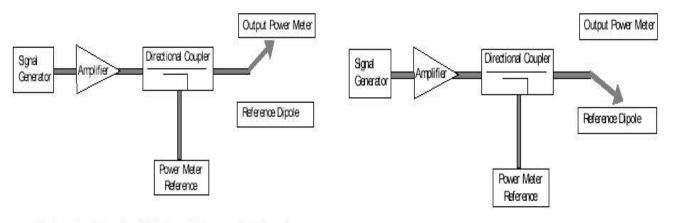
To assure proper operation of the near-field measurement probe the input power to the dipole shall be commensurate to with the full rated output power of the wireless device (eg. – for a cellular phone wireless device the average peak antenna input power will be on the order of 100mW (ie, 20dBm) RMS after adjustment for any mismatch.

A dipole antenna meeting the requirements in PC63.19 was placed in the position normally occupied by the WD. The length of the dipole was scanned with both E-field and H-field probes and the maximum values for each were recoreded.

Using the near-field measurement system, scan the antenna over the radiating dipole and record the greatest field reading observed. Due to the nature of E-fields about freespace dipoles, the two E-field peaks measured over the dipole are averaged to compensate for non-paralellity of the setup, See manufacturer method on dipole calibration certificates, page 2. Field strength measurements shall be made only when the probe is stationary.

Company Confidential

WR-824.002

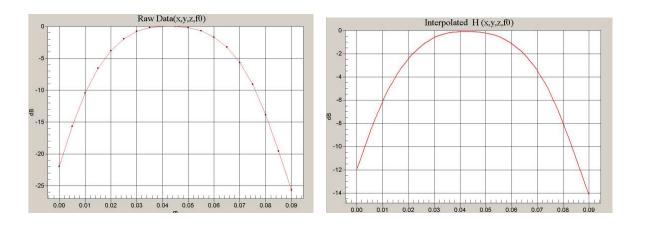

25 August 2005

17 (50)

Ver 2.0

Accredited Laboratory Certificate Number: 1819-01

Setup for Desired Output Power to Dipole


Setup to Dipole

Using this setup configuration, the signal generator was adjusted for the desired output power (100mW) at a specified frequency. The reference power from the coupled port of the directional coupler is recorded. Next, the output cable is connected to the reference dipole, as shown in the figure above.

The input signal was adjusted until the reference power from the coupled port of the directional coupler was the same as previously recorded, to compensate for the impendance mismatch between the output cable and the reference dipole.

To assure proper operation of the near-field measurement probe the input power to the reference dipole was verified to the full rated output power of the wireless device. The dipole was secured in a holder in a manner to meet the 20dB reflection. The near-field measurement probe was positioned over the dipole.

The antenna was scanned over the appropriate sized area to cover the dipole from end to end. SPEAG uses 2D interpolation algorithms between the measured points. Please see below two-dimensional plots showing that the interpolated values interpolate smoothly between 5mm steps for a free space RF dipole:

Company Confidential

ACCREDITED

18 (50)

Test & Certification Center (TCC) - Dallas

WR-824.002

25 August 2005

Ver 2.0 Accredited Laboratory Certificate

Accredited Laboratory Certifica Number: 1819-01

Validations were performed for CW at 20dBm peak power.

		Recorded	Target Value	% deviation
	E field	161.2	162.1	0.56%
835 MHz	H field	0.435	0.451	3.68%
	E field	127.9	137.6	7.05%
1880 MHz	H field	0.412	0.452	8.85%

Note: Please see Appendix A for the Validation Scans

Company Confidential

WR-824.002

25 August 2005

19 (50)

Ver 2.0

Accredited Laboratory Certificate
Number: 1819-01

MODULATION FACTOR

A calibration was made of the modulation response of the probe and its instrumentation chain. This calibration was performed with the field probe, attached to its instrumentation. The response of the probe system to a CW field at the frequency of interest is compared to its response to a modulated signal with equal peak amplitude to that of a CW signal. The field level of the test signals are ensured to be more than 10dB above the ambient level and the noise floor of the instrumentation being used. The ratio of the CW reading to that taken with a modulated reading was applied to the DUT measurements.

This was done using the following procedure:

- The probe was illuminated with a CW signal at the intended measurement frequency.
- The probe was positioned at the field maxima over the dipole antenna (determined afer an area scan over the dipole).
- The reading of the probe measurement system of the CW signal at the maximum point was recorded.
- Using a Spectrum Analyzer, the modulated signal adjusted with the same peak level of the CW signal was determined.
- The probe measurement system reading was recorded with the modulated signal.
- The ratio of the CW reading to the modulated signal reading is the probe modulation factor (PMF) for the modulation and field probe combination.
- Same steps are repeated at all frequency bands and for both E and H field probes.

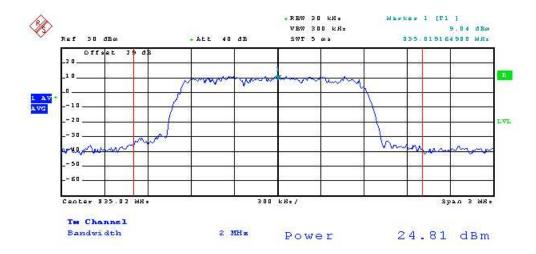
The modulation factors obtained were applied to readings taken of the actual wireless device, in order to obtain an accurate peak field reading using the formula:

 $Peak = 20.log(Raw \times PMF)$

This method correlates well with the modulation using the DUT in the alternative substitution method. See below for correlation of signal:

Company Confidential

20 (50)


Test & Certification Center (TCC) - Dallas

WR-824.002


25 August 2005

Accredited Laboratory Certificate Number: 1819-01 Ver 2.0

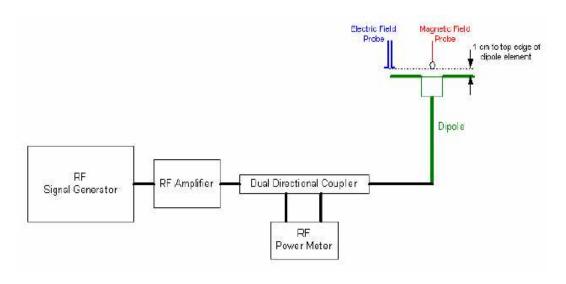
Signal Generator Modulated Signal:

Wireless Device Modulated Signal:

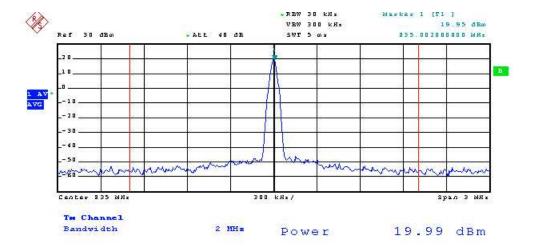
Company Confidential

ACCREDITED

21 (50)


Ver 2.0

WR-824.002


25 August 2005

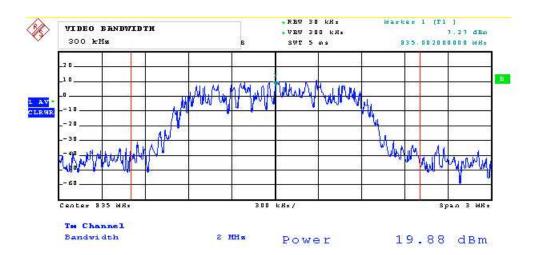
Accredited Laboratory Certificate
Number: 1819-01

Modulation Factors were performed for CW, 80%AM and the modulated signal at 20dBm peak power, See below for the picture as well as the Spectrum Analyzer Plots.

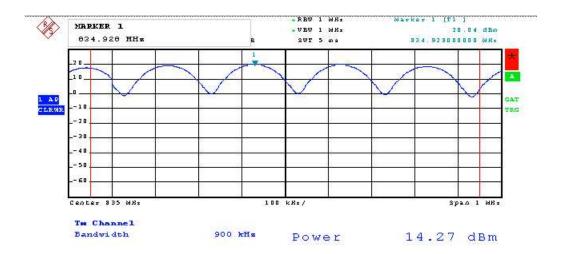
Determining Modulation Factor Probe Setup

CW Signal for 850MHz band

Company Confidential


ACCREDITED

22 (50)


WR-824.002

25 August 2005

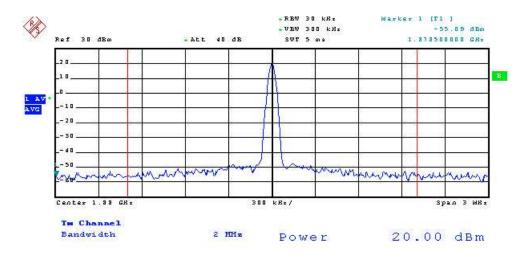
Ver 2.0
Accredited Laboratory Certificate
Number: 1819-01

CDMA Signal for 850MHz band

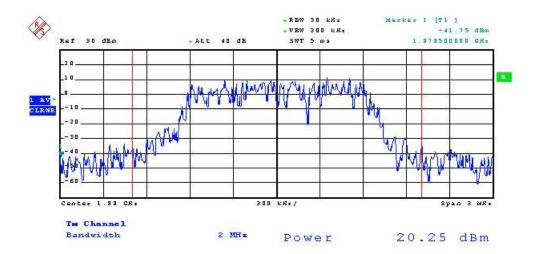
80%AM Signal for 850MHz band

Company Confidential

ACCREDITED


23 (50)

Ver 2.0


WR-824.002 Test & Certification Center (TCC) - Dallas

25 August 2005

Accredited Laboratory Certificate
Number: 1819-01

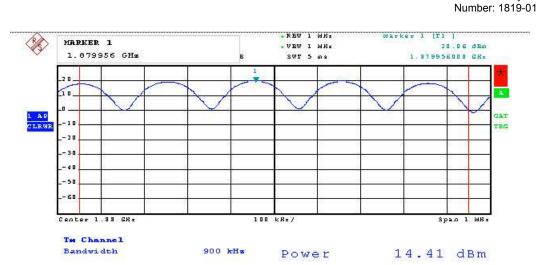
CW Signal for 1900MHz band

CDMA Signal for 1900MHz band

Company Confidential

ACCREDITED

24 (50)


Ver 2.0

Test & Certification Center (TCC) - Dallas

WR-824.002

25 August 2005

Accredited Laboratory Certificate

80%AM Signal for 1900MHz band

835 MHz	E-Field (V/m)	H-Field (A/m)	Modulation Factor (MF) for E-field	Modulation Factor (MF) for H-field
	, ,	, ,		
CDMA	165.2	0.45	1.0	1.0
CW	166.8	0.44		
80%AM	98.5	0.26		

1880 MHz	E-Field	H-Field	Modulation	Modulation
			Factor (MF) for	Factor (MF) for
	(\//m)	(A/m)	E-field	H-field
	(V/m)	(A/m)	E-liela	n-iieia
CDMA	130.6	0.66	1.0	0.7
CW	133.3	0.45		
CVV	133.3	0.45		
80%AM	90.8	0.32		

Company Confidential

WR-824.002

25 August 2005

25 (50)

Ver 2.0

Accredited Laboratory Certificate Number: 1819-01

10. DETAILED TEST RESULTS

Test Technician / Engineer	Anu Balijepalli		
Date of Measurement	August 16-20, 2005		
Temperature / Humidity / Pressure	20-25°C	45-60%RH	29-31 in
Test Result	Complies		

10.1 Near Field E and H RF emissions measurements

10.1.1 Test Results

Note: Testing was done at the antenna extended position. See Appendix B for the grids and plots of these cases.

CDMA CELLULAR E - FIELD

CDMA Celluar	Conducted Power	Power Drift	E (V/m)	Modulation Factor	Peak Field	Excluded Blocks
	(dBm)	(dB)			(V/m)	
Ch 1013	25.1	0.0462	58.6	1.0	58.6	1,2,4
Ch 384	25.1	0.134	67.7	1.0	67.7	1,4,7
Ch 777	25.2	0.156	61.5	1.0	61.5	1,2,4

CDMA CELLULAR H-FIELD

CDMA Celluar	Conducted Power	Power Drift	H (A/m)	Modulation Factor	Peak Field	Excluded Blocks
	(dBm)	(dB)			(A/m)	
Ch 1013	25.1	-0.248	0.109	1.0	0.109	7,8,9
Ch 384	25.1	0.0205	0.109	1.0	0.109	6,8,9
Ch 777	25.2	-0.11	0.108	1.0	0.108	7,8,9

Company Confidential

ACCREDITED

26 (50)

Test & Certification Center (TCC) - Dallas

WR-824.002

25 August 2005

Accredited Laboratory Certificate Number: 1819-01 Ver 2.0

CDMA PCS E - FIELD

CDMA PCS	Conducted Power (dBm)	Power Drift (dB)	E (V/m)	Modulation Factor	Peak Field (V/m)	Excluded Blocks
Ch 25	23.0	-0.378	23.1	1.0	23.1	6,8,9
Ch 600	23.0	0.177	24.4	1.0	24.4	1,2,4
Ch 1175	23.0	-0.0947	24.0	1.0	24.0	7,8,9

CDMA PCS H - FIELD

(CDMA PCS	Conducted Power (dBm)	Power Drift (dB)	H (A/m)	Modulation Factor	Peak Field (A/m)	Excluded Blocks
	Ch 25	23.0	-0.187	0.061	0.7	0.0427	1,4,7
(Ch 600	23.0	-0.196	0.064	0.7	0.0448	7,8,9
С	ch 1175	23.0	0.298	0.068	0.7	0.0476	1,4,7

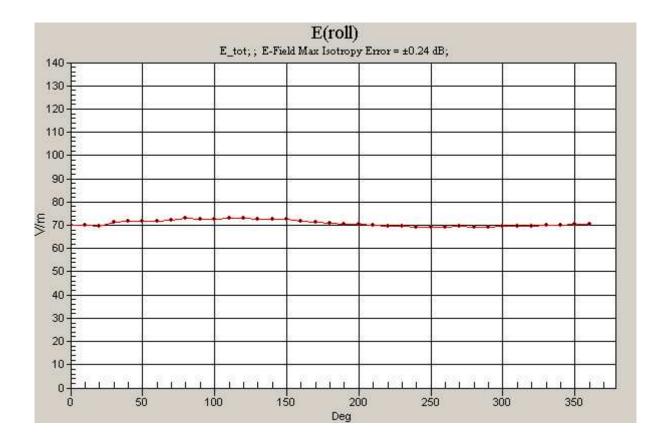
Company Confidential

27 (50)

Test & Certification Center (TCC) - Dallas

WR-824.002

25 August 2005


Accredited Laboratory Certificate
Number: 1819-01

Ver 2.0

WORST CASE CONFIGURATION

CDMA Celluar	E (V/m)	Modulation Factor	Peak Field (V/m)	FCC M3 Limits (V/m)	Category
Ch 384	72.9	1.0	72.9	63.1 to 112.2	M3

The probe rotation was done at the center grid 5 for Channel 384, E field.

Company Confidential

WR-824.002

25 August 2005

28 (50)

Ver 2.0

Accredited Laboratory Certificate Number: 1819-01

11. MEASUREMENT UNCERTAINTY

HAC Uncertainty	Budget	<u> </u>		<u> </u>					
Error Description	Uncertainty value	Prob. Dist.	Div.	(ci) E	(ci) H	Std. Unc. E	Std. Unc. H	Squared E	Squared H
Measurement System									
Probe Calibration	5.1	N	1	1	1	5.1	5.1	26.0	26.0
Axial Isotropy	4.7	R	1.7321	1	1	2.7	2.7	7.4	7.4
Sensor Displacement	16.5	R	1.7321	1	0.145	9.5	1.4	90.7	1.9
Boundary Effects	2.4	R	1.7321	1	1	1.4	1.4	1.9	1.9
Linearity	4.7	R	1.7321	1	1	2.7	2.7	7.4	7.4
Scaling to Peak Envelope Power	2	R	1.7321	1	1	1.2	1.2	1.3	1.3
System Detection Limit	1	R	1.7321	1	1	0.6	0.6	0.3	0.3
Readout Electronics	0.3	N	1	1	1	0.3	0.3	0.1	0.1
Response Time	0.8	R	1.7321	1	1	0.5	0.5	0.2	0.2
Integration Time	2.6	R	1.7321	1	1	1.5	1.5	2.3	2.3
RF Ambient Conditions	3	R	1.7321	1	1	1.7	1.7	3.0	3.0
RF Reflections	12	R	1.7321	1	1	6.9	6.9	48.0	48.0
Probe Positioner	1.2	R	1.7321	1	0.67	0.7	0.5	0.5	0.2
Probe Positioning	4.7	R	1.7321	1	0.67	2.7	1.8	7.4	3.3
Extrap. And Interpolation	1	R	1.7321	1	1	0.6	0.6	0.3	0.3
Test Sample Related								0.0	0.0
Device Positioning Vertical	10	R	1.7321	1	0.67	2.7	1.8	7.4	3.3
Device Positioning Lateral	10	R	1.7321	1	1	0.6	0.6	0.3	0.3
Device Holder	2.4	R	1.7321	1	1	1.4	1.4	1.9	1.9
Power Drift	5	R	1.7321	1	1	2.9	2.9	8.3	8.3
Phantom and Setup Related								0.0	0.0
Phantom Thickness	2.4	R	1.7321	1	0.67	1.4	0.9	1.9	0.9
Combined Std. Ur	ncertainty							16.6	12.8
Expanded Std. Uncerta (k=2)	ainty on Field							33.2%	

Company Confidential

WR-824.002

25 August 2005

29 (50)

Ver 2.0

Accredited Laboratory Certificate Number: 1819-01

APPENDIX A: VALIDATIONS SCANS

Date/Time: 8/15/2005 1:41:34 PM Test Laboratory: TCC Dallas

835MHz, E field, CW Validation

Communication System: CW; Frequency: 835 MHz;Duty Cycle: 1:1 DASY4 Configuration:

- Probe: ER3DV6 - SN2337; ConvF(1, 1, 1); Calibrated: 1/31/2005

- Sensor-Surface: (Fix Surface)

- Electronics: DAE3 Sn389; Calibrated: 1/12/2005

- Phantom: SAM3 Cover FreeSpace Only; Phantom section: Table Section

- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Power Drift = 0.0618 dB

HAC Procedure/Hearing Aid Compatibility Test 0 deg (81x401x1): Measurement grid: dx=5mm, dy=5mm Maximum value of Total field (slot averaged) = 166.0 V/m

Hearing Aid Near-Field Category: M2 (AWF 0 dB)

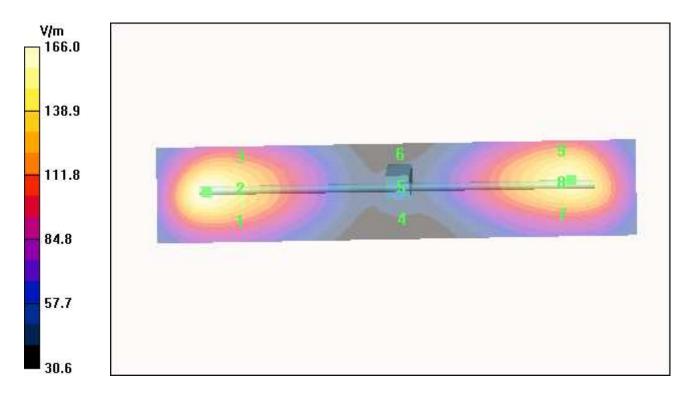
E in V/m (Time averaged) E in V/m (Slot averaged)

Grid 1	Grid 2	Grid 3
140.7	166.0	153.4
Grid 4	Grid 5	Grid 6
75.3	90.9	88.6
75.3 Grid 7	90.9 Grid 8	88.6 Grid 9

Grid 1	Grid 2	Grid 3
140.7	166.0	153.4
Grid 4	Grid 5	Grid 6
75.3	90.9	88.6
75.3 Grid 7	90.9 Grid 8	88.6 Grid 9

Company Confidential

WR-824.002


25 August 2005

30 (50)

Ver 2.0

Accredited Laboratory Certificate Number: 1819-01

Company Confidential

WR-824.002

25 August 2005

31 (50)

Ver 2.0

Accredited Laboratory Certificate Number: 1819-01

Date/Time: 8/15/2005 2:30:03 PM Test Laboratory: TCC Dallas

835MHz, H field, CW Validation

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

DASY4 Configuration:

- Probe: H3DV6 - SN6155; ; Calibrated: 2/16/2005

- Sensor-Surface: (Fix Surface)

- Electronics: DAE3 Sn389; Calibrated: 1/12/2005

- Phantom: SAM3 Cover FreeSpace Only; Phantom section: Table Section

- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Power Drift = 0.0329 dB

HAC Procedure/Hearing Aid Compatibility Test 0 deg (81x401x1): Measurement grid: dx=5mm, dy=5mm Maximum value of Total field (slot averaged) = 0.435 A/m

Hearing Aid Near-Field Category: M2 (AWF 0 dB)

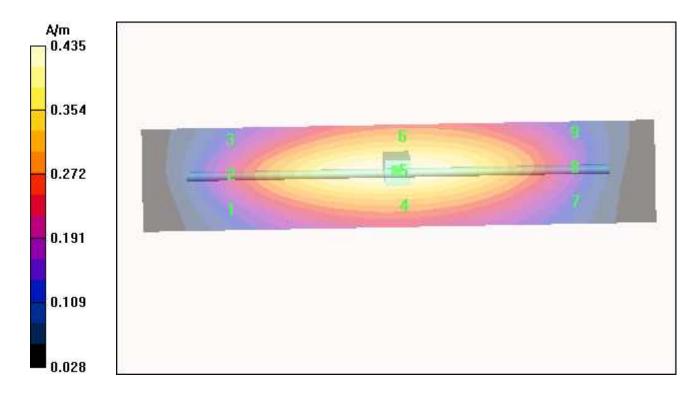
H in A/m (Time averaged) H in A/m (Slot averaged)

Grid 1	Grid 2	Grid 3
0.313	0.381	0.350
Grid 4	Grid 5	Grid 6
0 355	0.435	0 407
0.000	0.700	0.707
	Grid 8	

Grid 1	Grid 2	Grid 3
0.313	0.381	0.350
Grid 4	Grid 5	Grid 6
0.355	0.435	0 407
0.00) - -	5. 707
	Grid 8	

Company Confidential

WR-824.002


25 August 2005

32 (50)

Ver 2.0

Accredited Laboratory Certificate Number: 1819-01

Company Confidential

WR-824.002

25 August 2005

33 (50)

Ver 2.0

Accredited Laboratory Certificate Number: 1819-01

Nur

Date/Time: 8/15/2005 3:34:06 PM Test Laboratory: TCC Dallas

1880MHz, E field, CW Validation

Communication System: CW; Frequency: 1880 MHz; Duty Cycle: 1:1

DASY4 Configuration:

- Probe: ER3DV6 - SN2337; ConvF(1, 1, 1); Calibrated: 1/31/2005

- Sensor-Surface: (Fix Surface)

- Electronics: DAE3 Sn389; Calibrated: 1/12/2005

- Phantom: SAM3 Cover FreeSpace Only; Phantom section: Table Section

- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Power Drift = 0.0316 dB

HAC Procedure/Hearing Aid Compatibility Test 0 deg (81x181x1): Measurement grid: dx=5mm, dy=5mm Maximum value of Total field (slot averaged) = 128.5 V/m

Hearing Aid Near-Field Category: M2 (AWF 0 dB)

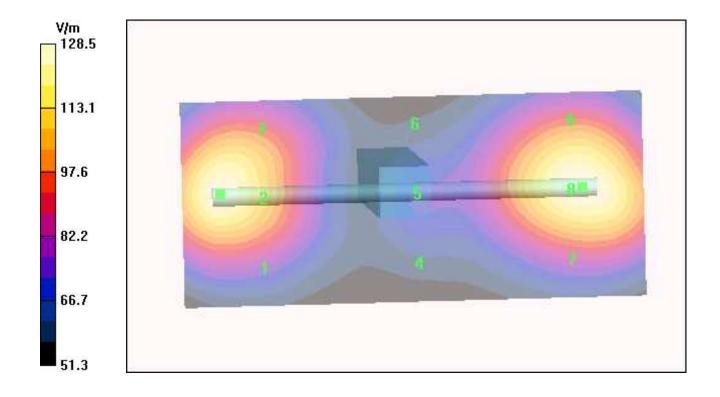
E in V/m (Time averaged) E in V/m (Slot averaged)

Grid 1	Grid 2	Grid 3
101.1	127.3	121.1
Grid 4	Grid 5	Grid 6
73.7	85.2	82.1
73.7 Grid 7	85.2 Grid 8	82.1 Grid 9

	Grid 1	Grid 2	Grid 3
1	101.1	127.3	121.1
	Grid 4	Grid 5	Grid 6
7	73.7	85.2	82.1
F	73.7 Grid 7	85.2 Grid 8	82.1 Grid 9

Company Confidential

WR-824.002


25 August 2005

34 (50)

Accredited Laboratory Certificate
Number: 1819-01

Ver 2.0

Company Confidential

WR-824.002

25 August 2005

35 (50)

Ver 2.0

Accredited Laboratory Certificate Number: 1819-01

Date/Time: 8/15/2005 2:52:50 PM Test Laboratory: TCC Dallas

1880MHz, H field, CW Validation

Communication System: CW; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³

Liquid Temperature:

DASY4 Configuration:

- Probe: H3DV6 - SN6155; ; Calibrated: 2/16/2005

- Sensor-Surface: (Fix Surface)

- Electronics: DAE3 Sn389; Calibrated: 1/12/2005

- Phantom: SAM3 Cover FreeSpace Only; Phantom section: Table Section

- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

HAC Procedure/Hearing Aid Compatibility Test 0 deg (81x181x1): Measurement grid: dx=5mm, dy=5mm

Maximum value of Total field (slot averaged) = 0.412 A/m Hearing Aid Near-Field Category: M2 (AWF 0 dB)

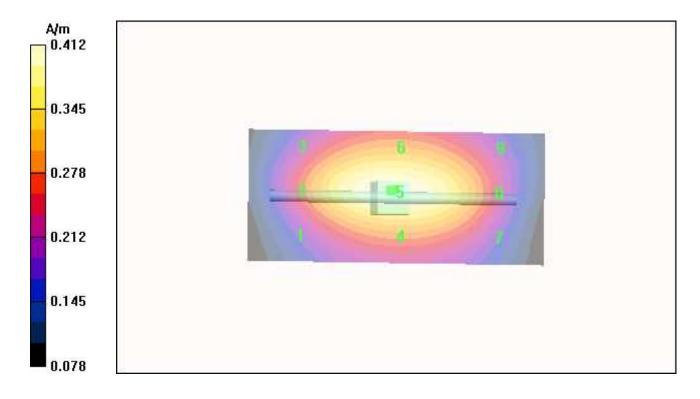
H in A/m (Time averaged) H in A/m (Slot averaged)

Grid 1	Grid 2	Grid 3
0.305	0.379	0.356
Grid 4	Grid 5	Grid 6
0.342	0 442	0 207
0.342	0.412	U.30 <i>1</i>
Grid 7		

Grid 1	Grid 2	Grid 3
0.305	0.379	0.356
Grid 4	Grid 5	Grid 6
0 342	0.412	0 387
0.342	J. T	0.5
	Grid 8	

Company Confidential

WR-824.002


25 August 2005

36 (50)

Ver 2.0

Accredited Laboratory Certificate Number: 1819-01

TCC

Test & Certification Center (TCC) - Dallas

Company Confidential

WR-824.002

25 August 2005

37 (50)

Accredited Laboratory Certificate Number: 1819-01 Ver 2.0

APPENDIX B: MEASUREMENT SCANS

Company Confidential

WR-824.002

25 August 2005

38 (50)

Ver 2.0

Accredited Laboratory Certificate Number: 1819-01

Date/Time: 8/17/2005 4:32:37 PM Test Laboratory: TCC Dallas

RM-41, CDMA800, Ch1013, Whip Extend position, E field

Communication System: CDMA800; Frequency: 824.7 MHz;Duty Cycle: 1:1

DASY4 Configuration:

- Probe: ER3DV6 - SN2337; ConvF(1, 1, 1); Calibrated: 1/31/2005

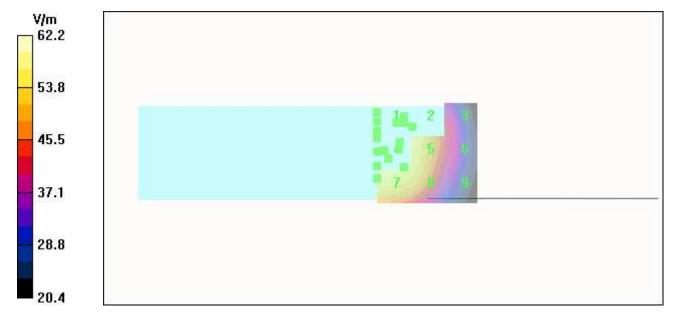
- Sensor-Surface: (Fix Surface)

- Electronics: DAE3 Sn389; Calibrated: 1/12/2005

- Phantom: SAM3 Cover FreeSpace Only; Phantom section: Table Section

- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Power Drift = 0.0462 dB


HAC Procedure/Hearing Aid Compatibility Test (251x251x1): Measurement grid: dx=2mm, dy=2mm

Maximum value of Total field (slot averaged) = 58.6 V/m Hearing Aid Near-Field Category: M4 (AWF 0 dB)

E in V/m (Time averaged) E in V/m (Slot averaged)

Grid 1 62.2	Grid 2 59.2	Grid 3 43.4
Grid 4	Grid 5	Grid 6
60.4	58.4	43.4
	0 0 1 1	
Grid 7	Grid 8	Grid 9

Grid 1	Grid 2	Grid 3
62.2	59.2	43.4
Grid 4	Grid 5	Grid 6
60.4	58.4	43.4
		43.4 Grid 9

Company Confidential

WR-824.002

25 August 2005

39 (50)

Ver 2.0

Accredited Laboratory Certificate Number: 1819-01

Date/Time: 8/18/2005 10:47:11 AM Test Laboratory: TCC Dallas

RM-41, CDMA800, Ch384, Whip Extend position, E field

Communication System: CDMA800; Frequency: 836.52 MHz; Duty Cycle: 1:1

DASY4 Configuration:

- Probe: ER3DV6 - SN2337; ConvF(1, 1, 1); Calibrated: 1/31/2005

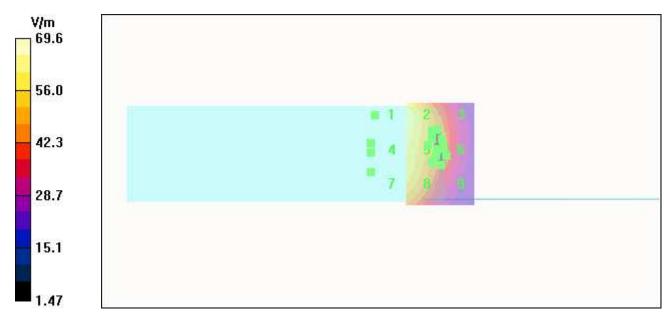
- Sensor-Surface: (Fix Surface)

- Electronics: DAE3 Sn389; Calibrated: 1/12/2005

- Phantom: SAM3 Cover FreeSpace Only; Phantom section: Table Section

- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Power Drift = 0.134 dB


HAC Procedure/Hearing Aid Compatibility Test (251x251x1): Measurement grid: dx=2mm, dy=2mm

Maximum value of Total field (slot averaged) = 67.7 V/m Hearing Aid Near-Field Category: M3 (AWF 0 dB)

E in V/m (Time averaged) E in V/m (Slot averaged)

Grid 1	Grid 2	Grid 3
69.6	64.5	54.9
Grid 4	Grid 5	Grid 6
65.8	67.7	58.6
65.8 Grid 7		58.6 Grid 9

Grid 1	Grid 2	Grid 3
69.6	64.5	54.9
Grid 4	Grid 5	Grid 6
65.8	67.7	58.6
Grid 7	Grid 8	Grid 9

Company Confidential

WR-824.002

25 August 2005

40 (50)

Ver 2.0

Accredited Laboratory Certificate Number: 1819-01

Date/Time: 8/18/2005 11:12:07 AM Test Laboratory: TCC Dallas

RM-41, CDMA800, Ch777, Whip Extend position, E field

Communication System: CDMA800; Frequency: 848.31 MHz; Duty Cycle: 1:1

DASY4 Configuration:

- Probe: ER3DV6 - SN2337; ConvF(1, 1, 1); Calibrated: 1/31/2005

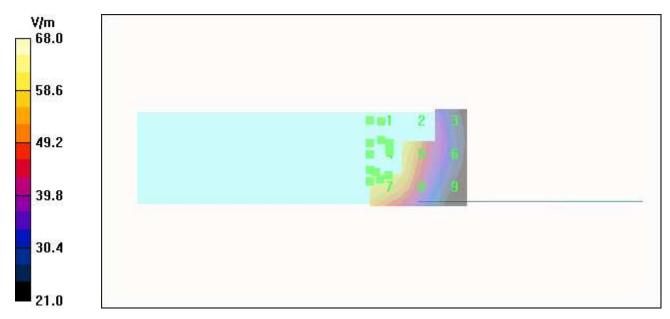
- Sensor-Surface: (Fix Surface)

- Electronics: DAE3 Sn389; Calibrated: 1/12/2005

- Phantom: SAM3 Cover FreeSpace Only; Phantom section: Table Section

- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Power Drift = 0.156 dB


HAC Procedure/Hearing Aid Compatibility Test (251x251x1): Measurement grid: dx=2mm, dy=2mm

Maximum value of Total field (slot averaged) = 61.5 V/m Hearing Aid Near-Field Category: M4 (AWF 0 dB)

E in V/m (Time averaged) E in V/m (Slot averaged)

Grid 1	Grid 2	Grid 3
68.0	62.4	41.7
Grid 4	Grid 5	Grid 6
63.8	59.8	41.3
		41.3 Grid 9

Grid 1	Grid 2	Grid 3
68.0	62.4	41.7
Grid 4	Grid 5	Grid 6
63.8	59.8	41.3
63.8 Grid 7		

Company Confidential

WR-824.002

25 August 2005

41 (50)

Ver 2.0

Accredited Laboratory Certificate Number: 1819-01

Date/Time: 8/17/2005 12:01:56 PM

Test Laboratory: TCC Dallas

RM-41, CDMA800, Ch1013, Whip Extend position, H field

Communication System: CDMA800; Frequency: 824.7 MHz;Duty Cycle: 1:1

DASY4 Configuration:

- Probe: H3DV6 - SN6155; ; Calibrated: 2/16/2005

- Sensor-Surface: (Fix Surface)

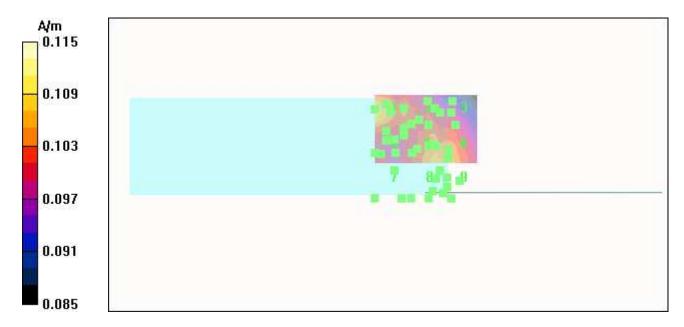
- Electronics: DAE3 Sn389; Calibrated: 1/12/2005

- Phantom: SAM3 Cover FreeSpace Only; Phantom section: Table Section

- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Power Drift = -0.248 dB

HAC Procedure/Hearing Aid Compatibility Test (251x251x1): Measurement grid: dx=2mm, dy=2mm


Maximum value of Total field (slot averaged) = 0.109 A/m

Hearing Aid Near-Field Category: M4 (AWF 0 dB)

H in A/m (Time averaged) H in A/m (Slot averaged)

Grid 1	Grid 2	Grid 3
0.109	0.103	0.102
Grid 4	Grid 5	Grid 6
0.102	0.106	0.106
Grid 7	Grid 8	Grid 9

Grid 1	Grid 2	Grid 3
0.109	0.103	0.102
Grid 4	Grid 5	Grid 6
0.102	0.106	0.106
0.102 Grid 7	0.106 Grid 8	0.106 Grid 9

Company Confidential

WR-824.002

25 August 2005

42 (50)

Ver 2.0

Accredited Laboratory Certificate Number: 1819-01

Date/Time: 8/17/2005 12:50:14 PM Test Laboratory: TCC Dallas

RM-41, CDMA800, Ch384, Whip Extend position, H field

Communication System: CDMA800; Frequency: 836.52 MHz; Duty Cycle: 1:1

DASY4 Configuration:

- Probe: H3DV6 - SN6155; ; Calibrated: 2/16/2005

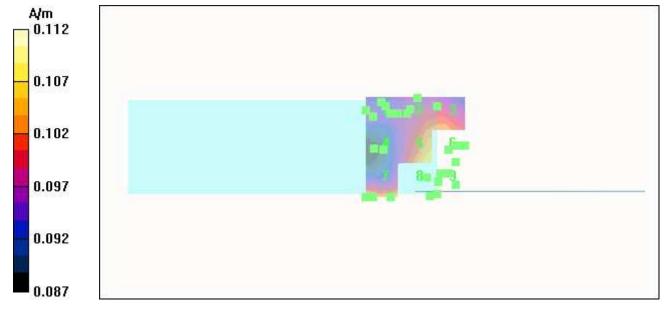
- Sensor-Surface: (Fix Surface)

- Electronics: DAE3 Sn389; Calibrated: 1/12/2005

- Phantom: SAM3 Cover FreeSpace Only; Phantom section: Table Section

- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Power Drift = 0.0205 dB


HAC Procedure/Hearing Aid Compatibility Test (251x251x1): Measurement grid: dx=2mm, dy=2mm

Maximum value of Total field (slot averaged) = 0.107 A/mHearing Aid Near-Field Category: M4 (AWF 0 dB)

H in A/m (Time averaged) H in A/m (Slot averaged)

Grid 1	Grid 2	Grid 3
0.098	0.103	0.104
Grid 4	Grid 5	Grid 6
0.096	0.107	0.109
0.096 Grid 7		0.109 Grid 9

Grid 1	Grid 2	Grid 3
0.098	0.103	0.104
Grid 4	Grid 5	Grid 6
0.096	0.107	0.109
Grid 7	Grid 8	Grid 9
0.106	0.111	0.112

Company Confidential

WR-824.002

25 August 2005

43 (50)

Ver 2.0

Accredited Laboratory Certificate Number: 1819-01

Date/Time: 8/17/2005 1:13:03 PM Test Laboratory: TCC Dallas

RM-41, CDMA800, Ch777, Whip Extend position, H field

Communication System: CDMA800; Frequency: 848.31 MHz; Duty Cycle: 1:1

DASY4 Configuration:

- Probe: H3DV6 - SN6155; ; Calibrated: 2/16/2005

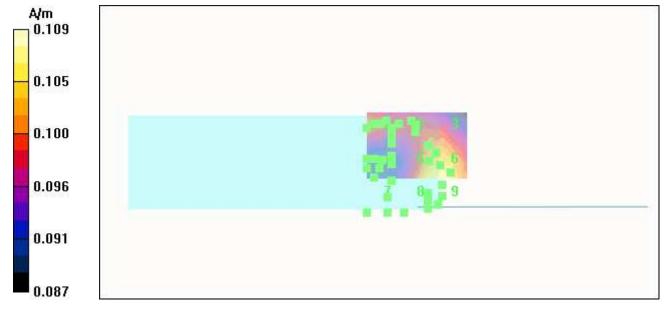
- Sensor-Surface: (Fix Surface)

- Electronics: DAE3 Sn389; Calibrated: 1/12/2005

- Phantom: SAM3 Cover FreeSpace Only; Phantom section: Table Section

- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Power Drift = -0.11 dB


HAC Procedure/Hearing Aid Compatibility Test (251x251x1): Measurement grid: dx=2mm, dy=2mm

Maximum value of Total field (slot averaged) = 0.107 A/mHearing Aid Near-Field Category: M4 (AWF 0 dB)

H in A/m (Time averaged) H in A/m (Slot averaged)

Grid 1	Grid 2	Grid 3
0.102	0.101	0.102
Grid 4	Grid 5	Grid 6
0.095	0.106	0.107
	0.106 Grid 8	

Grid 1	Grid 2	Grid 3
0.102	0.101	0.102
Grid 4	Grid 5	Grid 6
0.095	0.106	0.107
0.095 Grid 7	0.106 Grid 8	0.107 Grid 9

Company Confidential

WR-824.002

25 August 2005

44 (50)

Ver 2.0

Accredited Laboratory Certificate Number: 1819-01

Date/Time: 8/17/2005 3:17:18 PM Test Laboratory: TCC Dallas

RM-41, CDMA1900, Ch25, Whip Extend position, E field

Communication System: CDMA1900; Frequency: 1851.25 MHz; Duty Cycle: 1:1

DASY4 Configuration:

- Probe: ER3DV6 - SN2337; ConvF(1, 1, 1); Calibrated: 1/31/2005

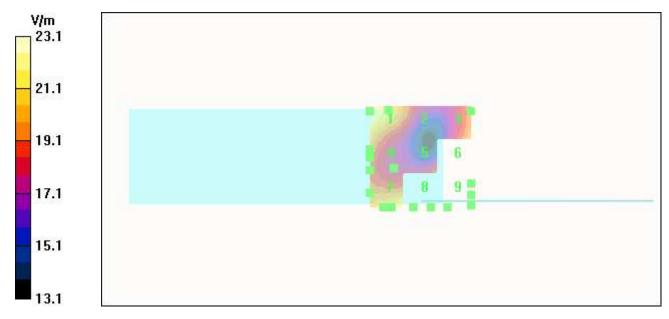
- Sensor-Surface: (Fix Surface)

- Electronics: DAE3 Sn389; Calibrated: 1/12/2005

- Phantom: SAM3 Cover FreeSpace Only; Phantom section: Table Section

- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Power Drift = -0.378 dB


HAC Procedure/Hearing Aid Compatibility Test (251x251x1): Measurement grid: dx=2mm, dy=2mm

E in V/m (Time averaged) E in V/m (Slot averaged)

Maximum value of Total field (slot averaged) = 23.1 V/m Hearing Aid Near-Field Category: M4 (AWF 0 dB)

Grid 1	Grid 2	Grid 3
23.1	19.7	20.6
Grid 4	Grid 5	Grid 6
20.5	19.6	22.8
Grid 7	Grid 8	Grid 9

Grid 1	Grid 2	Grid 3
23.1	19.7	20.6
Grid 4	Grid 5	Grid 6
20.5	19.6	22.8
Grid 7	Grid 8	Grid 9
22.2	22.5	23.1

Company Confidential

WR-824.002

25 August 2005

45 (50)

Ver 2.0

Accredited Laboratory Certificate Number: 1819-01

Date/Time: 8/17/2005 3:39:36 PM Test Laboratory: TCC Dallas

RM-41, CDMA1900, Ch600, Whip Extend position, E field

Communication System: CDMA1900; Frequency: 1880 MHz; Duty Cycle: 1:1

DASY4 Configuration:

- Probe: ER3DV6 - SN2337; ConvF(1, 1, 1); Calibrated: 1/31/2005

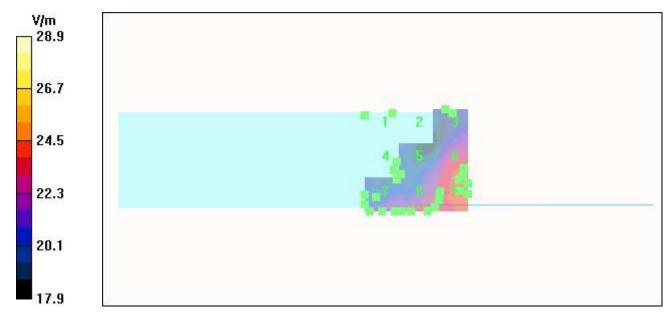
- Sensor-Surface: (Fix Surface)

- Electronics: DAE3 Sn389; Calibrated: 1/12/2005

- Phantom: SAM3 Cover FreeSpace Only; Phantom section: Table Section

- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Power Drift = 0.177 dB


HAC Procedure/Hearing Aid Compatibility Test (251x251x1): Measurement grid: dx=2mm, dy=2mm

Maximum value of Total field (slot averaged) = 24.4 V/m Hearing Aid Near-Field Category: M4 (AWF 0 dB)

E in V/m (Time averaged) E in V/m (Slot averaged)

Grid 1	Grid 2	Grid 3
28.9	26.0	21.7
Grid 4	Grid 5	Grid 6
24.9	22.1	24.2
24.5	 . I	
Grid 7		

Grid 1	Grid 2	Grid 3
28.9	26.0	21.7
Grid 4	Grid 5	Grid 6
24.9	22.1	24.2
0:17	O =: al O	0-:-1-0
Grid 7	Gria 8	Gria 9

Company Confidential

WR-824.002

25 August 2005

46 (50)

Ver 2.0

Accredited Laboratory Certificate Number: 1819-01

Date/Time: 8/17/2005 4:07:26 PM Test Laboratory: TCC Dallas

RM-41, CDMA1900, Ch1175, Whip Extend position, E field

Communication System: CDMA1900; Frequency: 1908.75 MHz; Duty Cycle: 1:1

DASY4 Configuration:

- Probe: ER3DV6 - SN2337; ConvF(1, 1, 1); Calibrated: 1/31/2005

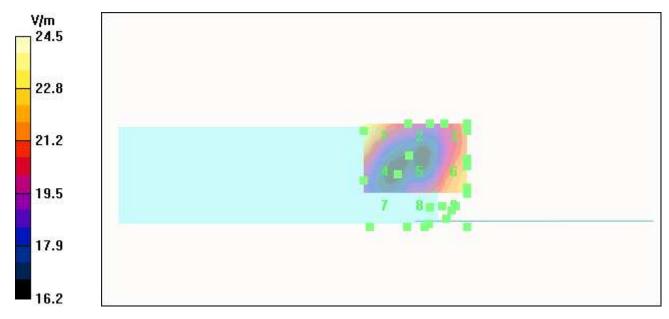
- Sensor-Surface: (Fix Surface)

- Electronics: DAE3 Sn389; Calibrated: 1/12/2005

- Phantom: SAM3 Cover FreeSpace Only; Phantom section: Table Section

- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Power Drift = -0.0947 dB


HAC Procedure/Hearing Aid Compatibility Test (251x251x1): Measurement grid: dx=2mm, dy=2mm

Maximum value of Total field (slot averaged) = 24.0 V/m Hearing Aid Near-Field Category: M4 (AWF 0 dB)

E in V/m (Time averaged) E in V/m (Slot averaged)

Grid 1	Grid 2	Grid 3
24.0	20.5	22.0
Grid 4	Grid 5	Grid 6
21.1	20.7	22.9
21.1 Grid 7		22.9 Grid 9

Grid 1	Grid 2	Grid 3
24.0	20.5	22.0
Grid 4	Grid 5	Grid 6
21.1	20.7	22.9
21.1 Grid 7		22.9 Grid 9

Company Confidential

WR-824.002

25 August 2005

47 (50)

Ver 2.0

Accredited Laboratory Certificate Number: 1819-01

Date/Time: 8/17/2005 1:39:30 PM Test Laboratory: TCC Dallas

RM-41, CDMA1900, Ch25, Whip Extend position, H field

Communication System: CDMA1900; Frequency: 1851.25 MHz; Duty Cycle: 1:1

DASY4 Configuration:

- Probe: H3DV6 - SN6155; ; Calibrated: 2/16/2005

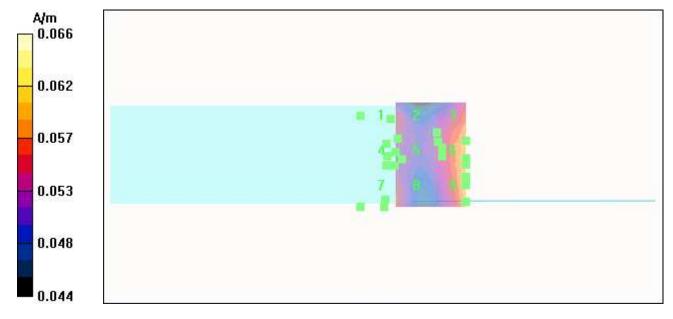
- Sensor-Surface: (Fix Surface)

- Electronics: DAE3 Sn389; Calibrated: 1/12/2005

- Phantom: SAM3 Cover FreeSpace Only; Phantom section: Table Section

- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Power Drift = -0.187 dB


HAC Procedure/Hearing Aid Compatibility Test (251x251x1): Measurement grid: dx=2mm, dy=2mm

Maximum value of Total field (slot averaged) = 0.061 A/m Hearing Aid Near-Field Category: M4 (AWF 0 dB)

H in A/m (Time averaged) H in A/m (Slot averaged)

Grid 1	Grid 2	Grid 3
0.061	0.055	0.059
Grid 4	Grid 5	Grid 6
0.057	0.054	0.061
Grid 7	Grid 8	Grid 9

Grid 1	Grid 2	Grid 3
0.061	0.055	0.059
Grid 4	Grid 5	Grid 6
0.057	0.054	0.061
<u> </u>		0.00.
Grid 7	Grid 8	Grid 9

Company Confidential

WR-824.002

25 August 2005

48 (50)

Ver 2.0

Accredited Laboratory Certificate Number: 1819-01

Date/Time: 8/17/2005 2:03:38 PM Test Laboratory: TCC Dallas

RM-41, CDMA1900, Ch600, Whip Extend position, H field

Communication System: CDMA1900; Frequency: 1880 MHz; Duty Cycle: 1:1

DASY4 Configuration:

- Probe: H3DV6 - SN6155; ; Calibrated: 2/16/2005

- Sensor-Surface: (Fix Surface)

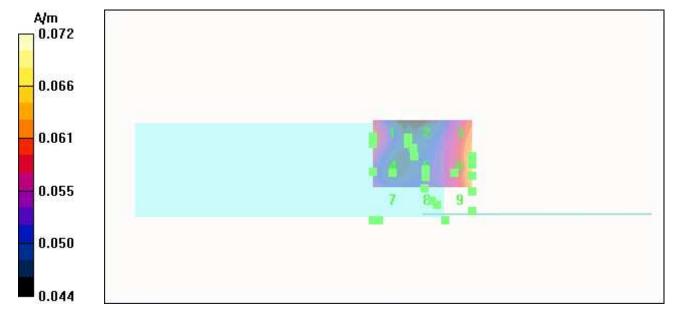
- Electronics: DAE3 Sn389; Calibrated: 1/12/2005

- Phantom: SAM3 Cover FreeSpace Only; Phantom section: Table Section

- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Power Drift = -0.196 dB

HAC Procedure/Hearing Aid Compatibility Test (251x251x1): Measurement grid: dx=2mm, dy=2mm


Maximum value of Total field (slot averaged) = 0.064 A/m

Hearing Aid Near-Field Category: M4 (AWF 0 dB)

H in A/m (Time averaged) H in A/m (Slot averaged)

Grid 1	Grid 2	Grid 3
0.062	0.053	0.064
Grid 4	Grid 5	Grid 6
0.059	0.053	0.064
Grid 7	Grid 8	Grid 9

Grid 1	Grid 2	Grid 3
0.062	0.053	0.064
Grid 4	Grid 5	Grid 6
0.059	0.053	0.064
0.059 Grid 7	0.053 Grid 8	0.064 Grid 9

Company Confidential

WR-824.002

25 August 2005

49 (50)

Ver 2.0

Accredited Laboratory Certificate Number: 1819-01

Date/Time: 8/17/2005 2:27:57 PM Test Laboratory: TCC Dallas

RM-41, CDMA1900, Ch1175, Whip Extend position, H field

Communication System: CDMA1900; Frequency: 1908.75 MHz;Duty Cycle: 1:1

DASY4 Configuration:

- Probe: H3DV6 - SN6155; ; Calibrated: 2/16/2005

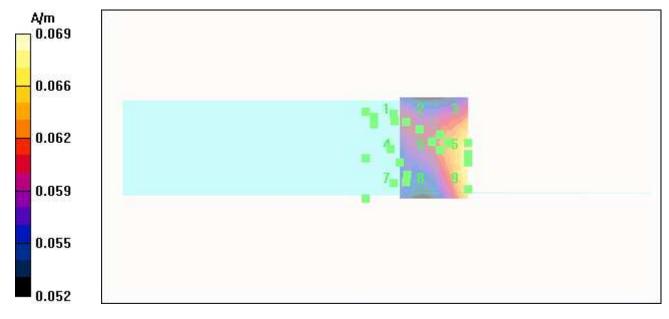
- Sensor-Surface: (Fix Surface)

- Electronics: DAE3 Sn389; Calibrated: 1/12/2005

- Phantom: SAM3 Cover FreeSpace Only; Phantom section: Table Section

- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Power Drift = 0.298 dB


HAC Procedure/Hearing Aid Compatibility Test (251x251x1): Measurement grid: dx=2mm, dy=2mm

H in A/m (Time averaged) H in A/m (Slot averaged)

Maximum value of Total field (slot averaged) = 0.068 A/m Hearing Aid Near-Field Category: M4 (AWF 0 dB)

Grid 1	Grid 2	Grid 3
0.068	0.061	0.065
Grid 4	Grid 5	Grid 6
0.061	0.061	0.068
Grid 7	Grid 8	Grid 9
0.069	0.059	0.067

Grid 1	Grid 2	Grid 3
0.068	0.061	0.065
Grid 4	Grid 5	Grid 6
0.061	0.061	0.068
Grid 7	Grid 8	Grid 9

Company Confidential

WR-824.002

25 August 2005

50 (50)

Ver 2.0

Accredited Laboratory Certificate Number: 1819-01

APPENDIX C: PROBE CALIBRATION REPORTS AND DIPOLE CALIBRATION REPORTS

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client

Nokia TX

Certificate No: ER3-2337_Jan05

CALIBRATION CERTIFICATE

Object ER3DV6 - SN:2337

Calibration procedure(s) QA CAL-02.v4

Calibration procedure for E-field probes optimized for close near field

evaluations in air

Calibration date: January 31, 2005

Condition of the calibrated item In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	5-May-04 (METAS, No. 251-00388)	May-05
Power sensor E4412A	MY41495277	5-May-04 (METAS, No. 251-00388)	May-05
Reference 3 dB Attenuator	SN: S5054 (3c)	10-Aug-04 (METAS, No. 251-00403)	Aug-05
Reference 20 dB Attenuator	SN: S5086 (20b)	3-May-04 (METAS, No. 251-00389)	May-05
Reference 30 dB Attenuator	SN: S5129 (30b)	10-Aug-04 (METAS, No. 251-00404)	Aug-05
Reference Probe ER3DV6	SN: 2328	6-Oct-04 (SPEAG, No. ER3-2328_Oct04)	Oct-05
DAE4	SN: 617	19-Jan-05 (SPEAG, No. DAE4-617_Jan05)	Jan-06
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092180	18-Sep-02 (SPEAG, in house check Oct-03)	In house check: Oct 05
RF generator HP 8648C	US3642U01700	4-Aug-99 (SPEAG, in house check Dec-03)	In house check: Dec-05
Network Analyzer HP 8753E	US37390585	18-Oct-01 (SPEAG, in house check Nov-04)	In house check: Nov 05
	Name	Function	Signature
Calibrated by:	Katja Pokovic	Technical Manager	~77 . 117 L
		ne de la representa del Carde de la Receio de la compansión de la compansión de la compansión de la compansión	idai: Westy-
	elle facture of proteille and leaves and of the fact weaper/section		111
Approved by:	Niels Kuster	Quality Manager 🕺	1 145 ~
			/. / YOS \
		, 0	

Issued: February 19, 2005

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: ER3-2337_Jan05

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
S wiss Calibration Service

Accreditatio

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary:

NORMx,y,z sensitivity in free space

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., 9 = 0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot

coordinate system

Calibration is Performed According to the Following Standards:

a) IEEE Std 1309-1996, "IEEE Standard for calibration of electromagnetic field sensors and probes, excluding antennas, from 9 kHz to 40 GHz", 1996.

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 for XY sensors and 9 = 90 for Z sensor (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
- NORM(f)x,y,z = NORMx,y,z * frequency response (see Frequency Response Chart).
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency.
- Spherical isotropy (3D deviation from isotropy): in a locally homogeneous field realized using an open waveguide setup.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: ER3-2337 Jan05

Page 2 of 9

January 31, 2005

ER3DV6 SN:2337

Probe ER3DV6

SN:2337

Manufactured: Calibrated:

September 9, 2003 January 31, 2005

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

DASY - Parameters of Probe: ER3DV6 SN:2337

Sensitivity in Free Space $[\mu V/(V/m)^2]$

Diode Compression^A

NormX **1.51** ± 10.

1.51 ± 10.1 % (k=2)

DCP X

95 mV

NormY

1.43 ± 10.1 % (k=2)

DCP Y

95 mV

NormZ

1.58 ± 10.1 % (k=2)

DCP Z

97 mV

Frequency Correction

Х

0.0

Υ

0.0

Z

0.0

Sensor Offset

(Probe Tip to Sensor Center)

Χ

2.5 mm

Υ

2.5 mm

Ζ

2.5 mm

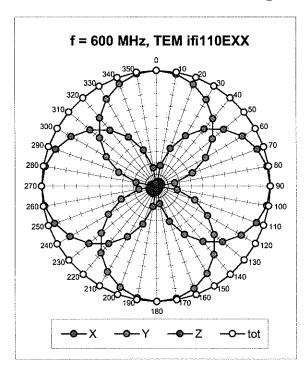
Connector Angle

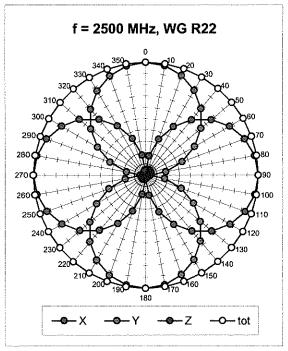
-25 °

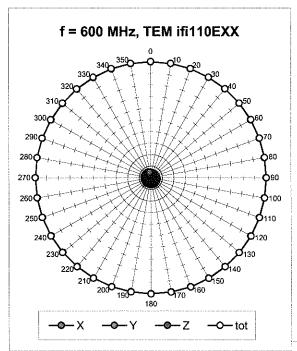

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

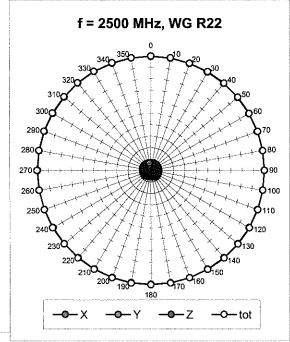
Certificate No: ER3-2337-Jan05

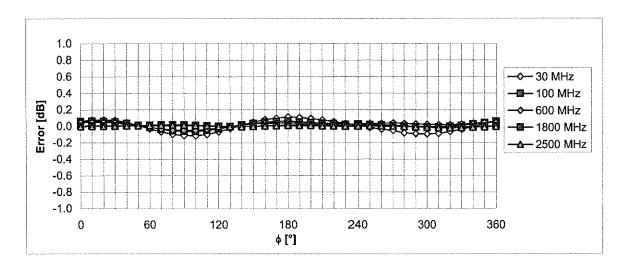
^A numerical linearization parameter: uncertainty not required


Frequency Response of E-Field

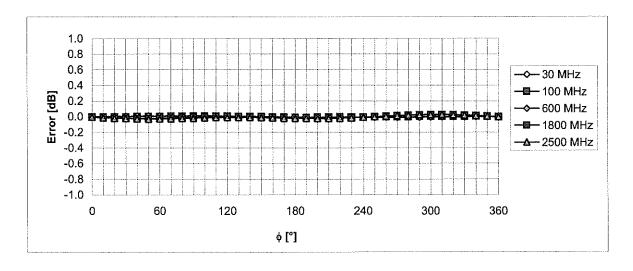

(TEM-Cell:ifi110 EXX, Waveguide R22)


Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Receiving Pattern (ϕ), θ = 0°

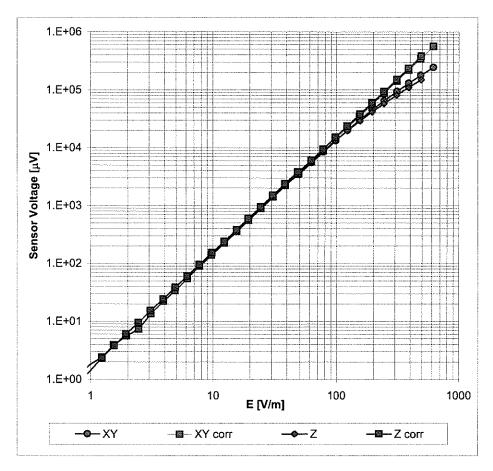


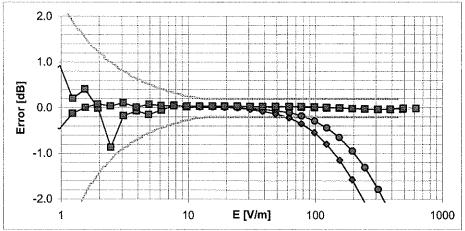
Receiving Pattern (ϕ), ϑ = 90°



Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

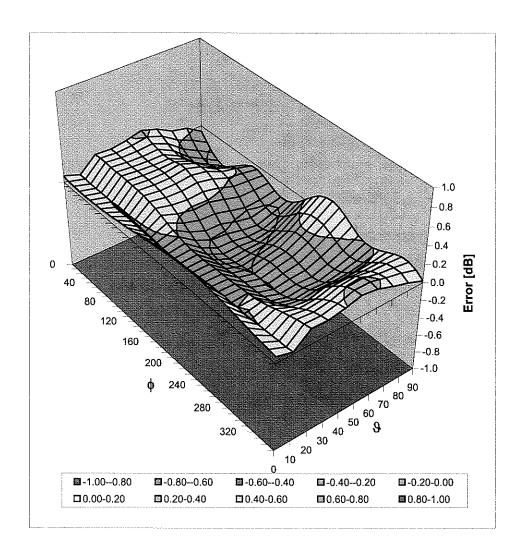
Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Receiving Pattern (ϕ), ϑ = 90°



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(E-field)


(Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Deviation from Isotropy in Air Error (ϕ, ϑ) , f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client

Nokia TX

Certificate No: H3-6155_Feb05

CALIBRATION CERTIFICATE

Object H3DV6 - SN:6155

Calibration procedure(s) QA CAL-03.v4

Calibration procedure for H-field probes optimized for close near field

evaluations in air

Calibration date: February 16, 2005

Condition of the calibrated item In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	5-May-04 (METAS, No. 251-00388)	May-05
Power sensor E4412A	MY41495277	5-May-04 (METAS, No. 251-00388)	May-05
Reference 3 dB Attenuator	SN: S5054 (3c)	10-Aug-04 (METAS, No. 251-00403)	Aug-05
Reference 20 dB Attenuator	SN: S5086 (20b)	3-May-04 (METAS, No. 251-00389)	May-05
Reference 30 dB Attenuator	SN: S5129 (30b)	10-Aug-04 (METAS, No. 251-00404)	Aug-05
Reference Probe H3DV6	SN: 6182	6-Oct-04 (SPEAG, No. H3-6182_Oct04)	Oct-05
DAE4	SN: 617	19-Jan-05 (SPEAG, No. DAE4-617_Jan05)	Jan-06
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092180	18-Sep-02 (SPEAG, in house check Oct-03)	In house check: Oct 05
RF generator HP 8648C	US3642U01700	4-Aug-99 (SPEAG, in house check Dec-03)	In house check: Dec-05
Network Analyzer HP 8753E	US37390585	18-Oct-01 (SPEAG, in house check Nov-04)	In house check: Nov 05
	Name	Function	Signature
Calibrated by:	Katja Pokovic	Technical Manager	Ŵ. 11L
			Man's Vert
		V	
Approved by:	Niels Kuster	Quality Manager /	1 Laster
		1991 T. (1991 T. (199	<i>J. J. QVD</i> \
			. 1000

Issued: February 19, 2005

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: H3-6155_Feb05

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary:

Polarization 9

NORMx,y,z sensitivity in free space

DCP diode Polarization φ φ rot

diode compression point φ rotation around probe axis

9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., 9 = 0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot

coordinate system

Calibration is Performed According to the Following Standards:

a) IEEE Std 1309-1996, "IEEE Standard for calibration of electromagnetic field sensors and probes, excluding antennas, from 9 kHz to 40 GHz", 1996.

Methods Applied and Interpretation of Parameters:

- X, Y,Z_a0a1a2: Assessed for E-field polarization θ = 90 for XY sensors and θ = 0 for Z sensor (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
- X,Y,Z(f)_a0a1a2= X,Y,Z_a0a1a2* frequency_response (see Frequency Response Chart).
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency.
- Spherical isotropy (3D deviation from isotropy): in a locally homogeneous field realized using an open waveguide setup.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the X_{a0a1a2} (no uncertainty required).

Certificate No: H3-6155_Feb05

Page 2 of 8

Probe H3DV6

SN:6155

Manufactured:

Calibrated:

June 22, 2004

February 16, 2005

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

DASY - Parameters of Probe: H3DV6 SN:6155

Sensitivity in Free Space [A/m / $\sqrt{(\mu V)}$]

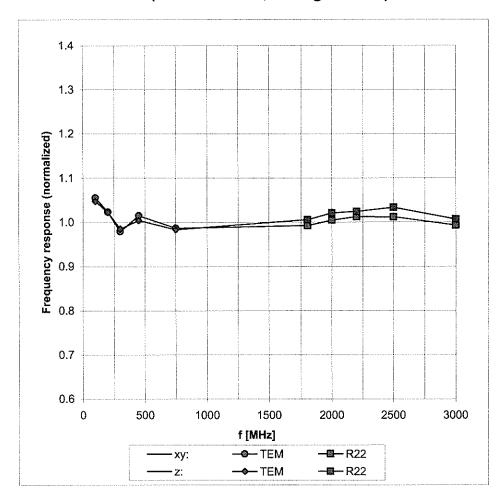
a0 a1 a2 X 2.719E-03 -7.681E-5 3.643E-5 ± 5.1 % (k=2) Y 2.743E-03 1.819E-5 -1.877E-5 ± 5.1 % (k=2) Z 2.974E-03 -4.287E-5 -1.156E-5 ± 5.1 % (k=2)

Diode Compression¹

DCP X **86** mV DCP Y **86** mV DCP Z **85** mV

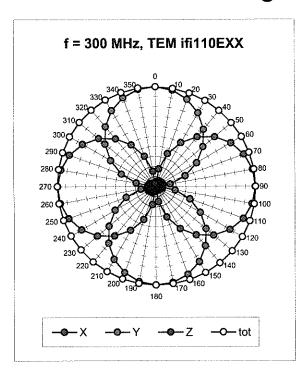
Sensor Offset (Probe Tip to Sensor Center)

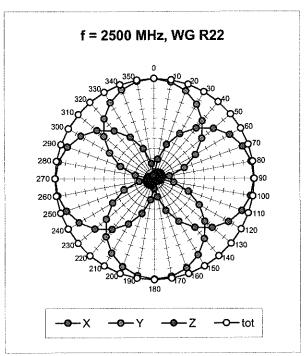
X 3.0 mm Y 3.0 mm Z 3.0 mm

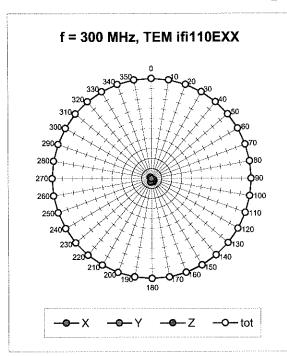

Connector Angle 319 °

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

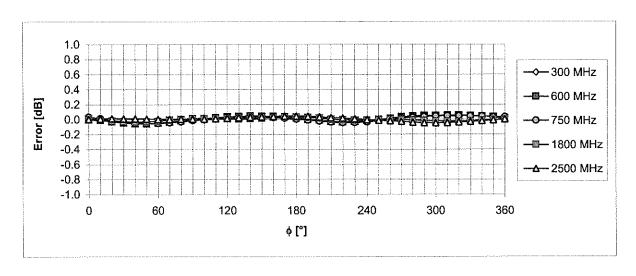
¹ numerical linearization parameter: uncertainty not required


Frequency Response of H-Field

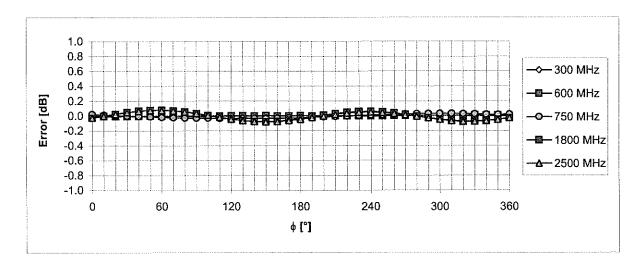

(TEM-Cell:ifi110, Waveguide R22)


Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Receiving Pattern (ϕ), θ = 90°

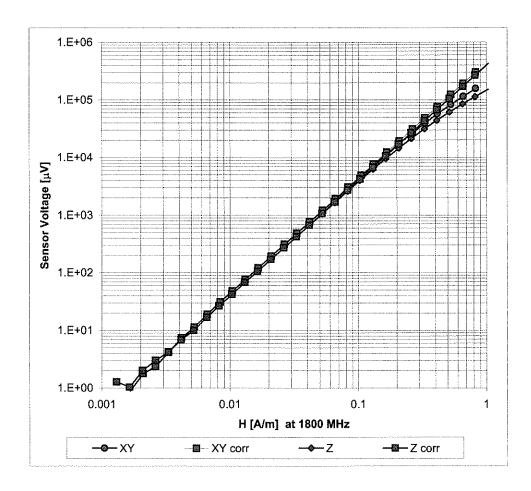


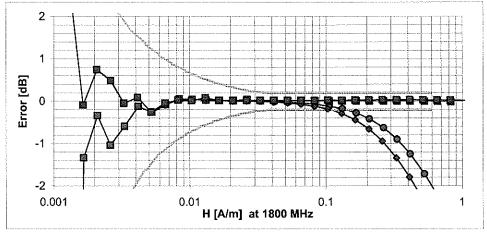
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$



Receiving Pattern (ϕ), θ = 90°

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(H-field)

(Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)