



### **HAC T-Coil Signal Test Report**

Salo\_HAC\_0739\_02 Date of report: 2007-10-01 Test report no.: **Template version:** 3.0 Number of pages: 26

TCC Salo **Nokia Corporation Testing laboratory:** Client: P.O. Box 86

12278 Scripps Summit Drive Joensuunkatu 7H / Kiila 1B SAN DIEGO CA. 92131 FIN-24101 SALO, FINLAND

Tel. +358 (0) 7180 08000

Tel. +1 858 831 5000 Fax. +358 (0) 7180 45220 Fax. +1 858 831 6500

Bill Griffin

**Product contact** Responsible test Ari Orte engineer: person:

Measurements made by: Virpi Tuominen RM-257 (Hearing aid mode active)

**Tested devices: QMNRM-257** FCC ID:

**Supplement reports:** Salo\_HAC\_0739\_01

**Testing has been** carried out in ANSI C63.19-2006 accordance with:

American National Standard for Methods of Measurement of Compatibility between Wireless

**Communications Devices and Hearing Aids** 

The documentation of the testing performed on the tested devices is archived for 15 years **Documentation:** 

at TCC Nokia.

**Test results:** The tested device complies with the requirements in respect of all parameters subject to the

test. The test results and statements relate only to the items tested. The test report shall not

be reproduced except in full, without written approval of the laboratory.

**Date and signatures:** 

For the contents:





### **CONTENTS**

| 1. SUMMARY OF HAC T-COIL SIGNAL TEST REPORT                             | 3  |
|-------------------------------------------------------------------------|----|
| 1.1 TEST DETAILS                                                        | 3  |
| 1.2.1 T-Coil Coupling Field Intensity                                   |    |
| 1.2.2 Frequency Response at Axial Measurement Point                     |    |
| 1.2.3 Signal Quality                                                    | 4  |
| 1.2.4 Overall HAC rating of the tested device                           |    |
| 2. DESCRIPTION OF THE EQUIPMENT UNDER TEST (EUT)                        | 4  |
| 2.1 PICTURE OF DEVICE                                                   | 4  |
| 3. TEST CONDITIONS                                                      | 5  |
| 3.1 Temperature and Humidity                                            | 5  |
| 3.2 WD CONTROL                                                          | 5  |
| 3.3 WD Parameters                                                       | 5  |
| 4. DESCRIPTION OF THE TEST EQUIPMENT                                    | 6  |
| 4.1 MEASUREMENT SYSTEM AND COMPONENTS                                   | 6  |
| 4.1.1 Audio Magnetic Probe AM1DV3                                       |    |
| 4.1.2 Audio Magnetic Measurement Instrument AMMI                        |    |
| 4.1.3 Audio Magnetic Calibration Coil AMCC                              | 7  |
| 4.1.4 Device Holder                                                     |    |
| 4.2 Verification of the System                                          | 8  |
| 5. DESCRIPTION OF THE TEST PROCEDURE                                    | 9  |
| 5.1 Test Arch and Device Holder                                         | 9  |
| 5.2 Test Positions                                                      | 9  |
| 5.3 T-coil Scan Procedures                                              |    |
| 5.4 Measurement procedure and used test signals                         |    |
| 5.5 T-coil Requirements and Category Limits                             | 10 |
| 6. MEASUREMENT UNCERTAINTY                                              | 12 |
| 7. RESULTS                                                              | 13 |
| APPENDIX A: MEASUREMENT SCANS                                           | 15 |
| ADDENDITY D. AUDIO MACNETIC DRODE AM1 DV2 C/N 2026 CALIDRATION DOCUMENT | 36 |
| APPENDIX B: AUDIO MAGNETIC PROBE AM1DV3 S/N 3036 CALIBRATION DOCUMENT   | 20 |





### 1. SUMMARY OF HAC T-COIL SIGNAL TEST REPORT

### 1.1 Test Details

| Period of test             | 2007-09-21 to 2007-09-24                   |
|----------------------------|--------------------------------------------|
| SN, HW, SW and EUT numbers | SN: 004401/01/111749/2, HW: 4604, SW: 4.40 |
| of tested device           |                                            |
| Batteries used in testing  | BL-4C, EUT: 11546, 11735                   |
| State of sample            | Prototype unit                             |
| Notes                      | AWF = -5 for GSM, 0 for WCDMA              |

## 1.2 Summary of T-Coil Test Results

## 1.2.1 T-Coil Coupling Field Intensity

### 1.2.1.1 Axial Field Intensity

| Mode           | Minimum limit<br>[dB (A/m)] | Result<br>[dB (A/m)] | Verdict |
|----------------|-----------------------------|----------------------|---------|
| GSM850         | -13                         | 0.07                 | Pass    |
| WCDMA1700/2100 | -13                         | -3.56                | Pass    |
| GSM1900        | -13                         | 0.03                 | Pass    |

## 1.2.1.2 Radial Field Intensity

| Mode           | Minimum limit<br>[dB (A/m)] | Minimum Result<br>[dB (A/m)] | Verdict |
|----------------|-----------------------------|------------------------------|---------|
| GSM850         | -18                         | -8.42                        | Pass    |
| WCDMA1700/2100 | -18                         | -9.17                        | Pass    |
| GSM1900        | -18                         | -8.45                        | Pass    |

### 1.2.2 Frequency Response at Axial Measurement Point

| Mode           | Verdict |
|----------------|---------|
|                |         |
| GSM850         | Pass    |
| WCDMA1700/2100 | Pass    |
| GSM1900        | Pass    |

HAC T-Coil Report Salo\_HAC\_0739\_02 Applicant: Nokia Corporation





### 1.2.3 Signal Quality

| Mode           | Minimum limit<br>[dB] |     | it | Minimum result<br>[dB] | Category assesment |    |
|----------------|-----------------------|-----|----|------------------------|--------------------|----|
|                | T1                    | T2  | T3 | T4                     |                    |    |
| GSM850         | -15                   | -5  | 5  | 15                     | 22.8               | T4 |
| WCDMA1700/2100 | -20                   | -10 | 0  | 10                     | 19.9               | T4 |
| GSM1900        | -15                   | -5  | 5  | 15                     | 24.7               | T4 |

## 1.2.4 Overall HAC rating of the tested device

| Mode           | RF emissions category<br>at T-coil axial<br>measurement point<br>(E- and H-fields)* | Category assessment,<br>T-Coil signal quality | HAC category of the tested device (RF emissions and T-coil requirements combined) |
|----------------|-------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------------------|
| GSM850         | M3                                                                                  | T4                                            |                                                                                   |
| WCDMA1700/2100 | M4                                                                                  | T4                                            | M3/T3                                                                             |
| GSM1900        | M3                                                                                  | T4                                            |                                                                                   |

<sup>\*</sup>See separate report Salo\_HAC\_0739\_01

### 2. DESCRIPTION OF THE EQUIPMENT UNDER TEST (EUT)

| Modes of<br>Operation | Bands       | Modulation<br>Mode | Duty Cycle | Transmitter<br>Frequency Range<br>(MHz) |
|-----------------------|-------------|--------------------|------------|-----------------------------------------|
| GSM                   | 850<br>1900 | GMSK               | 1/8        | 824 - 849<br>1850 - 1910                |
| WCDMA                 | 1700/2100   | QPSK               | 1          | 1712 - 1753                             |

Outside of USA the transmitter of the device is capable of operating also in 900MHz and 1800MHz bands, which are not part of this filing.

### 2.1 Picture of Device

See HAC RF Emissions Test Report, Salo\_HAC\_0739\_01.





### 3. TEST CONDITIONS

### 3.1 Temperature and Humidity

| Ambient temperature (°C): | 19.3 to 22.2 |
|---------------------------|--------------|
| Ambient humidity (RH %):  | 39 to 57     |

#### 3.2 WD Control

The transmitter of the device was put into operation by using a call tester. Communications between the device and the call tester were established by air link. Speech coding was processed with EFR speech codec for GSM and with AMR 12.2 kbps for WCDMA.

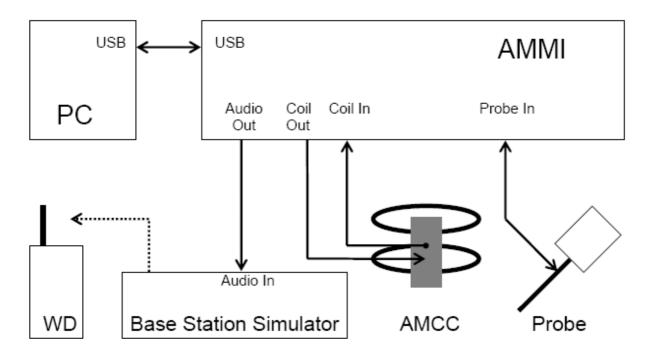
The device output power was set to maximum power level for all tests; a fully charged battery was used for every test sequence.

In all operating bands the measurements were performed on middle channel.

#### 3.3 WD Parameters

HAC mode was switched on from the WD user interface, volume setting was set to maximum and microphone was muted.






### 4. DESCRIPTION OF THE TEST EQUIPMENT

### 4.1 Measurement system and components

The measurements were performed using an automated near-field scanning system, DASY 4 software version 4.7, manufactured by Schmid & Partner Engineering AG (SPEAG) in Switzerland.

Components and signal paths of used measurement system are pictured below:







The following table lists calibration dates of measurement equipment:

| Test Equipment                                 | Serial<br>Number | Calibration<br>interval | Calibration<br>expiry |  |
|------------------------------------------------|------------------|-------------------------|-----------------------|--|
| DAE4                                           | 555              | 12 months               | 2008-03               |  |
| R&S CMU200 Radio Communication Test Set        | 101111           | 12 months               | 2008-07               |  |
| AM1DV3 Audio Magnetic Probe                    | 3036             | 12 months               | 2008-02               |  |
| AMMI Audio Magnetic Measurement Instrument     | 1002             | -                       | -                     |  |
| AMCC Helmholtz Audio Magnetic Calibration Coil | 1004             | -                       | -                     |  |

### 4.1.1 Audio Magnetic Probe AM1DV3

**Construction** Fully RF shielded metal construction (RF sensitivity < -100dB) **System calibration** Calibrated using Helmholtz coil according to manufacturers

instructions

Frequency range 0.1 – 20 kHz (HOX! test signal is limited to required BW of 300 to

3000 Hz, ANSI C63.19)

**Sensitivity** < -50 dB A/m

**Dimensions** Overall length: 290 mm; Tip diameter: 6 mm

### 4.1.2 Audio Magnetic Measurement Instrument AMMI

Sampling Rate 48 kHz / 24 bit

**Dynamic Range** 85 dB

**Test Signal Generation** User selectable and predefined (via PC)

**System calibration** Auto-calibration / full system calibration using AMCC with

monitor output

### 4.1.3 Audio Magnetic Calibration Coil AMCC

**Dimensions** 370 x 370 x 196 mm (ANSI-C63.19 compliant)





#### 4.1.4 Device Holder

The device holder and Test Arch are manufactured by Speag (<a href="http://www.dasy4.com/hac">http://www.dasy4.com/hac</a>). Test arch is used for all tests i.e. for both validation testing and device testing. The holder and test arch conforms to the requirements of ANSI C63.19.

The SPEAG device holder (see Section 5.1) was used to position the test device in all tests.

### 4.2 Verification of the System

Audio Magnetic Probe AM1D is calibrated in AMCC Helmholtz Audio Magnetic Calibration Coil before each measurement procedure using calibration and reference signals.

R&S CMU200 audio codec and SPEAG AMMI audio paths (gain) were calibrated according to manufacturer's instructions.





#### 5. DESCRIPTION OF THE TEST PROCEDURE

#### 5.1 Test Arch and Device Holder

The test device was placed in the Device Holder (illustrated below) that is supplied by SPEAG. Using this positioner the tested device is positioned under Test Arch.



Device holder and Test Arch supplied by SPEAG

### 5.2 Test Positions

The device was positioned such that Device Reference Plane was touching the bottom of the Test Arch. The acoustic output is aligned with the intersection of the Test Arch's middle bar and dielectric wire. The WD is positioned always this way to ensure repeatability of the measurements. Coordinate system depicted below is used to define exact locations of measurement points relative to the center of the acoustic output.



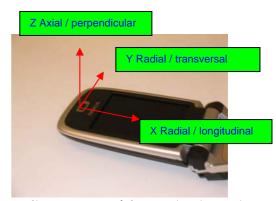



Photo of the device positioned under Test Arch and coordinate system (The EUT in picture is generic phone sample and does not represent the actual equipment under test)

HAC T-Coil Report Salo\_HAC\_0739\_02 Applicant: Nokia Corporation Type: RM-257





#### 5.3 T-coil Scan Procedures

Manufacturer can either define measurement locations for WD categorization or optimum locations can be found using following procedure; First, coarse scans in all measurement orientations, centered at the earpiece, are made to find approximate locations of optimum signal. More accurate fine scans are made in these locations to find final measurement points.

### 5.4 Measurement procedure and used test signals

During measurements signal is fed to WD via communication tester. Proper gain setting is used in software to ensure correct signal level fed to communication tester speech input. Measurement software compares fed signal and signal from measurement probe and applies proper filtering and integration procedures.

Broadband voice-like signal (300...3000Hz) is used during scans and frequency response measurement to ensure proper operation of WD vocoder and audio enhancement algorithms.

Both signal (ABM1) and undesired audio noise (ABM2) are measured consequently to enable determination of signal+noise to noise ratio (SNR).

In final measurement sine signal is used to determine signal strength @ 1025 Hz.

### 5.5 T-coil Requirements and Category Limits

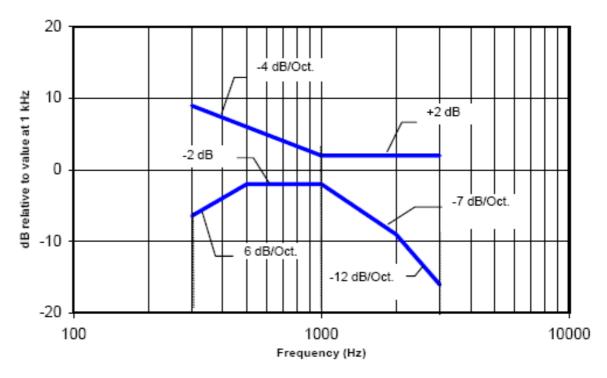
#### **RF Emissions**

Wireless device has to fulfill RF emission requirements at the axial measurement location.

### **Axial Field Intensity**

The axial component of the magnetic field shall be  $\geq$ -13dB(A/m) at 1 kHz, in 1/3 octave band filter.

### **Radial Field Intensity**


The radial components of the magnetic field shall be  $\geq$ -18dB(A/m) at 1 kHz, in 1/3 octave band filter.





### **Frequency Response**

Frequency response of the axial component must be between the limits pointed by frequency curves below:



Frequency response window applicable for devices with axial field strength > -10dB(A/m)

### **Signal Quality**

The worst result of three T-coil signal measurements is used to define WD Hearing Aid T-category according to the category limits:

| Category | AWF [dB] | Limits for Signal Quality [dB] |
|----------|----------|--------------------------------|
| T1       | 0        | -20                            |
| 11       | -5       | -15                            |
| T2       | 0        | -10                            |
| 12       | -5       | -5                             |
| Т3       | 0        | 0                              |
| 15       | -5       | 5                              |
| T4       | 0        | 10                             |
| 14       | -5       | 15                             |

HAC T-Coil Report
Salo\_HAC\_0739\_02
Applicants Nakia Corporate

Applicant: Nokia Corporation





### 6. MEASUREMENT UNCERTAINTY

| Source of Uncertainty                     | Tolerance<br>±% | Probability<br>Distribution | Div. | c<br>ABM1 | c<br>ABM2 | Standard<br>Uncertainty<br>±%, ABM1 | Standard<br>Uncertainty<br>±%, ABM2 |
|-------------------------------------------|-----------------|-----------------------------|------|-----------|-----------|-------------------------------------|-------------------------------------|
| PROBE SENSITIVITY                         |                 |                             |      |           |           |                                     |                                     |
| Reference level                           | 3.0             | N                           | 1.0  | 1         | 1         | 3.0                                 | 3.0                                 |
| AMCC geometry                             | 0.4             | R                           | √3   | 1         | 1         | 0.2                                 | 0.2                                 |
| AMCC current                              | 0.6             | R                           | √3   | 1         | 1         | 0.4                                 | 0.4                                 |
| Probe positioning during calibration      | 0.1             | R                           | √3   | 1         | 1         | 0.1                                 | 0.1                                 |
| Noise contribution                        | 0.7             | R                           | √3   | 0.0143    | 1         | 0.0                                 | 0.4                                 |
| Frecuency slope                           | 5.9             | R                           | √3   | 0.1       | 1.0       | 0.3                                 | 3.5                                 |
| PROBE SYSTEM                              |                 |                             |      |           |           |                                     |                                     |
| Repeatability / Drift                     | 1.0             | R                           | √3   | 1         | 1         | 0.6                                 | 0.6                                 |
| Linearity / Dynamic range                 | 0.6             | R                           | √3   | 1         | 1         | 0.4                                 | 0.4                                 |
| Acoustic noise                            | 1.0             | R                           | √3   | 0.1       | 1         | 0.1                                 | 0.6                                 |
| Probe angle                               | 2.3             | R                           | √3   | 1         | 1         | 1.4                                 | 1.4                                 |
| Spectral processing                       | 0.9             | R                           | √3   | 1         | 1         | 0.5                                 | 0.5                                 |
| Integration time                          | 0.6             | N                           | 1.0  | 1         | 5         | 0.6                                 | 3.0                                 |
| Field disturbation                        | 0.2             | R                           | √3   | 1         | 1         | 0.1                                 | 0.1                                 |
| TEST SIGNAL                               |                 |                             |      |           |           |                                     |                                     |
| Reference signal spectral response        | 0.6             | R                           | √3   | 0         | 1         | 0.0                                 | 0.4                                 |
| POSITIONING                               |                 |                             |      |           |           |                                     |                                     |
| Probe positioning                         | 1.9             | R                           | √3   | 1         | 1         | 1.1                                 | 1.1                                 |
| Phantom thickness                         | 0.9             | R                           | √3   | 1         | 1         | 0.5                                 | 0.5                                 |
| EUT Positioning                           | 1.9             | R                           | √3   | 1         | 1         | 1.1                                 | 1.1                                 |
| EXTERNAL CONTRIBUTIONS                    |                 |                             |      |           |           |                                     |                                     |
| RF interference                           | 0.0             | R                           | √3   | 1         | 1         | 0.0                                 | 0.0                                 |
| Test singnal variation                    | 2.0             | R                           | √3   | 1         | 1         | 1.2                                 | 1.2                                 |
| COMBINED UNCERTAINTY                      |                 |                             |      |           |           |                                     |                                     |
| Combined Standard Uncertainty (ABM field) |                 |                             |      |           |           | 4.1                                 | 6.1                                 |
| Expanded Standard Uncertainty [%]         |                 |                             |      |           |           | 8.1                                 | 12.3                                |





### 7. RESULTS

Measurement location coordinates are defined as deviation from earpiece center in millimeters. Coordinate system is defined in chapter 4.2

Axial measurement location was defined by the manufacturer of the device as the center of the earpiece. Maximum values for axial field are listed for informative purposes although results at earpiece center were used in evaluating T-category of the device.

### **GSM 850 results**

|                                                      |       |     |     | ial 2<br>versal) | Axial |            |      |          |
|------------------------------------------------------|-------|-----|-----|------------------|-------|------------|------|----------|
|                                                      |       |     |     |                  | Max s | Max signal |      | Earpiece |
|                                                      | Х     | у   | Х   | у                | Х     | у          | Х    | У        |
| Measurement location (x,y) [mm]                      | 5.4   | 6.0 | 0.4 | 0.2              | -0.4  | 5.8        | 0    | 5        |
| Signal strength [dB A/m]                             | -8.42 |     | -8. | 23               | 0.26  |            | 0.07 |          |
| ABM2 [dB A/m]                                        | -33   | 3.8 | -32 | 1.0              | -33   | 3.4        | -3   | 7.9      |
| Signal quality [dB]                                  | 25.4  |     | 22  | 2.8              | 33.7  |            | 38.0 |          |
| Ambient background noise at point (0,0) ABM [dB A/m] | -54   | 4.3 | -54 | 4.3              | -54.4 |            |      |          |

### WCDMA 1700/2100 results

|                                                      | Radial 1<br>(longitudinal) |     |     | ial 2<br>versal) | Axial |            |       |          |  |
|------------------------------------------------------|----------------------------|-----|-----|------------------|-------|------------|-------|----------|--|
|                                                      |                            |     |     |                  | Max s | Max signal |       | Earpiece |  |
|                                                      | Х                          | У   | Х   | у                | Х     | у          | Х     | У        |  |
| Measurement location (x,y) [mm]                      | 5.8                        | 7   | 0.6 | 0.4              | -0.4  | 6.2        | 0     | 5        |  |
| Signal strength [dB A/m]                             | -9.17                      |     | -8. | 79               | -0.44 |            | -3.56 |          |  |
| ABM2 [dB A/m]                                        | -5                         | 0.9 | -28 | 8.7              | -43   | 3.4        | -44   | 4.0      |  |
| Signal quality [dB]                                  | 41.7                       |     | 19  | ).9              | 42.9  |            | 40.4  |          |  |
| Ambient background noise at point (0,0) ABM [dB A/m] | -4                         | 4.5 | -47 | 2.4              | -43.9 |            |       |          |  |





### **GSM 1900 results**

|                                                      | Radial 1 Radial 2 (transversal) |     |       | -     | Axial    |     |      |     |
|------------------------------------------------------|---------------------------------|-----|-------|-------|----------|-----|------|-----|
|                                                      |                                 |     | Max s | ignal | Earpiece |     |      |     |
|                                                      | Х                               | у   | Х     | у     | Х        | у   | Х    | У   |
| Measurement location (x,y) [mm]                      | 5.4                             | 6.2 | 0.4   | 0     | -0.2     | 5.8 | 0    | 5   |
| Signal strength [dB A/m]                             | -8.                             | 45  | -8.   | 25    | 0.27     |     | 0.03 |     |
| ABM2 [dB A/m]                                        | -3!                             | 5.6 | -33   | 3.0   | -41      | L.6 | -4:  | 1.6 |
| Signal quality [dB]                                  | 27.2                            |     | 24    | 1.7   | 41.9     |     | 41.6 |     |
| Ambient background noise at point (0,0) ABM [dB A/m] | -43                             | 3.6 | -47   | 2.1   | -42.8    |     |      |     |

Plots of the signal strength measurement scans are presented in Appendix A.





**APPENDIX A: MEASUREMENT SCANS** 





Date/Time: 2007-09-21 13:48:13 Test Laboratory: TCC Nokia

Type: RM-257; EUT: 12239; Serial: 004401/01/111749/2

Communication System: GSM850

Frequency: 836.6 MHz

Medium parameters used:  $\sigma = 0$  mho/m,  $\epsilon_r = 1$ ;  $\rho = 1$  kg/m<sup>3</sup>

Phantom section: AMB with Coil Section

## Coarse scan/z (axial) scan 50 x 50 (grid 10) with noise/ABM Interpolated Signal(x,y,z) (51x51x1):

Measurement grid: dx=10mm, dy=10mm

**Cursor:** 

ABM1 = -6.18482 dB A/m BWC Factor = 10.8 dB Location: -2, 8, 363.7 mm

## Point scan (sinewave, max /z (axial) scan at point with noise/ABM Signal(x,y,z) (1x1x1):

Measurement grid: dx=10mm, dy=10mm

**Cursor:** 

ABM1 comp = 0.264188 dB A/m BWC Factor = 0.00642518 dB Location: -0.4, 5.8, 363.7 mm

## Point scan (sinewave, max/z (axial) scan at point with noise/ABM Noise(x,y,z) (1x1x1):

Measurement grid: dx=10mm, dy=10mm

**Cursor:** 

ABM2 = -33.3967 dB A/m Location: -0.4, 5.8, 363.7 mm

## Point scan (sinewave, max/z (axial) scan at point with noise/ABM SNR(x,y,z) (1x1x1):

Measurement grid: dx=10mm, dy=10mm

**Cursor:** 

ABM1/ABM2 = 33.6609 dB BWC Factor = 0.00642518 dB Location: -0.4, 5.8, 363.7 mm

#### **DASY4 Configuration:**

- Probe: AM1DV3 3036; Probe Notes: Sensitivity .007364 V / A/m
- Calibrated: 2007-02-16
- Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE4 Sn555; Calibrated: 2007-03-15
- Phantom: HAC Test Arch with Coil; Type: SD HAC P01 BA; Serial: 1004
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

## Fine scan/z (axial) scan 10 x 10 (grid 2) with noise/ABM Interpolated Signal(x,y,z) (51x51x1):

Measurement grid: dx=10mm, dy=10mm

**Cursor:** 

ABM1 = 0.333487 dB A/m BWC Factor = 10.8 dB Location: -0.4, 5.8, 363.7 mm

## Point scan (sinewave, z@earpiece)/z (axial) scan at point of earpiece with noise/ABM Signal(x,y,z) (1x1x1):

Measurement grid: dx=10mm, dy=10mm

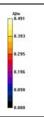
**Cursor:** 

ABM1 comp = 0.0651276 dB A/m BWC Factor = 0.00642518 dB Location: 0, 5, 363.7 mm

## Point scan (sinewave, z@earpiece)/z (axial) scan at point of earpiece with noise/ABM Noise(x,y,z) (1x1x1):

Measurement grid: dx=10mm, dy=10mm

Cursor:


ABM2 = -37.9172 dB A/m Location: 0, 5, 363.7 mm

## Point scan (sinewave, z@earpiece)/z (axial) scan at point of earpiece with noise/ABM SNR(x,y,z) (1x1x1):

Measurement grid: dx=10mm, dy=10mm

**Cursor:** 

ABM1/ABM2 = 37.9824 dB BWC Factor = 0.00642518 dB Location: 0, 5, 363.7 mm





#### Background noise 5mm above Grid Reference/z (axial) noise/ABM Noise(x,y,z) (1x1x1):

Measurement grid: dx=10mm, dy=10mm

**Cursor:** 

ABM2 = -54.4343 dB A/m Location: 0, 0, 368.7 mm





Date/Time: 2007-09-21 15:33:23 Test Laboratory: TCC Nokia

Type: RM-257; EUT: 12239; Serial: 004401/01/111749/2

Communication System: GSM1900

Frequency: 1880 MHz Medium: Air

Medium parameters used:  $\sigma = 0$  mho/m,  $\varepsilon_r = 1$ ;  $\rho = 1$  kg/m<sup>3</sup>

Phantom section: AMB with Coil Section

Point scan (sinewave, max)/z (axial) scan at point with noise/ABM Signal(x,y,z) (1x1x1):

Measurement grid: dx=10mm, dy=10mm

**Cursor:** 

ABM1 comp = 0.269518 dB A/m BWC Factor = 0.00651198 dB Location: -0.2, 5.8, 363.7 mm

Point scan (sinewave, max)/z (axial) scan at point with noise/ABM Noise(x,y,z) (1x1x1):

Measurement grid: dx=10mm, dy=10mm

**Cursor:** 

ABM2 = -41.6387 dB A/m Location: -0.2, 5.8, 363.7 mm

Point scan (sinewave, max)/z (axial) scan at point with noise/ABM SNR(x,y,z) (1x1x1):

Measurement grid: dx=10mm, dy=10mm

**Cursor:** 

ABM1/ABM2 = 41.9083 dB BWC Factor = 0.00651198 dB Location: -0.2. 5.8. 363.7 mm **DASY4 Configuration:** 

- Probe: AM1DV3 - 3036; Probe Notes: Sensitivity .007364 V / A/m

-; Calibrated: 2007-02-16

- Sensor-Surface: 0mm (Fix Surface)

- Electronics: DAE4 Sn555; Calibrated: 2007-03-15

- Phantom: HAC Test Arch with Coil; Type: SD HAC P01 BA; Serial:

1004

- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW:

SEMCAD, V1.8 Build 172

Point scan (sinewave, z@earpiece)/z (axial) scan at point of earpiece with noise/ABM Signal(x,y,z) (1x1x1):

Measurement grid: dx=10mm, dy=10mm

**Cursor:** 

ABM1 comp = 0.0326317 dB A/m BWC Factor = 0.00651198 dB Location: 0, 5, 363.7 mm

Point scan (sinewave, z@earpiece)/z (axial) scan at point of earpiece with noise/ABM Noise(x,y,z) (1x1x1):

Measurement grid: dx=10mm, dy=10mm

**Cursor:** 

ABM2 = -41.5713 dB A/m Location: 0, 5, 363.7 mm

Point scan (sinewave, z@earpiece)/z (axial) scan at point of earpiece with noise/ABM SNR(x,y,z) (1x1x1):

Measurement grid: dx=10mm, dy=10mm

**Cursor:** 

ABM1/ABM2 = 41.604 dB BWC Factor = 0.00651198 dB Location: 0, 5, 363.7 mm

Background noise 5mm above Grid Reference/z (axial) noise/ABM Noise(x,y,z) (1x1x1):

Measurement grid: dx=10mm, dy=10mm

**Cursor:** 

ABM2 = -42.7859 dB A/m Location: 0, 0, 368.7 mm

HAC T-Coil Report Salo\_HAC\_0739\_02 Applicant: Nokia Corporation Type: RM-257





Date/Time: 2007-09-24 09:55:37 Test Laboratory: TCC Nokia

Type: RM-257; EUT: 12239; Serial: 004401/01/111749/2

Communication System: WCDMA1700/2100

Frequency: 1732.4 MHz

Medium: Air

Medium parameters used:  $\sigma$  = 0 mho/m,  $\epsilon_r$  = 1;  $\rho$  = 1 kg/m<sup>3</sup>

Phantom section: AMB with Coil Section

# Coarse scan/z (axial) scan 50 x 50 (grid 10) with noise/ABM Interpolated Signal(x,y,z) (51x51x1):

Measurement grid: dx=10mm, dy=10mm

**Cursor:** 

ABM1 = -7.56265 dB A/m BWC Factor = 10.8 dB Location: 2, 9, 363.7 mm

## Point scan (sinewave, max)/z (axial) scan at point with noise/ABM Signal(x,y,z) (1x1x1):

Measurement grid: dx=10mm, dy=10mm

**Cursor:** 

ABM1 comp = -0.440513 dB A/m BWC Factor = 0.00616479 dB Location: -0.4, 6.2, 363.7 mm

## Point scan (sinewave, max)/z (axial) scan at point with noise/ABM Noise(x,y,z) (1x1x1):

Measurement grid: dx=10mm, dy=10mm

**Cursor:** 

ABM2 = -43.3884 dB A/m Location: -0.4, 6.2, 363.7 mm

## Point scan (sinewave, max)/z (axial) scan at point with noise/ABM SNR(x,y,z) (1x1x1):

Measurement grid: dx=10mm, dy=10mm

**Cursor:** 

ABM1/ABM2 = 42.9479 dB BWC Factor = 0.00616479 dB Location: -0.4, 6.2, 363.7 mm

#### **DASY4 Configuration:**

- Probe: AM1DV3 3036; Probe Notes: Sensitivity .007364 V / A/m
- -; Calibrated: 2007-02-16
- Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE4 Sn555; Calibrated: 2007-03-15
- Phantom: HAC Test Arch with Coil; Type: SD HAC P01 BA; Serial: 1004
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

## Fine scan/z (axial) scan 10 x 10 (grid 2) with noise/ABM Interpolated Signal(x,y,z) (51x51x1):

Measurement grid: dx=10mm, dy=10mm

**Cursor:** 

ABM1 = -0.387685 dB A/m BWC Factor = 10.8 dB Location: -0.4, 6.2, 363.7 mm

## Point scan (sinewave, max)/z (axial) scan at point of earpiece with noise/ABM Signal(x,y,z) (1x1x1):

Measurement grid: dx=10mm, dy=10mm

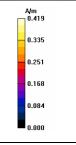
Cursor:

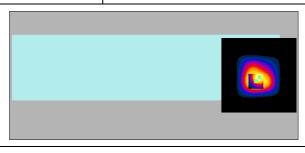
ABM1 comp = -3.55659 dB A/m BWC Factor = 0.00616479 dB Location: 0, 5, 363.7 mm

## Point scan (sinewave, max)/z (axial) scan at point of earpiece with noise/ABM Noise(x,y,z) (1x1x1):

Measurement grid: dx=10mm, dy=10mm

**Cursor:** 


ABM2 = -44.0014 dB A/m Location: 0, 5, 363.7 mm


## Point scan (sinewave, max)/z (axial) scan at point of earpiece with noise/ABM SNR(x,y,z) (1x1x1):

Measurement grid: dx=10mm, dy=10mm

**Cursor:** 

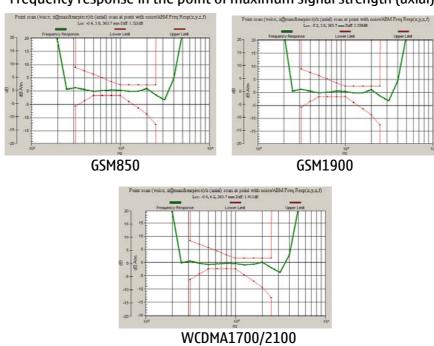
ABM1/ABM2 = 40.4448 dB BWC Factor = 0.00616479 dB Location: 0, 5, 363.7 mm



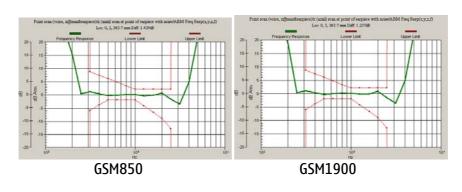


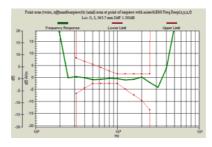
#### Background noise 5mm above Grid Reference/z (axial) noise/ABM Noise(x,y,z) (1x1x1):

Measurement grid: dx=10mm, dy=10mm


Cursor:

ABM2 = -43.8966 dB A/m Location: 0, 0, 368.7 mm




## Frequency response in the point of maximum signal strength (axial)



## Frequency response over earpiece, point 0,5 (axial)





WCDMA1700/2100

HAC T-Coil Report Salo\_HAC\_0739\_02 Applicant: Nokia Corporation





Date/Time: 2007-09-21 12:16:16 Test Laboratory: TCC Nokia

Type: RM-257; EUT: 12239; Serial: 004401/01/111749/2

Communication System: GSM850

Frequency: 836.6 MHz Medium: Air

Medium parameters used:  $\sigma = 0$  mho/m,  $\varepsilon_r = 1$ ;  $\rho = 1$  kg/m<sup>3</sup>

Phantom section: AMB with Coil Section

Coarse scan/x (longitudinal) scan 50 x 50 (grid 10) with noise/ABM Interpolated Signal(x,y,z) (51x51x1):

Measurement grid: dx=10mm, dy=10mm

**Cursor:** 

ABM1 = -9.54791 dB A/m BWC Factor = 10.8 dB Location: 2, 8, 363.7 mm

Point scan (sinewave, max)/x (longitudinal) scan at point with noise/ABM Signal(x,y,z) (1x1x1):

Measurement grid: dx=10mm, dy=10mm

**Cursor:** 

ABM1 comp = -8.4214 dB A/m BWC Factor = 0.00642518 dB Location: 5.4, 6, 363.7 mm

Point scan (sinewave, max)/x (longitudinal) scan at point with noise/ABM Noise(x,y,z) (1x1x1):

Measurement grid: dx=10mm, dy=10mm

**Cursor:** 

ABM2 = -33.7996 dB A/m Location: 5.4, 6, 363.7 mm

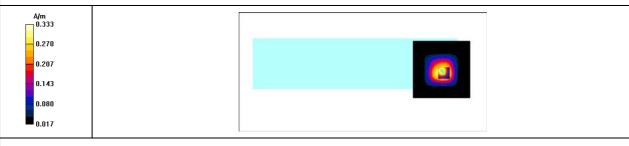
Point scan (sinewave, max)/x (longitudinal) scan at point with noise/ABM SNR(x,y,z) (1x1x1):

Measurement grid: dx=10mm, dy=10mm

**Cursor:** 

ABM1/ABM2 = 25.3782 dB BWC Factor = 0.00642518 dB Location: 5.4, 6, 363.7 mm

#### **DASY4 Configuration:**


- Probe: AM1DV3 3036; Probe Notes: Sensitivity .007364 V / A/m
- -; Calibrated: 2007-02-16
- Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE4 Sn555; Calibrated: 2007-03-15
- Phantom: HAC Test Arch with Coil; Type: SD HAC P01 BA; Serial: 1004
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Fine scan/x (longitudinal) scan 10 x 10 (grid 2) with noise/ABM Interpolated Signal(x,y,z) (51x51x1):

Measurement grid: dx=10mm, dy=10mm

**Cursor:** 

ABM1 = -8.31925 dB A/m BWC Factor = 10.8 dB Location: 5.4, 6, 363.7 mm



Background noise 5mm above Grid Reference/x (longitudinal) noise/ABM Noise(x,y,z) (1x1x1):

Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM2 = -54.2556 dB A/m Location: 0, 0, 368.7 mm

HAC T-Coil Report Salo\_HAC\_0739\_02 Applicant: Nokia Corporation





Date/Time: 2007-09-21 15:33:52 **Test Laboratory: TCC Nokia** 

Type: RM-257; EUT: 12239; Serial: 004401/01/111749/2

Communication System: GSM1900

Frequency: 1880 MHz Medium: Air

Medium parameters used:  $\sigma = 0$  mho/m,  $\epsilon_r = 1$ ;  $\rho = 1$  kg/m<sup>3</sup>

Phantom section: AMB with Coil Section

Point scan (sinewave, max)/x (longitudinal) scan at point with noise/ABM Signal(x,y,z) (1x1x1):

Measurement grid: dx=10mm, dy=10mm

**Cursor:** 

ABM1 comp = -8.44931 dB A/m BWC Factor = 0.00651198 dB Location: 5.4, 6.2, 363.7 mm

Point scan (sinewave, max)/x (longitudinal) scan at point with noise/ABM Noise(x,y,z) (1x1x1):

Measurement grid: dx=10mm, dy=10mm

**Cursor:** 

ABM2 = -35.6221 dB A/mLocation: 5.4, 6.2, 363.7 mm

Point scan (sinewave, max)/x (longitudinal) scan at point with

noise/ABM SNR(x,y,z) (1x1x1):

Measurement grid: dx=10mm, dy=10mm

**Cursor:** 

ABM1/ABM2 = 27.1728 dB BWC Factor = 0.00651198 dB Location: 5.4, 6.2, 363.7 mm

**DASY4 Configuration:** 

- Probe: AM1DV3 - 3036; Probe Notes: Sensitivity .007364 V / A/m

-: Calibrated: 2007-02-16

- Sensor-Surface: 0mm (Fix Surface)

- Electronics: DAE4 Sn555; Calibrated: 2007-03-15

- Phantom: HAC Test Arch with Coil; Type: SD HAC P01 BA; Serial:

- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW:

SEMCAD, V1.8 Build 172

### Background noise 5mm above Grid Reference/x (longitudinal) noise/ABM Noise(x,y,z) (1x1x1):

Measurement grid: dx=10mm, dy=10mm

**Cursor:** 

ABM2 = -43.5907 dB A/m Location: 0, 0, 368.7 mm





Date/Time: 2007-09-24 09:56:07 Test Laboratory: TCC Nokia

Type: RM-257; EUT: 12239; Serial: 004401/01/111749/2

Communication System: WCDMA1700/2100

Frequency: 1732.4 MHz

Medium: Air

Medium parameters used:  $\sigma = 0$  mho/m,  $\varepsilon_r = 1$ ;  $\rho = 1$  kg/m<sup>3</sup>

Phantom section: AMB with Coil Section

## Coarse scan/x (longitudinal) scan 50 x 50 (grid 10) with noise/ABM Interpolated Signal(x,y,z) (51x51x1):

Measurement grid: dx=10mm, dy=10mm

**Cursor:** 

ABM1 = -10.0935 dB A/m BWC Factor = 10.8 dB Location: 2, 8, 363.7 mm

## Point scan (sinewave, max)/x (longitudinal) scan at point with noise/ABM Signal(x,y,z) (1x1x1):

Measurement grid: dx=10mm, dy=10mm

**Cursor:** 

ABM1 comp = -9.16593 dB A/m BWC Factor = 0.00616479 dB Location: 5.8, 7, 363.7 mm

## Point scan (sinewave, max)/x (longitudinal) scan at point with noise/ABM Noise(x,y,z) (1x1x1):

Measurement grid: dx=10mm, dy=10mm

**Cursor:** 

ABM2 = -50.886 dB A/m Location: 5.8, 7, 363.7 mm

### Point scan (sinewave, max)/x (longitudinal) scan at point with

noise/ABM SNR(x,y,z) (1x1x1):

Measurement grid: dx=10mm, dy=10mm

**Cursor:** 

ABM1/ABM2 = 41.7201 dB BWC Factor = 0.00616479 dB Location: 5.8, 7, 363.7 mm

#### **DASY4 Configuration:**

- Probe: AM1DV3 3036; Probe Notes: Sensitivity .007364 V / A/m
- -; Calibrated: 2007-02-16
- Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE4 Sn555; Calibrated: 2007-03-15
- Phantom: HAC Test Arch with Coil; Type: SD HAC P01 BA; Serial: 1004
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

## Fine scan/x (longitudinal) scan 10 x 10 (grid 2) with noise/ABM Interpolated Signal(x,y,z) (51x51x1):

Measurement grid: dx=10mm, dy=10mm

**Cursor:** 

ABM1 = -9.26932 dB A/m BWC Factor = 10.8 dB Location: 5.8, 7, 363.7 mm



Background noise 5mm above Grid Reference/x (longitudinal) noise/ABM Noise(x,y,z) (1x1x1):

Measurement grid: dx=10mm, dy=10mm

**Cursor:** 

ABM2 = -44.515 dB A/m Location: 0, 0, 368.7 mm





Date/Time: 2007-09-21 11:39:08 Test Laboratory: TCC Nokia

Type: RM-257; EUT: 12239; Serial: 004401/01/111749/2

Communication System: GSM850

Frequency: 836.6 MHz

Medium: Air

Medium parameters used:  $\sigma = 0$  mho/m,  $\varepsilon_r = 1$ ;  $\rho = 1$  kg/m<sup>3</sup>

Phantom section: AMB with Coil Section

#### Coarse scan/y (transversal) scan 50 x 50 (grid 10) with noise/ABM Interpolated Signal(x,y,z) (51x51x1):

Measurement grid: dx=10mm, dy=10mm

**Cursor:** 

ABM1 = -10.3783 dB A/mBWC Factor = 10.8 dB Location: 0, 1, 363.7 mm

#### Point scan (sinewave, max)/y (transversal) scan at point with noise/ABM Signal(x,y,z) (1x1x1):

Measurement grid: dx=10mm, dy=10mm

**Cursor:** 

ABM1 comp = -8.22574 dB A/mBWC Factor = 0.00642518 dB Location: 0.4, 0.2, 363.7 mm

#### Point scan (sinewave, max)/y (transversal) scan at point with noise/ABM Noise(x,y,z) (1x1x1):

Measurement grid: dx=10mm, dy=10mm

**Cursor:** 

ABM2 = -31.027 dB A/m Location: 0.4, 0.2, 363.7 mm

#### Point scan (sinewave, max)/y (transversal) scan at point with noise/ABM SNR(x,y,z) (1x1x1):

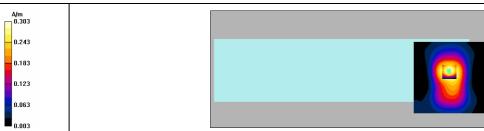
Measurement grid: dx=10mm, dy=10mm

**Cursor:** 

ABM1/ABM2 = 22.8013 dB BWC Factor = 0.00642518 dB Location: 0.4, 0.2, 363.7 mm

**DASY4 Configuration:** 

- Probe: AM1DV3 3036; Probe Notes: Sensitivity .007364 V / A/m
- -; Calibrated: 2007-02-16
- Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE4 Sn555; Calibrated: 2007-03-15
- Phantom: HAC Test Arch with Coil; Type: SD HAC P01 BA; Serial: 1004
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD,


V1.8 Build 172

#### Fine scan/y (transversal) scan 10 x 10 (grid 2) with noise/ABM Interpolated Signal(x,y,z) (51x51x1):

Measurement grid: dx=10mm, dy=10mm

**Cursor:** 

ABM1 = -8.17686 dB A/m BWC Factor = 10.8 dB Location: 0.4, 0.2, 363.7 mm



Background noise 5mm above Grid Reference/y (transversal) noise/ABM Noise(x,y,z) (1x1x1):

Measurement grid: dx=10mm, dy=10mm

**Cursor:** 

 $ABM2 = -54.3376 \, dB \, A/m$ Location: 0, 0, 368.7 mm





Date/Time: 2007-09-21 15:34:28 Test Laboratory: TCC Nokia

Type: RM-257; EUT: 12239; Serial: 004401/01/111749/2

Communication System: GSM1900

Frequency: 1880 MHz

Medium: Air

Medium parameters used:  $\sigma = 0$  mho/m,  $\varepsilon_r = 1$ ;  $\rho = 1$  kg/m<sup>3</sup>

Phantom section: AMB with Coil Section

Point scan (sinewave, max)/y (transversal) scan at point with noise/ABM Signal(x,y,z) (1x1x1):

Measurement grid: dx=10mm, dy=10mm

**Cursor:** 

ABM1 comp = -8.24777 dB A/m BWC Factor = 0.00651198 dB Location: 0.4, 0, 363.7 mm

Point scan (sinewave, max)/y (transversal) scan at point with

noise/ABM Noise(x,y,z) (1x1x1):

Measurement grid: dx=10mm, dy=10mm

**Cursor:** 

ABM2 = -32.9604 dB A/m Location: 0.4, 0, 363.7 mm

Point scan (sinewave, max)/y (transversal) scan at point with

noise/ABM SNR(x,y,z) (1x1x1):

Measurement grid: dx=10mm, dy=10mm

**Cursor:** 

ABM1/ABM2 = 24.7127 dB BWC Factor = 0.00651198 dB Location: 0.4, 0, 363.7 mm **DASY4 Configuration:** 

- Probe: AM1DV3 3036; Probe Notes: Sensitivity .007364 V / A/m
- -; Calibrated: 2007-02-16
- Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE4 Sn555; Calibrated: 2007-03-15
- Phantom: HAC Test Arch with Coil; Type: SD HAC P01 BA; Serial:
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Background noise 5mm above Grid Reference/y (transversal) noise/ABM Noise(x,y,z) (1x1x1):

Measurement grid: dx=10mm, dy=10mm

**Cursor:** 

ABM2 = -42.0879 dB A/m Location: 0, 0, 368.7 mm

HAC T-Coil Report Salo\_HAC\_0739\_02 Applicant: Nokia Corporation





Date/Time: 2007-09-24 09:56:43 Test Laboratory: TCC Nokia

Type: RM-257; EUT: 12239; Serial: 004401/01/111749/2

Communication System: WCDMA1700/2100

Frequency: 1732.4 MHz

Medium: Air

Medium parameters used:  $\sigma = 0$  mho/m,  $\varepsilon_r = 1$ ;  $\rho = 1$  kg/m<sup>3</sup>

Phantom section: AMB with Coil Section

## Coarse scan/y (transversal) scan $50 \times 50$ (grid 10) with noise/ABM Interpolated Signal(x,y,z) (51x51x1):

Measurement grid: dx=10mm, dy=10mm

**Cursor:** 

ABM1 = -10.9037 dB A/m BWC Factor = 10.8 dB Location: 0, 1, 363.7 mm

## Point scan (sinewave, max)/y (transversal) scan at point with noise/ABM Signal(x,y,z) (1x1x1):

Measurement grid: dx=10mm, dy=10mm

**Cursor:** 

ABM1 comp = -8.79044 dB A/m BWC Factor = 0.00616479 dB Location: 0.6, 0.4, 363.7 mm

## Point scan (sinewave, max)/y (transversal) scan at point with

noise/ABM Noise(x,y,z) (1x1x1):

Measurement grid: dx=10mm, dy=10mm

**Cursor:** 

ABM2 = -28.7275 dB A/m Location: 0.6, 0.4, 363.7 mm

## Point scan (sinewave, max)/y (transversal) scan at point with

noise/ABM SNR(x,y,z) (1x1x1):

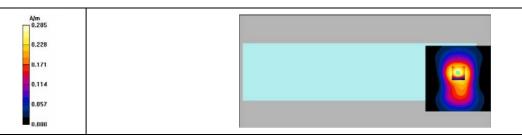
Measurement grid: dx=10mm, dy=10mm

**Cursor:** 

ABM1/ABM2 = 19.9371 dB BWC Factor = 0.00616479 dB Location: 0.6, 0.4, 363.7 mm

#### **DASY4 Configuration:**

- Probe: AM1DV3 3036; Probe Notes: Sensitivity .007364 V / A/m
- -; Calibrated: 2007-02-16
- Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE4 Sn555; Calibrated: 2007-03-15
- Phantom: HAC Test Arch with Coil; Type: SD HAC PO1 BA; Serial: 1004
   Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD,


V1.8 Build 172

## Fine scan/y (transversal) scan 10 x 10 (grid 2) with noise/ABM Interpolated Signal(x,y,z) (51x51x1):

Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM1 = -8.81982 dB A/m BWC Factor = 10.8 dB Location: 0.6, 0.4, 363.7 mm



### Background noise 5mm above Grid Reference/y (transversal) noise/ABM Noise(x,y,z) (1x1x1):

Measurement grid: dx=10mm, dy=10mm

**Cursor:** 

ABM2 = -42.4459 dB A/m Location: 0, 0, 368.7 mm





APPENDIX B: AUDIO MAGNETIC PROBE AM1DV3 S/N 3036 CALIBRATION DOCUMENT

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

Client

**Nokia Salo TCC** 

### Certificate of test and configuration

| Item                  | AM1DV3 Audio Magnetic 1D Field Probe                 |
|-----------------------|------------------------------------------------------|
| Type No               | SP AM1 001 BA                                        |
| Series No             | 3036                                                 |
| Manufacturer / Origin | Schmid & Partner Engineering AG, Zürich, Switzerland |

#### Description of the item

The Audio Magnetic Field Probe is a fully shielded magnetic field probe for the frequency range from 100 Hz to 20 kHz. The pickup coil is compliant with the dimensional requirements of [1]. The probe includes a symmetric 20dB low noise amplifier for the signal available at the shielded 3 pin connector at the side. Power is supplied via the same connector (phantom power supply) and monitored via the LED near the connector. The 7 pin connector at the end of the probe does not carry any signals, but determines the angle of the sensor when mounted on the DAE. The probe supports mechanical detection of the surface. The single sensor in the probe is arranged in a tilt angle allowing measurement of 3 orthogonal field components when rotating the probe by 120° around its axis. It is aligned with the perpendicular component of the field, if the probe axis is tilted 35.3° above the measurement plane, using the connector rotation and Sensor angle stated below.

The probe is fully RF shielded when operated with the matching signal cable (shielded) and allows measurement of audio magnetic fields in the close vicinity of RF emitting wireless devices according to [1] without additional shielding.

### Handling of the item

The probe is manufactured from stainless steel. In order to maintain the performance and calibration of the probe, it must not be opened. The probe is designed for operation in air and shall not be exposed to humidity or liquids. For proper operation of the surface detection and emergency stop functions in the DASY4 system, the probe must be operated with the special probe cup provided (larger diameter). Verify that the probe can slide in the probe cup rubber smoothly.

### Functional test, configuration data and sensitivity

The probe configuration data were evaluated after a functional test including noise level and RF immunity. Connector rotation, sensor angle and sensitivity are specific for this probe.

DASY4 configuration data for the probe

| Configuration item | Condition                                                     | Configuration Data | Dimension |
|--------------------|---------------------------------------------------------------|--------------------|-----------|
| Overall length     | mounted on DAE in DASY4 system                                | 296                | mm        |
| Tip diameter       | at the cylindrical part                                       | 6                  | mm        |
| Sensor offset      | center of sensor, from tip                                    | 3                  | mm        |
| Connector rotation | Evaluated in homogeneous 1 kHz                                | -5.0               | ٥         |
| Sensor angle       | magnetic field generated with AMCC Helmholtz Calibration Coil | 1.31               | 0         |
| Sensitivity        | at 1 kHz                                                      | 0.007364           | V / (A/m) |

Standards

[1] ANSI-C63.19-2006

Test date

16.02.2007 MM / FB

Issue date

16.02.2007

Signature

F. Bombelf