Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service sulsse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

C

Client

PC Test

Certificate No: CD835V3-1082_Jul06

CALIBRATION CERTIFICATE CD835V3 - SN: 1082 Object QA CAL-20.v4 Calibration procedure(s) Calibration procedure for dipoles in air July 17, 2006 Calibration date: In Tolerance Condition of the calibrated item This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Scheduled Calibration Cal Date (Calibrated by, Certificate No.) Primary Standards 04-Oct-05 (METAS, No. 251-00516) Oct-06 GB37480704 Power meter EPM-442A Oct-06 US37292783 04-Oct-05 (METAS, No. 251-00516) Power sensor HP 8481A Aug-06 11-Aug-05 (METAS, No 251-00498) SN: 5086 (20g) Reference 20 dB Attenuator Aug-06 Reference 10 dB Attenuator SN: 5047.2 (10r) 11-Aug-05 (METAS, No 251-00498) Calibration, Mar-07 1-Mar-06 (SPEAG, No. DAE4-660_Mar06) SN: 660 DAE4 Calibration, Dec-06 20-Dec-05 (SPEAG, No. ER3-2336_Dec05) Probe ER3DV6 SN: 2336 20-Dec-05 (SPEAG, No. H3-6065-Dec05) Calibration, Dec-06 SN: 6065 Probe H3DV6 Scheduled Check ID# Check Date (in house) Secondary Standards In house check: Oct-06 Power meter EPM-4419B GB43310788 12-Aug-03 (SPEAG, in house check Oct-05) 10-Aug-03 (SPEAG, in house check Oct-05) In house check: Oct-07 MY41093312 Power sensor HP 8481A In house check: Oct-06 10-Aug-03 (SPEAG, in house check Oct-05) Power sensor HP 8481A MY41093315 18-Oct-01 (SPEAG, in house check Nov-05) In house check: Nov-06 Network Analyzer HP 8753E US37390585 In house check: Nov-07 26-Jul-04 (SPEAG, in house check Nov-05) RF generator R&S SMT06 SN: 100005 Name Function M. Heih Laboratory Technician Mike Meili Calibrated by: Technical Director Fin Bomholt Approved by: Issued: July 18, 2006 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: CD835V3-1082_Jul06

Page 1 of 6

FCC ID: QMNRM-154	PCTEST	HAC (RF EMISSIONS) TEST REPORT		NOKIA	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:			Page 53 of 70
0705080403.QMN	May 5 - 7, 2007		Cellular/PCS CDMA Phone with AMPS and Bluetooth		rage 55 01 70

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

C

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

References

[1] ANSI-PC63.19-2001 (Draft 3.x, 2005)
American National Standard for Methods of Measurement of Compatibility between Wireless Communications
Devices and Hearing Aids.

Methods Applied and Interpretation of Parameters:

- Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna
 (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes.
 In coincidence with standard [1], the measurement planes (probe sensor center) are selected to be at a
 distance of 10 mm above the top edge of the dipole arms.
- Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All
 figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector
 is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a
 directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level.
- Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY4 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy.
- Feed Point Impedance and Return Loss: These parameters are measured using a HP 8753E Vector Network
 Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was
 eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any
 obstacles.
- E-field distribution: E field is measured in the x-y-plane with an isotropic ER3D-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 10 mm (in z) above the top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, 10mm above the dipole surface.
- H-field distribution: H-field is measured with an isotropic H-field probe with 100mW forward power to the
 antenna feed point, in the x-y-plane. The scan area and sensor distance is equivalent to the E-field scan. The
 maximum of the field is available at the center (subgrid 5) above the feed point. The H-field value stated as
 calibration value represents the maximum of the interpolated H-field, 10mm above the dipole surface at the
 feed point.

Certificate No: CD835V3-1082_Jul06

Page 2 of 6

FCC ID: QMNRM-154	PCTEST	HAC (RF EMISSIONS) TEST REPORT		NOKIA	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:			Page 54 of 70
0705080403.QMN	May 5 - 7, 2007		Cellular/PCS CDMA Phone with AMPS and Bluetooth		Faye 34 01 70

1 Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY4	V4.7 B44
DASY PP Version	SEMCAD	V1.8 B171
Phantom	HAC Test Arch	SD HAC P01 BA, #1002
Distance Dipole Top - Probe Center	10 mm	
Scan resolution	dx, dy = 5 mm	area = 20 x 180 mm
Frequency	835 MHz ± 1 MHz	
Forward power at dipole connector	20.0 dBm = 100mW	
Input power drift	< 0.05 dB	

2 Maximum Field values

H-field 10 mm above dipole surface	condition	interpolated maximum
Maximum measured	100 mW forward power	0.454 A/m

Uncertainty for H-field measurement: 8.2% (k=2)

E-field 10 mm above dipole surface	condition	Interpolated maximum	
Maximum measured above high end	100 mW forward power	172.3 V/m	
Maximum measured above low end	100 mW forward power	162.3 V/m	
Averaged maximum above arm	100 mW forward power	167.3 V/m	

Uncertainty for E-field measurement: 12.8% (k=2)

3 Appendix

3.1 Antenna Parameters

Frequency	Return Loss	Impedance
800 MHz	16.7 dB	(43.5 – j12.2) Ohm
835 MHz	27.6 dB	(51.3 + j4.0) Ohm
900 MHz	16.1 dB	(57.4 – j15.4) Ohm
950 MHz	21.1 dB	(44.3 + j6.0) Ohm
960 MHz	18.0 dB	(49.0 + j12.6) Ohm

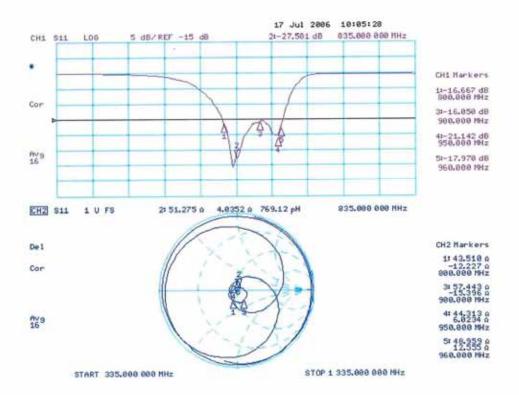
3.2 Antenna Design and Handling

The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth.

The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals.

Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected.

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.


Certificate No: CD835V3-1082_Jul06

Page 3 of 6

FCC ID: QMNRM-154	PCTEST	HAC (RF EMISSIONS) TEST REPORT		Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 55 of 70
0705080403.QMN	May 5 - 7, 2007	Cellular/PCS CDMA Phone with AM	Cellular/PCS CDMA Phone with AMPS and Bluetooth	

3.3 Measurement Sheets

3.3.1 Return Loss and Smith Chart

Certificate No: CD835V3-1082_Jul06

Page 4 of 6

FCC ID: QMNRM-154	PCTEST	HAC (RF EMISSIONS) TEST REPORT		NOKIA	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:			Page 56 of 70
0705080403.QMN	May 5 - 7, 2007		Cellular/PCS CDMA Phone with AMPS and Bluetooth		rage 56 01 70

3.3.2 DASY4 H-field result

Test Laboratory: SPEAG, Zurich, Switzerland File Name: H CD835 1082 060717.da4

DUT: HAC-Dipole 835 MHz; Type: D835V3; Serial: 1082

Program Name: HAC H Dipole

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: Air Medium parameters used: $\sigma=0$ mho/m, $\epsilon_r=1$; $\rho=1$ kg/m³ Phantom section: H Dipole Section

DASY4 Configuration:

- Probe: H3DV6 SN6065; ; Calibrated: 12/20/2005
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn660; Calibrated: 3/1/2006
- Phantom: HAC Test Arch 4.6; Type: SD HAC P01 BA; Serial: 1002
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

H Scan - Sensor Center 10mm above CD835 Dipole/Hearing Aid Compatibility Test (41x361x1): Measurement grid:

Date/Time: 7/17/2006 2:56:42 PM

dx=5mm, dy=5mm

Maximum value of peak Total field = 0.454 A/m

Probe Modulation Factor = 1.00

Reference Value = 0.482 A/m; Power Drift = -0.014 dB

Hearing Aid Near-Field Category: M2 (AWF 0 dB)

Peak H-field in A/m

Grid 1	Grid 2	Grid 3
0.372	0.402	0.386
Grid 4	Grid 5	Grid 6
0.425	0.454	0.438
Grid 7	Grid 8	Grid 9
0.379	0.404	0.388

0 dB = 0.454 A/m

Certificate No: CD835V3-1082_Jul06

Page 5 of 6

FCC ID: QMNRM-154	PCTEST	HAC (RF EMISSIONS) TEST REPORT		NOKIA	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:			Page 57 of 70
0705080403.QMN	May 5 - 7, 2007		Cellular/PCS CDMA Phone with AMPS and Bluetooth		rage 57 01 70

3.3.3 DASY4 E-Field result

Date/Time: 7/17/2006 11:50:47 AM

Test Laboratory: SPEAG, Zurich, Switzerland File Name: E CD835 1082 060717.da4

DUT: HAC-Dipole 835 MHz; Type: D835V3; Serial: 1082

Program Name: HAC E Dipole

Communication System: CW; Frequency: 835 MHz;Duty Cycle: 1:1 Medium: Air Medium parameters used: $\sigma=0$ mho/m, $\epsilon_r=1$; $\rho=1000$ kg/m³ Phantom section: E Dipole Section

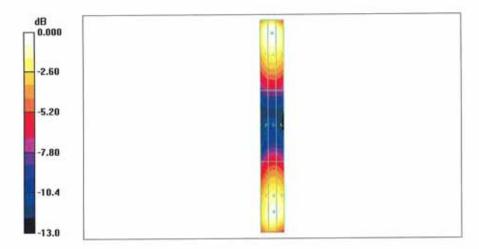
DASY4 Configuration:

- Probe: ER3DV6 SN2336; ConvF(1, 1, 1); Calibrated: 12/20/2005
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn660; Calibrated: 3/1/2006
- Phantom: HAC Test Arch 4.6; Type: SD HAC P01 BA; Serial: 1002
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

E Scan - Sensor Center 10mm above CD835 Dipole/Hearing Aid Compatibility Test (41x361x1): Measurement grid:

dx=5mm, dy=5mm

Maximum value of peak Total field = 172.3 V/m


Probe Modulation Factor = 1.00

Reference Value = 122.7 V/m; Power Drift = -0.030 dB

Hearing Aid Near-Field Category: M2 (AWF 0 dB)

Peak E-field in V/m

Grid 1	Grid 2	Grid 3
166.8	172.3	165.8
Grid 4	Grid 5	Grid 6
84.7	88.9	87.9
Grid 7	Grid 8	Grid 9
154.6	162.3	160.4

0 dB = 172.3 V/m

Certificate No: CD835V3-1082_Jul06

Page 6 of 6

FCC ID: QMNRM-154	PCTEST	HAC (RF EMISSIONS) TEST REPORT		NOKIA	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:			Page 58 of 70
0705080403.QMN	May 5 - 7, 2007		Cellular/PCS CDMA Phone with AMPS and Bluetooth		rage 56 01 70

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

CALIBRATION CERTIFICATE

Accreditation No.: SCS 108

C

S

PC Test Client

Certificate No: CD1880V3-1064 Jul06

Scheduled Check

In house check: Oct-06

In house check: Oct-07

In house check: Oct-06

In house check: Nov-06

In house check: Nov-07

Issued: July 20, 2006

CD1880V3 - SN: 1064 Object QA CAL-20.v4 Calibration procedure(s) Calibration procedure for dipoles in air July 18, 2006 Calibration date: In Tolerance Condition of the calibrated item This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards Cal Date (Calibrated by, Certificate No.) Scheduled Calibration Power meter EPM-442A GB37480704 04-Oct-05 (METAS, No. 251-00516) Oct-06 Power sensor HP 8481A US37292783 04-Oct-05 (METAS, No. 251-00516) Oct-06 11-Aug-05 (METAS, No 251-00498) Aug-06 Reference 20 dB Attenuator SN: 5086 (20a) Reference 10 dB Attenuator SN: 5047.2 (10r) 11-Aug-05 (METAS, No 251-00498) Aug-06 Calibration, Mar-07 SN: 660 1-Mar-06 (SPEAG, No. DAE4-660_Mar06) DAE4 Probe ER3DV6 SN: 2336 20-Dec-05 (SPEAG, No. ER3-2336_Dec05) Calibration, Dec-06 Probe H3DV6 SN: 6065 20-Dec-05 (SPEAG, No. H3-6065-Dec05) Calibration, Dec-06

Function Mike Meili Laboratory Technician

Check Date (in house)

12-Aug-03 (SPEAG, in house check Oct-05)

10-Aug-03 (SPEAG, in house check Oct-05)

10-Aug-03 (SPEAG, in house check Oct-05)

18-Oct-01 (SPEAG, in house check Nov-05)

26-Jul-04 (SPEAG, in house check Nov-05)

Technical Director

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

ID#

GB43310788

MY41093312

MY41093315

US37390585

SN: 100005

Fin Bomholt

Name

Certificate No: CD1880V3-1064_Jul06

Page 1 of 6

FCC ID: QMNRM-154	PCTEST	HAC (RF EMISSIONS) TEST REPORT		NOKIA	Reviewed by: Quality Manager
HAC Filename:	Test Dates:		EUT Type:		Page 59 of 70
0705080403.QMN	May 5 - 7, 2007		Cellular/PCS CDMA Phone with AMPS and Bluetooth		Fage 59 01 70

Secondary Standards

Power meter EPM-4419B

Power sensor HP 8481A

Power sensor HP 8481A

Network Analyzer HP 8753E

RF generator R&S SMT06

Calibrated by:

Approved by:

Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

ANSI-PC63.19-2001 (Draft 3.x, 2005) [1] American National Standard for Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.

Methods Applied and Interpretation of Parameters:

- Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes. In coincidence with standard [1], the measurement planes (probe sensor center) are selected to be at a distance of 10 mm above the top edge of the dipole arms.
- Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level.
- Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY4 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy.
- Feed Point Impedance and Return Loss: These parameters are measured using a HP 8753E Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles.
- E- field distribution: E field is measured in the x-y-plane with an isotropic ER3D-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 10 mm (in z) above the top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, 10mm above the dipole surface.
- H-field distribution: H-field is measured with an isotropic H-field probe with 100mW forward power to the antenna feed point, in the x-y-plane. The scan area and sensor distance is equivalent to the E-field scan. The maximum of the field is available at the center (subgrid 5) above the feed point. The H-field value stated as calibration value represents the maximum of the interpolated H-field, 10mm above the dipole surface at the feed point.

Certificate No: CD1880V3-1064 Jul06 Page 2 of 6

FCC ID: QMNRM-154	PCTEST	HAC (RF EMISSIONS) TEST REPORT		NOKIA	Reviewed by: Quality Manager
HAC Filename:	Test Dates:		EUT Type:		Page 60 of 70
0705080403.QMN	May 5 - 7, 2007		Cellular/PCS CDMA Phone with AMPS and Bluetooth		rage 60 01 70

1 Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY4	V4.7B44
DASY PP Version	SEMCAD	V1.8 B171
Phantom	HAC Test Arch	SD HAC P01 BA, #1002
Distance Dipole Top - Probe Center	10 mm	
Scan resolution	dx, dy = 5 mm	area = 20 x 90 mm
Frequency	1880 MHz ± 1 MHz	
Forward power at dipole connector	20.0 dBm = 100mW	
Input power drift	< 0.05 dB	

2 Maximum Field values

H-field 10 mm above dipole surface	condition	Interpolated maximum
Maximum measured	100 mW forward power	0.451 A/m

Uncertainty for H-field measurement: 8.2% (k=2)

E-field 10 mm above dipole surface	condition	Interpolated maximum
Maximum measured above high end	100 mW forward power	137.9 V/m
Maximum measured above low end	100 mW forward power	131.3 V/m
Averaged maximum above arm	100 mW forward power	134.6 V/m

Uncertainty for E-field measurement: 12.8% (k=2)

3 Appendix

3.1 Antenna Parameters

Frequency	Return Loss	Impedance
1710 MHz	20.4 dB	(49.1 + j9.5) Ohm
1880 MHz	22.1 dB	(50.7 + j7.9) Ohm
1900 MHz	22.5 dB	(52.6 + j7.2) Ohm
1950 MHz	30.6 dB	(53.0 – j0.3) Ohm
2000 MHz	20.8 dB	(41.8 + j1.7) Ohm

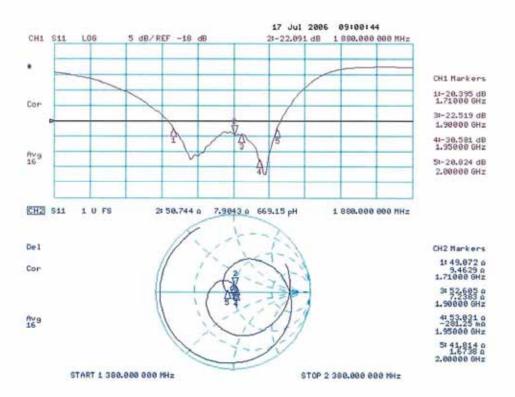
3.2 Antenna Design and Handling

The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth.

The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals.

Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected.

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.


Certificate No: CD1880V3-1064_Jul06

Page 3 of 6

FCC ID: QMNRM-154	PCTEST	HAC (RF EMISSIONS) TEST REPORT		NOKIA	Reviewed by: Quality Manager
HAC Filename:	Test Dates:		EUT Type:		Page 61 of 70
0705080403.QMN	May 5 - 7, 2007		Cellular/PCS CDMA Phone with AMPS and Bluetooth		rage 61 01 70

3.3 Measurement Sheets

3.3.1 Return Loss and Smith Chart

Certificate No: CD1880V3-1064_Jul06

Page 4 of 6

FCC ID: QMNRM-154	PCTEST	HAC (RF EMISSIONS) TEST REPORT	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:	Dogo 62 of 70
0705080403.QMN	May 5 - 7, 2007	Cellular/PCS CDMA Phone with AMPS and Blueton	Page 62 of 70

3.3.2 DASY4 H-field result

Date/Time: 7/18/2006 10:16:29 AM

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: HAC Dipole 1880 MHz; Type: CD1880V3; Serial: 1064

Communication System: CW; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium: Air

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_t = 1$; $\rho = 1$ kg/m³

Phantom section: H Dipole Section

DASY4 Configuration:

Probe: H3DV6 - SN6065; Calibrated: 12/20/2005

Sensor-Surface: (Fix Surface)

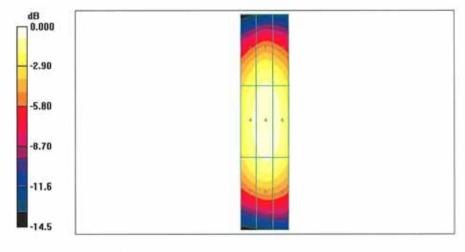
Electronics: DAE4 Sn660; Calibrated: 3/1/2006

Phantom: HAC Test Arch 4.6; Type: SD HAC P01 BA; Serial: 1002

Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

H Scan - Sensor Center 10mm above CD1880V3 Dipole/Hearing Aid Compatibility Test (41x181x1):

Measurement grid: dx=5mm, dy=5mm


Maximum value of peak Total field = 0.451 A/m

Probe Modulation Factor = 1.00

Reference Value = 0.476 A/m; Power Drift = -0.002 dB Hearing Aid Near-Field Category: M2 (AWF 0 dB)

Peak H-field in A/m

	Grid 2 0.417	Grid 3 0.402
	Grid 5 0.451	
Grid 7 0.387	Grid 8 0.412	

0 dB = 0.451 A/m

Certificate No: CD1880V3-1064_Jul06

Page 5 of 6

FCC ID: QMNRM-154	PCTEST	HAC (RF EMISSIONS) TEST REPORT		Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 63 of 70
0705080403.QMN	May 5 - 7, 2007	Cellular/PCS CDMA Phone with AMP	Cellular/PCS CDMA Phone with AMPS and Bluetooth	

3.3.3 DASY4 E-Field result

Date/Time: 7/18/2006 11:51:17 AM

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: HAC Dipole 1880 MHz; Type: CD1880V3; Serial: 1064

Communication System: CW; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium: Air

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³

Phantom section: E Dipole Section

DASY4 Configuration:

Probe: ER3DV6 - SN2336; ConvF(1, 1, 1); Calibrated: 12/20/2005

Sensor-Surface: (Fix Surface)

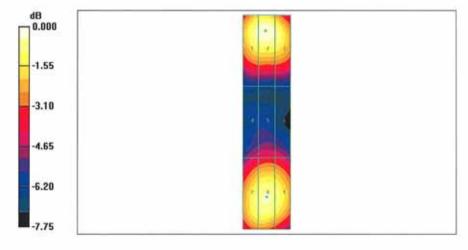
Electronics: DAE4 Sn660; Calibrated: 3/1/2006

Phantom: HAC Test Arch 4.6; Type: SD HAC P01 BA; Serial: 1002

Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

E Scan - Sensor Center 10mm above CD1880V3 Dipole/Hearing Aid Compatibility Test (41x181x1):

Measurement grid: dx=5mm, dy=5mm


Maximum value of peak Total field = 137.9 V/m

Probe Modulation Factor = 1.00

Reference Value = 132.3 V/m; Power Drift = 0.013 dB Hearing Aid Near-Field Category: M2 (AWF 0 dB)

Peak E-field in V/m

Grid 1	Grid 2	Grid 3
134.7	137.9	131.1
Grid 4	Grid 5	Grid 6
86.8	90.4	88.7
Grid 7	Grid 8	Grid 9
128.1	131.3	127.7

0 dB = 137.9 V/m

Certificate No: CD1880V3-1064_Jul06

Page 6 of 6

FCC ID: QMNRM-154	PCTEST	HAC (RF EMISSIONS) TEST REPORT		Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 64 of 70
0705080403.QMN	May 5 - 7, 2007	Cellular/PCS CDMA Phone with AMPS a	Cellular/PCS CDMA Phone with AMPS and Bluetooth	

15. CONCLUSION

The measurements indicate that the wireless communications device complies with the HAC limits specified in accordance with the ANSI C63.19 Standard and FCC WT Docket No. 01-309 RM-8658. Precise laboratory measures were taken to assure repeatability of the tests. The tested device complies with the requirements in respect to all parameters specific to the test. The test results and statements relate only to the item(s) tested.

Please note that the M-rating for this equipment only represents the field interference possible against a hypothetical and typical hearing aid. The measurement system and techniques presented in this evaluation are proposed in the ANSI standard as a means of best approximating wireless device compatibility with a hearing-aid. The literature is under continual re-construction.

FCC ID: QMNRM-154	PCTEST	HAC (RF EMISSIONS) TEST REPORT		Reviewed by: Quality Manager	
HAC Filename:	Test Dates:	EUT Type:		Page 65 of 70	
0705080403.QMN	May 5 - 7, 2007	Cellular/PCS CDMA Phone with AMPS	Cellular/PCS CDMA Phone with AMPS and Bluetooth		

16. REFERENCES

- ANSI C63.19-2006 v3.12, American National Standard for Methods of Measurement of Compatibility between Wireless communication devices and Hearing Aids.", New York, NY, IEEE, January 2006
- FCC Public Notice DA 06-1215, Wireless Telecommunications Bureau and Office of Engineering and Technology Clarify Use of Revised Wireless Phone Hearing Aid Compatibility Standard, June 6, 2006
- 3. Review Guidance for Reviewing Applications for Certification of 3G Devices, May/June 2006
- 4. Berger, H. S., "Compatibility Between Hearing Aids and Wireless Devices," Electronic Industries Forum, Boston, MA, May, 1997
- 5. Berger, H. S., "Hearing Aid and Cellular Phone Compatibility: Working Toward Solutions," Wireless Telephones and Hearing Aids: New Challenges for Audiology, Gallaudet University, Washington, D.C., May, 1997 (To be reprinted in the American Journal of Audiology).
- 6. Berger, H. S., "Hearing Aid Compatibility with Wireless Communications Devices, "IEEE International Symposium on Electromagnetic Compatibility, Austin, TX, August, 1997.
- Bronaugh, E. L., "Simplifying EMI Immunity (Susceptibility) Tests in TEM Cells," in the 1990 IEEE International Symposium on Electromagnetic Compatibility Symposium Record, Washington, D.C., August 1990, pp. 488-491
- 8. Byme, D. and Dillon, H., The National Acoustics Laboratory (NAL) New Procedure for Selecting the Gain and Frequency Response of a Hearing Aid, Ear and Hearing 7:257-265, 1986.
- 9. Crawford, M. L., "Measurement of Electromagnetic Radiation from Electronic Equipment using TEM Transmission Cells, "U.S. Department of Commerce, National Bureau of Standards, NBSIR 73-306, Feb. 1973.
- Crawford, M. L., and Workman, J. L., "Using a TEM Cell for EMC Measurements of Electronic Equipment," U.S. Department of Commerce, National Bureau of Standards. Technical Note 1013, July 1981.
- 11. EHIMA GSM Project, Development phase, Project Report (1st part) Revision A. Technical-Audiological Laboratory and Telecom Denmark, October 1993.
- 12. EHIMA GSM Project, Development phase, Part II Project Report. Technical-Audiological Laboratory and Telecom Denmark, June 1994.
- 13. EHIMA GSM Project Final Report, Hearing Aids and GSM Mobile Telephones: Interference Problems, Methods of Measurement and Levels of Immunity. Technical-Audiological Laboratory and Telecom Denmark, 1995.
- 14. HAMPIS Report, Comparison of Mobile phone electromagnetic near field with an upscaled electromagnetic far field, using hearing aid as reference, 21 October 1999.

FCC ID: QMNRM-154	PCTEST	HAC (RF EMISSIONS) TEST REPORT		NOKIA	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	E	UT Type:		Dogo 66 of 70
0705080403.QMN	May 5 - 7, 2007	С	Cellular/PCS CDMA Phone with AMPS and Bluetooth		Page 66 of 70

- 15. Hearing Aids/GSM, Report from OTWIDAM, Technical-Audiological Laboratory and Telecom Denmark, April 1993.
- 16. IEEE 100, The Authoritative Dictionary of IEEE Standards Terms, Seventh Edition.
- 17. Joyner, K. H, et. al., Interference to Hearing Aids by the New Digital Mobile Telephone System, Global System for Mobile (GSM) Communication Standard, National Acoustic Laboratory, Australian Hearing Series, Sydney 1993.
- 18. Joyner, K. H., et. al., Interference to Hearing Aids by the Digital Mobile Telephone System, Global System for Mobile Communications (GSM), NAL Report #131, National Acoustic Laboratory, Australian Hearing Series, Sydney, 1995.
- 19. Kecker, W. T., Crawford, M. L., and Wilson, W. A., "Contruction of a Transverse Electromagnetic Cell", U.S. Department of Commerce, National Bureau of Standards, Technical Note 1011, Nov. 1978.
- 20. Konigstein, D., and Hansen, D., "A New Family of TEM Cells with enlarged bandwidth and Optimized working Volume," in the Proceedings of the 7th International Symposium on EMC, Zurich, Switzerland, March 1987; 50:9, pp. 127-132.
- 21. Kuk, F., and Hjorstgaard, N. K., "Factors affecting interference from digital cellular telephones," Hearing Journal, 1997; 50:9, pp 32-34.
- 22. Ma, M. A., and Kanda, M., "Electromagnetic Compatibility and Interference Metrology," U.S. Department of Commerce, National Bureau of Standards, Technical Note 1099, July 1986, pp. 17-43.
- Ma, M. A., Sreenivashiah, I., and Chang, D. C., "A Method of Determining the Emission and Susceptibility Levels of Electrically Small Objects Using a TEM Cell," U.S. Department of Commerce, National Bureau of Standards, Technial Note 1040, July 1981.
- 24. McCandless, G. A., and Lyregaard, P. E., Prescription of Gain/Output (POGO) for Hearing Aids, Hearing Instruments 1:16-21, 1983
- 25. Skopec, M., "Hearing Aid Electromagnetic Interference from Digital Wireless Telephones, "IEEE Transactions on Rehabilitation Engineering, vol. 6, no. 2, pp. 235-239, June 1998.
- 26. Technical Report, GSM 05.90, GSM EMC Considerations, European Telecommunications Standards Institute, January 1993.
- 27. Victorian, T. A., "Digital Cellular Telephone Interference and Hearing Aid Compatibility—an Update," Hearing Journal 1998; 51:10, pp. 53-60
- 28. Wong, G. S. K., and Embleton, T. F. W., eds., AIP Handbook of Condenser Microphones: Theory, Calibration and Measurements, AIP Press.

FCC ID: QMNRM-154	PCTEST	HAC (RF EMISSIONS) TEST REPORT		Reviewed by: Quality Manager	
HAC Filename:	Test Dates:	EUT Type:		Page 67 of 70	
0705080403.QMN	May 5 - 7, 2007	Cellular/PCS CDMA Phone with AMPS	Cellular/PCS CDMA Phone with AMPS and Bluetooth		